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We investigate the zero-temperature glassy transitions in the square-lattice !J Ising model, with bond
distribution P!Jxy"= p"!Jxy −J"+ !1− p""!Jxy +J"; p=1 and p=1 /2 correspond to the pure Ising model and to
the Ising spin glass with symmetric bimodal distribution, respectively. We present finite-temperature Monte
Carlo simulations at p=4 /5, which is close to the low-temperature paramagnetic-ferromagnetic transition line
located at p#0.89, and at p=1 /2. Their comparison provides a strong evidence that the glassy critical behavior
that occurs for 1− p0# p# p0, p0#0.897, is universal, i.e., independent of p. Moreover, we show that glassy
and magnetic modes are not coupled at the multicritical zero-temperature point where the paramagnetic-
ferromagnetic transition line and the T=0 glassy transition line meet. On the theoretical side we discuss the
validity of finite-size scaling in glassy systems with a zero-temperature transition and a discrete Hamiltonian
spectrum. Because of a freezing phenomenon which occurs in a finite volume at sufficiently low temperatures,
the standard finite-size scaling limit in terms of TL1/$ does not exist; the renormalization-group invariant
quantity % /L should be used instead as basic variable.
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I. INTRODUCTION

The !J Ising model $1% is a standard theoretical labora-
tory to study the effects of quenched disorder and frustration
on the critical behavior of spin systems. We consider the
two-dimensional !2D" !J Ising model defined on a square
lattice by the Hamiltonian

H = − &
'xy(

Jxy'x'y , !1"

where 'x= !1, the sum is over all pairs of lattice nearest-
neighbor sites, and the exchange interactions Jxy are uncor-
related quenched random variables, taking values !J with
probability distribution

P!Jxy" = p"!Jxy − J" + !1 − p""!Jxy + J" . !2"

For p=1 we recover the standard Ising model, while for
p=1 /2 we obtain the so-called bimodal Ising glass model.
For p!1 /2, the disorder average of the couplings is given
by $Jxy%=J!2p−1"!0 and ferromagnetic !or antiferromag-
netic" configurations are energetically favored. Note that its
thermodynamic behavior is symmetric under p→1− p. In the
following we set J=1 without loss of generality.

The 2D!J Ising model has been extensively investi-
gated; see, e.g., Refs. $2–4% for recent reviews. As sketched
in Fig. 1, at finite temperature it presents a paramagnetic and

a ferromagnetic phase. They are separated by a transition
line, which starts at the pure Ising transition point, at p=1
and TIs=2 / ln!1+)2"=2.269 19. . ., and ends at the disorder-
driven ferromagnetic T=0 transition, at $5,6% p0#0.897. The
point where this transition line meets the so-called Nishimori
!N" line $2,7,8%, at $4% TM =0.9527!1" and pM =0.890 83!3"
!see also Refs. $9,10% for analytical estimates of TM , pM" is a
multicritical point !MNP" $11,12%. The MNP divides the
paramagnetic-ferromagnetic !PF" transition line in two parts.
The PF transition line from the Ising point at p=1 to the
MNP is controlled by the Ising fixed point. Here disorder
gives only rise to !universal" logarithmic corrections to the
standard Ising critical behavior; see, e.g., Ref. $13% and ref-
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FIG. 1. !Color online" Phase diagram of the square-lattice !J
Ising model in the T-p plane. The phase diagram is symmetric
under p→1− p.
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erences therein. The slightly reentrant low-temperature PF
transition for T#TM belongs instead to a different strong-
disorder !SDI" universality class $4,14–16%.

Several studies $17,18,20–30% have discussed the possible
existence of a glassy transition, considering in most of the
cases models with symmetric disorder distributions such that
$Jxy%=0. At variance with the three-dimensional case, no
finite-temperature glassy phase occurs and a critical behavior
is only observed at T=0. Moreover, recent results for the
bimodal Ising model $27–30% have provided compelling evi-
dence that the bimodal Ising model and other models with
symmetric continuous disorder distributions, for instance the
Gaussian distribution, undergo a zero-temperature glassy
transition in the same universality class. In all cases, for
T→0 the correlation length increases as T−$ with $31%
$#3.55. Even though the critical behavior in the thermody-
namic limit !i.e., if one takes L→( before T→0" is the same
$27%, for small values of the temperature and in finite volume
the bimodal Ising glass model, and in general any model
with a discrete Hamiltonian spectrum, does not behave as
models with continuous disorder distributions. In particular,
as we shall see, in the bimodal Ising glass model one cannot
observe the standard finite-size scaling !FSS" limit in terms
of the scaling variable TL1/$. An appropriate variable is in-
stead the renormalization-group !RG" invariant quantity % /L.

