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Abstract. We study the 3D disordered Potts model with p = 5 and 6. Our
numerical simulations (that severely slow down for increasing p) detect a very
clear spin glass phase transition. We evaluate the critical exponents and the
critical value of the temperature, and we use known results at lower p values to
discuss how they evolve for increasing p. We do not find any sign of the presence
of a transition to a ferromagnetic regime.

Keywords: critical exponents and amplitudes (theory), finite-size scaling, spin
glasses (theory)
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1. Introduction

The three-dimensional (3D) disordered Potts model (DPM) is an important system, that
could help in clarifying a number of open and crucial questions. The first issue that comes
to the mind is the possibility of understanding the glass transition, since this is a very
challenging problem. On more general grounds, it is very interesting to try to qualify the
behavior of the system when the number of states p becomes large: here we should see
the paradigm of a ‘hard’, first-order-like transition but, as we will discuss in the following,
only sometimes this turns out to be clear (see for example the set of large scale, very

doi:10.1088/1742-5468,/2010,/05 /P05002 2


http://stacks.iop.org/JSTAT/2010/P05002
http://dx.doi.org/10.1088/1742-5468/2010/05/P05002
http://arxiv.org/abs/1002.4288
http://dx.doi.org/10.1088/1742-5468/2010/05/P05002

Critical behavior of three-dimensional disordered Potts models with many states

accurate numerical simulations of [1], dealing with a model slightly different from the one
defined here).

In such a difficult situation, extensive numerical simulations are more than welcome,
and the Janus supercomputer [2, 3], optimized for studying spin glasses, reaches its peak
performances when analyzing lattice regular systems on the basis of variables that can
take a finite, small number of values; disordered Potts models fit these requirements very
well. Using the computational power of Janus we have been able to consistently thermalize
the DPM with p = 5 and 6 on 3D (simple cubic) lattice systems with periodic boundary
conditions and size up to L = 12. Bringing these systems to thermal equilibrium becomes
increasingly hard with increasing number of states: it has been impossible for us, even by
using a large amount of time of Janus (that for these problems performs, as we discuss
better in the following, as thousands of PC processors), to get a significant, unbiased
number of samples thermalized, and reliable measurements of physical quantities, for
p>5ona L =16 lattice.

Our results lead us to the claim that the critical behavior of the DPM with a large
number of states p is very subtle, and if p is larger than, say, 5, numerical simulations could
easily give misleading hints. The numerical results that we will discuss in the following
lead us to believe that the spin glass transition gets stronger with increasing number of
states p: a theoretical analysis of these results suggests that the transition could eventually
become of first order for p large enough. We do not observe, for either p = 5 or 6, any
sign of the presence of a spontaneous magnetization.

2. The model and observables

We have performed numerical simulations of the DPM on a simple cubic lattice of linear
size L with periodic boundary conditions. The Hamiltonian of the DPM is

H = —ZJZ] 552.’8‘7., (1)
(i,5)

where the sum is taken over all pairs of first neighboring sites. In the p-state model,
spins s; can take p different values {0,1,..., p — 1}. In this work we analyze the p =5
and 6 cases. The couplings J;; are independent random variables taken from a bimodal
probability distribution (.J;; = £1 with probability %) For a different definition of a
disordered Potts model see [4].

It is convenient to rewrite the variables of the Potts model using the simplex
representation, where the p Potts states are described as vectors pointing to the corners
of a (p — 1)-dimensional hyper-tetrahedron. The Potts scalar spins s; are thus written as
(p — 1)-dimensional unit vectors S; satisfying the relations

Poapy — 1
S .S, == - 2
a b 1 ) ()

where a and b € [1, p]. We use this vector representation to define the observables required
to investigate the critical behavior of the system. In the simplex representation we have
that

H=->"J.S-8, (3)
(i.d)
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The couplings in the simplex representation have the form
1 p— 1
Jij = TJz‘j- (4)

The spin glass behavior is studied via a properly defined tensorial overlap between two
replicas (independent copies of the system characterized by the same quenched disorder
variables J;;). Its Fourier transform (with wavevector k) is given by [5]

1 .
q/“/(k;) — V Z Si(l)MS,L‘(Q)Velk.R’i7 (5)

where Si(l)” is the p component of the spin at site ¢ of the first replica in the simplex

representation, SZ-(Q)" the v component of the spin at site ¢ in the second replica, and
V = L? is the volume of the system.

