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The large scale behavior of the simplest non-mean-field spin-glass system is analyzed, and the critical
exponent related to the divergence of the correlation length is computed at two loops within the �-expansion
technique with two independent methods. The techniques presented show how the underlying ideas of the
renormalization group apply also in this disordered model, in such a way that an �-expansion can be consis-
tently set up. By pushing such calculation to high orders in �, a consistent non-mean-field theory for such
disordered system could be established, giving a substantial contribution the development of a predictive
theory for real spin glasses.
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The understanding of glassy systems and their critical
properties is a subject of main interest in statistical physics.
The mean-field theory of spin-glasses �1� and structural
glasses �2� provides a physically and mathematically rich
theory. Nevertheless, real spin-glass systems have short-
range interactions, and thus cannot be successfully described
by mean-field models �1�. This is the reason why the devel-
opment of a predictive and consistent theory of glassy phe-
nomena going beyond mean field is still one of the most
hotly debated, difficult and challenging problems in this do-
main �3–5�, so that a theory describing real glassy systems is
still missing. This is because nonperturbative effects are
poorly understood and not under control, and the basic prop-
erties of large scale behavior of these systems still far from
being clarified.

In ferromagnetic systems, the physical properties of the
paramagnetic-ferromagnetic transition emerge in a clear way
already in the original approach of Wilson �7�, where one can
write a simple renormalization group �RG� transformation. It
was later realized that Wilson’s equations are exact in models
with ferromagnetic power-law interactions on hierarchical
lattices as the Dyson model �8,9�. This model contains all the
physical RG properties, and is simple enough to yield a so-
lution of the RG equations within the �-expansion �10�.

The extension of this approach to random systems is
available only in a few cases. An RG analysis for random
models on the Dyson hierarchical lattice has been pursued in
the past �11,12�, and a systematic analysis of the physical
and unphysical infrared �IR� fixed points has been developed
within the �-expansion technique. Unfortunately, in such
models spins belonging to the same hierarchical block inter-
act each other with the same �11� random coupling J, in such
a way that frustration turns out to be relatively weak and they
are not a good representative of realistic strongly frustrated
system. Moreover, there has recently been a new wave of
interest for strongly frustrated random models on hierarchi-
cal lattices �13–15�: for example, it has been shown �14� that
a generalization of the Dyson model to its disordered version
�the hierarchical random energy model �HREM�� has a ran-
dom energy model-like phase transition.

In this letter we present a field theory analysis of the
critical behavior of a generalization of Dyson’s model

to the disordered case, known as the hierarchical Edwards-
Anderson Model �HEA� �13�. The HEA is of particular in-
terest, since it is a non-mean-field strongly frustrated model
with long-range interaction. It follows that its RG analysis
pursued in this work makes a contribution to the develop-
ment of a theory describing real glassy systems with short-
range interaction. Indeed, the symmetry properties of the
HEA make an RG analysis simple enough to be done with
two independent methods, showing that its IR-limit is physi-
cally well-defined, independently on the computation tech-
nique that one uses. The same symmetry properties make
the RG equations simple enough to make a high-order
�-expansion tractable by means of a symbolic manipulation
program, resulting in a first predictive theory for the critical
exponents for a strongly frustrated non-mean-field system
mimicking a real spin-glass. It is possible that such a pertur-
bative expansion turns out to be nonconvergent: if this hap-
pens, it may help us to pin down the nonperturbative effects.
Motivated by this purpose, we show with a two-loop calcu-
lation that such �-expansion can be set up consistently, and
that the ordinary RG underlying ideas actually apply also in
this case, so that the IR limit of the theory is well-defined
independently on the regularization technique.

