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1. Introduction

A proper phase transition takes place only in the idealized limit of an infinite number of
interacting degrees of freedom. Although this limit is never realized in the laboratory (let
alone in numerical simulations), everyday experience suggests that macroscopic samples
are infinite for all practical purposes. Spin glasses [1,2] are an exception. The problem
lies in their sluggish dynamics at the critical temperature and below. The system remains
for very long times, or forever, out of equilibrium. In fact, letting the system relax for
about one hour, the spatial size of the glassy magnetic domains is (at most) of the order
of one hundred lattice spacings [3].

It has become clear lately that, in order to interpret experimental data in spin glasses,
the relevant equilibrium properties are those of systems of sizes similar to that of the
experimentally achievable coherence length [4,5]. Phase transitions on finite systems
are actually crossover phenomena describable through the well-known theory of finite-
size scaling (see, e.g., [6]). However, a conspicuous feature of disordered systems (and,
most notably, of spin glasses) is to undergo strong sample-to-sample fluctuations in many
thermodynamic properties. It is thus natural to ask questions about the probability
distribution, induced by the disorder, of the various physical quantities. Typically the size
of these fluctuations decreases when enlarging the size of the equilibrated system; if we
wish to have hints about their possible relevance in experimental systems, it is important
to know the rate at which fluctuations decrease with system size. This is particularly
important if we are to study dynamical heterogeneities [7] in spin glasses [5]. In particular,
a relevant but elusive physical quantity (potentially relevant to analyse dynamical effects
close to the phase transition) is the finite-system pseudo-critical temperature. Our scope
here is to characterize its statistical properties in spin glasses.

This problem has been extensively studied and is well understood for finite-size weakly
bond-disordered spin models, below the upper critical dimension d.,. For a system of size
N = L% and a disorder sample J, one can define a pseudo-critical temperature 77 (L) as the
location of the maximum of a relevant susceptibility: this definition is clearly non-unique,
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but all sensible definitions lead to the same scaling behaviour as N — oco. According to the
Harris criterion [8], a major role [9]-[13] is played here by the value of the thermal critical
exponent of the pure system, vp. If vp > 2/d the disorder is irrelevant, the value of v is not
modified by the disorder (i.e. v = vp) and the width AT (L) of the probability distribution
of the pseudo-critical temperature, defined as AT,(L)* = E(TCJ(L)Q) — E(T/(L))?, where
E(---) denotes the disorder average, behaves as AT.(L) oc 1/L%? as expected naively [14].
In such a situation in the infinite-volume limit the (disorder-induced) fluctuations of 7/ (L)
are negligible with respect to the width of the critical region and to the finite-size shift of
T,, that both behave like L=/*7. In the other case, when vp < 2 /d disorder is relevant,
the value of v for the disordered model is different from vp and obeys [15] the bound
v > 2/d. In this case AT.(L), the width of the critical region, and the finite-size shift of
T. behave like L=/, The behaviour AT.(L) o 1/L%? that would be naively dominant
is destroyed by the disorder. The case of weakly bond-disordered spin models above the
upper critical dimension needs a very careful analysis, as shown in [16].

To the best of our knowledge, the distribution of the pseudo-critical temperature in
finite-size spin glass models has not been studied numerically before: this is the object
of the present note. Recent analytical work has predicted AT,(N) o< 1/N%/3 (where N is
the number of spins, i.e. the system volume) for the (mean-field) Sherrington—Kirkpatrick
model (SK) for spin glasses [17]: we establish in this paper that the realized scenario is
indeed different. Very recently, while this work was being completed, [18] has also tried
(and failed) to verify numerically the analytical predictions of [17]. A former attempt to
analyse numerically the distribution of the pseudo-critical temperature in the SK model
was useful to investigate the numerical techniques of choice [19].

Here, we present numerical results both for the three-dimensional (3d) and the mean-
field SK spin glass models. In the 3d case, we show that the probability distribution
of pseudo-critical temperatures verifies finite-size scaling. From the scaling of this
distribution we obtain a precise estimate of the critical temperature and of the critical
exponent for the correlation length, v. On the other hand, we find that for the mean-
field spin glass AT.(N) oc 1/N'/3 (in agreement with analytical findings for the scaling
with N of disordered-averaged quantities in mean-field models [20]). Since this is in
plain contradiction with the results of [17], we briefly revisit their analytical argument
and show where the error in [17] stems from. We also believe that a second analytic
conclusion of [17], stating that the AT.(N) is distributed according to a Tracy—Widom
probability law, is based on very shaky grounds and we will give hints of the fact that it
is not substantiated numerically.

