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Abstract. We investigate the magnetic and glassy transitions of the square-
lattice XY model in the presence of random phase shifts. We consider
two different random-shift distributions: the Gaussian distribution and a
slightly different distribution (the cosine distribution) which allows the exact
determination of the Nishimori line where magnetic and overlap correlation
functions are equal. We perform Monte Carlo simulations for several values of the
temperature and of the variance of the disorder distribution, in the paramagnetic
phase close to the magnetic and glassy transition lines. We find that, along
the transition line separating the paramagnetic and the quasi-long-range order
phases, magnetic correlation functions show a universal Kosterlitz–Thouless
behavior as in the pure XY model, while overlap correlations show a disorder
dependent critical behavior. This behavior is observed up to a multicritical point
which, in the cosine model, lies on the Nishimori line. Finally, for large values
of the disorder variance, we observe a universal zero-temperature glassy critical
transition, which is in the same universality class as that occurring in the gauge-
glass model.
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1. Introduction

The two-dimensional XY model with random phase shifts (RP XY ) describes the
thermodynamic behavior of several disordered systems, such as Josephson junction arrays
with geometrical disorder [1, 2], magnetic systems with random Dzyaloshinskii–Moriya
interactions [3], crystal systems on disordered substrates [4], and vortex glasses in high-Tc

cuprate superconductors [5]. See [6, 7] for recent reviews. The RP XY model is defined
by the partition function

Z({A}) = exp(−H/T ),

H = −
∑

〈xy〉

Re ψ̄xUxyψy = −
∑

〈xy〉

cos(θx − θy − Axy), (1)
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where ψx ≡ eiθx , Uxy ≡ eiAxy , and the sum runs over the bonds 〈xy〉 of a square lattice.
The phases Axy are uncorrelated quenched random variables with zero average. In most
studies they are distributed with Gaussian probability

PG(Axy) ∝ exp

(
−

A2
xy

2σ

)
. (2)

We denote the RP XY model with distribution (2) by GRP XY . We also consider the
RP XY model with distribution (the cosine model)

PC(Axy) ∝ exp

(
cos Axy

σ

)
, (3)

which we denote by CRP XY . Such a model is particularly interesting because the
distribution (3) allows some exact calculations along the so-called Nishimori (N) line
T ≡ 1/β = σ [8, 9]. In both GRP XY and CRP XY models the pure XY model is
recovered in the limit σ → 0, while the so-called gauge-glass model [10] with uniformly
distributed phase shifts is obtained in the limit σ → ∞.

The nature of the different phases arising when varying the temperature T and
the disorder parameter σ and the critical behavior at the phase transitions have been
investigated in many theoretical and experimental works [1]–[56]. In spite of that, a
conclusive picture of the phase diagram and of the critical behaviors has not been achieved
yet.

The expected T–σ phase diagram for the GRP XY and CRP XY models, which is
sketched in figure 1, presents two finite-temperature phases: a paramagnetic phase and a
low-temperature phase characterized by quasi-long-range order (QLRO) for sufficiently
small values of σ; see, e.g., [55] and references therein. The paramagnetic phase is
separated from the QLRO phase by a transition line, which starts from the pure XY
point (denoted by P in figure 1) at (σ = 0, T = TXY ≈ 0.893) and ends at a zero-
temperature disorder-induced transition denoted by D at (σD, T = 0). The QLRO phase
extends up to a maximum value σM of the disorder parameter, which is related to the
point M ≡ (σM, TM), where the tangent to the transition line is parallel to the T axis.
No long-range glassy order can exist at finite temperature for any value of σ, including
the gauge-glass limit σ → ∞ [21, 22]. Several numerical studies of the gauge-glass XY
model [5, 19, 36, 43, 45, 46], [49]–[51] support a zero-temperature glassy transition. A more
complete discussion of the known features of the phase diagram will be reported below.

In this paper we investigate several controversial issues concerning the critical
behavior at the magnetic and glassy transitions in RP XY models. In particular, we
will check whether the critical behavior along the paramagnetic–QLRO transition line is
universal and belongs to the universality class of the pure XY model, whether there is
a multicritical point along the paramagnetic–QLRO transition line, and, finally, whether
the T = 0 glassy transition extends from σ = ∞ to σD (see figure 1) and belongs to
the same universality class as that in the XY gauge-glass model. For this purpose, we
perform Monte Carlo (MC) simulations of the GRP XY and CRP XY models for several
values of the temperature and of the variance σ, approaching the magnetic and glassy
transition lines from the paramagnetic phase. As we shall see, our results for the CRP
XY model provide robust evidence for a universal Kosterlitz–Thouless (KT) behavior of
the magnetic correlations along the paramagnetic–QLRO transition line from the pure
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Figure 1. Phase diagram of RP XY models as a function of T and of the disorder
distribution variance σ.

XY point P to the point M where the transition line runs parallel to the T axis and
magnetic and overlap correlations are equal. Along the line the magnetic correlation
length ξ behaves as ln ξ ∼ u−1/2

t , where ut is the thermal scaling field, and the magnetic
susceptibility as χ ∼ ξ7/4 (corresponding to η = 1/4). On the other hand, the behavior of
the overlap correlations appears to be σ dependent along this transition line. Moreover,
the numerical results for the CRP XY model indicate that the point M is multicritical.
We conjecture that these conclusions hold for any RP XY model. In all cases we expect
the paramagnetic–QLRO transition line to be divided into two parts by a multicritical
point M, where magnetic and overlap correlations have the same critical behavior, though
they are not equal. At variance with what happens in the CRP XY model, the point
M is not expected to coincide with the point at which the tangent to the transition line
is parallel to the T axis: this coincidence should be a unique feature of the CRP XY
model. Then, from P to M we expect any RP XY model to behave as the CRP XY ,
that is, showing a KT behavior for magnetic correlations and a σ dependent behavior for
disorder-related quantities. The universality of the behavior has been confirmed by our
numerical results for the GRP XY model.

Finally, we have investigated the critical behavior for large values of σ. Our numerical
results provide strong evidence for a universal zero-temperature glassy transition for
σ > σD. For T → 0 overlap correlation functions are critical, and, in particular, the
corresponding correlation length ξo diverges as ξo ∼ T−ν when T → 0 with ν = 2.5(1).

This paper is organized as follows. In section 2 we review the known results for the
phase diagram and for the critical behavior of the RP XY models. Section 3 provides
the definitions of the quantities considered in our numerical work. In section 4 we study
the critical behavior along the thermal paramagnetic–QLRO transition line which starts
at the pure XY point P and ends at multicritical point M. In section 5 we discuss critical
behavior along the N line of the CRP XY model and show that the point M where the N
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line intersects the critical line is multicritical. In section 6 we investigate the glassy critical
behavior at T = 0 for σ > σD. Finally, in section 7 we draw our conclusions. There are also
several appendices. Appendix A reports some details of the MC simulations. Appendix B
is devoted to a careful analysis of the KT renormalization-group (RG) equations and
of the corresponding RG flow. We derive the most general form of the β function for
the sine–Gordon model and discuss the structure of the scaling corrections in the XY
model. These results are used in the discussion of the behavior at the paramagnetic–
QLRO transition. In appendix C we discuss some features of the critical behavior at a
multicritical point. In appendix D we briefly discuss the RG equations in the presence of
randomness. Finally, in appendix E we report some analytical results for the magnetic
correlations in the gauge-glass model.

2. The phase diagram

In figure 1 we show the expected T–σ phase diagram of the RP XY models. In the
absence of disorder (σ = 0) the model shows a high-T paramagnetic phase and a low-T
phase characterized by QLRO controlled by a line of Gaussian fixed points, where the spin–
spin correlation function 〈ψ̄xψy〉 decays as 1/rη(T ) for r ≡ |x− y| → ∞, with η depending
on T . The two phases are separated by a Kosterlitz–Thouless (KT) transition [57] at [58]
βXY ≡ 1/TXY = 1.1199(1). For τ ≡ T/TXY − 1 → 0+, the correlation length and the
magnetic susceptibility diverge exponentially as ln ξ ∼ τ−1/2 and χ ∼ ξ7/4, respectively.
An interesting question is whether these features change in the presence of random phase
shifts.

The low-temperature phase of RP XY models shows QLRO for sufficiently small
values of σ. The universal features of the long-distance behavior are explained by the
random-spin-wave theory [3], obtained by replacing

cos(θx − θy − Axy) −→ 1 − 1
2(θx − θy + Axy)

2 (4)

in Hamiltonian (1). This scenario has been accurately verified using Monte Carlo (MC)
simulations in both GRP XY and CRP XY models [55]. The QLRO phase disappears
for large values of σ (see, e.g., [6] and references therein); more precisely, as we shall see,
for σ ! 0.31 in the case of the CRP XY model.

For σ → ∞ phases are uniformly distributed and one obtains the gauge-glass model.
Although this model has been much investigated [5, 10], [14]–[19], [21, 22, 25, 26, 29],
[32]–[34], [36, 38, 40, 41], [43]–[52], [54], its phase diagram and critical behavior are still
controversial. No long-range glassy order can exist at finite temperature [21, 22]. However,
this does not exclude the possibility of more exotic low-temperature glassy phases [40, 47],
for example a phase characterized by glassy QLRO. Many numerical works at finite and
zero temperature support a zero-temperature transition [5, 19, 36, 43, 45, 46], [49]–[51].
According to this scenario, the correlation length determined from the overlap correlation
function diverges as ξo ∼ T−ν when approaching the critical point T = 0. The critical
exponent ν has been estimated using finite-temperature Monte Carlo (MC) simulations;
the findings were [45] 1/ν = 0.39(3) and [49] 1/ν = 0.36(3). The exponent ν is related
to the T = 0 stiffness exponent θ by θ = −1/ν. The T = 0 numerical calculations
of [43] and [51] provided the estimates θ = −0.36(1) and θ ≈ −0.45 respectively, which
are consistent with the finite-temperature estimates of ν. The T = 0 transition scenario
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has been questioned in [40, 41, 44, 47, 48], [52]–[54], which provide some numerical and
experimental (for Josephson junction arrays with positional disorder [53]) evidence for
the existence of a finite-temperature transition at T ≈ 0.2, with a low-temperature glassy
phase characterized by frozen vortices and glassy QLRO.

Other features of the phase diagram are better discussed within the CRP XY model,
characterized by the random-phase-shift distribution (3), because of the existence of exact
results along the so-called Nishimori (N) line [8, 9]

T ≡ 1/β = σ. (5)

Along the N line the energy density E is known exactly:

E ≡ 1

V
[〈H〉] = −2

I1(β)

I0(β)
, (6)

where I0(β) and I1(β) are modified Bessel functions. Moreover, the spin–spin and overlap
correlation functions are equal:

[〈ψ̄xψy〉] = [|〈ψ̄xψy〉|2]. (7)

As already noted in [9], the N line should play an important role in the phase diagram,
because it is expected to mark the crossover between the magnetism-dominated region
and the disorder-dominated one.

