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ABSTRACT: For various random constraint satisfaction problems there is a significant gap between
the largest constraint density for which solutions exist and the largest density for which any poly-
nomial time algorithm is known to find solutions. Examples of this phenomenon include random
k-SAT, random graph coloring, and a number of other random constraint satisfaction problems. To
understand this gap, we study the structure of the solution space of random k-SAT (i.e., the set of
all satisfying assignments viewed as a subgraph of the Hamming cube). We prove that for densities
well below the satisfiability threshold, the solution space decomposes into an exponential number of
connected components and give quantitative bounds for the diameter, volume, and number. © 2010
Wiley Periodicals, Inc. Random Struct. Alg., 38, 251–268, 2011
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1. INTRODUCTION

For a number of random constraint satisfaction problems (CSP), by now very good estimates
are available for the largest constraint density (ratio of constraints to variables) for which
typical problems have solutions. For instance, in the random k-SAT problem one asks if a
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TABLE 1. Bounds for the k-SAT Threshold

k 3 4 7 10 20 21
Best known upper bound for r∗

k 4.508 10.23 87.88 708.94 726,817 1,453,635
Best known lower bound for rk 3.52 7.91 84.82 704.94 726,809 1,453,626
Algorithmic lower bound 3.52 5.54 33.23 172.65 95,263 181,453

random k-CNF formula, Fk(n, m), with n variables and m clauses is satisfiable. It is widely
believed that the probability that such a formula is satisfiable exhibits a sharp threshold.
Specifically, the satisfiability threshold conjecture asserts that rk = r∗

k for all k ≥ 3, where

rk ≡ sup{r : Fk(n, rn) is satisfiable w.h.p.},
r∗

k ≡ inf{r : Fk(n, rn) is unsatisfiable w.h.p.}.
As usual, we say that a sequence of events En occurs with high probability (w.h.p.)
if limn→∞ Pr[En] = 1. In Ref. [10], Friedgut established a nonuniform version of the
conjecture. We discuss this point further in Section 3.2.

A simple first moment argument shows that r∗
k ≤ 2k ln 2. Moreover, it was shown in

Ref. [4] via the second moment method that random k-CNF formulas have satisfying
assignments for densities very close to this upper bound: for all k ≥ 3,

rk > 2k ln 2 − (k + 1) ln 2 + 3

2
. (1)

At the same time, however, there is a significant gap between the lower bound (1) for the
existence of satisfying truth assignments and the best algorithmic result: no polynomial
algorithm is known that finds satisfying assignments in random k-CNF formulas when
r > 2k ln(k)/k for general k. Table 1 illustrates the gap between the best explicit bounds
from rigorous algorithmic results and the current rigorous bounds on rk and r∗

k for some
small values of k. For k = 3, the upper bound on r∗

k comes from Ref. [8], while for k > 3
from Refs. [7, 14]. The best algorithmic lower bound for k = 3 is from Ref. [13], while
for k > 3 it is from Ref [12]. Similar huge gaps exist for a number of other constraint
satisfaction problems, such as random NAE k-SAT or random graph coloring (e.g., see
Refs. [2, 3]).

Sparse random CSPs have also been studied by physicists under the name “mean-field
diluted spin-glasses.” In mathematical terms, “spins” corresponds to the fact that the vari-
ables are discrete and have small domain, while “glass” to the fact that different constraints
prefer different values for the variables. The term “diluted” refers to the sparsity of the
bipartite graph in which each constraint is adjacent to the variables it binds, i.e., the factor
graph of the instance. Finally, the term “mean field” refers to the fact that the factor graph
is random, i.e., there is no underlying spatial structure mandating which variables interact.
The physical interest in mean-field systems stems partly from the fact that for many statis-
tical mechanics problems in which the variables lie on a lattice such as Z

d , the effect of the
underlying geometry vanishes for all d ≥ du, for some upper critical dimension du.

In the last few years, motivated by ideas developed for the study of spin glasses, physicists
have put forward a hypothesis for the origin of the aforementioned algorithmic gap in
random CSPs. They have also attempted to overcome the gap, with remarkable success for
small k. Specifically, Mézard, Parisi, and Zecchina [18] developed an extremely efficient
algorithm, called survey propagation (SP), for finding satisfying assignments of random
formulas in the satisfiable regime. For example, their algorithm typically finds a satisfying
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truth assignment of a random 3-CNF formula with n = 106 variables and 4.25n clauses in
minutes (and appears to scale as O(n log n)). No other algorithm practically solves formulas
of such density with n = 104. However, we are not aware of any evidence that SP finds
solutions in the regime 2k ln(k)/k < r < rk for arbitrarily large k. A rigorous analysis of
SP has so far remained elusive.

The SP algorithm is based on a hypothesis for the solution-space geometry which, in
turn, is motivated by a mathematically sophisticated but non rigorous analysis that uses
techniques of statistical physics (e.g., [15]). In the present article, we make progress towards
establishing this hypothesis mathematically. In particular, we prove that already much below
the satisfiability threshold, the set of satisfying assignments fragments into exponentially
many connected components. Moreover, we prove that these components are relatively
small in size and far apart from one another. Our bounds suggest that as the formula density
is increased, these components decrease in volume and grow farther apart from one another.
We emphasize that while both the discussion and the results we present refer to k-SAT, this
is not strictly necessary: our ideas and proofs are quite generic, and should generalize readily
to many other random CSP, e.g., graph coloring. In fact, the recent article [1] builds on the
methods developed here.

2. STATEMENT OF RESULTS

We first need to introduce some definitions. Throughout, we assume that we are dealing
with a CNF formula F, defined over variables X = x1, . . . , xn, and we let S(F) ⊆ {0, 1}n

denote the satisfying assignments of F.