Our first step is to define a pseudo-critical temperature for a given finite-size sample.
Random bond and site-diluted models allow [10]-[13] a straightforward definition of 7/ (L)
as the location of the maximum of the relevant susceptibility y. In our case the situation
is more complex (even if, as we will see, the analysis of the spin glass susceptibility xsa
will be very useful and revealing). Here the relevant diverging quantity is® ysq:

o= 5 D088, — (S)a18,)0)" (1)

1‘7y

® We are assuming that (S;)s # 0 in the low temperature phase, i.e. for example that we are working with an
infinitesimal magnetic field.
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(where the S, are the local spin variables) that is of order IV in the whole low temperature
phase. xsq is a continuously decreasing function of the temperature and has no peak
close to T¢: this requires, as we will discuss in the following, a slightly more sophisticated
analysis in order to extract a pseudo-critical temperature.

An alternative and simpler procedure is very straightforward: let us introduce it first.
We first assume (as done in [9]-[13]) that for a given disorder sample J the finite-size
scaling of an observable P of dimension ¢ is (P); ~ LS F((T — T/(L))L'"), where
F(:) is an L and J independent finite-size scaling function: the whole disorder sample
dependence is encoded inside the pseudo-critical temperature T.7(L). This is, in fact, an
approximation since the scaling function has a residual J dependence [11]. We next build
dimensionless combinations of operators: we call them O7(T, L) and they are built in such
a way to scale as

O/(T,L) ~ G((T — T (L))L'/"), (2)

where G(-) is a 7', L and J independent finite-size scaling function. A familiar looking
combination is the single sample pseudo-Binder cumulant B = (¢*);/(¢*)% (notice that
this is defined for a given disorder realization): the genuine Binder cumulant is defined
as B = E((¢"))/E((¢*))*. For a sensible choice of y the solution T of the equation
o’ (Ty" , L) =y, with a disorder-independent constant y, is a proxy of the pseudo-critical
temperature, namely T; =T/ (L)+C, L~ = TC+DyL*1/” with an L and J independent
constant Cy. For example, for a function O that in the infinite-volume limit is zero in one
phase and one in the other phase any constant y in the interval [0, 1] will do: it is wise, in
order to minimize the corrections to scaling to choose a legitimate value for y such that
Tzf is typically inside the critical region (the value of Tzf depends on y and on the choice
made of a dimensionless combination O7).

We are also able to use xsq for determining 77 (L): in this way we are able to monitor
a quantity that diverges in the infinite-volume limit and to use it to extract a pseudo-
critical temperature. The approach used to define 77 (L) in this case is based on the same
technique: we compare the single sample spin glass susceptibility to a value close to the
average spin glass susceptibility at the critical temperature on a given lattice size. This
measurement is a good proxy for the direct measurement of the position of an emerging
divergence.

We have applied these ideas to the Edwards—Anderson model in 3d and to the SK
model. We used existing data obtained by the Janus collaboration on systems with L = 8-
32 for the 3d EA model [4], and from [21] for the SK model with N ranging from 64 up
to 4096. In both cases the quenched random couplings can take the two values +1 with
probability one-half.

The layout of the rest of this work is as follows. In section 2 we discuss our numerical
methods and we present our results for the Edwards-Anderson model. An analogous
analysis for the SK model is presented in section 3. This study is complemented in
section 3.2 with our analysis of the analytically predicted scaling for the distribution
of pseudo-critical temperatures. We also present in section 3.3 an analysis of the
distribution function of the pseudo-critical points. Finally, we give our conclusions in
section 4.
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2. The Edwards—Anderson 3d model

The Hamiltonian of the model is
H3d = _ZS:I} Jw,y Sya (3)
z,y

where the sum runs over the couples of first neighbouring sites of a 3d simple cubic lattice
with periodic boundary conditions. The Ising S, spin variables can take the two values
41 and the couplings are quenched binary variables that can take the value 41 with
probability one-half.