In the GRP XY and CRP XY models, the paramagnetic phase is separated from
the magnetic QLRO phase by a transition line, which starts from the pure XY point
(denoted by P in figure 1) at (σ = 0, T = TXY ≈ 0.893) and ends at a T = 0 transition
point induced by disorder (denoted by D) at (σD, T = 0), where σD > 0.4 An important
result has been proven for the CRP XY model [8]: the critical value σM of σ along the N
line is an upper bound for the values of σ where magnetic QLRO can exist. Therefore, at
the critical point M ≡ (σM, TM), the tangent to the critical line should be parallel to the
T axis; moreover, the critical value σD at T = 0 must satisfy σD ≤ σM.

It is worth noting how similar the phase diagrams of the CRP XY model and of the
square-lattice ±J Ising model in the T–p plane are; see figures 1 and 2, respectively. The
square-lattice ±J (Edwards–Anderson) Ising model is defined by the Hamiltonian

H±J = −
∑

〈xy〉

Jxyσxσy, (8)

where σx = ±1, the sum is over pairs of nearest-neighbor sites of a square lattice,
and Jxy are uncorrelated quenched random variables, taking values ±J with probability
distribution P (Jxy) = pδ(Jxy − J) + (1− p)δ(Jxy + J). This model presents an analogous
N line [59] in the T–p phase diagram, defined by tanh(1/T )− 2p + 1 = 0. The transition
point along the N line is a multicritical point (MNP) [60, 61]. Moreover, the critical
behaviors for T > TMNP and T < TMNP are different. From the pure Ising point at p = 1
to the MNP the critical behavior is analogous to that observed in 2D randomly dilute
Ising (RDI) models [62]. From the MNP to the T = 0 axis the critical behavior belongs

4 We mention that the first renormalization-group (RG) analyses based on a Coulomb-gas description [3] predicted
σD = 0, but it was later clarified that this was an artifact of the approximations. Indeed, experimental [11] and
numerical works [11]–[13], [30], as well as refinings of the RG arguments [8, 23, 27, 28, 31, 35], have shown the
absence of a re-entrant transition for sufficiently small values of σ.
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Figure 2. Phase diagram of the ±J (Edwards–Anderson) Ising model on the
square lattice. The phase diagram is symmetric under p → 1 − p.

to a new strong-disorder Ising (SDI) universality class [63]. Finally, the T = 0 endpoint
of the low-temperature paramagnetic–ferromagnetic transition line is the starting point
of a T = 0 transition line, characterized by a glassy universal critical behavior [64].

In [8] it was also argued that, in the RP XY models (in particular, in the CRP XY
one) the low-temperature paramagnetic–QLRO transition line from the critical point M
to the point D runs parallel to the T axis, and so σD = σM. The same arguments fail in
the 2D ±J Ising model [60, 61, 63, 65, 66], although they provide a good approximation.
Thus, they are likely not exact also in the case of the RP XY models, although they may
still provide a good approximation, suggesting that 0 < σM − σD + σM.

In the phase diagram reported in figure 1, which refers to the CRP XY , we may
distinguish two transition lines meeting at point M: the thermal paramagnetic–QLRO
transition line from P to M, which can be approached by decreasing the temperature at
fixed σ, and the transition line from M to D, which can be instead observed by changing
the disorder at fixed T for sufficiently low temperatures. As we shall see, our numerical
results for the CRP XY model provide some evidence that the point M is multicritical.
We conjecture that the same conclusion holds for generic RP XY models, though in the
generic case we do not expect the multicritical point M to coincide with the point where
the tangent to the critical line is parallel to the T axis.

The phase transition from the paramagnetic to the QLRO phase is generally expected
to be of KT type (ln ξ is expected to have a power-law divergence), but its specific features,
for instance the precise form of the power-law behavior and the value of the exponent
η, have not been conclusively determined yet. Some numerical results supporting the
KT-like behavior were presented in [30]. The disorder-driven T = 0 transition at σD

has been argued [23, 24, 30, 35, 42] to show a KT-like behavior with ln ξ ∼ (σ−σD)−1 and
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χ ∼ ξ2−η with η = 1/16. However, other RG studies [28, 31] obtained a different behavior:
ln ξ ∼ (σ − σD)−1/2. The value of η associated with the magnetic two-point function has
been believed to vary along the critical line [3, 23, 28, 31], from η = 1/4 for the pure XY
model at σ = 0 to η = 1/16 at the T = 0 transition. As we shall see, our numerical
results along the thermal paramagnetic–QLRO transition line, from P to and including
M, strongly support η = 1/4, independently of σ.

In the following sections we investigate some of the open issues of the RP XY models,
by performing MC simulations of the GRP XY and CRP XY models close to their
magnetic and glassy transition lines. In particular, we investigate the critical behavior at
the thermal paramagnetic–QLRO transition line (from point P to the multicritical point),
along the N line in the CRP XY model, and at the T = 0 glassy transition line for large
disorder.

3. Notation

We consider RP XY models defined on square lattices of size L2 with periodic boundary
conditions. We define the magnetic spin–spin correlation function

G(x − y) ≡ [〈ψ̄x ψy〉] (9)

and the overlap correlation function

Go(x − y) ≡ [|〈ψ̄x ψy〉|2]. (10)

The angular and square brackets indicate the thermal average and the quenched average
over disorder, respectively. The latter can also be written in terms of the overlap variables.
Given two copies of the system with spins ψ(1)

x and ψ(2)
x , we define

qx = ψ̄(1)
x ψ(2)

x , Go(x − y) = [〈q̄x qy〉], (11)

where the thermal average is performed over the two systems with the same disorder
configuration. We define the magnetic susceptibility χ ≡

∑
x G(x), the overlap

susceptibility χo ≡
∑

x Go(x), and the second-moment correlation lengths

ξ2 ≡ G̃(0) − G̃(qmin)

q̂2
minG̃(qmin)

, ξ2
o ≡ G̃o(0) − G̃o(qmin)

q̂2
minG̃o(qmin)

, (12)

where qmin ≡ (2π/L, 0), q̂ ≡ 2 sin q/2.
We also define the quartic couplings

g4 ≡ − 3χ4

2χ2ξ2
, χ4 ≡

1

V
[〈|µ|4〉 − 2〈|µ|2〉2], (13)

g22 ≡ − χ22

χ2ξ2
, χ22 ≡

1

V

(
[〈|µ|2〉2] − [〈|µ|2〉]2

)
, (14)

gc ≡ g4 + 3g22, (15)

where µ ≡
∑

x ψx and V = L2. Note that for the pure XY model, g22 = 0 and gc = g4.
Finally, we define an overlap quartic coupling go as

go ≡ − 3χ̄4o

2χ2
oξ

2
o

, χ̄4o =
1

V
[〈|µo|4〉] − 2[〈|µo|2〉]2, (16)

where µo ≡
∑

x qx.
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Figure 3. Values of T ≡ 1/β and σ where MC data were collected. The circles
and crosses refer to the GRP XY and CRP XY models, respectively. The dotted
line T = σ is the N line for the CRP XY model. We also show some estimates
of Tc for the GRP XY and CRP XY models, and the critical point (MNP) of
the CRP XY model along the N line. The dashed line is the prediction (27) for
the behavior of Tc at small values of σ.

4. Critical behavior along the thermal paramagnetic–QLRO transition line

In this section we study the critical behavior of the RP XY models along the thermal
paramagnetic–QLRO transition line (see figure 1), which starts at the point P on the
σ = 0 axis and ends at the multicritical point, which belongs to the N line in the CRP
XY model. For this purpose, we perform MC simulations of the GRP XY and of the CRP
XY model for several values of T and σ in the paramagnetic phase, where the magnetic
correlation length ξ is large but finite. Figure 3 shows the points where the simulations
are performed. The MC algorithm is described in appendix A. We average over a large
number of samples, Ns ≈ 104 in most cases. We consider large lattice sizes, satisfying
L/ξ ! 10, in order to make finite-size effects negligible and obtain infinite-volume results.
The residual finite-size effects are in all cases smaller than, or at most comparable with,
the statistical errors.

In the following we first discuss the critical behavior of the magnetic spin–spin
correlation function (9). We show that disorder is apparently irrelevant: for any σ
the correlation length diverges following the KT law valid for σ = 0 and the magnetic
susceptibility diverges with critical exponent η equal to 1/4. Then, we discuss the behavior
of observables related to the overlap correlation function (10), finding that the critical
behavior of these quantities is apparently σ dependent.

4.1. Critical behavior approaching the pure XY transition point

We wish now to understand the critical behavior along any line that lies in the
paramagnetic phase and ends at the pure XY critical point at σ = 0 and T = TXY .
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Figure 4. MC estimates of ξ for β = βXY = 1.1199 and several values of σ versus
σ−1/2. The dashed line corresponds to a linear fit to ln ξ = Cσσ−1/2 + b.

For σ = 0, as T approaches the critical temperature TXY from above (the paramagnetic
phase), the magnetic correlation length ξ diverges as

ln(ξ/X) = Cτ−1/2 + O(τ 1/2), τ ≡ (T − TXY )/TXY , (17)

where X and C are nonuniversal constants. In the case of the square-lattice XY model
with nearest-neighbor interactions [58] βXY ≡ 1/TXY = 1.1199(1), X = 0.233(3) and
C = 1.776(4).5 The magnetic susceptibility χ diverges as (see appendix B)

χ = Aχξ
7/4

[
1 +

bχ
ln(ξ/X)

+ O
(
1/ ln2 ξ

)]
. (18)

Note that while Aχ is a nonuniversal amplitude, the coefficient bχ of the leading logarithmic
corrections is universal. As shown in appendix B, it can be computed from the
perturbative expansion of the RG dimension of the spin variable; the result is bχ = π2/16.