Definition 1. The diameter of an arbitrary set X ⊆ {0, 1}n is the largest Hamming distance
between any two elements of X . The distance between two arbitrary sets X, Y ⊆ {0, 1}n,
is the minimum Hamming distance between any x ∈ X and any y ∈ Y . The clusters of
a formula F are the connected components of S(F) when x, y ∈ {0, 1}n are considered
adjacent if they have Hamming distance 1. A cluster-region is a nonempty set of clusters.

Theorem 2. For every k ≥ 8, there exists a value of r < rk and constants αk < βk < 1/2
and εk > 0 such that w.h.p. the set of satisfying assignments of Fk(n, rn) consists of 2εk n

nonempty cluster regions, such that

1. The diameter of each cluster region is at most αkn.
2. The distance between every pair of cluster-regions is at least βkn.

In other words, for all k ≥ 8, at some point below the satisfiability threshold, the set
of satisfying assignments consists of exponentially many, well-separated cluster regions.
The picture suggested by Theorem 2 comes in sharper focus for large k. In particular, for
sufficiently large k, sufficiently close to the threshold, the cluster regions become arbitrarily
small and maximally far apart (while remaining exponentially many). The following result
gives a quantitative version of this fact.

Theorem 3. For any 0 < δ < 1/3, if r = (1−δ)2k ln 2, then for all k ≥ k0(δ), Theorem 2
holds with

αk = 1

k
, βk = 1

2
− 5

6

√
δ, εk = δ

2
− 3k−2.

It is worth noting that, as we will show shortly,
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Fig. 1. Upper curve �(α, 8, 169) and lower curve �b(α, 8, 169) for α ∈ [0, 3/4].

Remark 4. Theorems 2 and 3 remain valid for any definition of clusters in which a
pair of assignments are deemed adjacent whenever their distance is at most f (n) where
f (n) = o(n).

3. PROOF OUTLINE AND RELATED WORK

There are two main ingredients for proving Theorems 2 and 3. The first one excludes the
possibility of pairs of truth assignments at certain Hamming distances, implying an upper
bound on the diameter (and thus the volume) of every cluster.

3.1. Forbidden Distances and Their Implications for Clustering

It is easy to show (see e.g., Ref. [2]), that the expected number of pairs of satisfying
assignments in Fk(n, rn) with Hamming distance z is at most �(z/n, k, r)n, where

�(α, k, r) = 2(1 − 21−k + 2−k(1 − α)k)r

αα(1 − α)1−α
.

Therefore, for any fixed k, r and α such that �(α, k, r) < 1, it immediately follows by
the union bound that w.h.p. in Fk(n, rn) no pair of satisfying assignments has distance
z = αn. This observation was first made and used in Ref. [16]. In Fig. 1 we draw the
function � (upper curve), and a related function �b (lower curve, to be discussed shortly),
for α ∈ [0, 3/4] with k = 8 and r = 169. Recall that by the results of Ref. [4], F8(n, 169n) is
w.h.p. satisfiable and, thus, excluding the possibility of satisfying pairs at certain distances
is a nonvacuous statement. Letting I ≡ [0.06, 0.26]∪ [0.68, 1] we see that �(α, 8, 169) < 1
for α ∈ I , implying that w.h.p. in F8(n, 169n) there is no pair of satisfying assignments with
Hamming distance αn, where α ∈ I .

Knowing that there exists a distance z such that there are no pairs of assignments at
distance z immediately implies an upper bound on the diameter of every cluster. This is
because if a cluster C has diameter d, then it must contain pairs of solutions at every distance
1 ≤ t ≤ d. To see this, take any pair σ1, σ2 ∈ C that have distance d, any path from σ1 to
σ2 in C, and observe that the sequence of distances from σ1 along the vertices of the path
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must contain every integer in {1, . . . , d}. Therefore, if � = �k,r ≡ inf{α : �(α, k, r) < 1},
then w.h.p. every cluster in Fk(n, rn) has diameter at most �n.

If we can further prove that �(α, k, r) < 1 in an interval (α, β), then we can immediately
partition the set of satisfying assignments into well-separated regions, as follows. Start with
any satisfying assignment σ , let C be its cluster, and consider the set R(C) ⊆ {0, 1}n of
truth assignments that have distance at most αn from C and the set B(C) ⊆ {0, 1}n of truth
assignments that have distance at most βn from R(C). Observe now that the set B(C)\R(C)

cannot contain any satisfying truth assignments, as any such assignment would be at distance
αn < d < βn from some assignment in C. Thus, the set of satisfying assignments in R(C)

is a union of clusters (cluster-region), all of which have distance at least βn from any cluster
not in the region. Repeating this process until all satisfying assignments have been assigned
to a cluster region gives us exactly the subsets of Theorems 2 and 3 and note that that this
argument actually bounds the diameter of each cluster-region by αn, not just of each cluster.

It is straightforward to see that

Remark 5. The arguments above remains valid even if assignments are deemed adjacent
whenever their distance is bounded by f (n), for any f (n) = o(n). As a result, Theorems 2
and 3 remain valid as stated for any definition of clusters in which assignments are deemed
to belong in the same cluster if their distance is o(n).

3.2. Establishing Exponentially Many Clusters

Proving the existence of exponentially many nonempty cluster regions requires greater
sophistication and leverages in a strong way the results of Ref. [4]. This is because having
�(α, k, r) > 1 for some α, k, r does not imply that pairs of satisfying assignments exist
for such α, k, r: in principle, the behavior of � could be determined by a tiny minority of
solution-rich formulas. Hence the need for the second moment method [2, 4]. Specifically,
say that a satisfying assignment is balanced if its number of satisfied literal occurrences is
in the range km/2 ± √

n, and let X be the number of balanced satisfying assignments in
Fk(n, rn). In Ref. [4], an explicit function �b was given such that E[X]2 = �b(1/2, k, r)n

and

E[X2] < C × max
α∈[0,1]

�b(α, k, r)n, (2)

for some constant C = C(k) > 0. It was also shown that for all r smaller than the r.h.s. of (1),
the maximum of �b occurs at α = 1/2, implying that for such k, r we have E[X2] < C ×
E[X]2. By the Paley–Zygmund inequality [19], this last fact implies that for any t ≤ E[X],

Pr[X > t] ≥ (E[X] − t)2

E[X2] . (3)

Inequality (3) was applied with t = 0 in Ref. [4], i.e., per the “second moment method,”
thus establishing that Fk(n, rn) has at least one (balanced) satisfying assignment with prob-
ability at least 1/C. Since the probability of having at least one satisfying assignment, i.e.,
of being satisfiable, exhibits a nonuniform sharp threshold [11] this implies that, in fact, for
all r strictly smaller than the r.h.s. of (1), Fk(n, rn) is satisfiable w.h.p.

