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Renormalization group computation of the critical exponents of hierarchical spin glasses
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The large scale behavior of the simplest non-mean-field spin-glass system is analyzed, and the critical
exponent related to the divergence of the correlation length is computed at two loops within the e-expansion
technique with two independent methods. The techniques presented show how the underlying ideas of the
renormalization group apply also in this disordered model, in such a way that an e-expansion can be consis-
tently set up. By pushing such calculation to high orders in €, a consistent non-mean-field theory for such
disordered system could be established, giving a substantial contribution the development of a predictive

theory for real spin glasses.
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The understanding of glassy systems and their critical
properties is a subject of main interest in statistical physics.
The mean-field theory of spin-glasses [1] and structural
glasses [2] provides a physically and mathematically rich
theory. Nevertheless, real spin-glass systems have short-
range interactions, and thus cannot be successfully described
by mean-field models [1]. This is the reason why the devel-
opment of a predictive and consistent theory of glassy phe-
nomena going beyond mean field is still one of the most
hotly debated, difficult and challenging problems in this do-
main [3-5], so that a theory describing real glassy systems is
still missing. This is because nonperturbative effects are
poorly understood and not under control, and the basic prop-
erties of large scale behavior of these systems still far from
being clarified.

In ferromagnetic systems, the physical properties of the
paramagnetic-ferromagnetic transition emerge in a clear way
already in the original approach of Wilson [7], where one can
write a simple renormalization group (RG) transformation. It
was later realized that Wilson’s equations are exact in models
with ferromagnetic power-law interactions on hierarchical
lattices as the Dyson model [8,9]. This model contains all the
physical RG properties, and is simple enough to yield a so-
lution of the RG equations within the e-expansion [10].

The extension of this approach to random systems is
available only in a few cases. An RG analysis for random
models on the Dyson hierarchical lattice has been pursued in
the past [11,12], and a systematic analysis of the physical
and unphysical infrared (IR) fixed points has been developed
within the e-expansion technique. Unfortunately, in such
models spins belonging to the same hierarchical block inter-
act each other with the same [11] random coupling J, in such
a way that frustration turns out to be relatively weak and they
are not a good representative of realistic strongly frustrated
system. Moreover, there has recently been a new wave of
interest for strongly frustrated random models on hierarchi-
cal lattices [13—15]: for example, it has been shown [14] that
a generalization of the Dyson model to its disordered version
[the hierarchical random energy model (HREM)] has a ran-
dom energy model-like phase transition.

In this letter we present a field theory analysis of the
critical behavior of a generalization of Dyson’s model
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to the disordered case, known as the hierarchical Edwards-
Anderson Model (HEA) [13]. The HEA is of particular in-
terest, since it is a non-mean-field strongly frustrated model
with long-range interaction. It follows that its RG analysis
pursued in this work makes a contribution to the develop-
ment of a theory describing real glassy systems with short-
range interaction. Indeed, the symmetry properties of the
HEA make an RG analysis simple enough to be done with
two independent methods, showing that its IR-limit is physi-
cally well-defined, independently on the computation tech-
nique that one uses. The same symmetry properties make
the RG equations simple enough to make a high-order
e-expansion tractable by means of a symbolic manipulation
program, resulting in a first predictive theory for the critical
exponents for a strongly frustrated non-mean-field system
mimicking a real spin-glass. It is possible that such a pertur-
bative expansion turns out to be nonconvergent: if this hap-
pens, it may help us to pin down the nonperturbative effects.
Motivated by this purpose, we show with a two-loop calcu-
lation that such e-expansion can be set up consistently, and
that the ordinary RG underlying ideas actually apply also in
this case, so that the IR limit of the theory is well-defined
independently on the regularization technique.
The Hamiltonian of the HEA is defined [13] as H,[S]=
-2 1Ji4S:S, where the spin S;s take values =1 and J;; are
Gaussian random variables with zero mean and variance 02
Everything depends on the form of 0'2 that will be chosen in
such way to make the model 51mple enough, and a good
candidate mimicking a real glassy system. At large distance
we have that O‘Zk—0(|l—k| 29), where o is a parameter tuning
the decay of the interaction strength with distance: we re-
cover the mean-field regime for o=1/2, while no transition
is present for >1 [13]. We will thus be interested in the
case 1/2<o<1, where the interaction strength mimics the
non-mean field forces of a real spin glass. The form of 02 is
given by the following expression: if only the last m d1g1ts in
the binary representation of the points i and k are different,
o'i ,=2727"This form of the Hamiltonian corresponds in di-
viding the system in hierarchical embedded blocks of size
2™ such that the interaction between two spins depends on
the distance of the blocks to which they belong. The quantity
o’ « 1s not translational invariant, but it is invariant under a
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huge symmetry group and this will be crucial in the study of
the model.