We now consider the GRP XY model and study the critical behavior of χ and ξ as
one approaches the pure XY critical point along the line β = βXY = 1.1199 by decreasing
σ. We collected data for 0.46 ! σ ! 0.14 in the infinite-volume limit, corresponding to
the quite large range of correlation lengths 4 " ξ " 50. Figure 4 shows a plot of ln ξ
versus σ−1/2. The data fall on a straight line, showing that for σ → 0

ln ξ ∼ σ−1/2. (19)

This behavior can be understood within the RG framework. The general discussion
presented in appendix C shows that, as long as disorder is less relevant than the thermal

5 Equation (17) holds whatever the definition of the correlation length is, but of course X depends on the specific
choice for ξ. Reference [58] studied the exponential correlation length ξgap, which is defined as the inverse of
the mass gap, and determined the corresponding constant Xgap = 0.233(3). Since in the critical limit [67]
ξ2/ξ2

gap = r = 0.9985(5), the constant X for the second-moment correlation length that we use is given by
X = Xgap

√
r = 0.233(3).
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perturbation, the critical behavior can be simply obtained by replacing τ with the
nonlinear thermal scaling field. Note that it is not necessary that disorder is irrelevant
to obtain the result (19). In general, the thermal nonlinear scaling field ut is an analytic
function of the system parameters. Thus, in the presence of disorder it is a function of
both τ = (T − TXY )/TXY and σ such that, close to the XY transition point, it behaves
as

ut(τ, σ) = τ + cσσ + · · · (20)

where the dots stand for higher-order terms. If disorder is less relevant than the thermal
perturbation, then

ln(ξ/X) = Cu−1/2
t + O(u1/2

t ), (21)

along any straight line in the T, σ plane which ends at the XY pure transition point.
Since this relation also holds for σ = 0 and ut(τ, 0) = τ , C and X are the same constants
as reported below (17). Along the line T = TXY equation (21) implies

ln(ξ/X) =
C

(cσσ)1/2
+ O(σ1/2), (22)

in agreement with the observed behavior. In order to determine cσ we have performed
fits to

ln(ξ/X) = Cσσ
−1/2 (1 + bσ) , (23)

using X = 0.233(3). We obtain the estimates Cσ = 2.010(2) and b ≈ −0.11. In
particular, a fit of the data satisfying ξ ! 7 gives Cσ = 2.0102(8) and b = −0.108(2), with
χ2/DOF ≈ 1.1 (DOF is the number of degrees of freedom of the fit). Using C = 1.776(4)
and Cσ = C/

√
cσ, we obtain

cσ =

(
C

Cσ

)2

= 0.781(4). (24)

The constant cσ is nonuniversal and as such is model dependent. However, for σ → 0 the
fields Axy are typically very small and the distribution functions for the GRP XY and
CRP XY models are identical to leading order in Axy. We thus expect the first corrections
to the thermal scaling field due to disorder to be identical in the two models, i.e.

ut,GRPXY (τ, σ) = ut,CRPXY (τ, σ) + O(σ2), (25)

which implies that cσ is the same in the GRP XY and CRP XY models.

4.2. Critical behavior of the magnetic correlations at fixed σ

Standard arguments that apply to critical lines and multicritical points imply that the
critical temperature at fixed σ must be the solution of the equation

ut[Tc(σ), σ] = 0. (26)

Therefore, equation (20) also implies that for small values of σ the critical temperature
for the GRP XY model (and also for the CRP XY model if (25) holds) is given by

Tc(σ) = TXY [1 − cσσ + O(σ2)]. (27)
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Figure 5. Plots of ln ξ versus t−1/2, where t ≡ (T − Tc)/Tc, for the GRP XY
and CRP XY models at σ = 0.0576. For both models we use Tc = 0.8528, as
obtained by using (27). The dashed line corresponds to a fit of the GRP XY
data to ln ξ = ct−1/2 + a. The dotted line that connects the MC data is drawn
to guide the eye.

Equation (27) can be checked by analyzing data at fixed small values of σ. We have
performed MC simulations of the GRP XY model at σ = 0.0576 for several values of β,
from β = 0.95 to 1.02, corresponding to 10 " ξ " 26, and of the CRP XY model at the
same value of σ for β = 0.92, 0.95, 0.99 corresponding to 7 " ξ " 16. In figure 5 we plot ξ
versus t−1/2 with t ≡ T/Tc−1 and Tc = 0.8528 given by (27) (if we take the errors on TXY

and cσ into account, we have Tc = 0.8528(3)). Clearly, ξ → ∞ as t → 0, confirming (27).
Moreover, it is clearly consistent with the KT behavior

ln ξ = at−1/2 + b. (28)

A fit of all available data for the GRP XY model to (28) gives a = 1.841(2) and
b = −1.511(5) (with χ2/DOF ≈ 1.3) keeping Tc = 0.8528 fixed. A nonlinear fit, taking
Tc as a free parameter, gives Tc = 0.852(2), in good agreement with (27). Note that the
estimate of the constant b is close to the corresponding XY model value ln X = −1.46(1).
This is not unexpected since X(σ) = X + O(σ).

We also collected data at σ = 0.1521 for both the GRP XY and CRP XY models,
for 0.8 ≤ β ≤ 1.1199 (corresponding to 2 " ξ " 37) and 0.96 ≤ β ≤ 1.145 (corresponding
to 5 " ξ " 46), respectively. Again, the data fit well to the KT behavior (28); see
figure 6. Fits of the MC data for ξ ! 10 to (28) (for which χ2/DOF < 1) give the
estimates Tc = 0.772(2) for the GRP XY model, and Tc = 0.762(1) for the CRP XY
model. Note that (27) would give Tc = 0.7872 for σ = 0.1521, which is slightly larger
than the above estimates. This is not unexpected since, when increasing σ, higher-order
terms (which are different for the two models) may become important in (20). We also
mention the estimates b = −1.82(7) and b = −1.78(3) for the GRP XY and CRP XY
models, respectively, from which one obtains estimates of the corresponding length scale
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Figure 6. Estimates of ln ξ versus t−1/2, where t ≡ T/Tc(σ) − 1, for the GRP
XY and CRP XY models for several values of σ. For σ = 0.0576 we take
Tc(σ) = 0.8528 (equation (27)). For the other values of σ, Tc(σ) is determined
from the data. The lines are drawn to guide the eye. The data for the XY case
are taken from [68].

X(σ) = eb, X = 0.162(11) and X = 0.169(5). We also determined ξ for other values of σ,
but in a smaller range. The results are compatible with a KT behavior, but they do not
allow us to get robust estimates of Tc. We only mention that in the case of the GRP XY
at σ = 0.1936, for which we have only data for ξ " 20, we find Tc ≈ 0.74.

At a KT transition the magnetic susceptibility behaves as in (18), where bχ = π2/16
is universal. In figure 7 we show χ/ξ7/4 for GRP XY and CRP XY and several values
of σ together with those for the pure XY model taken from [68]. We report the data
versus ln ξ/X(σ = 0). We could also have used ln ξ/X(σ), where X(σ) is determined
from the fit of ξ. This choice gives a plot essentially identical to the one reported, which
is not unexpected since, by using ln ξ/X(σ = 0) or ln ξ/X(σ) one simply changes the
corrections of order σ/ ln2 ξ/X, which are present anyway. The results appear to follow
the same curve within the errors (except those obtained along the N line, which we shall
discuss in section 5). They provide strong evidence that the value η = 1/4 is universal
along the thermal paramagnetic–QLRO transition line. Also the slope appears universal
(the coefficient bχ does not depend on σ), as expected on the basis of the discussion of
appendix B. The constant Aχ corresponds to the intercept of χ/ξ7/4 at 1/ ln ξ/X(σ) = 0.
As can be seen from the figure, this constant, which is not universal, varies very little
with σ: differences are not visible within our errors, except for the CRP XY data at
σ = 0.307. However, note that for this value of σ the critical behavior is controlled by
the multicritical Nishimori point, i.e. by the special point M which appears in figure 1;
we will return to this in section 5.

In conclusion, the above numerical results provide strong evidence that the magnetic
two-point correlations show a KT behavior along the thermal paramagnetic–QLRO
transition line in GRP XY and CRP XY models.
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Figure 7. Plot of ln(χ/ξ7/4) versus 1/ ln ξ/X. We fix X = 0.233, which is the
length scale value valid for the pure XY model. We show data for the pure XY
model (taken from [68]), and for the GRP XY and CRP XY models at various
values of σ, at T = TXY and along the N line. The dashed line corresponds to
a fit to a + π2/(16 ln ξ/X) of the pure XY data satisfying ξ ! 10 (we obtain
a = 0.8058(1) with χ2/DOF ≈ 0.7).

4.3. Quartic couplings

We now discuss the behavior of the quartic couplings defined in (13)–(15). We recall that
in the pure XY model g22 = 0 while g4 = gc behaves as

g4 = g∗
4 +

bg

(ln ξ/X)2
+ O(1/ ln4 ξ), (29)

where g∗
4 and bg are universal; see appendix B. We mention the estimates g∗

4 = 13.65(6)
obtained by form-factor computations in [68], and g∗

4 = 13.7(2) by field-theoretical
methods [69]; other results for g∗

4 can be found in [70] and references therein.
In figure 8 we show some MC results for gc for the CRP XY model at σ =

0.1521, 0.0576 and the GRP XY model at β = βXY = 1.1199 (within our errors of
a few per mille the infinite-volume limit is reached for L/ξ ! 10, as in the pure XY
model [68]), and compare them with MC results for the pure XY model taken from [68].
The results are identical within errors. For example, if we consider the CRP XY model
for σ = 0.1521, a fit to g∗

c + bg/(ln ξ/X)2 gives g∗
c = 13.57(10) and bg = −3.1(1.4), with

χ2/DOF ≈ 0.4, to be compared with the value [68] g∗
4 = 13.65(6) of the pure XY model.

Both g∗
c and bg, which are universal in the pure XY universality class, do not depend on

σ.
The quartic coupling g22 defined in (14) is interesting because it is particularly

sensitive to randomness effects, since in the pure XY model it vanishes trivially. The
estimates of g22 in the GRP XY model for T = TXY and several values of σ are shown in
figure 9. They decrease with decreasing σ, and appear to vanish when σ → 0 as

g22 ∼ cξ−ε, (30)
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Figure 8. MC estimates of gc ≡ g4 + 3g22 versus 1/(ln ξ/X)2 with X = 0.233.
The data for the pure XY model are taken from [68]. The dotted lines correspond
to the estimate g∗c = g∗4 = 13.65(6) obtained by form-factor calculations [68].

Figure 9. Estimates of g22 versus 1/ξ for the GRP XY model at fixed
β = βXY = 1.1199. The line is a fit of g22 to cξ−1.

with ε ≈ 1.0. A fit to (30) gives ε = 0.97(4), c = 3.1(3) with χ2/DOF ≈ 1.1, where DOF
is the number of degrees of freedom of the fit.

The fast decrease of g22 along the line T = TXY (note that g22 ∼ 1/ξ implies
g22 ∼ exp(−cσ−1/2)) might suggest irrelevance of the disorder, and therefore that the
critical value g∗

22 vanishes along the thermal paramagnetic–QLRO transition line. This
conclusion is apparently contradicted by the results at fixed σ > 0. The results for the
CRP XY model at various values of σ, σ = 0.0576, 0.1521, 0.2992, 0.307, are shown in
figure 10, where they are plotted versus (ln ξ/X)−2, which is the correction expected in
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Figure 10. Estimates of g22 for the CRP XY model at various values of σ. The
lines show linear extrapolations to the critical point. A data point denoted by a
plus along the line related to σ = 0.0576 is obtained by using (30) and (23) with
the results of the fits along the T = TXY line.

the pure XY model for RG invariant quantities. The coupling g22 is quite small, but
definitely different from zero on the transition line. For σ = 0.1521 an extrapolation
using g∗

22 + b/(ln ξ/X)2 suggests a nonzero critical limit. Using only data satisfying
ξ ! 10, this fit gives g∗

22 = −0.068(8) and b = −0.080(15), with χ2/DOF ≈ 0.4. We
should also mention that the data for the largest values of ξ, those satisfying ξ ! 10 say,
may be consistent with a vanishing critical limit, but only assuming a slower logarithmic
approach, i.e., g22 ≈ b/(ln ξ/X). For instance, the data with ξ ! 10 are consistent with
this behavior (the fit gives b = −0.482(4) with χ2/DOF ≈ 1.1). At σ = 0.0576 the
1/(ln ξ)2 extrapolation of the data satisfying 7 " ξ " 16 gives g∗

22 = −0.008(6) with
χ2/DOF ≈ 1.3. The data for g22 at σ ≈ 0.30 are larger, but this can be explained by
crossover effects, since this value of σ is quite close to the critical point along the N line,
where the critical behavior may change; see section 5.