In order to analyse the single sample pseudo-critical temperatures of Edwards—
Anderson 3d systems we need to construct several dimensionless quantities. We define the
Fourier transform of the replica field ¢, = S25% (S® and S are two real replicas, i.e. two
independent copies of the system evolving under the same couplings, but with different
thermal noise):

o) = 3 o, (4)

which we use to construct the two-point propagator
G (k) = (s(k)o(—k))., (5)

where (- - ) ; denotes the thermal average for the sample J. Since the smallest momentum
compatible with the periodic boundary conditions is |k| = 27/L we define

k" = (2r/L,0,0), K\ = (0,27/L,0), k¥ = (0,0,27/L), (6)

and

G (k) =5 G (KY). (7)

Similarly, the second smallest momentum is given by (27/L, 27w /L, 0) and by the two other
possibilities: we use it to define G(ks).
We consider the following dimensionless quantities:

s 1 ¢’ 1"
&L= 2L sin(m/L) lGJ(kzl) B 1} ’ (®)
{¢")s
B’ =
TRr )
s _ 2llok) o)),
o= = E o
s _ G(k)
Ri, = G (k) (11)
In equation (9) we have used the global spin overlap, which is defined as
g ¢k =0) (12)

N
doi:10.1088/1742-5468/2011/10/P10019 5
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Figure 1. Computation of the pseudo-critical temperature using the Binder ratio
defined in equation (9). Here y = 1.51, that is a good approximation to B(T¢),
and we plot B’(T) for three samples with . = 32. The red curve has exactly
one solution (in our range) for B”(T) = y, which defines its T ;:1.51: this is the
normal behaviour of this observable. The green sample has three solutions, so
we pick the largest one (green dot). The blue sample has B/(T) > y: in this
case we take the lowest simulated temperature T ~ 0.7 as an upper bound for
the pseudo-critical temperature (this ignorance will not affect our estimate for
the median). Error bars are included in the plot and are very small.

where N = L? is the total number of spins. Let us start by considering the sample-
averaged observables (which we denote by dropping the super-index .J). Up to scaling
corrections, they do not depend on L at the critical point:

O(T., L) =y.+ O(L™%), with a > 0. (13)
For each value of L we can search for the temperature chy such that
L
o1, L)=1y. (14)

Then, provided we are not very far from the scaling region (so that y is not too different
from y.), we expect that

TE ~T.+ A, L7V (1+ B,L™), (15)

where we have included the first corrections to scaling.

We can use this same approach to define a single sample critical temperature 7. Let
us choose a fixed value of y close enough to the value y. defined from the sample average
at the critical point. For each sample we use cubic splines to determine TyL’J such that

oNTH L) =y. (16)

For some samples the O7(T, L) turn out not to be monotonic: there can be several
solutions to this equation. In those cases we simply pick the largest solution. This
process is illustrated in figure 1.

doi:10.1088/1742-5468/2011/10/P10019 6
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The motivation for this choice is simple. The physical meaning of a pseudo-critical
temperature is a characteristic temperature that separates the paramagnetic phase from
the low temperature one. Indeed, any temperature Ty" , solving the equation O7(T,, L) =
Yy, is a temperature where non-paramagnetic behaviour has already arisen. Therefore, only
the largest Tzf makes sense as a divider among both phases. In fact, the non-monotonic
behaviour of O/(T, L) may be due to other reasons (in particular, temperature chaos),
unrelated to the paramagnetic/spin glass phase transition. In any case, our definition will
be justified a posteriori, on the view of the simplicity of the emerging physical picture.

The values of Ty‘] have a very wide probability distribution. For a few disorder samples
the solution of equation (16) falls out of our simulated range of temperatures and we only
obtain an upper or (less frequently) a lower bound (see the blue curve in figure 1). In
this situation the arithmetic average of the Ty" is not well defined: we consider instead

the median temperature, that we denote by Ty‘] . Since, by definition, the median does not
change as long as the proportion of samples without a solution is less than 50%, this is
a robust estimator in these circumstances (we are well below this limit for all the cases
considered, the typical proportion being about ~1%). From figure 1 it is also clear that
the statistical uncertainty over the determination of Ty" in a given sample is very small as
compared to the size of sample-to-sample fluctuations.

In analogy with the sample-averaged case (15), we make the ansatz

TJ(L) ~T.+ AL, (17)

where we have ignored sub-leading corrections. A fit to this equation would, in principle,
yield the values of T. and v. However, for a fixed value y, we do not have enough degrees
of freedom to determine simultaneously v and 7.