In the case of the 2D!J Ising model, a natural scenario is
that a zero-temperature glassy transition occurs for any p in
the range 1− p0# p# p0, and that the glassy critical behavior
is independent of p. This implies that a nonzero $Jxy% is ir-
relevant for the critical behavior, as found in mean-field
models $32% and in the 3D!J Ising model $33%.

In this paper, which completes a series of papers $4,12,13%
devoted to the study of the phase diagram and critical behav-
ior of the 2D!J Ising model, we investigate the glassy be-
havior for 1− p0# p# p0. For this purpose, we present Monte
Carlo !MC" simulations at p=4 /5, which is relatively close
to the low-temperature PF line !p0# pMNP#0.89", and at
p=1 /2, up to lattice sizes L=64 and for T)0.1. As we shall
see, our results provide a strong evidence of the universality
of the glassy zero-temperature critical behavior and thus pro-
vide strong support to the scenario of a universal glassy criti-
cal line for T=0 and 1− p0# p# p0. Moreover, we provide
evidence that the magnetic and glassy behaviors at the T=0
multicritical glassy point !MGP", where the low-temperature
PF and the T=0 glassy transition lines meet, at p0#0.897,
see Fig. 1, are decoupled. Finally, we discuss the critical
behavior of the overlap quantities along the PF line that con-
nects the MNP to the T=0 MGP: we observe an apparently
T-dependent critical behavior.

The paper is organized as follows. In Sec. II, we define
the quantities we have considered in the MC simulations. In
Sec. III, we discuss the behavior at the T=0 glassy transition.
In particular, we discuss the freezing phenomenon observed
in a finite volume at very small temperatures due to the dis-
creteness of the Hamiltonian spectrum, the universality of
the glassy critical behavior, and the critical behavior of the
overlap susceptibility. In Sec. IV, we discuss the critical be-
havior of the overlap correlations along the low-temperature
paramagnetic-ferromagnetic transition line, below the MNP.
Finally, In Sec. V, we draw our conclusions.

II. DEFINITIONS

The critical modes at the glassy transition are those re-
lated to the overlap variable qx*'x

!1"'x
!2", where the spins 'x

!i"

belong to two independent replicas with the same disorder
realization +Jxy,. In our MC simulations we measure the
overlap susceptibility * and the second-moment correlation
length % defined from the correlation function Go!x"
*$'q0qx(%= $''0'x(2%, where the angular and the square
brackets indicate the thermal average and the quenched av-
erage over disorder, respectively. We define **&xGo!x" and

%2 *
1

4 sin2!pmin/2"
G̃o!0" − G̃o!p"

G̃o!p"
, !3"

where p= !pmin,0", pmin*2+ /L, and G̃o!q" is the Fourier
transform of Go!x". We also consider some quantities that are
invariant under RG transformations in the critical limit,
which we call phenomenological couplings. We consider the
ratio % /L and the quartic cumulants

U4 *
$,4%
$,2%2 , U22 *

$,2
2% − $,2%2

$,2%2 , !4"

where ,k*'!&xqx"k(.
In the case of a T=0 transition with a nondegenerate

ground state, as expected in the 2D Ising glass model with a
Gaussian disorder distribution, we have *-%2 for T=0,
hence the corresponding overlap-susceptibility exponent -
vanishes, -=0, and

U4 → 1, U22 → 0 !5"

for T→0. In particular, U22→0 indicates the self-averaging
of the ground-state distribution, as already suggested by the
results of Ref. $34%. Moreover, since -=0, it is natural to
conjecture that the two-point overlap function becomes es-
sentially Gaussian in the limit T→0. If this occurs, we also
have % /L→(. As we shall see, the results for the !J Ising
model are consistent with these predictions.