Overall the results for g22 suggest a nonuniversal critical value.

4.4. Critical behavior of the overlap correlations

We now discuss the critical behavior of overlap correlations (cf (11)), which are the
appropriate quantities for understanding the role of disorder. We consider the critical
behavior of the overlap susceptibility which is expected to behave as χo ∼ ξ2−ηo

o . In the
case of the pure XY model we have ηo = 2η = 1/2. In [55] it was noted that the following
relations:

2η − ηo ≈
σ

π
for GRPXY , (31)

2η − ηo ≈
σ + (1/2)σ2

π
for CRPXY (32)
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hold approximately over the whole QLRO phase (within the small statistical errors), even
very close to the KT transition, as long as σ is not to large (in practice σ should not
be close to σM, where M is the Nishimori point defined in figure 1). This would suggest
that they may remain valid up to the transition. Given the strong numerical evidence
that the exponent η associated with the magnetic correlation is η = 1/4 (see section 4.2),
the above relations imply that ηo varies along the paramagnetic–QLRO transition line
approximately as

ηo ≈
1

2
− σ

π
for GRPXY , (33)

ηo ≈
1

2
− σ + σ2/2

π
for CRPXY , (34)

at least for sufficiently small values of σ. We wish now to establish whether the high-
temperature data are consistent with these predictions. In figure 11 we plot χo/ξ2−ηo

versus 1/ ln(ξ/X). The scaling is reasonable. We also report χo/ξ2−ηo , fixing ηo to the
pure XY value ηo = 1/2. Again the ratio is consistent with a limiting finite value.
However, if χo behaves as in the pure XY model, we would expect a σ independent slope
(see appendix B), which is not supported by the data.

We now consider the ratio ξo/ξ between the second-moment correlation lengths
obtained from the overlap and spin correlation functions; cf (12).6 In order to estimate this
ratio in the case of the pure XY model, we performed MC simulations (using the cluster
algorithm) in the range 0.93 ≤ β ≤ 1.033 corresponding to 12 " ξ " 110. Taking into
account the logarithmic scaling corrections, i.e. fitting the XY model data satisfying ξ !
32 to a+b/(ln ξ/X)2 with X = 0.233, we obtain the estimate ξo/ξ = 0.417(4). In figure 12
we show the results for several values of σ. They are all consistent with a finite critical
value, confirming that the paramagnetic–QLRO transitions are characterized by a single
diverging length. The results can be extrapolated by assuming ξo/ξ = a+ b/(ln ξ/X)2 for
ξ → ∞. We obtain ξo/ξ = 0.417(5), 0.428(5), 0.425(7), 0.425(3) for the GRP XY model
at σ = 0.0576, 0.1521, 0.1936 and the CRP XY model at σ = 0.1521, respectively. A
larger result is found for the CRP XY model at σ ≈ 0.299, 0.307: ξo/ξ ≈ 0.49.

These results indicate that the ratio ξo/ξ varies along the transition line, although it
changes very weakly for small values of σ. Again, this is consistent with the observation
that disorder-related quantities, like ηo and g22, depend on σ.

5. Critical behavior along the N line in the CRP XY model

We now consider the critical behavior along the N line T = σ in the CRP XY model,
approaching the transition point from the paramagnetic phase. We recall that along
the N line the magnetic and overlap correlation functions are equal, so ηo = η and
ξo = ξ exactly. We performed several MC simulations along the N line, in the range
1.5 ≤ β ≤ 2.4, corresponding to 2 " ξ " 28, and considered large lattice sizes, in order to
obtain infinite-volume results.

6 In a Gaussian theory without disorder, in which the magnetic correlation function is given by G̃(p) = (p2+m2)−1,
one can easily find that ξo/ξ =

√
1/6 = 0.408 248 · · ·.
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Figure 11. MC estimates of χo/ξ
ε(σ)
o (above), where ε(σ) = 2− ηo(σ), and ηo(σ)

is given by (33) and (34), and of χo/ξ
2−ηo
o (below), where we take the pure XY

exponent ηo = 1/2.

Our MC estimates of the magnetic correlation length ξ are consistent with an
exponential increase, i.e. with a behavior of the form ln ξ ∼ t−1/2 with t = T/TM − 1;
see figure 6. A linear fit to

ln ξ = at−1/2 + b (35)

of the data satisfying ξ ! 5 gives the estimate

TM = σM = 0.307(2), (36)

with χ2/DOF " 1.0. We also mention that fits to ξ = at−b and to ln ξ = at−1 + b give rise
to a significantly larger χ2.
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Figure 12. The ratio ξo/ξ versus 1/(ln ξ/X)2 for the models considered.

Figure 13. Estimates of gc and g22 along the N line and at σ = 0.307. The dotted
lines indicate the estimate [68] g∗c = g∗4,XY = 13.65(6) for the pure XY model.

In order to estimate the exponent η, we fit χ and ξ to χ = cξ2−η. Considering the MC
results satisfying ξ ! ξmin = 5, we find η = 0.246(4) with χ2/DOF ≈ 1.0. If we increase
ξmin, η slightly decreases, but it is always compatible with η = 1/4. These results suggest
that η = 1/4 also along the N line.

Figure 13 shows the estimates of gc. The critical limit of gc is consistent with the
results for the pure XY model and those obtained along the thermal paramagnetic–
QLRO line at smaller values of σ; see figure 8. Indeed, a fit of all data for gc to (29) gives
g∗

c = 13.49(13) with χ2/DOF ≈ 0.6. If we consider only the data satisfying ξ ! 4, we
obtain g∗

c = 13.6(3).
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The above-reported results (KT behavior of ξ, η = 1/4, and g∗
c ≈ g∗

4,XY ) suggest that
the magnetic correlations behave as in the pure XY model. There is, however, a result
which contradicts this hypothesis. As we discussed in section 4.1, the rate of approach of
χξ−7/4 to its limiting value should be universal. As can be seen from figure 7, this is not
the case: the slope of the data along the N line is clearly different from that predicted
for the pure XY model. Thus, even though at the Nishimori point the magnetic critical
behavior is the same as that observed along the thermal paramagnetic–QLRO transition
line, the corrections are different, implying the presence of a new (probably marginal) RG
operator, which only contributes to scaling corrections in magnetic quantities.

Better evidence for the presence of a new, disorder-related operator is obtained by
considering g22 and ξo/ξ. In figure 13 we also report estimates of g22 along the N line
and along the line σ = 0.307. If the estimate (36) is correct, the two lines intersect the
critical line at the same point, the Nishimori point. It is quite clear from the data that
the limiting values of g22 along the two lines are quite different. A fit of all available data
on the Nishimori line to g∗

22 + b/(ln ξ/X)2 gives g∗
22 = −7.00(5) with χ2/DOF ≈ 0.9. On

the other hand, a fit of the data along the line at fixed σ = 0.307 gives g∗
22 - −0.8. The

same phenomenon is observed for the ratio ξo/ξ. As can be seen in figure 12, for σ = 0.307
this ratio is approximately equal to 0.49, which is clearly different from the result that
holds exactly along the Nishimori line, ξo/ξ = 1. The large differences of the values of
these two RG invariant quantities along the two lines provide compelling evidence that
the Nishimori point is a multicritical point as in the 2D ±J Ising model [60].

To understand this conclusion, let us review the basic results that apply to
multicritical points. The singular part of the free energy should obey a scaling law

Fsing(u1, u2) = b−dFsing(b
y1u1, b

y2u2), (37)

where u1 and u2 are two relevant scaling fields. They can be inferred by using the following
facts: (i) the transition line at M must be parallel to the T axis, since it has been proved [8]
that σM is an upper bound for the values of σ where QLRO can exist; (ii) the condition
T = σ at the N line is RG invariant. We therefore have

u1 = σ − σM + · · · (38)

where the dots indicate nonlinear corrections, which are quadratic in ∆σ ≡ σ − σM and
∆T ≡ T − TM, so the line u1 = 0 runs parallel to the T axis at M. Moreover, we choose

u2 = T − σ, (39)

so the N line corresponds to u2 = 0.
Close to the multicritical point, any RG invariant quantity, such as g22, is expected

to behave as

R = fR(u1u
−y1/y2

2 ). (40)

Now, the N line corresponds to u2 = 0, so a RG invariant quantity converges to fR(∞).
On the other hand, the line σ = σM corresponds to u1 = 0, so a RG invariant quantity
converges to fR(0) which is generically expected to be different from fR(∞). Thus, if
the Nishimori point is multicritical, we expect RG invariant quantities to have different
critical values along the two lines. This is exactly what we observe for g22 and ξo/ξ. Thus,
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in view of the numerical results we conclude that the Nishimori point is a multicritical
point.

It is interesting to note that the multicritical behavior is not observed in the magnetic
sector. For instance, g∗

c along the paramagnetic–QLRO line is equal to its XY value g∗
4,XY .

The same result holds along the Nishimori line. In terms of the scaling function fgc defined
in (40) these results imply

fgc(0) = fgc(∞) = g∗
4,XY . (41)

It is then natural to conjecture that g∗
c = g∗

4,XY along any line that intersects the Nishimori
point, i.e. that fgc(x) = g∗

4,XY for any x. The absence of multicritical behavior in the
magnetic sector is also supported by the fact that ξ always shows a KT behavior and that
the magnetic exponent η at the Nishimori point is equal to the pure XY value 1/4.

The results that we have presented should apply to the generic RP XY model. In
all cases we expect a multicritical point along the paramagnetic–QLRO transition line.
It follows from universality that, at the multicritical point, the magnetic and the overlap
correlation functions have the same critical behavior—hence, we have η = ηo—though
they may not be necessarily equal as is the case for the CRP XY model. Note that
this point is not expected in general to coincide with that at which the tangent to the
transition line is parallel to the T axis.

6. Glassy critical behavior at T = 0

In the limit σ → ∞ the RP XY model corresponds to the gauge-glass model in which the
phase shifts are uniformly distributed. This model has been extensively studied both at
zero and at finite temperature [5, 10], [14]–[19], [21, 22, 25, 26, 29], [32]–[34], [36, 38, 40, 41],
[43]–[54]. References [21, 22] showed that no long-range glassy order can exist at finite
temperature. Although this result does not exclude the possibility of a finite-temperature
transition with an exotic low-temperature glassy phase, for example a phase characterized
by glassy QLRO, most numerical works [5, 19, 36, 43, 45, 46], [49]–[51] support a zero-
temperature glassy critical behavior. The overlap correlation length ξo diverges as T−ν

for T → 0. We mention the estimates [45] 1/ν = 0.39(3) and [49] 1/ν = 0.36(3)
from finite-temperature MC simulations, and [43] 1/ν = 0.36(1) and [51] 1/ν ≈ 0.45
from T = 0 numerical calculations. Moreover, if one assumes that the ground state is
nondegenerate in the overlap variables, one obtains that at T = 0 the finite-size overlap
susceptibility satisfies the relation χo = L2, so ηo = 0. We mention that this scenario
was questioned in [40, 41, 44, 47, 48], [52]–[54], which claimed the existence of a finite-
temperature transition at T ≈ 0.2.