This spin glass order parameter is then used to define the spin glass susceptibility in
Fourier space:

xa(k) =V (e (R)P), (6)

where ((---)) indicates a thermal average and (---) denotes the average over different
realizations of the disorder (samples in the following). With the above definition, x,(0)
is the usual spin glass susceptibility.

We are interested in studying the value of the dimensionless correlation length /L,
since at the transition temperature it does not depend on L, and is therefore extremely
helpful for estimating the critical temperature value T;: in fact one can usually simulate
different lattice sizes, and look for the crossing point in the plot of the different £/ L values.
One can derive [6] the value of the correlation length ¢ from the Fourier transforms of the
susceptibility with

_ 1 Xq(o) _ 12
€= Do (kn/2) (Xq(km) 1) ’ ™)

where k,, is the minimum wavevector allowed in the lattice. With the periodic boundary
conditions used in this work we have k., = (27/L,0,0) or any of the two vectors obtained
by permuting the indexes.

We also study the ferromagnetic properties of the model by monitoring the usual
magnetization

1
m:V;Si, (8)

and correspondingly the magnetic susceptibility

Xm =V ([m[?). (9)

These two observables are crucial for checking the possible existence of a ferromagnetic
phase, as predicted by the mean field approximation of this model [7].

doi:10.1088/1742-5468,/2010,/05 /P05002 4
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3. Numerical methods

We have analyzed the DPM with five and with six states, on a number of lattice sizes
(L =4, 6, 8, and 12). All the numerical simulations have been run using a standard
Metropolis algorithm combined with the parallel tempering (PT) optimized algorithm, in
order to improve performances and allow reaching thermalization despite the very large
relaxation times typical of spin glass models.

We define a Monte Carlo sweep (MCS) as a set of V' trial updates of lattice spins.
Each simulation consists of a thermalization phase, during which the system is brought to
equilibrium, and a phase of equilibrium dynamics in which relevant physical observables
are measured. As we require high quality random numbers, we use a 32-bit Parisi—
Rapuano shift register [8] pseudo-random number generator!®

In order to improve the simulation performance and to speed up thermalization we
apply a step of the PT algorithm [9] every few MCSs of the Metropolis algorithm. The
PT algorithm is based on the parallel simulation of various copies of the system, that are
governed by different values of the temperature, and on the exchange of their temperatures
according to the algorithm’s rules. In practice we let the different configurations evolve
independently for a few MCSs, and then we attempt a temperature swap between all pairs
of neighboring temperatures: the aim is to let each configuration wander in the allowed
temperature range (that goes from low 7" values, smaller than T, to high 7" values, larger
than 7;), and to use the decorrelation due to the high 7" part of the landscape to achieve
a substantial speed up.

In order to check the timescales of the dynamical process, so as to assess the
thermalization and the statistical significance of our statistical samples, we have computed
a number of dynamical observables that characterize the PT dynamics.

One of them is the temperature-temperature time correlation function, introduced
n [10], that we briefly recall. Let 3% (t) be the inverse temperature of the system i at
timet (i =0,..., Ny —1), where N is the total number of systems evolving in parallel in
the PT."Y We consider an arbitrary function of the system temperature, f(3), changing

sign at (.. We shall name this fti) = f(B9(t)). In equilibrium, system i can be found at
any Nt with uniform probability; hence ( ft(l)> ZNT " £(By)/Nr, for all i and all t. We

must choose the function f as simple as possible, such that ZNT ! f(B) = 0.2 Next, we
can define the correlation functions

N—[t]

P = 5 > (10)

10 Our FPGA did not have components for accommodating the L = 12 code with a 48-bit generator (that could
instead be used for L = 8). We have performed additional numerical simulations using the smaller lattices, on a
PC, using 64-bit random numbers and for L = 8, on Janus, using 48-bit random numbers. We have reproduced
in all cases, within statistical errors, the results obtained with the 32-bit generator.