Following the approach of [5], we get around this problem by considering n values
of y at the same time: this allows us to fit at the same time all the resulting 7,'(L),

with fitted parameters {T¢,v, A, ..., A, }: in other words we force the T; obtained for
different y values to extrapolate to the same T. with the same exponent. This procedure
may seem dangerous, since we are extracting several transition temperatures from each of
the O7(T, L), that are correlated variables. However, the effect of these correlations can
be controlled by considering the complete covariance matrix of the data.

The set of points {Ti (L,)} are labelled by their L and their y: we have data for
L =5 different values of L, with Ly =8, Ly = 12, Ly = 16, Ly = 24 and L5 = 32 (4000
samples in all cases but for L = 32, where we have 1000). We also select n values of y; in

the critical region (yi,...,v,). The appropriate chi-square estimator is
n L
s - v —_ s —1 12
V=D D T L) = Te = Ay L0 0y (T3 (L) = T = Ay, L), (18)
ij=1ab=1

where 0(;q)(j5) is the covariance matrix of the set of Tzf , which we compute by a bootstrap
approach [22] (each point of the set is identified by L and y): it is a block-diagonal matrix,
since the data for different L values are uncorrelated.

Thus far we have considered just a single observable O, for different values of y. Since
the fitting function (17) is the same for the different O we have selected, with common
T. and v, and only amplitudes differ, we can include in the same fit data for the four
dimensionless quantities (8)—(11), considering several values of y for each. In order to

doi:10.1088/1742-5468/2011/10/P10019 7
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Figure 2. Global fit for the median single sample critical temperature T&]
computed with different observables. The parameters in the fit are the common

extrapolation point T;, the common exponent v and an individual amplitude for
each set of data points. We include in the fit the data for L > 12.

simplify the notation, from here on we shall denote our set of points in the fit as {T/(L)},
taking « as labelling both the observable O and the height y (so that it will range from
1 to 4n).

We can use the usual disorder-averaged spin glass susceptibility xsq to arrive at yet
another determination of the single sample critical temperature, with the definition

Xsa(TY) = xsa(Te)y, (19)

with y close to one, and we expect T;g to follow the same scaling behaviour of (17): we

include the values of T)‘g in the global fit to the individual pseudo-critical temperatures.
In this case the pathologies that affect the analysis of other single sample observables are
far less frequent.

We show the results of this combined fitting procedure in figure 2, where we have
included data for the four dimensionless ratios /L, B, Bg and Rjs, using three values of
y for each ratio (we plot the three fits for the same observable with the same colour). We
have also used the data for T;g , with y = 1 (we select the value of T, reported in [23]).
We have discarded the L = 8 data, which showed strong corrections to the leading scaling
of (17). The best fit gives

T, = 1.104(6), v = 2.26(13), (20)
with x? = 32.6 for 37 degrees of freedom (giving a P value of 68%). This result nicely
agrees with the determination of [23]

T, =1.109(10), v = 2.45(15). (21)
Reference [23] includes corrections to scaling, as in (15), with w = 1.0(1). Reference [24]

gives a comprehensive list of estimates for 7, and v. In order to take these scaling
corrections into account and to include the L = 8 data in the fit, we can therefore

doi:10.1088/1742-5468/2011/10/P10019 8
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rewrite (17) as
THL) ~ T, + ALY (1 + B, L™%), (22)

where again we use the same w parameter for all the observables and all values of .
Unfortunately, our numerical data are not precise enough to allow a reliable determination
of w, v and T, at the same time (the resulting error in w would be greater than 100%).
We have been able to check the consistency of our approach by taking the values of v
and w from [23] and fitting only for T, and for the amplitudes, including now the data
for L = 8. The resulting best fit gives T, = 1.105(8), with x* = 41.9 for 38 degrees of
freedom (P value: 35%): this is a satisfactory check of consistency.

