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The critical behavior of a family of fully connected mean-field models with quenched disorder, the M−p Ising
spin glass, is analyzed, displaying a crossover between a continuous and a random first order phase transition as
a control parameter is tuned. Due to its microscopic properties the model is straightforwardly extendable to finite
dimensions in any geometry.
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I. INTRODUCTION

Since the work of Kirkpatrick, Thirumalai, and Wolynes1–6

a certain set of mean-field spin-glass models have been
shown to own the salient properties of the behavior of
structural glasses. In particular, these models display dynamic
equations that are equivalent to those predicted by the mode
coupling theory (MCT)7–9 above the so-called mode coupling
temperature Tmc at which ergodicity breaking occurs. Two
kinds of transitions are predicted: a dynamic one at Td = Tmc

and a thermodynamic phase transition at a lower T , often
referred to as the Kauzmann transition. Many mean-field
models exhibiting structural glass features are characterized by
multibody microscopic interactions and their thermodynamics
is self-consistently described by implementing a discontinuous
replica symmetry breaking (RSB) ansatz (usually one step:
1RSB).

The dynamic transition is due to the presence of a large
number of metastable excited glassy states, represented as local
minima of the free energy landscape, growing exponentially
with the size N of the system. In the mean-field approximation,
barriers between minima grow with size and in the thermody-
namic limit the relaxing dynamics to equilibrium of the system
at T � Td remains stuck inside the first “meta”stable state
in where it ends up. In real glassy systems, instead, a slow
dynamics occurs through activated processes. The dynamic
arrest at (and below) Td is an artifact due to the mean-field
approximation.

In finite dimensions the glass transition occurs because, at
a given glass temperature Tg , the time scales of observation
are shorter than the characteristic time scales of the slowest
structural processes (α relaxation) taking place in the glass-
former sample. Metastable states really have a finite time
life, even though (much) longer than the experimental time
of observation. The effect of activated processes in spin-glass
1RSB mean-field models has been analyzed by working at
finite N in the fully connected random orthogonal model
(ROM)10–13 and finding a glass behavior, similar to the one
observed in computer glasses (i.e., those models implemented
to be studied by means of numerical simulations, like Lennard-
Jones and soft spheres mixtures, cf., Refs. 14 and 15).

As already mentioned, another property occurring in the
glass-like mean-field models is a thermodynamic transition
between the supercooled liquid (below Td ) and a thermody-

namically stable glass.16–18 This can occur with a jump in
the order parameter, but without discontinuity in the internal
energy (no latent heat is exchanged). This mixture of first order
and continuous phase transition in the presence of disorder has
been termed random first order transition (RFOT).6

One of the most accredited theories, the Adam-Gibbs–
Di-Marzio entropic theory19,20 predicts the existence of a
thermodynamic transition to an ideal glass phase, the so-called
Kauzmann transition. The Kauzmann temperature is generally
associated with the asymptote of the Vogel-Fulcher law21,22 of
the relaxation time. It is thus related to the transition that one
might observe in an infinitely slow cooling of a glass former.
Because of the difficulty of experimental measurements of
glass relaxation in those conditions, the very existence of the
Kauzmann point and the nature of that transition is still a matter
of debate.23–27

So far, attempts to track the properties envisaged in mean-
field models in realistic systems have faced the problem of
finding a meaningful way to generalize such models and embed
the microscopic features into a given finite dimensional geom-
etry (e.g., three-dimensional cubic lattice) without altering the
discontinuous nature of the transition. This strongly hinders
the chance of falsifying/verifying the hyphothesis of RFOT in
finite-dimensional systems.

Let us consider, for example, the Ising mean-field p-spin
model (p > 2), displaying a RFOT to a 1RSB stable phase.28

In Ref. 29 a generalization of the p = 3-spin model with
M = 2 Ising spins on each site was numerically studied on
a D = 4 hypercubic lattice finding evidence for a continuous
phase transition. The same continuous behavior was recently
found, in the mean-field regime, in the same p = 3, M = 2
model in a D = 1 chain on a “Levy lattice”.30 Just starting
from the observation that in some models with multibody
interactions the transition can be continuous, both in mean-
field and in finite D, the work of Moore, Drossel, and Yeo31–33

showed that this is equivalent to the critical behavior of the
Edwards-Anderson model in a field where the transition line is
called the de-Almeida–Thouless (dAT) line. Applying droplet
theory (which rules out the existence of a dAT line outside the
limit of validity of mean-field theory) it is thus inferred that
no thermodynamic random first order transition can occur in
real structural glasses.34 We notice that the above-mentioned
approach is initially based on a small overlap expansion around
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the critical point, thus relying on a self-consistency check
of the hypothesis of continuity of the overlap. With that
expansion, however, potential discontinuous transitions cannot
be detected and one cannot rule them out, in principle.