In Section 6, we generalize the result of Friedgut [11] to prove that the probability that
Fk(n, rn) has at least a certain number of satisfying assignments exhibits a sharp threshold.
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We state this as Lemma 13 and believe it may be of independent interest. Combined with (3)
this will allow us to prove that

Theorem 6. For all k ≥ 3, and all

r < 2k ln 2 − (k + 1) ln 2 + 3

2
,

w.h.p. Fk(n, rn) has at least [�b(1/2, k, r) − o(1)]n/2 satisfying assignments.

Armed with Theorem 6, we establish the existence of exponentially many clusters by
dividing the lower bound it provides for the total number of satisfying assignments with the
following upper bound for the number of truth assignments in each cluster region. Recall
that � = �k,r ≡ inf{α : �(α, k, r) < 1} and let

g(k, r) = max
α∈[0,�]

�(α, k, r).

If B is the expected number of pairs of truth assignments with distance at most �n in
Fk(n, rn), it follows that B < poly(n) × g(k, r)n, since the expected number of pairs at
each distance is at most �(α, k, r)n and there are no more than n + 1 possible distances.
By Markov’s inequality, this implies that w.h.p. the number of pairs of truth assignments in
Fk(n, rn) that have distance at most �n is poly(n) × g(k, r)n. Recall now that w.h.p. every
cluster region in Fk(n, rn) has diameter at most �n. Therefore, w.h.p. the total number of
pairs of truth assignments in each cluster region is at most poly(n) × g(k, r)n and so the
number of satisfying assignments in each cluster region is at most poly(n) × g(k, r)n/2.
Thus, if g(k, r) < �b(1/2, k, r), we can conclude that Fk(n, rn) has at least

(
�b(1/2, k, r) − o(1)

g(k, r)

)n/2

cluster regions. Indeed, the higher of the two horizontal lines in Fig. 1 highlights that
g(8, 169) < �b(1/2, 8, 169).

Thus, we see that to establish Theorems 2 and 3 it suffices to prove the following analytical
fact. We prove the claims regarding αk , βk in Theorem 7 in Section 4, while in Section 5 we
prove the claim regarding εk .

Theorem 7. For every k ≥ 8, there exists a value of r < rk and constants αk < βk < 1/2
and εk > 0 such that �(α, k, r) < 1 for all α ∈ (αk , βk) and

log2

[(
�b(1/2, k, r)

g(k, r)

)1/2]
> εk .

In particular, for any 0 < δ < 1/3 and all k ≥ k0(δ), if r = (1 − δ)2k ln 2, we can take

αk = 1

k
, βk = 1

2
− 5

6

√
δ, εk = δ

2
− 3k−2. (4)

Finally, we note that for r = (1 − δ)rk , where δ ∈ (0, 1/5) and k ≥ k0(δ), it is possible
to prove the existence of exponentially many clusters by leveraging the following result of
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Ref. [5] regarding the existence of frozen variables in random formulas (a variable is frozen
in a cluster if it takes the same value in all truth assignments in the cluster).

Theorem 8. For every k ≥ 9, there exists ck < rk such that for all r ≥ ck, w.h.p. every
cluster of Fk(n, rn) has at least (1 − 2/k) · n frozen variables. As k grows,

ck

2k ln 2
→ 4

5
.

To see how Theorem 8 implies the existence of exponentially many clusters, consider r
and k such that ck < r < rk − ε, for some ε > 0. By Theorem 8, every cluster of Fk(n, rn)

has (1 − 2/k) · n frozen variables. Therefore, the probability that any given cluster will
contain at least one satisfying assignment if we add another ζn random k-clauses to the
formula is at most

[
1 −

(
k − 2

2k

)k]ζn

.

As a result, we see that unless Fk(n, rn) contains exponentially many clusters w.h.p., then
for any 0 < ζ < ε, the formula Fk(n, (r + ζ )n) will be unsatisfiable w.h.p., a contradiction.

As the presence of 	(n) frozen variables implies the existence of 2	(n) clusters by the
above argument, it turns out we can establish clustering for densities lower than those in
Ref. [5] for frozen variables. That said, recent numerical studies suggest that hardness in
finding solutions is more probably connected to the existence of frozen variables than to
the splitting of solutions in many clusters [6].

3.3. Related Work

The observation that if �(α, k, r) < 1, then w.h.p. Fk(n, rn) has no pairs of satisfying
assignments at distance αn was first made in Ref. [16] and was related to “clustering,” even
though there was no concrete definition of clusters or cluster regions, the latter a seemingly
necessary notion if one is to exploit the fact �(α, k, r) < 1. More importantly, while the
fact �(α, k, r) < 1 implies the absence of pairs of satisfying assignments at distance αn,
it falls far short of proving the existence of multiple clusters. In an attempt to show that
there exist more than one cluster, in Ref. [16, 17] the authors derived an expression for the
second moment of the number of pairs of balanced assignments at distance αn, for each
α ∈ [0, 1]. If α, k, r, are such that the dominant contribution to this second moment comes
from uncorrelated pairs of pairs (of balanced assignments), this implies that with constant
probability Fk(n, rn) contains at least one (balanced) pair of assignments at distance αn.
The authors further prove that the property “has a pair of satisfying assignments at distance
q” has a sharp threshold, thus boosting this constant probability to a high one.