1 We have used Bs not uniformly distributed in order to have a PT acceptance of order 30-40% in the whole
[-interval. In addition, we have included additional s in the critical region to have clearer crossing points of the
correlation length.

2 Our choice of f(-) is slightly different from that of [10]; f(8) = a(ﬂ Be) for B < Be, and f(B) = b(8 — B.) for
B > fe. The ratio of the slopes a/b is fixed by the condition S NT.~" f(3) = 0. The overall normalization being
irrelevant, we choose a = 1.
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Table 1. Details of the simulations for p = 5. Ngamples is the number of samples
(i.e. of the disorder realizations that we have analyzed), MCS,,i, is the minimum
number of MCSs that we have performed, [Smin, Omax] is the range of inverse
temperatures simulated in the PT, Ny is the number of temperatures inside this
interval, Nyietropolis 15 the frequency of the Metropolis sweeps per PT step, and
Ny, is the total number of measurements performed for each sample.

L Nsamples MCSmin 6min7 ﬂmax] Nﬁ NMetropolis Nm

[

4 2400 107 [1.6, 9.5] 18 5 103
6 2400 2x107  [1.6,9.5] 22 5 10®
8 2448 4x 108 [1.7,6.5] 24 10 2 x 10°
12 2451 6 x 10°  [1.8, 5.5] 20 10 2 x 10°

‘ C(i)(t)
() = =5, (11)

C;7(0)

where NV is the total simulation time. To gain statistics we consider the sum over all the
systems
Np—1

pr(t) = 5= > 0 (12)

Notice that this correlation function measures correlations for a given copy of the system,
that is characterized, during the dynamics, by different temperature values.

We have characterized the correlation function ps(¢) through its integrated
autocorrelation time [6, 11]:

Aint
m:/ dt pj (1), (13)
0

where Ajy = w T and we have used w = 10 (we have always used a total simulation time
larger than 15 or 20 times Ty ).

We have studied the systems defined on the smaller lattices (L = 4 and 6) on standard
PCs, while for the larger lattice sizes we have used the Janus computer [2, 3], an FPGA-
based machine specifically designed to handle simulations of spin glass models. The
performance improvement offered by Janus allowed us to thermalize lattices of size up to
L = 12. While the thermalization of lattices with L = 8 was relatively fast, the bigger
lattice sizes proved to be rather difficult to equilibrate, even within Janus, things getting
worse as the number of Potts states increases.

Tables 1 and 2 summarize the details of the numerical simulations respectively for
the p = 5 and the p = 6 cases. We were able to thermalize a large number of samples
for L up to 12. The thermalization of L = 16 is possible, but it requires a dramatically
large investment in computer resources, since the time required by each sample is very
large. Because of that, and given the resources that we could count upon, we have only
been able to analyze a few samples: the results for the few samples that we have studied
in this case are consistent with the ones obtained from the smaller sizes. In addition, for
some samples with L = 8 and 12, which were especially difficult to thermalize, we had to
use larger numbers of MCSs; see section 4.1.

d0i:10.1088,/1742-5468,/2010/05 /P05002 6
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Table 2. As table 1, but for p = 6.
L Nsamples MCSmin 6min7 ﬂmax] Nﬁ NMetropolis Nm

[
4 2400 107 (2.1, 9.8] 10 5 103
6 2400 2x107  [2.0,9.65] 16 5 103
8 1280 10° (1.7, 7.5] 30 10 2 x 10°
12 1196 6 x 101 [1.6, 6.5] 22 10 2 x 10°

The number of Metropolis sweeps per PT step is 10 on Janus and 5 on the PC, and
there is an important reason for that: in a standard computer the time needed for a step
of the PT algorithm is small compared with that for a complete Metropolis MCS. This is
not true on Janus, where it takes longer to perform a PT step than a Metropolis MCS:
because of that, after a careful test of the overall simulation performance, we decided to
lower the PT to Metropolis MCS ratio in order to increase the Janus efficiency.

