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The statistical mechanics that describes collective phenomena in disordered systems and solutions to
large search problems have important mathematical connections. One of the models that describes
disordered materials, the diluted p-spin model, is strongly related to the random XORSAT problem, a
problem of finding variables that simultaneously satisfy a large number of logical constraints (1). This
relation has provided insight into how small changes in a model can modify its computational difficulty.

Cooling a physical liquid creates an ordered crystal or a largely disordered configuration called a glass.
Similarly, cooling a solid containing atoms with unpaired electron spins may lead to a spin-aligned state
(for example, a ferromagnet) or to a disordered spin glass. Simple models of interacting particles or
spins normally create the ordered state at low temperatures. Glass models, when cooled, form small
regions of local order that mismatch at the boundaries, so that no ordered structure is evident on larger
length scales.

A natural dynamics exists for these models: Particles or spins are allowed to move or flip according to
the change in energy this would produce. In a glass model, a large amount of energy is needed to
rearrange the local structures all along the boundaries; relaxation times become huge and diverge at
the glass critical temperature Tg. Below Tg, the system will likely get trapped in one of many false local
energy minima above the true equilibrium energy. In most models, when this situation occurs, the
computation of the ground states can be unfeasibly long. However, there are glass models in which the
relaxation dynamics indeed get stuck at a threshold energy value, yet a different algorithm can find all
of the ground states in a very efficient way. Although such models (considered ideal glasses) are
prototypes for complex systems, the problem of finding their ground state is easy to solve.

An example of these ideal glass models is the diluted p-spin model, which is defined in terms of N
spins s that either point up or down (1 or −1). Their interactions are described by the Hamiltonian

The sum runs over a set of αN randomly chosen triplets (i, j, k) of neighboring sites (so in this case, p =
3, only triplet interactions are included), and the couplings Jijk are quenched random variables (e.g.,
they are randomly set to +1 or −1). The specifics will not matter in the limit of large N. Typically, the
ratio α of interactions per variable is chosen so that not all sites interact, and some are more connected
than others.

This model displays the desired dramatic increase of the relaxation times near Tg that reproduces glass
phenomenology (2, 3). Even when a spin configuration exists that satisfies all the interactions—which
would favor ordering—a perfect glass still forms (4). This model has a mean-field nature—it reduces a
difficult many-body problem to a simpler one-body problem—and could be solved analytically (5).

The figure summarizes the properties of the diluted p-spin model that are relevant for discussing
possible relations between glassiness and computational hardness. In this sketch, potential energy E is
shown as a function of α. The green region corresponds to energy values that can be reached by a
stochastic algorithm—one with randomly chosen moves, such as a Monte Carlo Markov chain. These
algorithms would get “stuck” at the threshold energy Eg separating the green from the red region. The
red region is full of local minima (the glassy states) and large energy barriers (it looks like an “egg
carton”) and is hard to sample with stochastic local moves algorithms (and probably with any
polynomial time algorithm). The blue line corresponds to unfrustrated ground states, that is,
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configurations with all interactions satisfied.

The search for the unfrustrated ground states of the Hamiltonian (Eq. 1) can be easily recast as solving a
set of αN linear equations in N Boolean (true or false) variables of the type

where XOR is the exclusive OR operation—the XOR statement is true if one but not both arguments are
true. As before, the triplets are randomly chosen, and the known constants cijk are randomly fixed to
true or false with probability 1/2. Equation 2 is a constraint satisfaction (SAT) problem (CSP)—each
equation imposes a constraint on the Boolean variables—and is called a random XORSAT problem (6).

The line between easy and hard.

A schematic picture for the potential energy E of a glass
model (the diluted p-spin model) as a function of the ratio
α of interactions or constraints per variable. The green
region corresponds to configurations that can be easily
sampled by a standard stochastic algorithm with local
moves (e.g., Monte Carlo methods). In the red region, deep
local minima separated by high energy barriers make the
sampling of configurations a computationally hard
problem. The zero-energy ground-state configurations
along the blue line (at the horizontal axis) can be sampled

efficiently, because this problem is not computationally hard before the satisfiability (SATUNSAT)
threshold. However, configurations on the blue line cannot be accessed by cooling the glass model:
In this case, a straightforward connection between physical glassiness and computational
complexity cannot be made.
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For small values of the ratio α of constraints per variable, true and false values can be found so that all
αN linear equations are satisfied. However, as the ratio α increases, the random XORSAT problem
becomes more and more difficult to solve and finally cannot be satisfied (UNSAT). The largest α value
for which solutions exist is called SAT-UNSAT threshold. As long as α is smaller than this threshold, the
problem is linear and all solutions can be found efficiently, for example, by the Gaussian elimination
method, which takes a time of order N3 in the worst case.

In a sense, the random XORSAT problem in computer science can be viewed as a limiting case (for
temperature going to zero) of the diluted p-spin model in physics, and it is curious that its solution has
been reached by the two communities independently and at the same time (7, 8).

Returning to the figure, an important connection can be made about computational hardness. The blue
line is computationally easy and can be sampled in polynomial time. However, it extends below the red
hard region that cannot be accessed by the stochastic searches. The naïve connection between
glassiness and hardness fails. Thus, it is not possible to say a priori that a complex physical problem
does always correspond to a computationally hard problem. It is entirely possible to find an easy
problem that looks “glassy” and difficult to solve if approached with a suboptimal algorithm.

Despite the existence of specific cases like the diluted p-spin model, scientists believe in a strong
connection between the physical complexity of a model (i.e., the properties of its potential energy,
which determine phase transitions) and the computational complexity of the corresponding CSP (9–11).
Indeed, the peculiarity of the diluted p-spin model arises from an intrinsic symmetry in the model (6)
that allows easy computation of configurations satisfying all interactions. As soon as this symmetry is
broken, the computation of groundstate configurations becomes very difficult, even if these
configurations satisfy all interactions (12).

In general, the connection between physical complexity and computational complexity may apply and
may help in solving the following very important open problem. Computational problems fall into one of
two complexity classes (13). The class P contains all of the problems for which a solving algorithm
running in polynomial time is known, whereas the class NP contains all of the problems for which such
an algorithm is not available, although a candidate solution can be checked in polynomial time. If the
classes P and NP turn out to coincide—that is, if the “P = NP” conjecture is true—our world would
change dramatically. For example, current cryptographic codes, based on the NP hardness of factoring
large numbers, would be useless.

Scientists strongly believe P and NP classes to be different. In August 2010, some Internet blogs
reported a claim of a proof that P ≠ NP by Vinay Deolalikar. A wiki site aggregates most of the
information on the proof and the discussion about it (14). The proof tries to connect the complexity of
the solution space of random CSPs (i.e., the structure of ground states of the corresponding physical
model) and the complexity of algorithms for finding solutions to these problems.

In essence, Deolalikar tries to prove that those random CSPs in which solutions form clusters with
frozen variables (that is, variables taking the same value for all solutions in the cluster) cannot be solved
in polynomial time by any algorithm. However, the diluted p-spin model is a classical example that a
simple connection cannot work. The solution space of random XORSAT problems shows clustering with
frozen variables (7), but the problem is solvable in polynomial time. Certainly, we need to understand
better this connection, and hopefully Deolalikar's work will help in this regard.
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