Unfortunately, determining the dominant contribution to the above second moment for
given α, k, r, is a highly non trivial problem. In particular, this “fourth moment” optimization
problem is much harder than the already complicated second moment analysis of Ref. [4].
The authors address it numerically for small k (with no guarantee that the true maximizer has
been found), and completely heuristically for general k, i.e., by simply guessing the locus of
the local maximizer corresponding to correlated pairs and comparing it to the contribution
of uncorrelated pairs. But even if the maximizer in this second moment computation could
be determined rigorously and turned out to coincide with the numeric/heuristic estimate
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of Ref. [17], the strongest conclusion one could draw from these considerations is that for
every k ≥ 8, there is r < rk and constants αk < βk < ck < 1/2 < dk , such that in
Fk(n, rn):

• W.h.p. every pair of satisfying assignments has distance either less than αkn or more
than βkn.

• For every d ∈ [ck , dk]·n, w.h.p. there is a pair of truth assignments that have distance d.

In particular, these two assertions above are completely consistent with the possibility that
for every k ≥ 8, w.h.p. the set S(Fk(n, rn)) consists of no more than two clusters.

In contrast, not only we prove that S(Fk(n, rn)) exhibits clustering, but that the number
of clusters is exponential. Moreover, we give explicit, quantitative bounds for the diameter,
the volume, and the separation of these clusters.

4. THE EXISTENCE OF CLUSTER REGIONS

In this section, we prove the existence of αk , βk as in Theorem 7. Let

h(x) ≡ −x ln x − (1 − x) ln(1 − x)

≤ ln 2 − 2(1/2 − x)2, for any x ∈ [0, 1].
We begin by bounding ln � from above as follows,

ln �(α, k, γ 2k ln 2) = ln 2 + h(α) + γ 2k ln 2 ln[1 − 21−k + 2−k(1 − α)k]
< 2 ln 2 − 2(1/2 − α)2 − γ ln 2

[
2 − (1 − α)k

]
≡ w(α, k, γ ).

We note that the function w(α, k, γ ) is non increasing in k and decreasing in γ . Moreover,

∂3w

∂α3
= −γ ln 2 k(k − 1)(k − 2)(1 − α)k−3 < 0, (5)

implying that for any fixed k, γ , the equation w(α, k, γ ) = 0 can have at most three roots for
α ∈ (0, 1). To bound the location of these roots we observe that for any k ≥ 8 and γ > 2/3,

w(0, k, γ ) = (2 − γ ) ln 2 − 1

2
> 0, (6)

w(1/2, k, γ ) = [
2 − (2 − 2−k)γ

]
ln 2 > 0, (7)

w(99/100, k, γ ) < w(99/100, 8, 2/3) = −0.0181019 · · · < 0, (8)

where the inequality in Eq. (8) relies on the mononicity of w in k, γ . Therefore, from Eqs. (6)
to (8) we can conclude that for every k ≥ 8 and γ > 2/3, if there exist αk , βk ∈ (0, 1/2) such
that w(αk , k, γ ) < 0 and w(βk , k, γ ) < 0, then �(α, k, γ 2k ln 2) < 1 for all α ∈ [αk , βk].
Below we first prove that such αk , βk exist for all k ≥ 8 and then prove that for sufficiently
large k, we can take αk , βk as in Eq. (4).

• For k = 8 it is enough to consider the plot of �(α, 8, 169) in Fig. 1. For k ≥ 9 we
take γ = 0.985 > 2/3. Note that 0.985 · 2k ln 2 is smaller than the lower bound for rk

given in Eq. (1), for all k ≥ 9.
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• We take αk = 1/k. We note that w(1/9, 9, 0.985) = −0.0451 . . . < 0 and prove that
w(1/k, k, γ ) is decreasing in k for any k ≥ 4 and γ < 1 as follows,

∂w(1/k, k, γ )

∂k
= γ ln 2

(
1 − 1

k

)k−1[1

k
+

(
1 − 1

k

)
ln

(
1 − 1

k

)]
− 4

k2

(
1

2
− 1

k

)

< γ ln 2

(
1 − 1

k

)k−1 1

k2
− 4

k2

(
1

2
− 1

k

)

<
1

k2

(
ln 2 − 2 + 4

k

)

< 0.

We take βk = 3/8. We note that w(α, k, γ ) is nonincreasing in k when α and γ are
fixed and that w(3/8, 9, 0.985) = −0.000520265 . . . < 0.

• For the setting where r = (1 − δ)2k ln 2, we will additionally use that −2x ln 2 <

ln(1 − x) < −x for all 0 < x < 1/2 to establish that for any 1 ≤ c < k/2,

ln �(c/k, k, r) = ln 2 + h(c/k) + r ln(1 − 21−k + 2−k(1 − c/k)k)

< ln 2 + (c/k)(ln k + 2 ln 2) − r(21−k − 2−k(1 − c/k)k). (9)

Substituting r = γ 2k ln 2 into Eq. (9) we get

ln �(c/k, k, γ 2k ln 2) < ln 2(1 − 2γ + γ e−c) + (c/k)(ln k + 2 ln 2). (10)

• If c = 1 and γ > 1
2−1/e = 0.612 . . ., then Eq. (10) implies that ln �(1/k, k, γ ) < 0

for all sufficiently large k.
• If γ = (1 − δ) > 2/3, then for any 1 < λ ≤ 3/(4 ln 2) = 1.082 . . .

w(1/2 − √
λδ ln 2, k, 1 − δ) = −2(λ − 1)δ ln 2 + (1 − δ) ln 2

(
1

2
+ √

λδ ln 2

)k

,

which is negative for all sufficiently large k. The choice βk = 1/2 − (5/6)
√

δ corre-
sponds to λ = (5/6)2/ ln 2 = 1.00187 . . ., which is a valid value. For k large enough
we have αk = 1/k < βk = 1/2 − 5

√
δ/6 for any δ ∈ (0, 1/3).