The results we have discussed make us confident of the fact that our determination
of the single sample critical temperatures yields reasonable results. We can now take the
analysis one step further and consider the width of the distribution of 77. We consider
the two temperatures T, and T, such that

P(T! > T}) = 0.16, P(T! < T;)=0.16. (23)

The value 0.16 is such that the temperature interval [T, , 7] defines the same probability
as an interval of two standard deviations around the mean for a Gaussian probability
distribution. We define the width AT}/ as

T —T;
AT/ = % (24)
The simplest ansatz for the scaling behaviour of AT is
AT! ~ A L7Y"(1 + B,L™). (25)

In principle we could repeat the global fitting procedure that we have applied to the
medians 7,7. Unfortunately, not all the observables that we considered in figure 2 can
be used to analyse AT/, since the distribution of some of them is too wide, so that the
critical temperature of too many samples falls out of our simulated range of 7', and the
width defined in equation (25) is undefined. Because of that we analyse AT? by only

using the Ty‘] derived from £7/L, B” and xdy. The corrections to scaling are now stronger
than for the median T; , so that we cannot obtain a good fit to leading order even if we
discard the data for L = 8. Using once again as an input the critical exponents from [23]
and fitting for the amplitudes we obtain a very good fit with x? = 19.1 for 21 degrees of
freedom (P value: 58%). The results of the best fit are plotted in figure 3. According to
the ansatz of equation (2), the width of 7)) must be equal to the width of T;(L) (since
C, is J-independent): the width of Ty‘] should accordingly be y-independent. Figure 3
shows that this is indeed the case for ATgJ/ ;» but less so for AT}: as mentioned before the
disorder independence of the scaling function in equation (2) is only approximate [11].

3. The Sherrington—Kirkpatrick mean-field theory

The Hamiltonian of the Sherrington—Kirkpatrick mean-field model is
1

S \/N ; J 7 ( )
where the sum runs over all couples of spins of the system, the Ising S; spin variables can
take the two values +1 and the couplings are quenched binary variables that can take the
value 1 with probability one-half.

doi:10.1088/1742-5468/2011/10/P10019 9
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Figure 3. Global fit to AT/, computed using ¢//L, B’ and x{.

3.1. The pseudo-critical temperatures

Our analysis of the mean-field SK model is very similar to the one we have discussed in the
case of the Edwards—Anderson model. Here we have seven values of the system size N (of
the form N = 2P, with p ranging from 6 to 12: in all cases we have 1024 disorder samples
but for N = 4096 where we have 256 and for N = 128 where we have 8192) that makes
the fitting procedure stable. The fact that in this case the value of the (infinite-volume)
critical temperature, T, = 1 is known exactly is also of use.

We consider three definitions of T¢:

e the one based on the single sample Binder cumulant of equation (9), B (T3%) = B(T,);

e one based on the low order cumulant D = E((¢*))/E({|q|))? and the single sample
quantity D’ = {¢?),/(g])3, i.e. D’(T}) = D(T.);

e one based on the spin glass susceptibility XéG(T;g ) = xsa(Th).

For a given value of N, we use for the left-hand sides B(T,), D(T.) and xsc(7%) the values
measured for this same size, at T, = 1. We solve equation (16) by using a simple linear
interpolation.

Like for the EA model, in some cases equation (16) can have more than one solution.
We again choose the largest solution, which in the case of SK turns out to always be
the one closer to the infinite-volume value T,. In a few cases, for small values of N, the
equation has only solutions outside the range of temperatures that was used in the parallel
tempering Monte Carlo simulation (0.4 < T < 1.30). We fix this problem again by basing
our statistical analysis on the median of the distribution and on the definition of the width
given by equation (24). It turns out that these pathological cases are less numerous for
the SK model than for the EA model, and that the width given by equation (24) is always
defined.

doi:10.1088/1742-5468/2011/10/P10019 10
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Figure 4. The median of the distribution of 7. ;! as a function of 1/N'/3, together
with the results of two best fits: a leading order fit and a fit including a higher-
order correction (see text).

In terms of the number of sites N of the SK fully connected lattice the ansatz of
equation (17) becomes

T(L) ~ T, + A,N~YWdw) = 7, 4 A N71/3, (27)

We show in figure 4 the data for the median of the distribution of T;g as a function of

1/N'/3, together with the results of two best fits. We first notice that the data are well
compatible with the fact that in the N — oo limit 7. = 1. The first fit is a linear fit to
the form T/ = 1+ a/N'/?® (with N > 256 and x* = 4.44 with four degrees of freedom).
This is a good fit for the large systems, but it fails below N = 256. We also show a (very
good) best fit including the next-to-leading corrections, with an exponent 2/3 (including
all N values, x? = 2.07 with five degrees of freedom). The analysis of the data for T} and
T} leads to the same conclusions: here, however, the leading term (oc1/N'/3) has a small
coefficient and the effect of the next-to-leading term is stronger. In conclusion our data
are in excellent agreement with an asymptotic 1 + O(1/N'/?) behaviour for the median
of the distribution.