We reproduce the IR behavior of the HEA by two differ-
ent methods. The first method is analogous to the coarse-
graining Wilson’s method for the Ising model: the IR limit is
obtained by imposing invariance with respect to the compo-
sition operation taking two systems of 2* spins and yielding
a system of 2¥*! spins, for which one can obtain closed for-
mulas because of hierarchical structure of the Hamiltonian.
The second method is more conventional: we perform the
IR-limit of the theory by constructing an IR-safe renormal-
ized theory and performing its IR limit by the Callan-
Symanzik equation.

Wilson’s method. As mentioned before, the hierarchical
symmetry structure of the model makes the implementation
of a recursionlike RG equation simple enough to be solved
within an approximation scheme, yielding [13] a recurrence
relation for the probability distribution of the overlap [1,2]
Qab’azl’.” N

P -P
Z[Q]=eF 1Tl f [dP]zk_l{QC%] X Zey {QCT} ,

(1)

where C=2%1-9) B=1/T is the inverse-temperature and
J[dP] stands for the functional integral over P_,. The recur-
sion relation (1) can be solved by supposing Z,[Q] to be a
mean-field solution, i.e., a Gaussian function of Q. As it will
be explicitly shown in the following, the resulting fixed point
Z.[Q] of Eq. (1) turns out [13] to be stable just for e=o
—§<0. For €>0 the stable fixed point is no more Gaussian,
and we search for a solution to Eq. (1) as a small perturba-
tion to the mean-field solution

Z,[0] = exp{- [, T Q*]+ wy/3 T O°11}. (2)

General RG arguments [7] suggest that the corrections to the
mean-field solution must be proportional to e.

A complete reconstruction of the function Z,[Q] for €
>0 stems from the following systematic expansion proce-
dure. In first approximation, we write Z,[Q] as in Eq. (2),
and take into account only the cubic term. By inserting Eq.
(2) into Eq. (1), and expanding in terms of w;_; to up to
O(w;_,), we find that Z,[Q] has the same functional form as
in Eq. (2), where the coefficients r,w; are given by some
functions of r;_;,w;_; that can be directly computed. It fol-
lows that the recursion Eq. (1) yields a relation between
i, wy and ry_;, wy_;. In particular, the recursion relation giv-
ing wy as a function of r_;,w;_;

2Wk_1 i’l—2 Wk—l 3 5
2 + 16C3/2< +O0(wi_y),

Wi =
T-1
shows that for e<0 the fixed point is Gaussian, while for
€>0 a non-Gaussian fixed point arises. It is important point
out that the value of e=o—2/3 is different by the €' =0
—1/2, arising in the generalization Dyson model to its disor-
dered version that has been already pursued in the literature
[11,12]. This is because in the latter the frustration is much
weaker than in the HEA, in such a way that the IR-behavior
of the theory turns out to be generally different.
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Higher order corrections to the Gaussian solution can be
handled systematically: inserting Eq. (2) into Eq. (1), and
expanding to O(w;_,), we generate in Z,[Q] four monomials
{Ii[OT}=; .4 of fourth degree in Q. In order to close the
recursion relation (2), it is then natural to set

4
1
Z[0]=exp) - rk[Tr[Qz] +w/3 T O] + ZE WZ[Q]} ,
=1

A3)

where \;=O(w;). By plugging Eq. (3) into Eq. (1), we
obtain a recursion equation relating ri,wy,{Nhey...4 tO
Tt >Wi1s{N4_t }i=1...-4- This procedure can be pushed to ar-
bitrary high order p in wy, yielding an p-degree polynomial
for

P
z[0]= exp(— 22 cj,kzj-[Q]) : (4)
j=2 I=1

where the number 7; of monomials proliferates for increasing
Jj. Following the method explained above, a recursion equa-
tion relating {cj.qk} ne {Cj',k—l}j,l can be obtained, and the criti-
cal fixed point {c¢ ' +rj1 computed by solving perturbatively in
€ the fixed-point equations. Following the standard RG, we
suppose that the system has a characteristic correlation
length &, diverging at the critical point, where the system is
invariant under change in the scale length. By linearizing the
recursion relation close to such fixed point, the critical expo-
nent v governing the power-law divergence of & for T—T.
can be obtained in terms of the largest eigenvalue \ of the
matrix M linearizing such transformation next to the fixed
point [7]: v'=log, \.

We performed this systematic expansion to the order p
=5, generating n,=4 invariants of fourth degree, and ns=4
invariants of fifth degree in Q. Such computation yields v to
the order €. For n—0, we find

v=3+36e+[432-27(50+55 23 +53.2%)log 2]
+0(€). (5)

The one-loop result for v is the same as that of the power-law
interaction spin-glass studied in [5] (where e=3(0—-2/3)).
Notwithstanding this, the coefficients of the expansion in
these two models will be in general different at two or more
loops. As a matter of fact, the binary tree structure of the
interaction of the HEA emerges in the nontrivial log 2,2
factors in the coefficient of € in Eq. (5), that can’t be there
in the power-law case.