We also consider magnetic quantities. We define the mag-
netic susceptibility *m and the second-moment correlation
length %m in terms of the magnetic two-point function

Gm!x" * $''0'x(% . !6"

For symmetric disorder distributions we have $35% *m=1 and
%m=0 for any T. For other values of p, we expect them to
converge to a finite nonuniversal value. We also consider the
four-point magnetic susceptibility *4m defined by

*4m * $.4 − 3.2
2%/L2, !7"

.k * ./&
x

'x0k1 . !8"

For symmetric disorder distributions we have $35%

*4m = 4 – 6* . !9"

Assuming universality we expect *4m-* also for nonsym-
metric disorder distributions, i.e., for any p!1 /2.
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III. RESULTS AT THE GLASSY TRANSITIONS

We perform MC simulations of the square-lattice !J
Ising model with periodic boundary conditions for p=4 /5
and p=1 /2 and for several values of the lattice size L, with
8/L/64. We employ the Metropolis algorithm, the
random-exchange method $36%, and multispin coding. Fur-
thermore, for the largest lattices !L032" we use the cluster
algorithm described in Ref. $18%. For each lattice size we
collect data in the range $19% Tmin/T/Tmax, with
1.11Tmax11.4. At p=4 /5 we take Tmin=0.1 for L/32,
Tmin=1 /2.6#0.38 for L=48, Tmin=1 /2.7#0.37 for L=64.
At p=1 /2, we take Tmin=0.1 for L/16 and Tmin=1 /3.3 for
24/L/64. Typically, we consider 104 disorder samples for
each T and p. In a few cases, we consider 105 disorder
samples. In the following, we first discuss the freezing re-
gime, which occurs for sufficiently low temperatures in any
finite system, then we provide strong numerical evidence of
the universality of the glassy transition by considering the
FSS behavior of the phenomenological couplings % /L, U4,
and U22, and finally discuss the behavior of the overlap sus-
ceptibility and of the magnetic quantities.

A. Frozen regime

In Figs. 2 and 3 we show the MC estimates of % /L, U4,
and U22. We note that the data corresponding to different
lattice sizes cross each other around T#0.3 and are mostly
independent of T for T10.3. Similar results for U4 using the
bimodal distribution were also reported in Ref. $18%. Usually,
a crossing point corresponds to a transition point. Instead, in
the present case in which the disorder variables are discrete,
the crossing is due to a nonuniversal phenomenon which is
related to the discreteness of the Hamiltonian spectrum
$27,28%.

To review the argument, let us consider the states corre-
sponding to the two lowest energy values for a given lattice
size L. Their energies differ by 2*E1−E0=4 and their de-
generacies are given by N0!L" and N1!L", respectively. Nu-
merical studies $23% have shown that ln N1 /N0#4 ln L. At
sufficiently low temperatures only the states with the lowest
energy contribute to the thermodynamics. This occurs when
N0!L"3N1!L"e−2/T, i.e., for

T 4
2

ln$N1!L"/N0!L"%
-

1
ln L

. !10"

In this regime the observed behavior is independent of T. In
the opposite limit, i.e., when N0!L"4N1!L"e−2/T, the pres-
ence of the gap is negligible and the system is expected to
have the same behavior as models with continuous distribu-
tions. The crossover from one regime to the other occurs at
an L-dependent freezing temperature Tf!L" which scales as
1 / ln L. It is natural to define Tf!L" by requiring
N0!L"=N1!L"e−2/Tf, but this definition is somewhat unpracti-
cal. In practice, Tf!L" can be estimated from the data by
identifying it with the temperature that marks the onset of the
T-independent behavior of the different observables. For
p=4 /5, the estimates of % /L and U4 reported in Fig. 2 allow
us to estimate Tf!L"#0.41, 0.36, 0.32, and 0.28 for L=8, 12,

16, and 24, respectively. Slightly larger results are obtained
by using U22. The estimates of Tf!L" for p=1 /2 are close to
those obtained for p=4 /5, showing that Tf!L" is little depen-
dent on p. Consistently with the above-reported argument,
the freezing temperature Tf!L" approximately decreases as
1 / ln L, see Fig. 4. A fit to c / ln L gives c#0.9. In the frozen
region the estimates of the phenomenological couplings
should be very close to the corresponding T=0 estimates,
since they are essentially determined by the lowest-energy
configurations. The data are consistent with this prediction.
Indeed, see Fig. 4, for both p=4 /5 and p=1 /2, U4 and U22
below Tf slowly approach the values U22=0 and U4=1, re-
spectively, for L→(. In particular, U22 apparently vanishes
as U22-1 / ln L. Below Tf the ratio % /L increases as L, see
Fig. 5, indicating that %-L2 at T=0. These results imply
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FIG. 2. !Color online" Phenomenological couplings % /L, U4,
and U22 versus T at p=4 /5.
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that, at T=0, the large-L limit of the phenomenological cou-
plings is identical to that observed in models with continuous
distributions; in this case, as we discussed before, we predict
U22→0, U4→1, and % /L→(. This equality should not be
taken as an obvious fact. For instance, the stiffness exponent
is different in the two cases.