The motivation of the present work is to investigate the
connection between the above-mentioned models (presenting
spin-glass like transition in mean field) and the original mean-
field p-spin model (displaying structural-glass-like transition)
and to devise and study a mean-field lattice model able to
interpolate between the two behaviors at the mean-field level
and that, in principle, can be put on a lattice of any D without
changing any constitutive features.

We will now focus on deriving a mean-field class of
models, to which the Ising p-spin model16,28 belongs, whose
critical behavior shifts from continuous to discontinuous in
a controlled way. The model consists of N sites, each one
containing M spins interacting with spins on other sites in
p-uples. We will see how, changing p and the number M

of spins staying on a single site, it is possible to move from
systems displaying a second order phase transition to systems
displaying a random first order transition.

We mention that moving from mean-field to finite dimen-
sions, also standard Ising p-spin and Potts models, might
conserve the random first order nature of the transition
and keep reproducing basic features of structural glasses.
The latter, in particular, can be straightforwardly defined on
a hypercubic lattice. Nevertheless, no numerical evidence
has been collected so far for a RFOT in finite-dimensional
disordered Potts models with the number of states pPotts =
5,6,10 (Refs. 35–38). Actually, we found no argument to infer
a significant limit for the candidate control parameter pPotts in
finite-dimensional lattice cases that could be kept under control
to ensure that a finite-dimensional Potts model recovers the
mean-field properties in that limit.

On the contrary, as we will show in the following, the
model considered in the present work has the advantage of
reducing to an exact mean-field p-spin model for the RFOT
as M → ∞ even in finite dimension (and finite size), for any
values of p. Moreover, in the mean-field theory, we can work
out a sufficient criterion to determine the smallest value of
M above which continuous spin-glass-like transitions cannot
occur.

The manuscript is organized as follows. In Sec. II we will
study the statistical mechanics of the model. In Sec. III we
show that the large M limit corresponds to standard p-spin and
in Sec. IV, expanding near criticality, we build the correspond-
ing field-theory, compute the coupling constants, and study the
relevance of terms competing for continuous/discontinuous
transition. In Sec. V we present our conclusions.

II. THE MODEL

The model consists of N sites, each one hosting a set of
M spins. Two sites interact through a p-body interaction
involving spins belonging to the two sets of M spins. The
Hamiltonian reads

H = −
∑
〈x,y〉

∑
g(x,y)

Jg

∏
μ∈g

sμ, (1)

where 〈x,y〉 indicates the sum over all couples of sites and
g(x,y) are all the possible p-uplets among the 2M spins,
with an exception if p � M: Those p-uplets completely
pertaining to a single site are excluded. This choice actually
defines our model when p � M , as we will discuss in the
following.

The disordered interactions are Gaussian independent and
identically distributed (i.i.d.) variables, with distribution

P (Jg) = 1√
2πσ 2

J

e
− J2

g

2σ2
J , (2)

where, to provide the right thermodynamic convergence of the
free energy, the variance scales like

σ 2
J = 1

NMp−1
, (3)

Replicating n times the system we compute the average over
quenched disorder of the replicated partition function

Zn =
∫ 1,N∏

〈x,y〉

∏
g(x,y)

P (Jg) dJgTr[s]

× exp

[
β

n∑
a=1

1,N∑
〈x,y〉

∑
g(x,y)

Jg

∏
μ∈g

sa
μ

]
, (4)

yielding

Zn = Tr[s] exp

[
β2

4NMp−1

1,N∑
x �=y

∑
g(x,y)

1,n∑
a,b

∏
μ∈g

sa
μsb

μ

]
. (5)

Explicitly separating those spins belonging to site x from those
on site y one can obtain a general expression for the partition
function valid both for p > M and p � M

Zn = Tr{s(x),s(y)} exp

[
β2

4NMp−1

∑
a,b

∑
x �=y

∑
k∑

i1<···<ik

sa
i1

(x)sb
i1

(x), . . . ,sa
ik

(x)sb
ik

(x)

∑
ik+1<,···,<ip

sa
ik+1

(y)sb
ik+1

(y), . . . ,sa
ip

(y)sb
ip

(y)

]
, (6)

with

k = p − M, . . . ,M if p > M,

k = 1, . . . ,p − 1 if p � M.