In the p = 5 case a numerical simulation of a single sample (thermalization plus
measurements) on Janus takes 39 min for L = 8 and 10 h on L = 12. The same simulations
would require 7.4 days with an Intel® Core2Duo™) 2.4 GHz processor for L = 8 and
315 days for L = 12. These values grow when p = 6: here the equilibration takes 120 min
for an L = 8 sample and 110 h for L = 12 (on the PC they would take 24 days for L =8
and 10 years for L = 12).

The results shown in this paper for the p = 5 model would have required
approximately 2150 equivalent years with an Intel® Core2Duo™) 2.4 GHz processor;
the ones for p = 6 would have required 12000 years.

4. Results

4.1. Thermalization tests

Thermalization tests are a crucial component of spin glass simulations. Before starting
to collect relevant results from the data we have to be sure that they are actually taken
from a properly thermalized system, and are not biased by spurious effects.

A standard analysis scheme consists in evaluating the average value of an observable
on geometrically increasing time intervals. The whole set of measurements is divided into
subsets, each of which covers only part of the system’s history (the last bin covers the
last half of the measurements, the previous bin takes the preceding quarter, the previous
bin the previous eighth and so on), and observables are averaged within each bin. The
convergence to equilibrium is checked by comparing the results over different bins: stability
in the last three bins within error bars (that need to be estimated in an accurate way) is
a good indicator of thermalization.

We show in figures 1 and 2 the logarithmic binning of £, as defined in equation (7),
in the p = 5 and 6 cases. The compatible (and stable) values for the three last points
satisfy the thermalization test explained above. The data in the plots are for the lowest
temperature used for each lattice size: this is expected to be the slowest mode of the
system, and its thermalization guarantees that data at higher temperature values are
also thermalized. The plateau in the last part of each plot is a clear signal of proper

d0i:10.1088,/1742-5468,/2010/05 /P05002 7
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Figure 1. Logarithmic binning thermalization test for p = 5. For all data points
the point size is bigger than the corresponding error bar.
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Figure 2. As figure 1, but for p = 6.

thermalization: only data from the last bin are eventually used to compute thermal
averages.

We have also investigated how thermalization is reached in the individual samples
(as opposed to the information on averages obtained from figures 1 and 2): to do that
we have studied the correlation function for the temperature random walk defined in (12)
and its associated integrated autocorrelation time, 7., defined in (13). As an example
we plot in figure 3 the autocorrelation function (12) for a given sample as a function of
the Monte Carlo time (here L = 8 and p = 6): one can see a fast, exponential decay in
the left part of the figure, and (large) fluctuations around zero at later times.

Sample to sample fluctuations of 7, are very large: in figure 4 we plot 7 for all our
samples with p =5, L = 8. In order to be on the safe side we have increased the number
of MCSs, by continuing the numerical simulation to a greater extent, for all samples where
our estimate of 73,y was bigger than the length of the simulation divided by a constant ¢

d0i:10.1088,/1742-5468,/2010/05 /P05002 8
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Figure 3. The autocorrelation function (12) for one generic sample (p = 6,
L =238).
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Figure 4. Integrated autocorrelation time, 7, for all p =5, L = 8 samples. Tt
is in units of blocks of ten measurements, i.e. of 20 x 103 MCSs. Samples above
the green line have been ‘extended’ (see the text for a discussion of this issue).

(¢ =20 for L = 8 and ¢ = 15 for L = 12, where achieving thermalization is much more
difficult)®3.