A natural scenario for the phase digram of the GRP XY and CRP XY models is
that the glassy transition, which occurs for σ = ∞, is not isolated but that it is the
endpoint of a phase transition line that starts at the paramagnetic–QLRO transition line.
In particular, if the zero-temperature glassy transition scenario applies to the gauge-glass
model, we expect a line of T = 0 glassy transitions for any σ > σD; see figure 1. A natural
conjecture would be that all these transitions belong to the same universality class.

To check this scenario we performed MC simulations of the CRP XY model at
σ = 2/3, 5/9, 1/2, ∞, which are larger than σD ≤ σM ≈ 0.31. As we shall see, the
results clearly support a glassy T = 0 transition in the same universality glass as that of
the gauge-glass model.
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Figure 14. MC estimates of the correlation lengths ξ and ξo for the CRP XY
model at σ = 2/3.

6.1. MC simulations

We performed MC simulations of the CRP XY model on square L×L lattices with periodic
boundary conditions. Most of the results that we shall present refer to runs with σ = 2/3.
In this case we considered L = 20, 30, 40, 60, 80 and temperatures between T = 2/3 (at
the Nishimori line) and T = 0.1 (for L = 80 we considered 0.22 ≤ T ≤ 2/3). We averaged
over a relatively large number Ns of samples: Ns = 6000, 9000, 7000, 3000, and 2000
samples for L = 20, 30, 40, 60 and 80, respectively. We used the MC algorithm discussed
in appendix A combined with the parallel-tempering method [71, 72]. Moreover, to check
the universality of the transitions, we also performed parallel-tempering MC simulations
for σ = 5/9 and lattice sizes L = 60, 70 (5000 and 1000 disorder samples, respectively),
σ = 1/2 and L = 70 (1000 samples), and σ = ∞ and L = 20, 30, 40, 60 (5000, 5000,
2000, 2000 samples, respectively). The points in the T–σ plane where we collected MC
data are shown in figure 3.

At the glassy transition the critical modes are those related to the overlap variables,
while the magnetic ones are noncritical. This is clearly shown in figure 14, which
shows ξ and ξo for σ = 2/3. The overlap correlation length ξo increases steadily with
decreasing temperature, while the magnetic correlation length ξ freezes at sufficiently low
temperatures at a value ξ ≈ 3.3. Therefore, the critical temperature and exponents must
be determined from quantities related to the overlap correlation functions.

6.2. Evidence for a T = 0 glassy transition at σ = 2/3

In order to determine the critical temperature, we analyze Rξo ≡ ξo/L. The results, shown
in figure 15, show no evidence of a crossing point in the range of values of T of the data,
T ≥ 0.1, and thus provide the bound Tc < 0.1 for the critical temperature Tc. A more
precise determination of Tc can be obtained by a finite-size scaling (FSS) analysis. We fit
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Figure 15. MC estimates of the ratio Rξo ≡ ξo/L for the CRP XY model at
σ = 2/3.

the data to

Rξo = Pn[(T − Tc)L
1/ν ], (42)

keeping Tc and ν as free parameters. Here Pn(x) is a polynomial in x of order n. The
order n is fixed by looking at the χ2 of the fit. For each n we determine the goodness of
the fit, χ2(n). Then, we fix n such that χ2(n) is not significantly different from χ2(n+1).
The results that we report correspond to n = 6. To identify the role of the corrections
to scaling we repeat the fit several times. Each time we fix two parameters Tmax and
Lmin and we only include the data which correspond to lattices satisfying the conditions
T ≤ Tmax and L ≥ Lmin.

In table 1 we report the estimates of Tc for several values of Tmax and Lmin. We obtain
estimates of Tc which are quite small and satisfy the upper bound

Tc " 0.01. (43)

Since our data satisfy T ≥ 0.1, this estimate allows us to conclude that our results are fully
consistent with a zero-temperature transition. From now on, we always assume Tc = 0.

6.3. The critical exponent ν

In order to determine the critical exponent ν related to the divergence of the correlation
length ξo, we repeat the fit (42) at σ = 2/3 setting Tc = 0. The results are reported in
table 2. They slightly increase as Tmax or Lmin is lowered, but these changes are small
compared to the statistical errors.

In fit (42) we made two approximations. First, we neglected the nonanalytic scaling
corrections, which decrease as L−ω. The results indicate that these corrections are small:
at fixed Tmax < 0.25 the estimates of ν obtained setting Lmin = 30 and 40 differ by much
less than the statistical errors. Second, we approximated the thermal nonlinear scaling

doi:10.1088/1742-5468/2010/03/P03006 23

http://dx.doi.org/10.1088/1742-5468/2010/03/P03006


J.S
tat.M

ech.
(2010)

P
03006

Magnetic and glassy transitions in the square-lattice XY model with random phase shifts

Table 1. Estimates of Tc obtained by fitting Rξ to (42) with n = 6. DOF is the
number of degrees of freedom of the fit.

Lmin Tmax χ2/DOF Tc

20 0.6 169/157 0.018(1)
20 0.5 99/141 0.009(1)
20 0.4 67/119 0.010(2)
20 0.3 30/92 0.010(3)

30 0.6 137/138 0.017(1)
30 0.5 66/123 0.008(2)
30 0.4 49/103 0.007(3)
30 0.3 21/79 0.005(4)

40 0.6 106/119 0.017(2)
40 0.5 42/105 0.007(2)
40 0.4 31/87 0.007(3)
40 0.3 17/66 0.007(5)

Table 2. Estimates of ν obtained by fitting Rξo to (42) with Tc = 0 and n = 6.
DOF is the number of degrees of freedom of the fit.

Lmin Tmax χ2/DOF ν

20 0.4 100/120 2.465(6)
20 0.3 44/93 2.496(10)
20 0.25 24/77 2.528(14)
20 0.2 17/55 2.547(22)
20 0.16 14/39 2.548(31)

30 0.4 55/104 2.446(6)
30 0.3 23/80 2.464(13)
30 0.25 13/65 2.489(20)
30 0.2 10/46 2.492(30)
30 0.16 9/32 2.488(42)

40 0.4 36/88 2.432(7)
40 0.3 19/67 2.451(15)
40 0.25 12/53 2.480(26)
40 0.2 8/37 2.490(38)
40 0.16 9/25 2.482(53)

field uT by uT ≈ T , neglecting the analytic corrections (see [73] for an extensive discussion
of such corrections). To understand their quantitative role, we performed fits to

Rξ = Pn(uT L1/ν), uT ≡ T + pT 2, (44)

where p is a new free parameter. The results are reported in table 3. Corrections are
tiny and we estimate |p| " 0.2, so |uT − T |/T is at most 0.10, 0.02 for T = 0.5, 0.1,
respectively. The estimates of ν do not vary significantly and, for L ≥ 30 and Tmax ≤ 0.2,
are fully consistent with those obtained before. We quote

ν = 2.5(1), 1/ν = 0.40(2) (45)

as our final estimate.
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Figure 16. Rξo ≡ ξo/L versus TL1/ν for ν = 2.5; data corresponding to σ = 2/3.

Table 3. Estimates of ν and p obtained by fitting Rξo to (44) with n = 6. DOF
is the number of degrees of freedom of the fit.

Lmin Tmax χ2/DOF ν p

20 0.5 98/141 2.54(1) −0.11(1)
20 0.4 63/119 2.62(2) −0.20(2)
20 0.3 28/92 2.71(4) −0.34(5)
20 0.25 20/76 2.67(6) −0.26(11)
20 0.2 16/54 2.67(10) −0.29(21)

30 0.5 89/123 2.42(2) −0.00(2)
30 0.4 47/103 2.54(2) −0.12(3)
30 0.3 20/79 2.58(5) −0.18(7)
30 0.25 13/64 2.54(7) −0.11(14)
30 0.2 10/45 2.50(12) −0.01(31)

40 0.5 50/105 2.42(2) −0.00(2)
40 0.4 31/87 2.50(3) −0.09(3)
40 0.3 17/66 2.58(6) −0.20(7)
40 0.25 12/52 2.54(16) −0.12(16)
40 0.2 10/36 2.50(13) −0.01(33)

To show the quality of our FSS results in figure 16 we plot Rξ versus TL1/ν , using
the estimate (45). All data fall on top of each other with remarkable precision.

6.4. The critical exponent ηo

As discussed at length in [73], the overlap susceptibility behaves in the critical limit as

χo = ū2
hL

2−ηof(uTL1/ν). (46)

Here uT is the temperature nonlinear scaling field, while ūh is related to the external
overlap–magnetic scaling field uh associated with the overlap variables by uh = hūh(T ) +
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Table 4. Estimates of ηo. On the left we report the results of the fits to (48)
with n = 6, on the right those to (49) with n = 6 and m = 2. In both cases we
fix ν = 2.5(1). The reported errors are the sums of the statistical errors and of
the variations of the estimate of ηo as ν changes by one error bar. DOF is the
number of degrees of freedom of the fit.

Fit (48) Fit (49)

Lmin Tmax χ2/DOF ηo χ2/DOF ηo

20 0.5 11 570/142 0.13(2) 338/140 −0.01(1)
20 0.4 1439/120 0.10(2) 99/118 0.02(1)
20 0.3 498/93 0.06(1) 39/91 0.04(3)
20 0.25 182/77 0.06(1) 20/75 0.01(3)
20 0.2 43/55 0.05(1) 12/53 −0.04(8)

30 0.5 6592/124 0.17(2) 263/122 −0.03(2)
30 0.4 1096/104 0.11(2) 78/102 0.01(2)
30 0.3 330/80 0.07(1) 35/78 0.04(3)
30 0.25 89/65 0.05(1) 18/63 0.00(4)
30 0.2 28/46 0.05(2) 11/44 −0.06(10)

40 0.5 4237/106 0.18(2) 177/104 −0.05(2)
40 0.4 1096/88 0.11(2) 40/86 −0.03(2)
40 0.3 294/67 0.07(1) 22/65 0.02(4)
40 0.25 63/53 0.05(1) 9/51 −0.02(6)
40 0.2 17/37 0.04(1) 2/35 −0.11(12)

O(h2). We have already checked that the thermal scaling field uT can be effectively
approximated by uT = T . Thus, neglecting nonanalytic scaling corrections, the data
should behave as

lnχo = (2 − ηo) lnL + ln ūh(T )2 + ln f(TL1/ν). (47)

We now estimate ηo from the analysis of the data at σ = 2/3. In a first set of fits we set
ūh = 1 and approximate ln f(x) with a polynomial in x of order n, i.e., we perform fits to

lnχo = (2 − ηo) lnL + Pn(TL1/ν). (48)