The Hamiltonian of the HEA is defined �13� as HJ�S�=
−�i,kJi,kSiSk where the spin Sis take values �1 and Ji,k are
Gaussian random variables with zero mean and variance �i,k

2 .
Everything depends on the form of �i,k

2 that will be chosen in
such way to make the model simple enough, and a good
candidate mimicking a real glassy system. At large distance
we have that �i,k

2 =O��i−k�−2��, where � is a parameter tuning
the decay of the interaction strength with distance: we re-
cover the mean-field regime for �=1 /2, while no transition
is present for ��1 �13�. We will thus be interested in the
case 1 /2���1, where the interaction strength mimics the
non-mean field forces of a real spin glass. The form of �i,k

2 is
given by the following expression: if only the last m digits in
the binary representation of the points i and k are different,
�i,k

2 =2−2�m. This form of the Hamiltonian corresponds in di-
viding the system in hierarchical embedded blocks of size
2m, such that the interaction between two spins depends on
the distance of the blocks to which they belong. The quantity
�i,k

2 is not translational invariant, but it is invariant under a
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huge symmetry group and this will be crucial in the study of
the model.

We reproduce the IR behavior of the HEA by two differ-
ent methods. The first method is analogous to the coarse-
graining Wilson’s method for the Ising model: the IR limit is
obtained by imposing invariance with respect to the compo-
sition operation taking two systems of 2k spins and yielding
a system of 2k+1 spins, for which one can obtain closed for-
mulas because of hierarchical structure of the Hamiltonian.
The second method is more conventional: we perform the
IR-limit of the theory by constructing an IR-safe renormal-
ized theory and performing its IR limit by the Callan-
Symanzik equation.

Wilson’s method. As mentioned before, the hierarchical
symmetry structure of the model makes the implementation
of a recursionlike RG equation simple enough to be solved
within an approximation scheme, yielding �13� a recurrence
relation for the probability distribution of the overlap �1,2�
Qab ,a=1, ¯ ,n

Zk�Q� = e�2/4 Tr�Q2�� �dP�Zk−1�Q + P

C1/2 	 � Zk−1�Q − P

C1/2 	 ,

�1�

where C
22�1−��, �
1 /T is the inverse-temperature and
��dP� stands for the functional integral over Pab. The recur-
sion relation �1� can be solved by supposing Zk�Q� to be a
mean-field solution, i.e., a Gaussian function of Q. As it will
be explicitly shown in the following, the resulting fixed point
Z��Q� of Eq. �1� turns out �13� to be stable just for �
�
− 2

3 �0. For ��0 the stable fixed point is no more Gaussian,
and we search for a solution to Eq. �1� as a small perturba-
tion to the mean-field solution

Zk�Q� = exp�− �rk Tr�Q2� + wk/3 Tr�Q3��
 . �2�

General RG arguments �7� suggest that the corrections to the
mean-field solution must be proportional to �.

A complete reconstruction of the function Zk�Q� for �
�0 stems from the following systematic expansion proce-
dure. In first approximation, we write Zk�Q� as in Eq. �2�,
and take into account only the cubic term. By inserting Eq.
�2� into Eq. �1�, and expanding in terms of wk−1 to up to
O�wk−1

3 �, we find that Zk�Q� has the same functional form as
in Eq. �2�, where the coefficients rk ,wk are given by some
functions of rk−1 ,wk−1 that can be directly computed. It fol-
lows that the recursion Eq. �1� yields a relation between
rk ,wk and rk−1 ,wk−1. In particular, the recursion relation giv-
ing wk as a function of rk−1 ,wk−1

wk =
2wk−1

C3/2 +
n − 2

16C3/2�wk−1

rk−1
�3

+ O�wk−1
5 � ,

shows that for ��0 the fixed point is Gaussian, while for
��0 a non-Gaussian fixed point arises. It is important point
out that the value of �=�−2 /3 is different by the ��=�
−1 /2, arising in the generalization Dyson model to its disor-
dered version that has been already pursued in the literature
�11,12�. This is because in the latter the frustration is much
weaker than in the HEA, in such a way that the IR-behavior
of the theory turns out to be generally different.