4.2. The critical temperature and critical exponents

Our analysis of the critical exponents of the system has been based on the quotient
method [6, 12]: by using the averaged value of a given observable O measured for lattices
of different sizes, we can estimate its leading critical exponent z¢,

(O(B)) =~ [B — Be| . (14)

13 In the p = 5, L = 8 case for 2442 samples we have run a simulation of total extent = 4 x 10% MCSs, while for
5 samples 7 = 8 x 10® MCSs, and for 1 sample nn = 1.6 x 10° MCSs. In the p = 5, L = 12 case for 2382 samples
1 =6 x 10 MCSs, for 54 samples n = 1.2 x 10'°, for 8 samples 1 = 2.4 x 10'°, and for 7 samples 1 = 4.8 x 10'°
MCSs. In the p = 6, L = 8 case: for 1263 samples 7 = 10° MCSs, for 8 samples = 2 x 10° and for 9 samples
1 =4 x 10° MCSs. In the p =6, L = 12 case for 1173 samples 7 = 6 x 10'° MCSs, for 17 samples = 1.2 x 10!
MCSs and for 6 samples n = 2.4 x 10** MCSs.

d0i:10.1088,/1742-5468,/2010/05 /P05002 9
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Figure 5. Overlap correlation length in lattice size units as a function of the
inverse temperature 3 for L = 4, 6, 8 and 12. Here p = 5.

Table 3. Numerical values of our estimates for the crossing point of the curves
&/L. We give feross, the thermal critical exponent v, the anomalous dimension
of the overlap 74, and the anomalous dimension of the magnetization 7y,.

(LI;L2) 6cross(L17L2) V(LI;L2) nq(LlaLQ) nm(leLQ)
(4,8)  4.83(5) 0.82(3)  0.13(2) 1.72(2)
(6,12)  5.01(4) 081(2)  0.16(2) 1.94(2)

Table 4. As table 3, but for p = 6.
(L1,L2)  Beross(L1,L2)  v(L1,L2) ng(L1,L2)  nm(L1, L)

(4,8) 6.30(9) 0.80(2)  0.10(2) 1.453(19)
(6,12)  6.26(7) 0.80(4)  0.16(2) 1.971(19)

By considering two systems on lattices of linear sizes L and sL respectively one has
that [6, 12]
<O(ﬁ> 5L)> _ Sxo/z/ + O(wa)’ (15)
(O(8,L))
where v is the critical exponent of the correlation length and w is the exponent of the
leading-order scaling corrections [6].

We use the operators dg, from (7), and x,, from (6), in equation (15) to obtain
respectively the critical exponents 1+ 1/v and 2 — n,. The exponent 2 — 7, is obtained
by applying equation (15) to the magnetic susceptibility X, from (9).

To use the quotient method we start by estimating the finite size transition
temperature: we do this by looking at the crossing points of the correlation length in
lattice units (£/L) for various lattice sizes. We have used a cubic spline interpolating
procedure to compute both the crossings of {/L and its [-derivative (we have followed
the approach described in detail in [13]).

We show in figures 5 and 6 the behavior of {/L as a function of f. The different
curves are for different lattice sizes. The crossing points are rather clear in both cases,

doi:10.1088/1742-5468/2010,/05 /P05002 10
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Figure 6. As figure 5, but for p = 6.

giving a strong hint of the occurrence of a second-order phase transition. At least for
p = b, scaling corrections play a visible role, and the crossing points undergo a small
but clear drift towards lower temperatures for increasing lattice sizes. We summarize in
tables 3 and 4 the 3 values of the crossing points for two different pairs of lattice sizes,
together with the estimated values of the critical exponents v and 7, that we obtain using
relation (15).

Since we can only get reliable results for small and medium size lattices we cannot
control in full the scaling corrections, and a systematic extrapolation to the infinite volume
limit is impossible. It is clear however that the effective critical exponents summarized in
tables 3 and 4 do not suggest that asymptotically for large volume the system will not be
critical (in this case, for example, 7, should be asymptotically equal to 2): our numerical
data clearly support the existence of a finite temperature phase transition.