The analysis of the χ2 of the fits indicate that n = 6 allows us to describe the data
accurately. We fix ν to the estimate (45) to avoid having an additional nonlinear parameter
in the fit. The results are reported in table 4. We observe a significant change of the
estimates as Tmax decreases; moreover, the quality of the fit is quite poor. This can be
explained by the presence of sizable analytic corrections, which means that ūh is poorly
approximated by ūh = 1 in our range of temperatures. The same phenomenon occurs
for the three-dimensional Ising spin glass [73], where the analytic corrections cannot be
neglected in the analysis of the overlap susceptibility. We thus perform a second set of
fits in which we take into account the magnetic nonlinear scaling field. If we approximate
ln ū2

h with a polynomial of order m, we end up with the fitting form

lnχo = (2 − ηo) lnL + Pn(TL1/ν) + Qm(T ), (49)
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Figure 17. Plot of the ratio ūh(T )/ūh(T = 0.1) from fits with Tmax = 0.5 and
Lmin = 20, 30, 40.

where we assume Qm(0) = 0. In the following we take m = 2 and again fix ν to the
estimate (45). The results are reported in table 4. The quality of the fit is now significantly
better, indicating that the analytic corrections are important. The scaling function ūh is
reported in figure 17 and it does indeed vary significantly in the range of values of T that
we are considering. The estimates of ηo do not show any systematic variation with Tmax

and are always consistent, within errors, with ηo = 0. Quantitatively, our data allow us
to set the upper bound

|ηo| ≤ 0.05. (50)

6.5. Results for the gauge-glass model

In order to check universality we also performed runs at σ = ∞, although in this case
we considered smaller lattices and the errors are significantly larger (partly because of
the smaller number of samples, partly because of larger sample-to-sample fluctuations).
The data were analyzed as we did in the σ = 2/3 case. First, we determined the critical
temperature Tc. A fit of ξo/L to (42) gives rather small estimates of Tc. For Lmin = 20 we
obtain Tc = 0.030(2) (resp., 0.020(3)) for Tmax = 0.4 (resp., 0.3). Thus, we can conclude
that Tc " 0.02, which is clearly consistent with Tc = 0, given that our data belong to the
range T ≥ 0.1. The claim that Tc ≈ 0.2 is not consistent with our MC data.

Then, we determined ν by assuming Tc = 0. The results of the fits to (42) show
a significant dependence on Tmax. For Lmin = 20, ν varies between 2.50(1) and 2.80(4)
as Tmax varies between 0.4 and 0.16. If analytic scaling corrections are included, i.e. we
fit the data to (44), we observe a significantly smaller dependence on Tmax, but, on the
other hand, a rather large dependence on Lmin, with rapidly increasing error bars as Lmin

increases. This is probably due to the fact that we have a somewhat large statistical error
on the results with the largest value of L, L = 60. The estimates of ν vary between 2.8 and
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Figure 18. MC estimates of go versus T at σ = 2/3 for L = 40, 60, 80. The dotted
lines correspond to the infinite-volume critical (T = 0) estimate g∗o = 13.0(5).

3.7 if we take Lmin = 20, 30 and 0.2 ≤ Tmax ≤ 0.5 and thus give the final result ν = 3.3(5).
This result is somewhat larger than the estimate (45), but certainly not inconsistent. It
supports—very weakly, though—universality. A better check is presented below.

6.6. The quartic coupling go and universality

We computed the overlap quartic coupling go defined in (16). MC results at σ = 2/3 are
shown in figure 18. The infinite-volume limit, within our statistical accuracy, is apparently
reached when L/ξo ! 7, corresponding to T ! 0.3 for our largest lattices L = 60, 80. The
infinite-volume results are quite stable with respect to T , so we can reliably estimate the
critical (T = 0) value g∗

o. We obtain

g∗
o = 13.0(5). (51)

According to standard RG arguments, go has a universal FSS limit as a function of
Rξo ≡ ξo/L, that is

go(T, L) = f(Rξo), (52)

where the function f(x) is universal and satisfies f(0) = g∗
o. This scaling behavior is nicely

supported by the data at σ = 2/3 for various lattice sizes; see figure 19. Universality can
be checked by also considering the results for σ = 5/9, σ = 1/2 and σ = ∞. Clearly, all
points fall on top of each other. Note that here there are no free parameters to fiddle with
and thus this comparison provides strong support to the hypothesis that all these models
belong to the same universality class. Given the very good evidence that we have that
the model with σ = 2/3 undergoes a T = 0 glassy transition, this result further confirms
(and provides evidence stronger than that given in the previous paragraph showing) that
the gauge-glass model does not have a finite-temperature exotic glassy transition.
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Figure 19. go versus Rξo ≡ ξo/L: data at σ = 2/3 for various lattice sizes
L = 20, 40, 60, 80 (above), and including (below) also data for other values of σ:
σ = 5/9, 1/2,∞.

6.7. Behavior of the magnetic correlation functions

Let us now consider the magnetic quantities. The magnetic correlation length ξ is zero in
the gauge-glass model (see appendix E), and increases as one approaches the QLRO region.
In particular, at T = 0.159, which is below the critical temperature TM ≈ 0.31 along the
Nishimori line, we obtain ξ = 3.3(1), 6.7(4), 9.8(3) at σ = 2/3, 5/9, 1/2, respectively.
These values are roughly consistent with a behavior like ln ξ ∼ (σ − σc)−κ assuming
σc ≈ σM ≈ 0.30, i.e., with a KT-like behavior along the transition line that connects
the Nishimori critical point M (see figure 1), and the T = 0 transition point at σ = σD,
which is expected to run almost parallel to the T axis. Note, however, that while our data
suggest a power-law divergence of ln ξ (and therefore, ξ has an exponential divergence),
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Figure 20. MC estimates of the quartic couplings gc. The dotted line corresponds
to the XY value gc = g4 = 13.65(6).

they are not sufficiently precise to allow us to estimate the power κ. The KT value κ = 1/2
is consistent with the data, but κ = 1 would be equally reasonable.

It is also interesting to discuss the behavior of the quartic couplings gc, g4, and g22

defined from the magnetic correlation functions in (13)–(15). In appendix E, assuming
universality, we predict that, in the critical limit, g4 and g22 should diverge as ξ2

o , while
gcξ−2

o should go to zero.

Numerical estimates of gc are shown in figure 20. The results are clearly consistent
with a finite T = 0 limit. Note that the estimates obtained for σ = 2/3, 5/9, and 1/2 are
close to the XY value g∗

4,XY = 13.65(6); actually, they are consistent within errors, even at
small T , below TM ≈ 0.31. These results are suggestive of a KT behavior of the magnetic
correlation functions also along the disorder paramagnetic–QLRO transition line from M
to D; see figure 1. Indeed, for σ = 2/3, 5/9, 1/2 we have ξ ≈ 3, 7, 10, so along these lines
one should be able to observe the critical behavior that arises when one approaches the
paramagnetic–QLRO transition line at a point with T < TM. In other words, these results
imply that the critical limit of gc(σ, T ) at fixed T < TM along the paramagnetic–QLRO
transition line is consistent with the KT value. This fact provides some evidence that also
along the disorder-driven transition line magnetic correlation functions behave as in the
pure XY model. Of course, as σ increases (and thus, the magnetic correlation length ξ
decreases), gc changes significantly and, for σ = ∞, gc is infinite for any T and L.

The couplings g22 and g4 are instead expected to diverge as ξ2
o . In figure 21 we report

g22 for the different models. The data are clearly diverging as ξ → ∞, but the asymptotic
behavior g22 ∼ ξ2

o is not clearly observed, likely because the values of ξo are not sufficiently
large. Indeed, we only observe that g22 behaves as ξκo with κ rapidly increasing with ξo.
More precisely, if we only include data satisfying ξo " 10 we obtain κ ≈ 1. If instead
we fit the data with 10 " ξo " 20 (we have infinite-volume data only up to ξo ≈ 20) we
obtain κ ≈ 1.5.

doi:10.1088/1742-5468/2010/03/P03006 30

http://dx.doi.org/10.1088/1742-5468/2010/03/P03006


J.S
tat.M

ech.
(2010)

P
03006

Magnetic and glassy transitions in the square-lattice XY model with random phase shifts

Figure 21. Plot of ln(−g22) versus ln ξo at σ = 2/3, 5/9, 1/2.

7. Conclusions

We have studied the magnetic and glassy transitions of the square-lattice XY model in
the presence of random phase shifts and, in particular, the GRP XY and CRP XY model
defined by the distributions (2) and (3). The latter is very useful because it allows some
exact calculations along the Nishimori line T = σ [8, 9], where, in particular, the magnetic
and overlap two-point functions are equal. We present MC results for the GRP XY and
CRP XY models for several values of the temperature and of the parameter σ controlling
the disorder, approaching the magnetic and glassy transition lines from the paramagnetic
phase. We substantially confirm the phase diagram shown in figure 1.

Our main results are the following.

(i) We have carefully investigated the critical behavior along the transition line separating
the paramagnetic and QLRO phases, from the pure XY point P to the multicritical
point, which, in the CRP XY model, lies on the N line and is such that the transition
line runs parallel to the T axis. The magnetic observables show a σ independent
KT behavior: the magnetic correlation length behaves as ln ξ ∼ u−1/2

t , where ut is
the thermal scaling field, ut ∼ T − Tc(σ), and the magnetic susceptibility as χ ∼ ξ7/4

(corresponding to η = 1/4). Moreover, the quartic coupling gc defined in (15) appears
to be universal. We obtain g∗

c ≈ 13.6, which is nicely consistent with the corresponding
value g∗

4,XY = 13.65(6) of the pure XY model [68, 70]. We have also verified the
universality of the leading logarithmic correction to the critical behavior of χ. On the
other hand, the critical behavior of disorder-related quantities, such as those related
to the overlap correlation function, depends on σ.

(ii) In the CRP XY model, the Nishimori point M (see figure 1) is a multicritical
point which divides the paramagnetic–QLRO line into two parts: a thermally driven
transition line (from P to M) and a disorder-driven transition line (from M to D).
This result should be general: a multicritical point should also exist in generic RP
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XY models, although in this case it is not expected to coincide with that where the
transition line runs parallel to the T axis. Such a multicritical point is characterized
by the fact that, at criticality, magnetic and overlap functions have the same critical
behavior, that is η = ηo: in the CRP XY model the two correlation functions are
exactly equal (more generally, they are equal on the whole N line), but we do not
expect this property to be generic. It is interesting to observe that the multicritical
behavior is only observed in the disorder-related quantities. Magnetic observables
behave, as far as the leading behavior is concerned, as in the pure XY model: the
correlation length shows a KT behavior, η = 1/4, and g∗

c = g∗
4,XY in the whole

neighborhood of the multicritical point. However, corrections are different from those
appearing in the pure XY model, providing additional evidence for the presence of an
additional (probably marginal) RG operator, which is responsible for the multicritical
behavior.