B. Finite-size scaling in the presence of freezing

The presence of freezing for T#Tf!L" makes the study of
the T=0 glassy critical behavior quite hard. Indeed, in order
to observe the glassy critical behavior in Ising glass models
with a discrete Hamiltonian spectrum, one must approach
T=0 by keeping T3Tf!L" for each lattice size. This makes a

standard FSS analysis impossible. Indeed, in the FSS limit a
RG invariant quantity R should scale as

R = fR!TL1/$" . !11"

The condition T3Tf!L" implies that this scaling behavior
can only observed for

TL1/$ 3 Tf!L"L1/$ -
L1/$

ln L
. !12"

For L→(, the ratio L1/$ / ln L diverges and thus this makes
the range of values of TL1/$ which are accessible smaller and
smaller as L increases. This implies that the standard FSS
limit, T→0, L→( at fixed TL1/$ does not exist. However, as
we shall now discuss, one can still study FSS if one uses the
ratio % /L as basic FSS variable, i.e., if one considers the
scaling form

R = gR!%/L" . !13"

Usually, expressions Eqs. !11" and !13" are equivalent. This
is not the case here: only the FSS scaling form Eq. !13" can
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FIG. 3. !Color online" Phenomenological couplings % /L, U4,
and U22 versus T at p=1 /2.
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FIG. 4. !Color online" Freezing temperature Tf!L" as estimated
from the onset of the T-independent behavior for T→0, and esti-
mates of U22 and U4 in the frozen region !we indicate them by U4f
and U22f". Results for 8/L/32 and at the temperature T=0.1,
which is well within the frozen region for the lattice sizes consid-
ered. The dotted lines are drawn to guide the eye.
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FIG. 5. !Color online" Estimates of % f /L, where % f is the value
of % in the frozen region.
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hold in the presence of freezing. As is clear from Figs. 2 and
3, the ratio % /L at fixed L increases as T decreases. Hence,
the condition T3Tf!L" translates into

%

L
4

% f

L
, !14"

where % f is the value of % in the frozen region. For L→(
% f /L diverges and thus, by increasing L, one has access to the
whole FSS region. Thus, in the presence of freezing FSS can
still be used but only in the form Eq. !13". Note that there is
nothing special about our choice of % /L in Eq. !13", and
indeed one can equally choose other RG invariant quantities,
for instance the Binder cumulant, in the FSS analysis. Note
that the presence of freezing and the limitations in the use of
FSS are always expected in models with a T=0 transition
and discrete Hamiltonian spectrum. In particular, these phe-
nomena should also be considered in the three-dimensional
!3D" diluted !J Ising model close to the percolation point,
where the glassy transition temperature vanishes $37%.

Since $ does not appear in Eq. !13", this expression can
only be used directly to check universality. If one is inter-
ested in computing $, one must either work in infinite vol-
ume or use different FSS approaches. For instance, one can
use the method proposed in Ref. $38% !Ref. $27% used it in
this context", which relies on the finite-size behavior of % on
lattices of size L and sL to obtain infinite volume estimates
of % from which the exponent $ can be safely determined. In
principle, one might also be able to use the methods of Ref.
$39%. Note, however, that they rely on the behavior of the
FSS functions close to the transition !i.e., for % /L→( or
U4→1", which may not be accessible for reasonable lattice
sizes due to the freezing.

C. Phenomenological couplings and universality

In order to verify universality, we consider the quartic
cumulants U4 and U22, which should scale according to Eq.
!13". The function gR!x" should be universal, hence
p-independent. Universality is nicely supported by the data
shown in Fig. 6. As expected, we find that U4→3 and
U22→0 for % /L→0, and U4→1 and U22→0 for % /L→(.
All data for U4 fall onto a single curve with small scaling
corrections, supporting the existence of the finite-size scaling
limit in terms of % /L, as discussed in the previous section.
The convergence to a single curve is also clear in the case of
U22, although corrections are quite evident. Note that, in the
region around the peak, for % /L#0.3, the data at p=4 /5 and
p=1 /2 converge from opposite sides.