We take as our best estimates for the critical exponents the one obtained from the
lattices with sizes L = 6 and 12. For p=5

B. = 5.01(4), v =0.81(2), ng = 0.16(2), (16)
while for p =6
Be = 6.26(7), v =0.80(4), ng = 0.16(2). (17)

It is interesting to compare these values with those for other Potts models with a
different number of states. In particular we are interested in the value of the critical
exponents as a function of the number of states, since we want to characterize the critical
behavior of the various models and attempt a prediction of the model’s behavior when
the number of states is large. In our particular model and with the (low) values of the
temperature that are of interest to us (since we need to get below the critical point), even
with the large computational power available to us, thanks to using Janus, the simulation
for p = 8, say, on a L = 12 lattice, would require an unavailable amount of CPU time.
What is found in the very interesting work of [1] and [5] is different, since there one is
able to thermalize a p = 10 model on a large lattice, and no transition is observed. The
model analyzed in these two references [1,5] is indeed slightly (or maybe, it will turn out,
not so slightly) different from the present one, since there J is negative. It is not clear to
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Figure 8. As figure 7, but for p = 6.

us whether this difference could explain the quite dramatic discrepancy of the observed
behavior, or whether, for example, a different (very low) temperature regime should be
analyzed in order to observe relevant phenomena: this is surely an interesting question
to clarify, and the fact that the couplings have a negative expectation value, in this way
reducing frustration, could turn out to make a difference.

4.3. The absence of ferromagnetic ordering in the critical region

Our DPM is in principle allowed to undergo a ferromagnetic phase transition (since
no symmetry protects it), and at low temperatures could present a spontaneous
magnetization, as discussed in [13]. Because of that we have carefully studied the magnetic
behavior of the model at low temperatures. We have analyzed both the magnetization
and the magnetic susceptibility below the spin glass critical point.

In the paramagnetic phase the magnetization is random in sign, and its absolute
value is expected to be proportional to 1/v/V. In figures 7 and 8 we check whether (|m/|)
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Figure 9. In the bottom plot: . versus p, and the straight line f(p) = p. Middle
plot: v as a function of p. We also show (dashed line) the value which marks the
onset of a disordered first-order phase transition (vg,s¢ = 2/3). Upper plot: 7, as
a function of p.

Table 5. Critical parameters as a function of p. All data are for binary couplings,
with zero expectation value. As R, we denote the ratio between the critical § in
three dimensions and that computed in the mean field.

p Be v q R

2 ([15)) 1.786(6)  2.39(5)* —0.366(16)> 2.187(8)
2 ([16]) 1.804(16)  2.45(15) —0.375(10)  2.209(20)
3 (5)) 2.653(35) 0.91(2)  0.022)  2.17(3)

4 ([13) 4.000(48) 0.96(8)  0.12(6)  2.45(3)

5 (this paper) 5.010(40) 0.81(2) 0.16(2) 2.51(2)

6 (this paper) 6.262(71) 0.80(4) 0.16(2) 2.69(3)

@ This value of v is from &, /L. It is different and more reliable than the one obtained
from the spin glass susceptibility, that, because of large scaling corrections, would severely
depend on the kind of analysis.

b This value of 7, is from the study of the spin glass susceptibility.

around the spin glass critical region tends to an asymptotic value for larger lattice size,
or not. From the figures we see that (|m|) goes to zero in the critical region. Also, we

studied the magnetic susceptibility x,, = V(]m/|?) which is independent of the size. Again
in figures 7 and 8 we check that, and we see a non-divergent behavior. This behavior is
extremely different from that of a ferromagnetic phase, in which y,, diverges with the
volume.

Besides, as reported in section 4.2 the exponent 7, is close to 2, so we could say
that a ferromagnetic—paramagnetic phase transition does not happen in the range of
temperatures that we have studied.