In principle, it might be possible to include an extra term
due to self-interaction: p out of M spins interact on a single
site (“a single site standard p spin”). As already mentioned, in
the present work we will consider a model without site self-
interaction. We now introduce a set of multi-overlaps between
k spins on the same site x in two replicas

Q
(k)
ab ≡ 1

NMk

N∑
x=1

∑
i1<,...,<ik

sa
i1

(x)sb
i1

(x), . . . , sa
ik

(x)sb
ik

(x). (7)
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By means of multi-overlaps we can write the replicated
partition function Eq. (7) as

Zn = eNC

∫
DQ Tr{s(x),s(y)},

exp

[
β2NM

4

∑
k

∑
a �=b

Q
(k)
abQ

(p−k)
ab

]

×
∏
k

∏
a<b

δ

(
NMQ

(k)
ab − 1

Mk−1

∑
x

∑
i1<···<ik

× sa
i1

(x)sb
i1

(x), . . . ,sa
ik

(x)sb
ik

(x)

)
, (8)

where the parameter C, proportional to minus the paramag-
netic free energy, reads

C

n
= β2

4Mp−1

[∑
k

(
M

k

)(
M

p − k

)]

= β2

4Mp−1

⎧⎨
⎩

1
�(1+p)

[
�(1+2M)

�(1+2M−p) − 2�(1+M)
�(1+M−p)

]
p � M

1
�(1+2M−p)

[ 2�(1+M)
�(1−M+p) − �(1+2M)

�(1+p)

]
p > M

.

(9)

Introducing the integral representation for the delta functions
in Eq. (8) one obtains

Zn = eNC

∫
DQ D� exp[−NG(Q,�)], (10)

G(Q,�) = −β2M

4

∑
k

∑
a �=b

Q
(k)
abQ

(p−k)
ab

+ M

2

∑
k

∑
a �=b

�
(k)
abQ

(k)
ab − log Z(�), (11)

Z(�) = Tr[s]e
S(�)

S(�) = 1

2

∑
k

∑
a �=b

�
(k)
ab

Mk−1

∑
i1<,...,<ik

sa
i1
sb
i1
, . . . ,sa

ik
sb
ik
, (12)

DQ =
∏
k

∏
a<b

dQ
(k)
ab ,

(13)
D� =

∏
k

∏
a<b

d�
(k)
ab .

The stationarity equations in � and Q are

Q
(k)
ab = 1

Z(�)
Tr[sa ]

1

Mk

×
∑

i1<···<ik

sa
i1
sb
i1
, . . . ,sa

ik
sb
ik
eS(�), (14)

�
(k)
ab = β2 Q

(p−k)
ab . (15)

Substituting the saddle point value for � in the effective action
we obtain

G(Q) = β2M

4

∑
k

∑
a �=b

Q
(k)
abQ

(p−k)
ab − log Tr[sa ]e

S(Q),

(16)

S(Q) = β2

2

∑
k

∑
a �=b

Q
(p−k)
ab

Mk−1

∑
i1<,...,<ik

sa
i1
sb
i1
, . . . ,sa

ik
sb
ik
.

The physical meaning of the overlap matrix at saddle point
value is the usual one and more precisely

Q
(k)
ab = 1

NMk

N∑
x=1

∑
i1<i2<,...,<ik

〈
si1 (x), . . . ,sik (x)

〉2

= lim
n→0

2

n(n − 1)

∑
a<b

Q
(k)
ab

∣∣
SP. (17)

III. LARGE M LIMIT: STANDARD p-SPIN

For large M , neglecting diagonal terms in the sum over
i1, . . . ,ik , in Eq. (16), the log Tr term can be rewritten as

S(Q) = M
β2

2

p−1∑
k=1

∑
a �=b

Q
(p−k)
ab

1

k!

(
1

M

M∑
i=1

sa
i sb

i

)k

. (18)

Performing the saddle point for large M , rather than N , and
introducing the auxiliary parameter

qab ≡ 1

M

M∑
i=1

sa
i sb

i , (19)

we obtain, for the free energy Eq. (16)

G(Q) = M

[
β2

4

p−1∑
k=1

∑
a �=b

Q
(k)
abQ

(p−k)
ab

− β2

2

p−1∑
k=1

1

k!