In these universality checks there are no free parameters
to be adjusted, and thus these comparisons provide strong
support to the hypothesis that these models belong to the
same universality class. Analogous universality checks for
2D Ising models with different distributions were performed
in Refs. $27,28%. In Ref. $27%, by studying the FSS behavior
of %!2L" /%!L" versus % /L, it was shown that several models
with discrete distribution of the couplings are in the univer-
sality class of the !J Ising model with p=1 /2. In particular,
universality was shown for the irrational model, a discrete
model without energy gap which has the same stiffness ex-

ponent as continuous models $22%. Moreover, evidence of
universality between the 2D Ising models with Gaussian and
bimodal !our model with p=1 /2" distributions was provided
by the results of Ref. $28% for the FSS behavior of U4 versus
% /L.

We note that while the data for U4 scale nicely up to
% /L10.9, for U22 significant deviations are observed at
smaller values of % /L, see Fig. 7. For p=4 /5 and L=8 the
data show significant deviations close to the peak, then ap-
proach the common curve and then show again a significant
deviation—the data turn up—for % /L5 !% /L"max#0.55. A
similar phenomenon occurs for L=12. For L=16 deviations
close to the peak are quite small, but again the data begin to
turn up as % /L5 !% /L"max#0.6. For L=24 FSS holds quite
nicely, at least up to !% /L"max#0.65. The value !% /L"max
marks the onset of the crossover region between the critical
regime where FSS holds and the freezing regime that sets in
at % f /L. Note that % f /L is significantly larger than !% /L"max,
indicating that the breaking of FSS occurs much before
freezing. For p=1 /2 the conclusions are similar, although,
for a given L, !% /L"max is significantly smaller than the cor-
responding value for p=4 /5. For instance, for L=16, we
have !% /L"max#0.45 for p=1 /2 and !% /L"max#0.60 for
p=4 /5. This clearly reflects the fact that % f for p=1 /2 is
smaller than for p=4 /5, see Fig. 5. Similar estimates of
!% /L"max for p=1 /2 can be obtained from the results pre-
sented in Ref. $27%.
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FIG. 6. !Color online" The quartic cumulants U4 and U22 versus
% /L for p=4 /5 and p=1 /2. We only plot data satisfying L016 for
clarity.
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D. Overlap susceptibility and exponent !

Finally, we investigated the critical behavior of the over-
lap susceptibility. As discussed in Ref. $33% it should behave
in the FSS limit as

* = ūh
2!T"L2−-F*!%/L" , !15"

where ūh is an analytic function of T which is related to the
overlap-magnetic scaling field. In order to determine -, we
have performed fits of the data with p=4 /5 to

ln * = !2 − -"ln L + Pn!T" + Qm!%/L" , !16"

where Pn!x" and Qm!x" are polynomials in x with Pn!0"=0.
To avoid any bias from the presence of the freezing region,
we have only used the data satisfying % /L# !% /L"max, where,
for L/24, !% /L"max is the value determined before from the
analysis of U22. For L=32 we used somewhat arbitrarily
!% /L"max=0.7, while for L=48,64 we used all our data which
in any case satisfy % /L#0.65. To identify scaling corrections
we only considered data satisfying T#Tmax and L5Lmin for
several values of Tmax and Lmin. The results depend strongly
on these parameters. For Tmax=1.2 we obtain -=0.39!1" and
0.33!3" for Lmin=8 and 16. For Lmin=16, we obtain
-=0.27!3", 0.24!3", and 0.22!4" for Tmax=1, 0.8, and 0.6.
Apparently the results always decrease as Tmax decreases and
Lmin increases. It is impossible to estimate reliably - from
these results and, thus, we only quote an upper bound:

- 1 0.2. !17"

In principle, the same analysis can be performed for
p=1 /2. However, in this case the estimates of !% /L"max are
smaller, so that fewer data can be used in the fit. In practice,
no estimates of - can be obtained.