(iii) Little is known about the behavior along the transition line from the multicritical
point to D. However, the fact that purely magnetic observables behave as in the pure
XY model both along the thermally driven transition line and at the multicritical
point leads us to conjecture that the magnetic behavior is also unchanged. We have
presented some very weak evidence in section 6.7. We should mention that RG
arguments [23] predict η = 1/16—clearly different from the KT value η = 1/4—at
σ = σD and T = 0. This result is not in contradiction with our conjecture. Indeed,
the T = 0 point is the intersection of two different transition lines and therefore it is
expected to be a multicritical point. Hence, the behavior for T = 0 may be different
from that observed along the finite-temperature transition line.

(iv) We have investigated the critical behavior for large values of σ. We find no evidence
of a finite-temperature transition for all values of σ that we have investigated: the
system is paramagnetic up to T = 0, where a glassy transition occurs. Moreover, in
all cases we confirm universality. We can thus conjecture that the critical behavior
along the whole line that starts at D (see figure 1) is universal: for any σ > σD, one
has the same critical behavior characterized by the exponents

ν = 2.5(1), 1/ν = 0.40(2), |ηo| ≤ 0.05. (53)

Our estimate of ν is consistent with earlier estimates obtained by MC simulations of
the gauge-glass XY model, for example 1/ν = 0.39(3) and 1/ν = 0.36(3) obtained
in [45] and [49] respectively, and by numerical calculations of the stiffness exponent
at T = 0, for example 1/ν = 0.36(1) and 1/ν ≈ 0.45 obtained in [45] and [51]. Our
result for ηo is consistent with a general argument which predicts ηo = 0.

Appendix A. Details for the Monte Carlo simulation

In the simulation we use both Metropolis and microcanonical local updates. The latter
do not change the energy of the configuration and are defined as follows. Consider a site
i; the corresponding field is ψi. The terms of the Hamiltonian that depend on ψi can be
written as

Hi = Re(ψ̄iz), z ≡
∑

j

Uijψj , (A.1)
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where the sum is over all nearest neighbors j of site i. Then, define

ψ′
i = 2

z

|z|2
Re(ψ̄iz) − ψi. (A.2)

One can verify that |ψ′
i| = 1 and that

Re(ψ̄iz) = Re(ψ̄′
iz). (A.3)

Thus, the update ψi → ψ′
i does not change the energy and can therefore always be

accepted. This update does not suffer the limitations of the Metropolis update: ψi and
ψ′

i are not close to each other.
In our simulation a MC step consists of five microcanonical sweeps over all of the

lattice followed by one Metropolis sweep. For each disorder sample we typically perform
O(105) MC steps. In some simulations of the CRP XY model we also use the parallel-
tempering method [71, 72]. It allows us to obtain results for small values of T , in
particular below the Nishimori line T = σ. In the parallel-tempering simulations we
consider NT systems at the same value of σ and at NT different inverse temperatures
βmin ≡ β1, . . . , βmax, where βmax corresponds to the minimum value of the temperature
that we are interested in. The value βmin is chosen such that the thermalization at β = βmin

is sufficiently fast, while the intermediate values βi are chosen such that the acceptance
probability of the temperature exchange is at least 5%. Moreover, we require that, for
some i, βi = σ. This allows us to collect data on the Nishimori line. The exact results
valid on it allow us to check the correctness of the MC code and perform a (weak) test of
thermalization. Thermalization is checked by verifying that the averages of the observables
are independent of the number of MC steps for each disorder realization.

The overlap correlations and the corresponding χo and ξo are measured by performing
two independent runs for each disorder sample. Finally, note that the determination of
g22 defined in (14) requires the computation of the disorder average of products of thermal
expectations. This should be done with care in order to avoid any bias due to the finite
length of the run for each disorder realization. We use the essentially unbiased estimators
discussed in [73, 74].

Appendix B. The KT RG equations

In this appendix we consider the RG flow for the sine–Gordon (SG) model, with the
purpose of understanding its universal features. As a results we shall obtain the
critical behavior of the correlation length and of the magnetic susceptibility at the KT
transition. This appendix generalizes the results presented in [75]–[77]. The SG model
is parameterized by two couplings, α and δ—we use the notation of [75, 77]—whose β
functions are

βα = 2αδ + 5
64α

3 + · · · , (B.1)

βδ = 1
32α

2 − 1
16α

2δ + · · · , (B.2)
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where the dots indicate higher-order terms. To all orders the β functions have the generic
form

βα = 2αδ +
∑

n+m>2

bα,nmα
nδm, (B.3)

βδ = 1
32α

2 +
∑

n+m>2

bδ,nmα
nδm. (B.4)

In the SG model the sign of α is irrelevant, which implies the symmetry relations

βα(α, δ) = −βα(−α, δ), βδ(α, δ) = βδ(−α, δ). (B.5)

As a consequence, bα,nm = 0 if n is even and bδ,nm = 0 if n is odd. Moreover, for α = 0
the theory is free and δ does not flow. Hence

βδ(α = 0, δ) = 0, (B.6)

which implies bδ,nm = 0 if n = 0.
Let us now consider a general nonlinear analytic redefinition of the couplings

α = aα,10u +
∑

n+m≥2

aα,nmunvm, (B.7)

δ = aδ,01v +
∑

n+m≥2

aδ,nmunvm. (B.8)

We have verified up to the seventh order that with a proper choice of the coefficients aα,nm

and aδ,nm one can rewrite the β functions in the form

βu(u, v) = −uv, (B.9)

βv(u, v) = −u2(1 + b1v + b3v
3 + b5v

5 + · · ·). (B.10)

The couplings u and v are not uniquely defined and indeed there is a family of
transformations that do not change the β functions (B.9) and (B.10). Extending the
previous results to all orders, in the following we assume that we can choose u and v in
such a way that βu(u, v) is given by (B.9) and βv(u, v) has the form

βv(u, v) = −u2[1 + vf(v2)], (B.11)

where f(v2) is an analytic function in the region v < v0, where v0 is the starting point of
the RG flow, and satisfies 1 + vf(v2) > 0 in this domain (if this were not true, we would
have another nontrivial fixed point). This parameterization is unique (universal) in the
sense that there is no analytic redefinition of the couplings which allows one to write the
β functions in the form (B.9), (B.11) with a different function f(v2), i.e. with different
coefficients b2n+1. The perturbative calculations of [75] allow us to determine b1:

b1 = −3
2 . (B.12)
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The analysis of the flow in the general case is analogous to that presented in [75, 77].
First, we define the RG invariant function

Q(u, v) = u2 − F (v),

F (v) = 2

∫ v

0

w dw

1 + wf(w2)
= v2 + v3 +

9

8
v4 + O(v5),

(B.13)

which satisfies
dQ

dl
=
∂Q

∂u
βu(u, v) +

∂Q

∂v
βv(u, v) = 0, (B.14)

where l is the flow parameter. The RG flow follows the lines Q = constant. It is thus
natural to parameterize the RG flow in terms of Q and v(l). Since

dv

dl
= βv(u, v) = −[Q + F (v)][1 + vf(v2)], (B.15)

we obtain

l = −
∫ v

v0

dw

[Q + F (w)][1 + wf(w2)]
, (B.16)

where v(l = 0) = v0.
Let us now apply these results to the XY model. Repeating the discussion of [78, 79]

the XY model can be mapped onto a line in the (u, v) plane with v > 0. The KT
transition is the intersection of this line with the line Q = 0 and the high-temperature
phase corresponds to Q > 0. Thus, Q plays the role of thermal nonlinear scaling field, i.e.

Q = q1τ + q2τ
2 + · · · (B.17)

where τ = (T − TXY )/TXY .
To derive the expected critical behavior we consider the singular part of the free

energy in a box of size L. It satisfies the scaling equation [80]

Fsing(τ, L) = e−2lf(Q, v(l), e−lL), (B.18)

where we have parameterized the flow in terms of Q and v(l) and we have neglected
all irrelevant operators. If Q > 0, as discussed in [75], v(l) decreases continuously and
v(l) → −∞ as l → ∞. Since v0, the starting point of the flow, is positive, we can fix l by
requiring

v(l) = −1, (B.19)

and so

l =

∫ v0

−1

dw

[Q + F (w)][1 + wf(w2)]
= I(Q, v0). (B.20)

It follows that

Fsing(τ, L) = e−2I(Q,v0)f(Q,−1, e−I(Q,v0)L), (B.21)

which gives the scaling behavior of the free energy (using Q ∼ τ). In the scaling limit the
finite-size dependence can be parameterized in terms of ξ/L, where ξ is the correlation
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length. This allows us to identify

ξ(τ) = ξ0e
I(Q,v0), (B.22)

where ξ0 is a constant. The behavior of ξ(τ) for τ → 0 is obtained by expanding I(Q, v0)
for Q → 0. The generic behavior is

I(Q, v0) =
1√
Q

∑

n

InQn +
∑

n

Ian,n(v0)Q
n. (B.23)

The nonanalytic terms in the expansion depend only of the coefficients b2n+1 which appear
in (B.10). The first two coefficients are

I0 = π, I1 =
πb1

4
=

9π

16
. (B.24)

Correspondingly, we obtain

ξ(τ) = X exp(π/
√

Q)[1 + I1

√
Q + O(Q)]. (B.25)

Expanding Q in powers of τ we obtain the celebrated KT expression for the correlation
length.

Let us now consider the behavior of the susceptibility. Perturbation theory gives for
the scaling dimension of the spin correlation function [75]

γ = −1
4 + 1

4δ −
1
4δ

2 + h1α
2 + · · · , (B.26)

where h1 is an unknown coefficient. If we perform the redefinitions (α, δ) → (u, v)
considered before, we can rewrite γ as7

γ = −1
4 −

1
8v − 1

16v
2 + · · · (B.27)

without the α2 term. In the infinite-volume limit the susceptibility satisfies the scaling
law

χξ−7/4 = A exp

[∫ v(l)

v0

γ(w) + 1/4

βv
dw

]
Gχ[Q, v(l)], (B.28)

the integral is computed at fixed Q with βv given by (B.15), and Gχ is an analytical
function. Setting v(l) = −1 and expanding the integral in powers of Q, we obtain an
expansion of the form

χξ−7/4 = A(1 + c1

√
Q + c2Q + · · ·). (B.29)

The coefficient c1 can be computed exactly using the perturbative results (B.10), (B.12),
and (B.27); the result is

c1 =
π

16
. (B.30)

7 The possibility of canceling the term of order α2 is related to the existence of a family of transformations, given
at second order by u′ = u + Auv, v′ = v + Au2 with arbitrary A, which leave invariant the β functions (B.9)
and (B.10). By properly choosing A one can eliminate the α2 term in γ(u′, v′).
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Using (B.25) we can write
√

Q =
π

ln ξ/X
+ O(ln−3 ξ) (B.31)

and obtain

χξ−7/4 = Aχ

[
1 +

π2

16 ln(ξ/X)
+ O(1/ ln2 ξ)

]
. (B.32)

Note that the leading logarithmic scaling correction has a universal coefficient. We should
note that in [77] it was incorrectly claimed that c1 = 0 and, as a consequence, that
the leading scaling corrections in (B.32) are proportional to 1/(ln ξ)2. We numerically
checked (B.32) by fitting the infinite-volume numerical data of [68] (more precisely their
data for β ≥ 0.92, corresponding to 10 " ξ " 420) to

ln(χξ−7/4) = a +
b

ln(ξ/X)
; (B.33)

the results are a = 0.804(2) and b = 0.627(9) (with χ2/DOF ≈ 0.7), which are perfectly
consistent with the value of b obtained in perturbation theory, i.e. b = π2/16 ≈ 0.617
(fixing b = π2/16, we obtain a = 0.8058(1) with χ2/DOF ≈ 0.7, while a fit to
a + b/ ln(ξ/X) + c/ ln2(ξ/X) gives a = 0.8046(9), c = 0.029(22) with χ2/DOF ≈ 0.6,
which confirms that the next-to-leading correction is very small in (B.33)).