5. The evolution of critical exponents with p

In table 5 we summarize the values of the inverse critical temperature and of the thermal
and overlap critical exponents for DPM from p = 2 (the Ising, Edwards—Anderson spin
glass) up to p = 6. We also plot these data items in figure 9.
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From table 5 and figure 9 some results emerge very clearly. First, the inverse critical
temperature roughly follows a linear behavior in p, with a slope very close to 1. We have
added in table 5 the ratio (R) between the numerical determinations (in 3D) of (.(p) and
their values in the mean field (MF) approximation. One can see that the large deviations
from the MF prediction occur for large values of p (notice that R > 1 since MF suppresses
fluctuations)!4.

Second, v decreases monotonically and 7, grows monotonically with the number of
states p. To discuss this behavior it is useful to keep in mind that when using finite
size scaling to study a disordered first-order phase transition one expects to find [14]
v =2/Dand 2 -1, = D/2, ie, in our D = 3 case, v = 2/3 and 1, = 1/2. These
are ‘effective’ exponents, that are a bound to the ones allowed for second-order phase
transitions.

Both sets of values for v and 7, are indeed completely compatible with tending, as
p increases, to those limit values that characterize a first-order phase transition. If this
turns out, as our numerical data make very plausible, to be true, two different scenarios
open. The first possibility is that the p-state DPM undergoes a disordered first-order
phase transition for large enough values of p (just as in the ordered Potts model, that for
p > 3 undergoes a first-order phase transition), while the second possibility is that the
DPM will show a standard second-order phase transition for all finite values of p. This is
the typical issue that is very difficult to settle with numerical work: an analytical solution
of the model with an infinite number of states would be very useful as a starting point for
discriminating between these two possible scenarios.

6. Conclusions

In this note we have characterized the critical behavior of the 3D DPM with p = 5 and
p = 6, i.e. with a reasonably large number of states. Our numerical simulations have
allowed us to obtain some clear evidences, and to stress some difficult issues that will
require further analysis.

We first stress that in both cases the spin glass transition is very clear, and we have
been able to obtain a reliable estimate of the critical temperature and of the critical
exponents v and 7,. We have discussed what happens when p increases; we have found
that . increases like p. A similar result was conjectured in [18] (for all values of p),
analyzing high temperature series, and found in the mean field for p < 4 (although, of
course, the slope is wrong). In addition, the behavior of v and 7, is compatible with going
to the large p limit value that characterizes a first-order phase transition.

4 In the MF approximation it was obtained, using the Hamiltonian [7,17]

= 7% Z J»;j 557’,5‘]‘,
i#]
that T./J = 1 for p < 4 and (T./J)?> = 1+ (p — 4)*/42 + O((p — 4)*) for p > 4. In addition for very large p,
T./J ~ L(p/ log p)*/2. Taking into account the extra p factor in the Hamiltonian used in the mean field and the
fact that J = v/2d (J_f7 = J?/N, N being the number of spins in the MF computation) since we are working in
finite dimension (d), we obtain the finite dimension version of the critical 8 using the mean field approximation:
Be = p/V2d for p < 4 and B. = (p/V2d)(1 — (p — 4)?/84 + O((p — 4)*)) for p > 4 (notice the minus sign of
the (p — 4)? correction); in addition, for large p, one obtains 3. =~ \/(Q/d)(plogp)l/Q. Note that in our case

V2d ~ 2.45.
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For the low temperature regime we do not see any sign of a transition to a
ferromagnetic regime, that would in principle be allowed by the structure of our model.
We cannot exclude that at very low T values something would happen, but in all of the
range that we can explore the system stays in the spin glass phase.

A last piece of important evidence is that low temperature simulations of this model
look difficult, and that they slow down severely for increasing p. In our particular model,
where the expectation of the coupling is zero, it would be impossible to study reliably a
p = 8 model with the computational resources available today.

This last observation opens indeed a last point that it will be interesting to analyze
in the future. When couplings have a negative expectation value, the simulation of a
p = 10 model [1,5] is possibly easier than it would be in our case, and the results are
very different: in that case one does not see any sign of a phase transition. Analyzing
how the DPM depends on the expectation value of the couplings is indeed at this
point a crucial issue, since it could turn out that the reduction in frustration due to
a negative net value of the couplings could completely change the critical behavior of the
model.
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