5. THE EXISTENCE OF EXPONENTIALLY MANY CLUSTER REGIONS

We will use the following two lemmata.

Lemma 9. If γ ≥ 49/50 and k > 11, or γ ∈ (2/3, 1) and k > 15,

ln g(k, γ 2k ln 2) ≤ (1 − γ ) ln 2 +
(

1 + 9 ln 2

16

)
k−2. (11)

Lemma 10. For all k ≥ 8,

ln �b(1/2, k, γ 2k ln 2) ≥ 2 ln 2[1 − γ m(k)],
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where

m(k) = 1 + 2k + 3

2
2−k + 3k2 + 6k − 4

2
2−2k + 13k2 − 12k + 1

2
2−3k

+ (6k3 − 13k2 + 2k)2−4k + 9k4 − 24k3 + 10k2

2
2−5k

+ (9k4 − 6k3)2−6k + 9

2
k42−7k .

Combining the two lemmata above we get that if r = γ 2k ln 2 and either γ = 49/50
and k > 11, or γ ∈ (2/3, 1) and k > 15, then

log2

[(
�b(1/2, k, r)

g(k, r)

)1/2]
>

1

2 ln 2

[
ln 2(1 + γ − 2γ m(k)) −

(
1 + 9 ln 2

16

)
k−2

]
, (12)

where m(k) is as in Lemma 10. It is not hard to check that m(k) is decreasing in k.

• For 8 ≤ k ≤ 12, the existence of εk > 0 can be verified by plotting � and �b and
noting that

�b(1/2, k, r) > max
α∈[0,�]

�(α, k, r),

both when k = 8 and r = 169 and when 9 ≤ k ≤ 12 and r = 0.985·2k ln 2. For k > 12
and γ = 0.985, the existence of εk > 0 follows from the fact that the expression inside
the square brackets in Eq. (12) is positive when k = 13 and γ = 0.985 and m(k) is
decreasing in k.

• For the setting where r = (1 − δ)2k ln 2, we note that the limit of the expression
inside the square brackets in Eq. (12) as k → ∞ is (1 − γ )/2. In particular, writing
r = (1 − δ)2k ln 2, it is not hard to show that the right-hand side of Eq. (12) is greater
than δ/2 − 3/k2 for all k ≥ k0(δ).

5.1. Proof of Lemma 9: The Volume of the Largest Cluster

Below, we consider k and r to be fixed, so that all derivatives are with respect to α. Specifi-
cally, we will give (i) a value αM such that � is non increasing in (αM , αk) and (ii) a function
u which is non decreasing in [0, αM) and for which �(α, k, r) ≤ u(α, k, r). Thus, we will
conclude g(k, r) ≤ u(aM , k, r).

We begin by getting an upper bound for �′, as follows:

�′(α, k, r) = − ln α + ln(1 − α) − r
k(1 − α)k−1

2k + (1 − α)k − 2

≤ − ln α − α − 2−krk(1 − α)k−1

< − ln α − 2−krk(1 − α)k−1 (13)

≤ − ln α − 2−krk(1 − kα)

≡ û(α, k, r).
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Lemma 11. If r = γ 2k ln 2, then for all k ≥ 8 and γ > 3k−1 log2 k, there exists

αM ≤ 2−γ k(1 + 4γ k22−γ k ln 2), (14)

such that û(αM , k, r) = 0.

Proof of Lemma 11. Let

q(α) = 2−γ k2γ k2α .

We begin by noting that if αM is such that q(αM) = αM then û(αM , k, r) = 0. Now, let us
define

s(α) = 2−γ k(1 + 2αγ k2 ln 2).

Observe that the unique solution of s(α) = α is

α∗ = 2−γ k

1 − 2γ k22−γ k ln 2
(15)

and that s(α) > α for all α ∈ [0, α∗).
Recall that ex ≤ 1 + 2x for all 0 ≤ x ≤ 1. Therefore, q(α) < s(α) for all α such that

γ k2α ln 2 ≤ 1. In particular, if γ k2α∗ ln 2 ≤ 1, then since s(α) > α for all α ∈ [0, α∗), we
can conclude that the equation q(α) = α has at least one root αM ≤ α∗, as desired.

By Eq. (15), the condition γ k2α∗ ln 2 ≤ 1 is equivalent to

γ k22−γ k ≤ 1

3 ln(2)
= 0.4808 . . . (16)

To establish that Eq. (16) holds we note that for any γ > 3k−1 log2 k the quantity γ k22−γ k

is decreasing in γ and, therefore, it is bounded by z(k) = 3k−2 log k. As z(k) is decreasing
for k ≥ 2, for all k ≥ 8 we have γ k22−γ k ≤ z(8) = 9/64 = 0.1406 . . . < 0.4808 . . ., as
desired. The fact γ k22−γ k ≤ 0.1406 . . . along with the inequality 1/(1 − x) ≤ 1 + 2x valid
for x ≤ 1/2, gives us αM ≤ α∗ ≤ 2−γ k(1 + 4γ k22−γ k ln 2).

To bound � by an nondecreasing function we note

ln �(α, k, r) ≤ ln 2 − α ln α + α − r2−k(1 + α) ≡ u(α, k, r). (17)

Lemma 12. If r = γ 2k ln 2, then for every k ≥ 8 and γ ∈ (3k−1 log2 k, 1],

u(aM , k, r) ≤ (1 − γ ) ln 2 +
(

1 + 9 ln 2

16

)
k−2.