∑
a �=b

Q
(p−k)
ab qk

ab + λabqab

− log Tr[sa ] exp

{∑
a �=b

λabs
asb

}]
. (20)

The saddle point self-consistency equation with respect to
Q(p−k) yields

Q
(k)
ab = 1

k!
qk

ab. (21)

Substituting Eq. (21) in Eq. (20), we obtain the expression

G(q,λ)

M
= −β2

4

∑
a �=b

p−1∑
k=1

q
p

ab

k!(p − k)!
+ λabqab

− log Tr[sa ] exp

{∑
a �=b

λabs
asb

}
, (22)

that is, the standard formal free energy of the fully connected
Ising p-spin model

G(q,λ)

M
= −β2

4

2p − 2

p!

∑
a �=b

q
p

ab + λabqab

− log Tr[sa ] exp

{∑
a �=b

λabs
asb

}
, (23)
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whose saddle point equations read

qab = 〈sasb〉, (24)

λab = pβ2

2
q

p−1
ab . (25)

The method of replicating lattice site variables a large
number of times—tending to infinity (M → ∞)—is a standard
way of obtaining the mean-field limit of finite-dimensional
systems, as well as the corrections to it, as loop expansions
in 1/M . For a pedagogical instance the reader can look at
Appendix A21.2 of Ref. 39. For references explicitly related
to the Ising p-spin model with quenched disorder one can look
at Refs. 40 and 41.

IV. ANALYSIS OF THE CRITICAL POINT

Our aim is to find the transition point and to study its
thermodynamic nature as M and p are changed. In particular,
we will verify that, at given p (M) there are threshold values of
M (p) beyond which the transition switches from continuous
to discontinuous.

First, to identify the critical point we expand the stationarity
equation (14) to first order in Q

(k)
ab , obtaining

Q
(k)
ab = β2

Mk

Q
(p−k)
ab

Mk−1

(
M

k

)
. (26)

There are “multi’critical temperatures for the “multi”-
overlaps, whose expressions read

βc(k) = M
p−1

2(
M

k

) 1
4
(

M

p−k

) 1
4

. (27)

The largest critical temperature is obtained for k = p/2 if p

is even, and for k = (p + 1)/2 , (p − 1)/2 if p is odd. The
overlap corresponding to the smallest βc (slightly above βc) is
nonzero and of order τ ∝ (Tc − T )/Tc, while the others are at
least of order τ 2.

Proceeding to the second order expansion of Eq. (14) we
have

Q
(k)
ab = β2

Mk

Q
(p−k)
ab

Mk−1

(
M

k

)

+ Tr[sa ]
1

Mk

∑
i1<,...,<ik

sa
i1
sb
i1
, . . . ,sa

ik
sb
ik

β4

4 × 2!

×
∑
l,m

∑
c �=d,e �=f

Q
(p−l)
cd

Ml−1

Q
(p−m)
ef

Mm−1

∑
j1<,...,<jl

×
∑

t1<,...,<tm

sc
j1
sd
j1
, . . . ,sc

jl
sd
jl

se
t1
s
f
t1 , . . . ,s

e
tm

s
f
tm . (28)

We will focus only on the equations for the overlaps corre-
sponding to the largest critical temperature [cf., Eq. (27)], that
is, on the terms of the type

Q
(p/2)
ab Q

(p/2)
ab , for even p,

or

Q
( p±1

2 )
ab Q

( p±1
2 )

ab , for odd p.

More specifically, we are interested in the terms of the series
at the right-hand side (r.h.s.) of Eq. (28) with k = l = m =
p/2, if p is even, or with k,l,m = p±1

2 , if p is odd.
It is interesting to notice that we would have the same

physics considering a model in which p/2-uples on each site
interacting with p/2 on another site (p even) or (p + 1)/2-
uples on a site interact with (p − 1)/2 on another site (p odd).

In Eq. (28) each spin in each replica has to be matched with
another one in another replica to get a nonzero result from the
trace. At second order we are, thus, left with only two kinds
of possible matching, yielding terms∑

c

Q(×)
ac Q

(×)
cb = (Q(×))2

ab, and (Q(×)
ab )2.