The result (B.32) is general. If O is a generic long-distance quantity which behaves
as ξx

o in the critical limit, we expect O/ξx
o to behave as χ/ξ7/4, i.e. to satisfy a relation

analogous to (B.28). It is only needed to replace γ(u, v) + 1/4 with the appropriate
subtracted scaling dimension. Thus, O/ξx

o also has an expansion of the form (B.32), i.e.

O = ξx
o

[
1 +

cO
ln ξ/X

+ O(ln−2 ξ)

]
, (B.34)

where cO is universal and can be computed by using the perturbative expression of
the scaling dimension of O. More precisely, if the scaling dimension γO(u, v) has the
perturbative expansion

γO(u, v) = g00 + g01v + g02v
2 + g20u

2 + · · · (B.35)

we obtain

cO = −πg02. (B.36)

Corrections proportional to 1/ ln ξ/X should instead be absent in RG invariant quantities.
Indeed, if R is such a quantity, if we neglect the scaling corrections, R satisfies the scaling
relation

R(τ) = GR[Q, v(l)], (B.37)

for any l. This implies that R(τ) is independent of v(l), and is hence an analytic function
of Q and therefore of τ . It follows that

R(τ) = R∗ +
cR

ln2 ξ/X
+ O(ln−4 ξ), (B.38)

where the constant cR is expected to be universal.
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Appendix C. General behavior close to a multicritical point

Let us consider a multicritical point in a two-parameter space labeled by T and σ and let
us assume that the correlation length behaves as

ξ(T, σ) ∼ [T − Tc(0)]−ν1 σ = 0, (C.1)

ξ(T, σ) ∼ [T − Tc(σ)]−ν2 σ > 0, (C.2)

where Tc(σ) is the σ dependent critical point and ν1 0= ν2. According to the RG, close to
the multicritical point ξ(T, σ) behaves as

ξ(T, σ) = ut(T, σ)−νmF [uσ(T, σ)ut(T, σ)−φ], (C.3)

where uσ(T, σ) and ut(T, σ) are the scaling fields and φ and νm two critical exponents.
Since one of the two scaling fields must vanish along the transition line, we define ut(T, σ)
as the scaling field which has this property. Therefore, we define

ut(T, σ) =
T − Tc(σ)

Tc(0)
. (C.4)

For σ → 0 and T → Tc(0), it behaves as

ut(T, σ) = τ + cσσ + · · · τ ≡ T − Tc(0)

Tc(0)
. (C.5)

We assume that cσ 0= 0, i.e. that the transition line is not perpendicular to the line σ = 0,
as occurs in the RP XY models. Finally, we note that uσ(T, σ) does not vanish on the
transition line, unless σ = 0.

Now consider T → Tc(σ) at fixed nonvanishing σ. Since uσ(T, σ) 0= 0 we obtain (C.2)
only if

F (x) ∼ xλ λ =
ν2 − νm

φ
(C.6)

for x → ∞. To go further let us distinguish two cases: (i) uσ(T, σ) vanishes identically for
σ = 0, i.e. uσ(T, 0) = 0 for any T ; (ii) uσ(T, 0) is different from zero unless T = Tc(σ = 0).

In case (i), (C.1) requires

F (0) 0= 0, νm = ν1. (C.7)

Assuming uσ(T = Tc(0), σ) = dσσ for σ → 0 we obtain

ξ(T = Tc(0), σ) = (cσσ)−ν1F (dσc
−φ
σ σ1−φ). (C.8)

The observed behavior depends on the value of φ. For φ < 1, since F (0) 0= 0 we obtain

ξ(T = Tc(0), σ) = (cσσ)−ν1(a + bσ1−φ + · · ·). (C.9)

The corrections are correct provided that F (x) is analytic for x = 0. If φ > 1, using (C.6)
we obtain the behavior

ξ(T = Tc(0), σ) ∼ σ−ν̄ ν̄ = ν1 − (1 − φ)λ =
ν2(φ− 1) + ν1

φ
. (C.10)
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In case (ii), if uσ(T, σ = 0) = dT τ + O(τ 2) we obtain for σ = 0

ξ(T, 0) = τ−νmF (dT τ
1−φ), (C.11)

which shows that

F (dT τ
1−φ) ∼ τ νm−ν1 (C.12)

in the limit τ → 0. Let us now consider the behavior for T = Tc(0) as a function of σ.
For σ → 0 we have

ξ(T = Tc(0), σ) = c−νmσ σ−νmF (dσc
−φ
σ σ1−φ) ∼ σ−ν1, (C.13)

where we have used relation (C.12). Thus, in case (ii) we have ξ(T = Tc(0), σ) ∼ σ−ν1 for
any value of φ.

Let us now show that the case relevant for the RP XY model is case (i). Indeed,
case (ii) can only occur if the two relevant operators which occur at the multicritical
point are both present in the model at σ = 0. This certainly does not occur in our case
in which σ is associated with randomness. Therefore, our result that in the RP XY
model ξ(T = Tc(0), σ) behaves as σ−ν1 implies that φ < 1, i.e. that the RG dimension of
the new operator that arises in the theory with σ 0= 0 is less relevant than the thermal
operator present at σ = 0. This is also the case for three-dimensional randomly dilute
Ising systems or ±J Ising models at their ferromagnetic transitions at small disorder.
Indeed, the crossover from the pure critical behavior to that of the randomly dilute Ising
universality class is described by the crossover exponent φ = αIs = 0.1096(5) [70, 81]; see
also the discussion reported in [82].

Similar considerations apply to other quantities. For instance, consider a RG invariant
quantity R. It behaves as

R(T, σ) = r[uσ(T, σ)ut(T, σ)−φ]. (C.14)

If φ < 1, R(T, σ) approaches the same value R∗ along the lines σ = 0 and T = Tc(0).
Moreover, in the second case we expect corrections of the form

R(Tc(0), σ) = R∗ + aσ1−φ + · · · = R∗ + a′ξ(φ−1)/ν1 + · · · . (C.15)

Appendix D. RG equations in the presence of randomness

The RG equations in the small disorder regime and close to the paramagnetic–QLRO
transition line have been derived in [3, 23, 28, 31, 35]:

dT

dl
= −4π3Y 2,

dσ

dl
= 0,

dY

dl
= (2 − πβ + πσβ2)Y,

where Y is the vorticity and only terms up to O(Y 2) are kept. Let us now redefine the
couplings as follows:

T−1 =
1

π
(2 + v + σ), Y =

u

4π
. (D.1)

For u, v → 0 the RG equations become

du

dl
= −uv,

dv

dl
= −u2,

dσ

dl
= 0. (D.2)

We have thus obtained again the RG equations for the XY model. This implies that, in
the region of couplings in which (D.2) hold, the RG behavior is analogous to that close
to the KT fixed point, apart from an analytic redefinition of the scaling fields.
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Appendix E. Magnetic correlations in the gauge-glass model

For the gauge-glass model (σ = ∞) we can derive some identities which relate magnetic
and overlap quantities. The basic observation is that for σ = +∞ the distribution function
of the Axy variables is gauge invariant. Hence we have

[〈ψ∗
x1
· · ·ψ∗

xn
ψy1 · · ·ψyn〉] = V ∗

x1
· · ·V ∗

xn
Vy1 · · ·Vyn[〈ψ∗

x1
· · ·ψ∗

xn
ψy1 · · ·ψyn〉], (E.1)

for any set of phases Vx. This implies that magnetic correlations vanish unless each xi is
equal to some yj . Analogously we have

[〈ψ∗
x1
· · ·ψ∗

xn
ψy1 · · ·ψyn〉〈ψ∗

z1
· · ·ψ∗

zn
ψt1 · · ·ψtn〉] = V ∗

x1
· · ·V ∗

xn
Vy1 · · ·VynV ∗

z1
· · ·V ∗

zn
Vt1 · · ·Vtn

× [〈ψ∗
x1
· · ·ψ∗

xn
ψy1 · · ·ψyn〉〈ψ∗

z1
· · ·ψ∗

zn
ψt1 · · ·ψtn〉]. (E.2)

These relations allow us to write

[〈ψ∗
xψy〉] = δxy, (E.3)

[〈ψ∗
x1
ψ∗

x2
ψy1ψy2〉] = δx1y1δx2y2 + δx1y2δx2y1 − δx1y1δx1x2δx1y2 , (E.4)

[〈ψ∗
x1
ψy1〉〈ψ∗

x2
ψy2〉] = δx1y1δx2y2 + δx1y2δx2y1[|〈ψ∗

x1
ψy1〉|2] − δx1y1δx1x2δx1y2 . (E.5)

It follows that

[〈|µ|2〉] = V, [〈|µ|4〉] = 2V 2 − V, [〈|µ|2〉2] = V 2 + V 2χo − V, (E.6)

which imply

χ = 1, χ4 = 1 − 2χo, χ22 = χo − 1. (E.7)

Moreover, it is easy to show that ξ = 0. Relations (E.7) show that χ4 and χ22 both diverge
as χo. In the critical limit we have χo ∼ ξ2

o because ηo = 0. Therefore we can write

χ4 ≈ −2aξ2
o , χ22 ≈ aξ2

o , (E.8)

for ξo → ∞, where a is constant.
We shall now assume that these results are valid for the whole universality class: for

any σ > σD, relations (E.8) always hold with a constant a which in general depends on σ.
We can re-express these results in terms of the quartic couplings. If we use (E.8) we have

g4 =
3aξ2

o

χ2ξ2
, (E.9)

g22 = − aξ2
o

χ2ξ2
. (E.10)

Since the magnetic susceptibility χ and correlation length ξ are finite and nonzero (except
for σ = ∞, where anyway the quartic couplings are not well-defined since ξ = 0 for any
L), we expect g4 and g22 to diverge as ξ2

o in the critical limit. As for gc = g4 +3g22, (E.10)
shows that the leading ξ2

o term cancels. Since in the calculation we have neglected the
scaling corrections to (E.8), this does not necessarily imply that gc remains finite in the
critical limit, but only that gcξ−2

o → 0 as ξo → ∞. The exact behavior depends on the
neglected scaling corrections. These predictions are confirmed by our numerical results;
see section 6.7. It is worth mentioning that this behavior is analogous to that observed in
the 2D Ising spin glass model, where χ4 behaves as χo and thus diverges on approaching
the glassy transition; see, e.g., [83] and references therein.
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