Proof. Using Lemma 11 to pass from Eqs. (18) to (19), we see that for every k ≥ 8 and
γ ∈ (3k−1 log2 k, 1],

u(αM , k, r) = ln 2 + αM

(
γ k ln 2 − γ k2αM ln 2

) + αM − γ ln 2(1 + αM)

≤ (1 − γ ) ln 2 + αM

[
1 + γ (k − 1) ln 2

]
(18)

≤ (1 − γ ) ln 2 + 2−γ k(1 + 4γ k22−γ k ln 2)(γ k ln 2 + 1). (19)
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Recalling that Eq. (16) holds for all k ≥ 8 and γ > 3k−1 log2 k, we conclude

u(αM , k, r) ≤ (1 − γ ) ln 2 + k−3

(
1 + 9 ln 2

16

)
(k ln 2 + 1)

≤ (1 − γ ) ln 2 +
(

1 + 9 ln 2

16

)
k−2.

We can now prove Lemma 9.

Proof of Lemma 9. Recall the definition of the function u from Eq. (17) and note that,
since u′(α) = − ln α − r2−k , it is nondecreasing for r ≤ 2k and α ≤ 1/e. From Eq. (14)
we see that αM < 1/e and therefore we can conclude that �(α, k, r) < u(αM , k, r) for all
α ∈ [0, αM). To complete the proof it thus suffices to prove that � is nonincreasing in the
interval (αM , 1/k) since, by our results in the previous section, we know that � ≤ 1/k both
when γ ≥ 49/50 and k > 11, and when γ ∈ (2/3, 1) and k > 15. For that we first observe
that

û′(α, k, r) = − 1

α
+ 2−krk2 < − 1

α
+ k2.

Since, by definition, û(αM , k, r) = 0 this implies û ≤ 0 for all α ∈ [αM , 1/k2] and since
�′ ≤ û, it follows that �′ ≤ 0 also for such α. Using Eq. (13), it is straightforward to
check that for α ∈ [1/k2, 1/k], the derivative of � is negative both when (i) γ ≥ 49/50 and
k > 11, and when (ii) 2/3 < γ < 1 and k > 15, thus concluding the proof.

5.2. Proof of Lemma 10: A Lower Bound on the Number of Balanced Assignments

Proof of Lemma 10. Recalling the definition of �b from Ref. [4] we have

ln �b(1/2, k, r) = 2 ln 2 + r ln

[(
(1 − ε/2)k − 2−k

)2

(1 − ε)k

]
, (20)

where ε satisfies

ε(2 − ε)k−1 = 1. (21)

We note for later use that, as shown in Ref. [4], if ε satisfies (21) then

21−k + k4−k < ε < 21−k + 3k4−k . (22)

Since all coefficients in the binomial expansion of (1 − ε)−k are positive,

(1 − ε)−k ≥ 1 + kε + k(k + 1)

2
ε2. (23)

To get a lower bound for the numerator inside the logarithm in Eq. (20) we consider the
binomial expansion of (1 − ε/2)k . We observe that the sum of a pair of successive terms
where the lower term corresponds to an even power equals

(
k

j

)
(ε/2)j −

(
k

j + 1

)
(ε/2)j+1 =

(
k

j

)
(ε/2)j

[
1 − (k − j)ε

2(j + 1)

]
. (24)
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For k ≥ 8, j ≥ 4 and ε ≤ 5/2 the expression in Eq. (24) is positive. Moreover, when k
is even the last term in the binomial expansion has a positive coefficient and can be safely
discarded. Therefore, for all k ≥ 8 and ε ≤ 5/2,

(1 − ε/2)k ≥ 1 − kε

2
+ k(k − 1)ε2

8
− k(k − 1)(k − 2)ε3

48
. (25)

Substituting Eqs. (23) and (25) into Eq. (20) we get a lower bound of the form ln �b ≥
c0 +c1ε +c2ε

2 · · ·+c8ε
8. It is not hard to check directly that c8 ≥ 0 for all k ≥ 8. Similarly,

using the upper bound for ε from Eq. (22), it is not hard to check that for i = 2, 4, 6, we
have ci + ci+1ε ≥ 0 for all k ≥ 8. Therefore, we can conclude

ln �b(1/2, k, r) ≥ 2 ln 2 + r ln[1 − 21−k + 2−2k − εk2−k(1 − 2−k)]
≥ 2 ln 2 + r ln[1 − 21−k + 2−2k − k2−k(1 − 2−k)(21−k + 3k2−2k)], (26)

where in Eq. (26) we have replaced ε with its upper bound from Eq. (22).
The argument of the logarithm in Eq. (26) is increasing in k for all k ≥ 3 (a fact that can

be easily established by considering its derivative). As a result, we have that for all k ≥ 8,
it is at least equal to its value for k = 8 which is 1 − 0.00805183 . . . > 1/2. Thus, using
the inequality ln(1 + x) > x − x2 valid for all x > −1/2, we can finally write

ln �b(1/2, k, γ 2k ln 2) ≥ 2 ln 2[1 − γ m(k)],
where

m(k) = 1 + 2k + 3

2
2−k + 3k2 + 6k − 4

2
2−2k + 13k2 − 12k + 1

2
2−3k

+ (6k3 − 13k2 + 2k)2−4k + 9k4 − 24k3 + 10k2

2
2−5k + (9k4 − 6k3)2−6k + 9

2
k42−7k (27)

6. PROOF OF THEOREM 6

Recall that Fk(n, m) denotes a random k-CNF formula with n variables and m clauses. For
a fixed number B > 1 we let AB denote the property that a k-CNF formula F has fewer than
1
2 Bn satisfying assignments.

Lemma 13. For any B > 1 there is a sequence T B
n such that for any ε > 0,

lim
n→∞ Pr(Fk(n, (1 − ε)T B

n )has propertyAB) = 0, and

lim
n→∞ Pr(Fk(n, (1 + ε)T B

n ) has property AB) = 1.