We will see how, depending on the parity of p, the multiplicity
of such terms will change, leading to different expressions of
their coefficients as functions of p and M .

Using the above results, Eq. (16) can then be approximated
to the third order in Q as

G(Q) = τ

2

∑
a,b

Q2
ab + w1

6
TrQ3 + w2

6

∑
a,b

Q3
ab, (29)

where Qab stays for Q
(×)
ab .

As already noticed by Gross, Kanter, and Sompolinsky17

in the Potts model (threshold was pPotts = 4 colors) and in
Ref. 42, it can be shown (see Appendix A) that if the ratio
w2/w1 between coupling constants on the nonlinear terms is
larger than one the phase transition cannot be continuous.

We will now proceed to the computation of the coupling
constants for the M-p Ising spin model. Since, as already
mentioned, the computation of the third order coefficients will
yield different functional expressions depending on the values
of p, we have to distinguish between four cases

p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4a A,

4a − 2 B,

4a − 1 C,

4a − 3 D,

a ∈ N+, (30)

and we will analyze them separately.

A. Even p and p/2, p = 4a

The only surviving term in the sum over l and m in the r.h.s.
of Eq. (28) is for l = m = k = p/2. The trace term turns out
to be

w1

n∑
c=1

Q(p/2)
ac Q

(p/2)
cb = β4

M3p/2−2

(
M

p/2

) n∑
c=1

Q(p/2)
ac Q

(p/2)
cb .

(31)

The squared term is

w2
(
Q

(p/2)
ab

)2 = 1

2M
3
2 p−2

(
M

p/2

)(
p/2

p/4

)

×
(

M − p/2

p/4

)(
Q

(p/2)
ab

)2
, (32)

and the ratio

w2

w1
= 1

2

(
p/2

p/4

)(
M − p/2

p/4

)
. (33)
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B. Even p, odd p/2, p = 4a − 2

In the r.h.s. of Eq. (29) only the coefficient in front of the
Tr Q3

ab term survives, whereas w2 = 0 always. The ratio is
w2

w1
= 0. (34)

According to the small Q expansion, Eqs. (28) and (29),
when p is even and p/2 is odd the transition at the largest
critical temperature 1/βc(p/2) [cf., Eq. (27)] turns out to be
consistent with a continuous one, no matter how many spins
M stay on each site. This might appear at contrast with the
large M limit leading to Eq. (23) that is equivalent to an Ising
p-spin mean-field model for any p > 2. There, however, no
perturbative expansion was carried out, while Eq. (34) is the
outcome of an expansion for small overlap values that cannot
help in identifying discontinuous transitions with finite jumps
in Q. Indeed, the condition expressed by Eq. (A7) is sufficient
but not necessary to rule out a continuous transition. As
mentioned in the Introduction, finding a continuous transition
by means of a small Q expanded action does not rule out the
possibility of a discontinuous transition in Q.

C. Odd p, even ( p + 1)/2, p = 4a − 1

When p is odd we have to deal with two relevant overlaps
Q( p−1

2 ) and Q( p+1
2 ) and one critical temperature. To determine

the coupling constants of the cubic terms one thus has to
diagonalize a 2 × 2 matrix. In Appendix A we report the details
of the computation leading to

w1(p,M) =
√

2M − p + 1 + √
p + 1

4Mp−3/2
√

p + 1

√(
M
p−1

2

)
, (35)

for the coefficient of the cubic trace term in the action, Eq. (29).
The expression for the coupling constant depends further on
(p + 1)/2 being even or odd. For p = 4a − 1 we obtain

w2(p,M) = 1

8Mp−3/2

5M − 3p + 2

2M − p + 1

×
√(

M
p−1

2

)(p+1
2

p+1
4

)(
M − p−1

2
p+1

4

)
, (36)

and, eventually, the ratio is

w2

w1
= 2 + 5M − 3p

2 + 4M − 2p

√
p + 1√

p + 1 + √
2M − p + 1

×
(

M − p−1
2

1+p

4

)( 1+p

2
1+p

4

)
. (37)

D. Odd p, even ( p − 1)/2, p = 4a − 3

In this last case the coupling of the trace cubic term is still
given by Eq. ((37)) and the second nonlinear coupling constant
is expressed as

w2(p,M) = 1

4Mp−3/2

6 − p − 5p2 + 9M + 7pM

(p + 3)(2M − p + 1)

×
√(

M
1+p

2

)(
M − p−1

2
p−1

4

)(p−1
2

p−1
4

)
, (38)