As we mentioned at the beginning there are strong theo-
retical reasons to expect -=0. Thus, we tried to verify
whether our results are consistent with this hypothesis. For
this purpose we considered the data with Tmax=1.0 and
Lmin=12 and we fitted them to Eq. !16" setting -=0. We find
that the data satisfying % /L# !% /L"max are reasonably de-
scribed by Ansatz Eq. !15". In Fig. 8, we report

*resc = *L−2e−Pn!T", !18"

where Pn!T" is the polynomial determined in the fit Eq. !16".
The agreement is quite good up to !% /L"#0.65. It should be
noted that, if we also include data with % /L5 !% /L"max, the
fits become much less dependent on Tmax and Lmin, exclude
-=0, and give the estimate -#0.2: Apparently the data that
belong to the region !% /L"max#% /L#% f /L are well de-
scribed by Eq. !15" with -=0.2, while they cannot be fitted
by taking -=0. This is evident from Fig. 9 where we report
*L−1.8 exp$−Pn!T"%: in this figure essentially all data fall on a
single rescaled curve. Note that the quality of the collapse is
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FIG. 7. !Color online" U22 versus % /L for p=4 /5. We plot data
for all available values of L. Below, we only show the results for
% /L50.3.
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FIG. 8. !Color online" Rescaled susceptibility *resc defined in
Eq. !18" for p=4 /5 and -=0.
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FIG. 9. !Color online" Rescaled susceptibility *resc defined in
Eq. !18" for p=4 /5 and -=0.2.
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only marginally better than that given in Fig. 8 —the *2 per
degree of freedom of the fit is similar in the two cases—
although this is not evident from the figures since they have
a completely different vertical scale.

As a final check we verify if the data at p=0.5 are also
consistent with -=0. The results are reported in Fig. 10. Also
in this case the data with % /L10.65 are consistent with
-=0. In the plot, we have also multiplied *resc by a constant
in such a way that *resc assumes the value *resc#56 for
% /L#0.3 as it does for p=4 /5. With this choice the curves
for *resc should be the same for both values of p. As it can be
seen the shape of the two curves is indeed the same. Quan-
titatively, the two curves are the same up to % /L#0.45,
while they differ significantly for % /L#0.6,0.7. This is not
surprising. As we have explained, for p=1 /2, the data such
that % /L)0.5 are probably already in the crossover region
before the onset of freezing.

E. Magnetic quantities

The magnetic variables do not become critical in limit
T→0. Indeed, the magnetic susceptibility *m and second
moment correlation length %m are finite in the limit T→0.
For p=1 /2 we have *m=1 and %m=0 for any T. For other
values of p, they converge to nonuniversal values such that
*m51 and %m50. For p=4 /5 we find *m#24 and
%m#3.0 in the limit T→0. We also consider the four-point
magnetic susceptibility *4m which should scale as * in the
critical limit. In Fig. 11 we plot the ratio gm /*, where
gm*−*4m / !*m

2 %m
2 ". This quantity shows smaller scaling cor-

rections than *4m /* and clearly converges to an L indepen-
dent constant. The asymptotic behavior sets in for T10.5,
before the freezing region T10.35.

IV. OVERLAP CRITICAL BEHAVIOR ALONG
THE LOW-TEMPERATURE PARAMAGNETIC-

FERROMAGNETIC TRANSITION LINE

We now investigate the behavior of the overlap correla-
tions along the low-temperature PF transition line, see Fig. 1,
from the MNP to the T=0 axis. The critical behavior of the
magnetic correlations was numerically studied in Ref. $4% by
varying p for two values of T :T=1 /1.55 and T=1 /2. It was

found that the critical behavior was universal, controlled by a
single strong-disorder fixed point, with critical exponents
$#3 /2 and -m#1 /8.

The ferromagnetic T=0 transition point at p= p0#0.897,
where the low-temperature PF transition line ends, is a MGP,
because it is connected to three phases and it is the intersec-
tion of two different transition lines, the PF line at T50 and
the glassy line at T=0. At T=0 the critical point at p= p0
separates a ferromagnetic phase from a T=0 glassy phase,
while for T50 the transition line separates a ferromagnetic
from a paramagnetic phase. Therefore, on general grounds,
the critical behavior at T=0 and p= p0 should differ from
both that observed along the PF line and that observed along
the glassy line T=0, p5 p0, unless the magnetic and glassy
critical modes are effectively decoupled. Such a decoupling
is apparently supported by the numerical results of Refs.
$5,6,14,40%. Indeed, the estimates of the magnetic critical ex-
ponents at T=0 are quite close and substantially consistent
with those found along the PF transition line below the MNP.
All results are therefore consistent with a single magnetic
fixed point that controls the magnetic critical behavior both
at T50 and at T=0. The analysis of the overlap correlation
functions also supports the decoupling of the critical modes.
Indeed, the arguments we gave in Sec. II on the behavior of
the !overlap" phenomenological couplings and correlation
functions should hold at T=0 for any value of p—hence, in
the ferromagnetic phase, at the MGP as well as along the
glassy transition line—since they only rely on the assump-
tion of a nondegenerate ground state. Therefore, also at the
T=0 MGP we expect U4=1, U22=0, % /L=(, and -=0. The
behavior of the overlap correlations is therefore identical for
p5 p0, for p# p0, and at the MGP, in agreement with the
decoupling scenario.