Before discussing the result in Eq. (5), we point out that
Wilson’s method explicitly implements the binary-tree struc-
ture of the model when approaching the IR limit. Neverthe-
less, if the IR limit is well-defined, physical observables like
v must not depend on the technique we use to compute them
in such a limit. It is then important to reproduce Eq. (5) with
a different approach.

Field-theoretical method. Here the e-expansion is per-
formed by constructing a functional integral field theory and
by removing its IR divergences within the minimal subtrac-
tion scheme. The field theory is constructed by expressing
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the average of the replicated partition function as a func-
tional integral over the local overlap field

0u=515 Biz1= [0l o)

A short computation yields the IR-dominant terms in the
effective Hamiltonian for a system of 2* spins,

0,2k-1 2k

LS (4 2 T00]+ £ S 0,

stel=7 = 31

(7)

where Tr denotes the trace over the replica indexes and
771« T—T.. The field theory defined by Eq. (7) reproduces
the O interaction term of the well-know effective actions
describing the spin-glass transition in short-range [16] and
long-range [5,17] spin glasses. Notwithstanding this similar-
ity, the novelty of the HEA is that a high-order e-expansion
can be quiet easily automatized by means of a symbolic ma-
nipulation program solving the simple RG Eq. (1) to high
orders in e. This is not true for such short and long-range
[5,16,17] models, where the only approach to compute the
exponents is the field-theoretical one. Indeed, nobody ever
managed to automatize at high orders a computation of the
critical exponents within the field-theoretical minimal sub-
traction scheme, either for the simplest case of the Ising
model.

To start our field-theoretical analysis, we observe that Eq.
(7) presents an unusual quadratic term that is not invariant
under spatial translations and it is difficult to perform explicit
calculations. This difficulty can be overcome by a relabeling
of the sites of the lattice i=0,---,2¢~1, following the same
procedure of [18, 19] After relabehng one obtams that cr2
i—j[52, divides
i and i/ 2’" i =27"._ Even if thls representatlon is
quite unusual (if you are not an expert in p-adic numbers), in
this way the variance of the couplings J;; is translational
invariant, since it depends only on i—j (each realization of
the system is not translational invariant). In the replica for-
malism we need to know only the variance of the couplings,
not the actual couplings and therefore the effective Hamil-
tonian in replica space is translational invariant and we can
use the standard Fourier transform [19,20] in order to com-
pute loop integrals. The field theory defined by Eq. (7) can
be now analyzed within the loop expansion framework. We
expand the 1PI correlation functions

1)
romd.
alhlll. ambmmjl ]I

Ql a b TI[Q ]

m~m~m

=270 a0, " TT[QJ Dier,

in terms of the renormalized coupling constant g, and
take the small renormalized mass limit 7,— 0. According
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to general results [6] concerning long-range models,
the field Q 1is not renormalized, and all we need
are the Tr[Q?]-renormalization constant Z,, and the
g-renormalization constant Z,. An explicit evaluation of the
loop integrals related to the action [Eq. (7)] shows that the IR
divergences arising for e>0, 7,—0 can be reabsorbed into
Z,,Z, by means of the minimal subtraction scheme [6]. An
IR-safe renormalized theory can be constructed, and its IR
fixed point g is computed as the zero of the SB-function
B(g(\)=Ag’(N), yielding the effective coupling constant
g(\) of the theory at the energy scale \. v is given in terms
of g,.Z,

wlgl=r 182 L mlg1+20-1. (8
N P

As predicted by dimensional considerations, the fixed
point g;=0 is stable only for €<0, while for €>0 a non-
Gaussian fixed point g, of order € arises. By plugging the
two-loop result for g, and Z, into Eq. (8) and taking n—0,
we reproduce exactly the result [Eq. (5)] derived within Wil-
son’s method.

Conclusions. In this paper we consider a strongly frus-
trated non-mean-field spin-glass system, the HEA model, and
performed an RG analysis yielding results and future devel-
opments for a predictive theory of the critical exponents for
real spin-glass systems. We set up two perturbative ap-
proaches to compute the IR behavior of the HEA. The first
explicitly exploits the hierarchical structure of the model,
and implements a Wilson-like coarse-graining technique to
reach the IR limit. The second relies on the construction of
an effective field theory reproducing the IR limit by means of
the Callan-Symanzik equation. In both methods, we imple-
mented the basic RG underlying ideas. Among these, the
existence of a characteristic length ¢ diverging at the critical
point, where the theory is invariant with respect to changes
in its energy scale. The two approaches yield the same pre-
diction for the critical exponent v related to the divergence of
&, showing that the IR limit of the theory is well-defined and
independent on the actual method one uses to reproduce it.

Thanks to the hierarchical symmetry of the model, a high-
order e-expansion for the HEA could be automatized by
means of a symbolic manipulation program. If such series
could be made convergent [6] by means of some resumma-
tion technique, such high-order calculation would yield an
analytical control on the critical exponents, resulting in a
precise prediction for a non-mean-field spin-glass.

We are glad to thank S. Franz, M. Mézard and N. Sourlas
for interesting discussions and suggestions.
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