TABLE I. Ratio values for small p and M around the threshold 1.

p M w2/w1

3 2 3(1 − 1/
√

2) = 0.878 68
3 3 2
4 2 0
4 3 1
4 4 2
5 3 (

√
3 − 1)/2 = 0.366 025

5 4 13(
√

3/2 − 1) = 2.921 68
6 any 0

yielding the ratio

w2

w1
= 6 − p − 5p2 + 9M + 7pM

(p + 3)(2M − p + 1)

×
√

2M − p + 1√
p + 1 + √

2M − p + 1

(
M − p−1

2
p−1

4

)(p−1
2

p−1
4

)
.

(39)

E. Summary

We now have a complete description of the critical behavior
of the M-p system. Already at the mean-field level to have a
discontinuous transition a p > 2 interaction between spins is
not enough. We find that for each given p one needs a minimal
number of spins Mdisc on each site to have a random first order
phase transition, corresponding to the lowest integer M for
which w2/w1 > 1 [cf., Eqs. (33), (37), or (39) depending on
the parity of p and (p + 1)/2].

In Table I we report some values of the ratios for systems
with small p and M . In Fig. 1 we plot the Mdisc(p) behavior.

V. CONCLUSION

In the present work we have performed an analytic com-
putation of the critical behavior of a mean-field p-spin model
that can display both a random first order and a continuous

 2

 4

 6

 8

 10

 12

 14

 16

 2  6  10  14  18  22

M
di

sc
(p

)

p

p=4a   
p=4a-3
p=4a-1

FIG. 1. (Color online) Lowest integer values of M at given p,
for which a discontinuous transition is certainly expected (sufficient
condition to have RFOT is M � Mdisc).
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phase transition tuning the number of spins present on each
site. The effective action is represented by Eq. (29) where the
first two relevant terms are third order in the overlap parameter
Q. The ratio of their coupling constants has been computed,
thus providing the threshold values of Mdisc(p) separating
models compatible with a continuous critical behavior and
models displaying discontinuous transitions. If M � Mdisc this
is sufficient to guarantee the discontinuity of the transition,
though it is not necessary. A RFOT can also occur at lower
values of M that cannot be identified with the probe based on
the perturbative expansion for small Q [cf., Eq. (29)].

The particular case studied in Ref. 29, (M = 2, p = 3),
yielded numerical evidence for a continuous phase transition
in dimension four. This is consistent with the value of the
w2/w1 = 3[1 − 1/

√
2] = 0.878 68 as computed in the mean-

field theory (cf., Table I and Ref. 43). The same applies to the
model recently studied in Ref. 30, a one dimensional (M,p) =
(2,3) model on a Levy lattice.44 Already at the mean-field
level the M = 2, p = 3 model seems to display a Sherrington-
Kirkpatrick-like transition rather than a RFOT.

The continuous-discontinuous crossover appears to be very
similar to the one found in Potts17 varying the number of
colors, and in the spherical p-spin varying an external magnetic
field.18 The advantage of the present model is that it can be
easily represented in finite dimensions on lattices of given
geometry (e.g., on a cubic lattice with short-range interactions)
and that it always displays a RFOT in the M → ∞ limit for
any kind of lattice. The finite dimension counterpart of the
model under study might then be easily achieved since the
p-spin interaction is always exchanged between two sites [e.g.,
nearest neighbors on a d-dimensional (hyper)cubic lattice]. It
remains to be investigated if this finite-dimensional counterpart
displays the RFOT or not.
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APPENDIX A: THRESHOLD VALUE FOR w2/w1

Starting from the self-consistency equation for small Q’s
[implying a continuous transition in Q, cf., Eq. (29) where
also the quartic term is considered]

τQab + w1(Q2)ab + w2Q
2
ab + yQ3

ab = 0, (A1)

we have, in the RSB ansatz,

τq(x) − w1

[
2 q(x)

∫ 1

0
q(s) ds +

∫ x

0
[q(x) − q(s)]2 ds

]
+w2q(x)2 + yq(x)3 = 0. (A2)

Deriving once Eq. (A2) with respect to x one has

q ′(x)

{
τ − 2w1

[∫ 1

x

q(s) ds + xq(x)

]

+ 2w2q(x) + 3yq(x)2

}
= 0. (A3)