Proof of Theorem 6 (assuming Lemma 13). Equations (20) and (21) show that ρ �→
�b(1/2, k, ρ) is a continuous function. Therefore, for every ε > 0 there is δ > 0 such
that if r ′ = (1 + δ)2r, then

�b(1/2, k, r ′) > �b(1/2, k, r) − ε.
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Fix ε > 0, let r be smaller than the right-hand side of Eq. (1) and let B = √
�b(1/2, k, r ′).

Taking t = 1
2 Bn in Eq. (3) and using Eq. (2) we obtain

lim inf
n→∞ Pr[Fk(n, r ′n) does not satisfy AB] > 0.

By Lemma 13, for all sufficiently large n, it follows that r ′n < (1 + δ)T B
n and, thus,

rn = (1 + δ)−2r ′n < (1 + δ)−1T B
n , implying

lim
n→∞ Pr[Fk(n, rn) does not satisfy AB] = 1.

Thus, w.h.p. the number Z of satisfying assignments of Fk(n, rn) satisfies

Z ≥ 1

2
Bn = 1

2
�b(1/2, k, r ′)n/2 ≥ 1

2
(�b(1/2, k, r) − ε)n/2.

Since this is true for any ε > 0, the theorem follows.

To prove Lemma 13, we introduce a bit of notation and build upon [11, Section 3.3].
Let � be a CNF formula on variables y1, . . . , yl. Let X = {x1, . . . , xn} be a set of n Boolean
variables disjoint from {y1, . . . , yl}. We let �n denote the set of all

(n
l

)
formulas that can

result from � by selecting l distinct variables from X and replacing them for y1, . . . , yl in
�. Given a CNF formula on X , we let F ⊕ � = F ∧ �∗, where �∗ is chosen uniformly at
random among all formulas in �n. Thus, F ⊕ � is obtained by tacking a random copy of
� onto F.

Note that AB is a monotone property, i.e., if F has the property AB and F ′ is another
formula on the variables x1, . . . , xn, then F ∧ F ′ has the property AB as well. Therefore, we
can use the following theorem from Friedgut [11] to prove by contradiction that AB has a
sharp threshold. Let ω(n) = �log n� for concreteness.

Theorem 14. Suppose that AB does not have a sharp threshold. Then there exist a number
α > 0, a formula �, and for any n0 > 0 numbers n > n0, m > 0 and a formula F with
variables x1, . . . , xn such that all of the following hold.

T1. Pr(F ⊕ � has the property AB) > 1 − α.
T2. α < Pr(Fk(n, m) has the property AB) < 1 − 3α.
T3. With probability at least α a random formula Fk(n, m) contains an element of �n as

a subformula.
T4. Pr(F ∧ Fk(n, 2ω(n)) has the property AB) < 1 − 2α.

Intuitively, Theorem 14 states that if there is no sharp threshold, then the occurrence of
the event AB is governed by the presence of a small sub forumla �. For observe that �

is fixed upfront and thus “small,” whereas the formula F can be chosen arbitrarily large
(via picking a large n0). Furthermore, conditions T2 and T3 ensure that � is not entirely
arbitrary: it is likely to occur as a subformula of a random formula Fk(n, m) that has AB

with a probability strictly between zero and one. Finally, and most importantly, T1 and T4
state that attaching a random copy of � to F boosts the probability of AB much more than
just adding 2ω(n) random clauses. In the sequel we assume the existence of α, �, n, m, and
F satisfying conditions T1–T3. To conclude that AB has a sharp threshold, we are going
to show that condition T4 cannot then hold. Clearly, we may assume that n is sufficiently
large (by choosing n0 appropriately).
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Lemma 15. The formula � is satisfiable.

Proof. This follows from the fact that � is a likely subformula of a random Fk(n, m).
Namely, we shall prove that the probability Q that Fk(n, m) contains a subformula on l′ ≤ l
variables without a pure literal is smaller than α. This implies that with probability bigger
than 1 −α the pure literal algorithm will find a satisfying assignment of any subformula on
l variables. Then the assertion follows from T3.

Condition T2 implies that m ≤ 2kn. For assume m/n > 2k . Then the expected number
of satisfying assignments of Fk(n, m) is o(1) as n → ∞. In particular, it is less than α for
large enough n. Hence, Markov’s inequality entails that with probability more than 1 − α

no satisfying assignment exists, and thus AB has probability more than 1 − α.
To estimate Q, we employ the union bound. Let k ≤ l′ ≤ l. Any subformula on l′

variables without a pure literal contains at least l′′ = �2l′/k� clauses. There are
(n

l′
)

ways to
choose a set of l′ variables, and

(m
l′′
)

ways to choose slots for the l′′ clauses of the subformula.
Furthermore, the probability that the random clauses in these l′ slots contain only the chosen
variables is at most (l′/n)kl′′ . Hence, the probability that Fk(n, m) has l′ variables that span
a subformula with at least l′′ clauses is at most

Q(l′) =
(

n

l′

)(
m

l′′

)
(l′/n)kl′′ ≤

(
el′

n
·
(

ekm

2l′

)2/k)l′

(28)

Thus, assuming that n is sufficiently large, we see that (28) implies Q = ∑
k≤l′≤l Q(l′) < α,

as claimed.

Now that we know that � is satisfiable, let us fix a satisfying assignment σ :
{y1, . . . , yl} → {0,1} of �. We say that a satisfying assignment χ of F is compatible with a
tuple (z1, . . . , zl) ∈ V l if χ(zi) = σ(yi) for all 1 ≤ i ≤ l. Note that any compatible χ actually
is a satisfying assignment of the formula obtained by attaching � to F through z1, . . . , zl.
Furthermore, we call a tuple (z1, . . . , zl) ∈ V l bad if F has fewer than 1

2 Bn satisfying
assignments compatible with (z1, . . . , zl).

Lemma 16. There are at least (1 − α)nl bad tuples.