We wish now to understand the critical behavior
of the overlap correlations along the PF line. In order
to investigate this issue, we perform MC simulations
at two critical points along the low-temperature PF
line, at $T=1 /1.55#0.645, p=0.8915!2"% and
$T=1 /2, p=0.8925!1"%, as determined in Ref. $4%, for lat-
tice sizes up to L=48. The FSS analysis of the data of the
overlap susceptibility * shows that *-L2−- with quite small
but nonzero values of -. Fits of the data satisfying L016
which take into account the nonanalytic scaling corrections
give -=0.046!6" at T=1 /1.55 and -=0.038!4" at T=1 /2.
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FIG. 10. !Color online" Rescaled susceptibility *resc defined in
Eq. !18" for p=1 /2 and -=0.
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Note that these values are much smaller than the pure Ising
value -=1 /2 !which is simply twice the value of the mag-
netic exponent -m=1 /4" holding along the PF line from the
pure Ising point to the MNP, and also much smaller than the
value -=-m=0.177!2" at the MNP point. The FSS analyses
of the phenomenological couplings % /L, U4 and U22 lead to
apparently T-dependent critical values: U22=0.018!2",
U4=1.044!4", % /L=1.7!1" at T=1 /1.55, and U22=0.008!2",
U4=1.025!2", and % /L=2.2!1" at T=1 /2 !where the errors
are essentially due to the uncertainty on pc and on the scaling
correction exponent". Note that these values are very close to
the values at the T=0 MGP; still we consider unlikely that
the overlap behavior is the same as that occurring at the
MGP, mainly because this would require % /L=( along the
whole PF line between the MNP and the MGP. Indeed, the
condition % /L=( is quite unlikely—we are not aware of sys-
tems in which this occurs—for a finite-temperature transi-
tion. These results can be better explained by a T-dependent
asymptotic critical behavior which, with decreasing T, ap-
proaches the T=0 glassy behavior characterized by the val-
ues -=0, U22=0, U4=1, % /L=(.

V. CONCLUSIONS

In this paper we consider the two-dimensional !J Ising
model, focusing mainly on the T=0 glassy transition occur-
ring for 1− p0# p# p0. The main results are the following:

!i" We first discuss the freezing phenomenon that occurs
on any finite lattice at sufficiently low temperatures. We in-

vestigate the behavior of several quantities in this regime,
verifying explicitly the expected logarithmic dependence on
the lattice size L. We also show that the presence of this
regime makes it impossible to use the standard form of FSS:
the FSS limit T→0, L→( at fixed TL1/$ does not exist. FSS
can be formulated only if one considers % /L as basic FSS
variable.

!ii" We study the FSS behavior of the quartic cumulants
U4 and U22 for p=4 /5 and p=1 /2 as a function of % /L. We
find that they have the same FSS curves, a clear indication
that the critical behavior for p=4 /5 and p=1 /2 is the same.
This allows us to conjecture that the critical behavior is in-
dependent of p in the interval 1− p0# p# p0, and therefore,
together with the results of Refs. $27,28%, that there exists a
single universality class for 2D Ising glassy transitions. We
also investigate in detail the critical behavior of the overlap
susceptibility, showing that the numerical data are consistent
with -=0, if one discards data that are close to the region
where freezing occurs.

!iii" Finally, we discuss the critical behavior of the overlap
variables along the PF line. An analysis of the numerical data
available for the T=0 MGP indicates that at this point glassy
and magnetic modes are decoupled. For T50 we observe an
apparent T-dependent critical behavior. Note that a similar
phenomenon was also observed in the XY model with ran-
dom shifts $41%: along the critical line that starts at the XY
pure point and ends at the Nishimori multicritical point,
magnetic quantities show a universal behavior while overlap
variables show a disorder-dependent critical behavior.
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