If q ′(x) �= 0, deriving a second time with respect to x, one
finds

q ′(x)[−w1x + w2 + 3yq(x)] = 0. (A4)

If y > 0, then the overlap function around criticality can be
written as

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < x1,

1
3y

(w1x − w2), x1 < x < x2,

q(1), x > x2,

(A5)

where, for continuity, x1 = w2/w1 and

q(1) = τ

p

2

1 +
√

1 − 6yτ/p2
, p ≡ w1(1 − x1). (A6)

As a consequence, to have a continuous transition it must be

w2

w1
� 1. (A7)

The argument for the threshold value of x still works also
if y � 0 in Eq. (A1). In that case, rather than a continuous
function, we simply have a 1RSB step function for q(x) =
θ (x − x1)q, with

q = τ

p

2

1 +
√

1 − 10yτ/p2
, (A8)

p ≡ w1

(
1 − w2

w1

)
,

(A9)

x1 = w2

w1
+ 3yq

w1
.

APPENDIX B: COUPLING CONSTANTS WITH ODD p

When p is odd we have to deal with two relevant overlaps
and one critical temperature. The second order equation,
Eq. (28), has the structure

AQab = F({Q}), (B1)

where Qab = {Q(p−M)
ab , . . . ,Q

(M)
ab }. Diagonalizing A→DA =

P−1AP one obtains

P−1APP−1Qab = P−1F({Qab}). (B2)

Introducing new variables �ab, linear combinations of Qab,
the above expression can be rewritten as

DA�ab = P−1F({P�ab}). (B3)

Rearranging the entries in a proper way, A can be written as a
block matrix of 2 × 2 elements per block, and each block can
be diagonalized separately, with eigenvalues

λ(k±) = 1 ± β2
√

f (k)f (p − k), (B4)

and eigenvectors

vk± =
[

1

2
√

f (p − k)
∓ 1

2
√

f (k)

]
. (B5)
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For each block of the matrix, labeled by k, the eigenvector
matrix and its inverse, thus, are

P =
[

1

2
√

f (p − k)

1

2
√

f (p − k)
− 1

2
√

f (k)

1

2
√

f (k)

]
, (B6)

P−1 = [
√

f (p − k) − √
f (k)

√
f (p − k)

√
f (k) ], (B7)

with

f (k) = 1

M2k−1

(
M

k

)
, (B8)

and

�(k+) =
√

f (p − k)Q(k) −
√

f (k)Q(p−k), (B9)

�(k−) =
√

f (p − k)Q(k) +
√

f (k)Q(p−k). (B10)

In the present case, since p is odd, the only overlaps we
need to consider are Q( p−1

2 ) and Q( p+1
2 ). Their self-consistency

equation can be written in the form

A
[
Q

( p−1
2 )

ab Q
( p+1

2 )
ab

]
=
[
Fp−1

2
(Q)Fp+1

2
(Q)
]
, (B11)

with

A =
[

1 −β2f
(

p−1
2

)
−β2f

(
p+1

2

)
1

]
. (B12)

The functions F(p±1)/2 are two polynomials of degree two in all
the Q(k)’s. However, as mentioned above, to study the nature
of the critical behavior (continuous or discontinuous) we only
need the terms relevant at the highest critical temperature [cf.,
Eq. (27)] and we thus set to zero all the overlap matrices except
for Q( p−1

2 ) and Q( p+1
2 ).

Depending on the parity of (p + 1)/2 the relevant terms
contributing to the nonlinear couplings in the action Eq. (29)
differ. We now consider the two cases separately.

a. ( p + 1)/2 even

If p = 4a − 1 with a ∈ N the functions on the r.h.s. of
Eq. (B11) read

Fp−1
2

(Q) = β4

M
3
2 p− 7

2

(
M
p−1

2

) n∑
c=1

Q
( p+1

2 )
ac Q

( p+1
2 )

cb + β4

M
3
2 p− 5

2

×
(

M
p−1

2

)(p−1
2

p+1
4

)(
M − p−1

2
p+1

4

)
Q

( p−1
2 )

ab Q
( p+1

2 )
ab ,

(B13)

Fp+1
2

(Q) = β4

M
3
2 p− 1

2

(
M
p+1

2

) n∑
c=1

Q
( p−1

2 )
ac Q

( p−1
2 )

cb

+ β4

2M
3
2 p− 1

2

(
M
p+1

2

)(p+1
2

p+1
4

)(
M − p+1

2
p+1

4

)(
Q

( p−1
2 )

ab

)2

+ β4

2M
3
2 p− 5

2

(
M
p+1

2

)(p+1
2

p+1
4

)(
M − p+1

2
p−3

4

)(
Q

( p+1
2 )

ab

)2

.