Higher order corrections to the Gaussian solution can be
handled systematically: inserting Eq. �2� into Eq. �1�, and
expanding to O�wk−1

4 �, we generate in Zk�Q� four monomials
�I4

l �Q�
l=1,. . .,4 of fourth degree in Q. In order to close the
recursion relation �2�, it is then natural to set

Zk�Q� = exp�− rk�Tr�Q2� + wk/3 Tr�Q3� +
1

4�
l=1

4

�k
l I4

l �Q�	� ,

�3�

where �k
l =O�wk

4�. By plugging Eq. �3� into Eq. �1�, we
obtain a recursion equation relating rk ,wk , ��k

l 
l=1,¯,4 to
rk−1 ,wk−1 , ��k−1

l 
l=1,¯,4. This procedure can be pushed to ar-
bitrary high order p in wk, yielding an p-degree polynomial
for

Zk�Q� = exp�− �
j=2

p

�
l=1

nj

cj,k
l Ij

l�Q�� , �4�

where the number nj of monomials proliferates for increasing
j. Following the method explained above, a recursion equa-
tion relating �cj,k

l 
 j,l to �cj,k−1
l 
 j,l can be obtained, and the criti-

cal fixed point �cj,�
l 
 j,l computed by solving perturbatively in

� the fixed-point equations. Following the standard RG, we
suppose that the system has a characteristic correlation
length 	, diverging at the critical point, where the system is
invariant under change in the scale length. By linearizing the
recursion relation close to such fixed point, the critical expo-
nent 
 governing the power-law divergence of 	 for T→Tc
can be obtained in terms of the largest eigenvalue � of the
matrix M linearizing such transformation next to the fixed
point �7�: 
−1=log2 �.

We performed this systematic expansion to the order p
=5, generating n4=4 invariants of fourth degree, and n5=4
invariants of fifth degree in Q. Such computation yields 
 to
the order �2. For n→0, we find


 = 3 + 36� + �432 − 27�50 + 55 · 21/3 + 53 · 22/3�log 2��2

+ O��3� . �5�

The one-loop result for 
 is the same as that of the power-law
interaction spin-glass studied in �5� �where �
3��−2 /3��.
Notwithstanding this, the coefficients of the expansion in
these two models will be in general different at two or more
loops. As a matter of fact, the binary tree structure of the
interaction of the HEA emerges in the nontrivial log 2 ,21/3

factors in the coefficient of �2 in Eq. �5�, that can’t be there
in the power-law case.

Before discussing the result in Eq. �5�, we point out that
Wilson’s method explicitly implements the binary-tree struc-
ture of the model when approaching the IR limit. Neverthe-
less, if the IR limit is well-defined, physical observables like

 must not depend on the technique we use to compute them
in such a limit. It is then important to reproduce Eq. �5� with
a different approach.

Field-theoretical method. Here the �-expansion is per-
formed by constructing a functional integral field theory and
by removing its IR divergences within the minimal subtrac-
tion scheme. The field theory is constructed by expressing
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the average of the replicated partition function as a func-
tional integral over the local overlap field

Qiab 
 Si
aSi

b, EJ�Zn� =� �dQ�e−S�Q�. �6�

A short computation yields the IR-dominant terms in the
effective Hamiltonian for a system of 2k spins,

S�Q� =
1

2 �
i,j

0,2k−1

��i,j
2 + �2�−1�ij�Tr�QiQj� +

g

3! �
i=0

2k−1

Tr�Qi
3� ,

�7�

where Tr denotes the trace over the replica indexes and
�2�−1
T−Tc. The field theory defined by Eq. �7� reproduces
the Q3 interaction term of the well-know effective actions
describing the spin-glass transition in short-range �16� and
long-range �5,17� spin glasses. Notwithstanding this similar-
ity, the novelty of the HEA is that a high-order �-expansion
can be quiet easily automatized by means of a symbolic ma-
nipulation program solving the simple RG Eq. �1� to high
orders in �. This is not true for such short and long-range
�5,16,17� models, where the only approach to compute the
exponents is the field-theoretical one. Indeed, nobody ever
managed to automatize at high orders a computation of the
critical exponents within the field-theoretical minimal sub-
traction scheme, either for the simplest case of the Ising
model.