Proof. The formula F ⊕ � is obtained by substituting l randomly chosen variables
(z1, . . . , zl) ∈ V l for the variables y1, . . . , yl of � and adding the resulting clauses to F.
Since by T1 with probability at least 1 −α the resulting formula has at most 1

2 BN satisfying
assignments, a uniformly chosen tuple (z1, . . . , zl) ∈ V l is bad with probability at least
1 − α. Thus, there are at least (1 − α)nl bad tuples.

The following lemma provides the key step. It essentially shows that adding ω(n) random
clauses to F is going to be at least as restrictive as adding a random copy of�, in contradiction
to T4. Roughly speaking, amongst the ω(n) random clauses there are going to be l clauses
C1, . . . , Cl such that

(a) Ci forces some variable vi to take the value σ(yi), and
(b) the tuple (v1, . . . , vl) is bad.

Hence, with probability more than 1 − α adding ω(n) random clauses has the same effect
as embedding � into a bad l-tuple (v1, . . . , vl) and insisting that each vi take the “critical”
value σ(vi) that brings down the number of compatible assignments.
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Lemma 17. With probability at least 1 − α, a random formula Fk(n, ω(n)) contains l
clauses C1, . . . , Cl with the following two properties.

B1. For each 1 ≤ i ≤ l there is a k-tuple of variables (v1
i , . . . , vk

i ) ∈ V k such that
Ci = v1

i ∨ · · · ∨ vk
i if σ(i) = 1, and Ci = ¬v1

i ∨ · · · ∨ ¬vk
i if σ(i) = 0.

B2. For any function f : [l]→[k] the l-tuple (vf (1)

1 , . . . , vf (l)
l ) is bad.

The proof of Lemma 17 is based on the following version of the Erdős–Simonovits
theorem [9] (cf. Ref. [11] Proposition 3.5).

Theorem 18. For any γ > 0 there are numbers γ ′ and ν0 > 0 such that for any
ν > ν0 and any set H ⊂ [ν]l of size |H| ≥ γ ν t the following is true. If l k-tuples
(w1

1, . . . , wk
1), . . . , (w1

l , . . . , wk
l ) ∈ [ν]k are chosen uniformly at random and independently,

then with probability at least γ ′ for any function f : [l]→[k] the tuple (wf (1)

1 , . . . , wf (l)
l )

belongs to H.

Proof of Lemma 17. Assuming that n is sufficiently large, we apply Theorem 18 to
γ = 1 − α, ν = n, and the set H ⊂ [n]l of bad l-tuples. Then by Lemma 16 we have
|H| ≥ γ nl. Now, consider l random k-clauses C1, . . . , Cl over the variable set X chosen uni-
formly and independently. Let X1, . . . , Xl be the k-tuples of variables underlying C1, . . . , Cl.
Then Theorem 18 entails that X1, . . . , Xl satisfy condition B2 with probability at least γ ′.
Moreover, given that this is the case, condition B1 is satisfied with probability 2−kl. There-
fore, the clauses C1, . . . , Cl satisfy both B1 and B2 with probability at least γ ′2−kl. Hence,
the probability that Fk(n, ω(n)) does not feature an l-tuple of clauses satisfying B1 and B2
is at most (1 − γ ′2−kl)�ω(n)/l�. Since ω(n) = �log n�, we can ensure that this expression is
less than α by choosing n large enough.

Corollary 19. With probability at least 1 − α, the formula F ∧ Fk(n, ω(n)) has at most
1
2 kl · Bn satisfying assignments.

Proof. We will show that if C1, . . . , Cl are clauses satisfying the two conditions from
Lemma 17, then F ∧ C1 ∧ · · · ∧ Cl has at most 1

2 klBn satisfying assignments. Then the
assertion follows from Lemma 17.

Thus, let χ be a satisfying assignment of F ∧ C1 ∧ · · · ∧ Cl. Then by B1 for each
1 ≤ i ≤ l there is an index fχ (i) ∈ [k] such that χ(v

fχ (i)
i ) = σ(i). Moreover, by B2 the

tuple (v
fχ (1)

1 , . . . , v
fχ (l)
l ) is bad. Hence, the map χ �→ fχ ∈ [k]l yields a bad tuple (v

fχ (i)
i )1≤i≤l

for each satisfying assignment. Therefore, the number of satisfying assignments mapped
to any tuple in [k]l is at most 1

2 Bn. Consequently, F ∧ C1 ∧ · · · ∧ Cl has at most 1
2 kl · Bn

satisfying assignments in total.

Corollary 20. With probability at least 1− 3
2α the formula F ∧Fk(n, 2ω(n)) satisfies AB.

Proof. The formula F∗∗ = F ∧ Fk(n, 2ω) is obtained from F by attaching 2ω(n) random
clauses. Let F∗ = F ∧ Fk(n, ω(n)) be the formula resulting by attaching the first ω(n)

random clauses. Then by Corollary 19 with probability at least 1 − α the formula F∗ has at
most 1

2 kl · Bn satisfyng assignments. Conditioning on this event, we form F∗∗ by attaching
another ω(n) random clauses to F∗. Since for any satisfying assignment of F∗ the probability
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that these additional ω(n) clauses are satisfied as well is (1−2−k)ω(n), the expected number
of satisfying assignments of F∗∗ is at most

1

2
kl · BN · (1 − 2−k)ω(n) ≤ α

4
· Bn,

provided that n is sufficiently large. Therefore, Markov’s inequality entails that

Pr(F∗∗ violates AB|F∗ has at most 1
2 kl · Bn satisfying assignments) ≤ α/2.

Thus, we obtain

Pr(F∗∗ violates AB) ≤ Pr
(
F∗ has more than 1

2 kl · Bn satisfying assignments
)

+ Pr
(
F∗∗ violates AB|F∗ has at most 1

2 klBn satisfying assignments
) ≤ 3α/2,

as desired.

Combining Theorem 14 and Corollary 20, we conclude that AB has a sharp threshold,
thereby completing the proof of Lemma 13.
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