(B14)

b. ( p − 1)/2 even

If otherwise, p = 4a + 1 with a ∈ N, one obtains

Fp−1
2

= β4

M
3
2 p− 7

2

(
M
p−1

2

)∑
c

Q
( p+1

2 )
ac Q

( p+1
2 )

cb

+ β4

2M
3
2 p− 7

2

(
M
p−1

2

)(p−1
2

p−1
4

)(
M − p−1

2
p−1

4

)(
Q

( p+1
2 )

ab

)2

+ β4

2M
3
2 p− 3

2

(
M
p−1

2

)(p−1
2

p−1
4

)(
M − p−1

2
p+3

4

)(
Q

( p−1
2 )

ab

)2

,

(B15)

Fp+1
2

= β4

M
3
2 p− 1

2

(
M
p+1

2

)∑
c

Q
( p−1

2 )
ac Q

( p−1
2 )

cb

+ β4

M
3
2 p− 3

2

(
M
p+1

2

)(p+1
2

p−1
4

)(
M − p+1

2
p−1

4

)
Q

( p−1
2 )

ab Q
( p+1

2 )
ab .

(B16)

To decouple Eqs. (B11) and (B12) we specify the two new
variables, Eqs. (B9) and (B10), for k = (p − 1)/2

�
(+)
ab =

√
f

(
p + 1

2

)
Q

( p−1
2 )

ab −
√

f

(
p − 1

2

)
Q

( p+1
2 )

ab , (B17)

�
(−)
ab =

√
f

(
p + 1

2

)
Q

( p−1
2 )

ab +
√

f

(
p − 1

2

)
Q

( p+1
2 )

ab . (B18)

Applying the diagonalization transformation described above
[cf., Eqs. (B1)–(B3)], one finds

λ(+)�
(+)
ab =

√
f

(
p + 1

2

)
Fp−1

2
−
√

f

(
p − 1

2

)
Fp+1

2
,

(B19)

λ(−)�
(−)
ab =

√
f

(
p + 1

2

)
Fp−1

2
+
√

f

(
p − 1

2

)
Fp+1

2
,

(B20)

where the eigenvalues [cf., Eq. (B4)] are

λ(±) = 1 ± β2
√

f ((p − 1)/2)f ((p + 1)/2).

Since the F ’s depend on the Q’s, we have to apply the
inverse transformation to get equations in terms of the �’s.
The eigenvalue λ(+) is always positive, so that �(+) plays the
same role of the “noncritical” overlaps and can be put to zero.
The inverse transformation, thus, reduces to

Q
( p−1

2 )
ab = �

(−)
ab

2
√

f
(

p+1
2

) , Q
( p+1

2 )
ab = �

(−)
ab

2
√

f
(

p−1
2

) , (B21)

so that Eq. (B20) decouples in

λ(−)�
(−)
ab = w1(p,M)

∑
c

�(−)
ac �

(−)
cb + w2(p,M)

(
�

(−)
ab

)2
.

(B22)
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The constants w1 and w2 depend on p and M . The expression
for w1 is

w1(p,M) = 1

4Mp−3/2

(√(
M
p−1

2

)
+
√(

M
p+1

2

))
. (B23)

The formula for w2 changes depending on the parity of (p +
1)/2.

For even (p + 1)/2

w2(p,M) = 1

8Mp−3/2

√(
M
p−1

2

)[(p−1
2

p+1
4

)(
M − p−1

2
p+1

4

)

+
(p+1

2
p+1

4

)(
M − p+1

2
p+1

4

)
+ 2M − p + 1

1 + p

×
(p+1

2
p+1

4

)(
M − p+1

2
p−3

4

)]
. (B24)

If (p + 1)/2 is odd it reads

w2(p,M) = 1

8Mp− 3
2

√(
M
p+1

2

)[(p−1
2

p−1
4

)(
M − p−1

2
p−1

4

)

+ 1 + p

2M − p + 1

(p−1
2

p−1
4

)(
M − p−1

2
p+3

4

)

+2

(p+1
2

p−1
4

)(
M − p+1

2
p−1

4

)]
. (B25)
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