To start our field-theoretical analysis, we observe that Eq.
�7� presents an unusual quadratic term that is not invariant
under spatial translations and it is difficult to perform explicit
calculations. This difficulty can be overcome by a relabeling
of the sites of the lattice i=0, ¯ ,2k−1, following the same
procedure of �18,19�. After relabeling one obtains that �i,j

2


 �i− j�2
−2�, where �i�2 is the diadic norm of i, i.e., if 2m divides

i and i /2m is odd, �i�2=2−m. Even if this representation is
quite unusual �if you are not an expert in p-adic numbers�, in
this way the variance of the couplings Ji,j is translational
invariant, since it depends only on i− j �each realization of
the system is not translational invariant�. In the replica for-
malism we need to know only the variance of the couplings,
not the actual couplings and therefore the effective Hamil-
tonian in replica space is translational invariant and we can
use the standard Fourier transform �19,20� in order to com-
pute loop integrals. The field theory defined by Eq. �7� can
be now analyzed within the loop expansion framework. We
expand the 1PI correlation functions

�a1b1i1¯ambmim;j1¯jl
�m,l�


 2−l�Qi1a1b1
¯ Qimambm

Tr�Qj1
2 � ¯ Tr�Qjl

2��1PI,

in terms of the renormalized coupling constant gr and
take the small renormalized mass limit �r→0. According

to general results �6� concerning long-range models,
the field Q is not renormalized, and all we need
are the Tr�Q2�-renormalization constant Z2, and the
g-renormalization constant Zg. An explicit evaluation of the
loop integrals related to the action �Eq. �7�� shows that the IR
divergences arising for ��0, �r→0 can be reabsorbed into
Zg ,Z2 by means of the minimal subtraction scheme �6�. An
IR-safe renormalized theory can be constructed, and its IR
fixed point gr

� is computed as the zero of the �-function
�(g���)=�g����, yielding the effective coupling constant
g��� of the theory at the energy scale �. 
 is given in terms
of gr

� ,Z2

�2�gr� 
 �r� � log Z2

��r
�

g,�
,

1



= �2�gr

�� + 2� − 1. �8�

As predicted by dimensional considerations, the fixed
point gr

�=0 is stable only for ��0, while for ��0 a non-
Gaussian fixed point gr

� of order � arises. By plugging the
two-loop result for gr

� and Z2 into Eq. �8� and taking n→0,
we reproduce exactly the result �Eq. �5�� derived within Wil-
son’s method.

Conclusions. In this paper we consider a strongly frus-
trated non-mean-field spin-glass system, the HEA model, and
performed an RG analysis yielding results and future devel-
opments for a predictive theory of the critical exponents for
real spin-glass systems. We set up two perturbative ap-
proaches to compute the IR behavior of the HEA. The first
explicitly exploits the hierarchical structure of the model,
and implements a Wilson-like coarse-graining technique to
reach the IR limit. The second relies on the construction of
an effective field theory reproducing the IR limit by means of
the Callan-Symanzik equation. In both methods, we imple-
mented the basic RG underlying ideas. Among these, the
existence of a characteristic length 	 diverging at the critical
point, where the theory is invariant with respect to changes
in its energy scale. The two approaches yield the same pre-
diction for the critical exponent 
 related to the divergence of
	, showing that the IR limit of the theory is well-defined and
independent on the actual method one uses to reproduce it.

Thanks to the hierarchical symmetry of the model, a high-
order �-expansion for the HEA could be automatized by
means of a symbolic manipulation program. If such series
could be made convergent �6� by means of some resumma-
tion technique, such high-order calculation would yield an
analytical control on the critical exponents, resulting in a
precise prediction for a non-mean-field spin-glass.

We are glad to thank S. Franz, M. Mézard and N. Sourlas
for interesting discussions and suggestions.
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