We show in figure 5 the width of the distribution of 77 as a function of 1/N'/*,
together with the results of two fits, namely AT;(] = cl/Nl/3 and AT;(] = N34y N72/3,
respectively. The data are well compatible with AT = 0 in the limit N — o0, as expected.
The leading order fit, including N > 256, has a x? = 5.36 with four degrees of freedom.
The two-parameter fit gives an excellent representation of the data (with a x? = 2.475
with five degrees of freedom) including now the N = 64 and 128 points. Very similar
results are obtained for AT3 and ATY.

In conclusion our finite-size, numerical analysis of the SK model strongly supports an
asymptotic O(N~1/3) scaling behaviour for the width of the distribution of the pseudo-
critical temperatures.
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Figure 5. The width of the distribution of T, ;! as a function of N~1/3_ together
with the results of two fits: a leading order fit and a fit including a higher-order
correction (see text).

3.2. Scaling with the system size and the stability of TAP states

Our results are in contradiction with the claim made in [17] that the width of the finite-
size fluctuations due to quenched disorder of the critical temperature of the SK spin glass
scales like N=2/3. We show here that we can give support to our numerical finding by
means of a very simple scaling argument.

The SG susceptibility can be computed from the TAP free energy [25] as

1
XsG = NTrM—Z, (28)

where M is the Hessian of the TAP free energy at the relevant minimum. If we sit deep
in the paramagnetic phase, the only relevant minimum of the TAP free energy is m; = 0
for all i = 1,2,..., N. Note that in the pseudo-critical region, where (8 — 3.)N'/3 ~ 1,
it is not at all obvious that such a TAP solution is the relevant one (for instance, a sub-
extensive set of sites of size N*, with o < 1, could have non-vanishing m,, or maybe one
could have for all sites |m;| ~ N~ with o/ > 0): the following discussion is relevant only
in the paramagnetic phase and for system sizes so large that (3. — 3) > N~1/3,

It was shown some time ago [26] that, at § = [, the smallest eigenvalue of the Hessian
at the fully paramagnetic TAP solution is of order N=2/3. In [17] it has been argued that

B L
Auing = (1= 0 + 577583 (29)

where @SN) is a random variable that, in the limit of large N, converges in distribution to
a Tracy—Widom random variable [27]. In particular, note that at the critical temperature

B, = 1 the N~2/3 scaling is recovered.
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Now, only for the purpose of discussing the crudest features of the scaling laws, let
us assume that ysqg is dominated by the contribution of the smallest eigenvalue:

1

XgG ~ W’J’ (30)
- ! (31)
CON((1- )2+ (B/NE) )2
_ N ! (32)

(INV3(1 = D)) + py"))2
The analysis of [17] is based entirely on equation (31).
Now, note that equation (32) implies that interesting behaviour appears only when
(1 — 3) < 1/N'3: this makes it sensible to replace ﬁcIDf,N) with Q{(JN). At this point, an
implication emerges for the scaling with N of the average susceptibility. We have that

xsa(T, N) = NY3G(N'Y3(1 - B)), (33)
where the scaling function G has the form
400 1
G(z) = /OO dépTW(@)m- (34)

In the above expression prw(®) is the Tracy—Widom probability density function.
Equation (34) is not acceptable for two main reasons:
e the function G(x) in equation (34) is ill defined, as the integrand has a non-integrable
singularity at ® = —a?;
e if one devises some regularization procedure, dimensional analysis would indicate that
G(x) ~ =% in the limit of large x. However, in order to recover the correct critical
divergence 45> ~ 1/(1 — f3), one obviously needs G(x) ~ 1/z.

The solution of these two caveats is, of course, in the fact that the initial assumption,
Xéa ~ 1/(NX2,, ;). is incorrect. The contribution of ~N eigenvalues is crucial in order to
recover the correct scaling behaviour G(z) ~ 1/x. Thus, the only lesson that we may take
from this oversimplified analysis is that the J-dependent SG susceptibility will probably

scale as

o = NYAF (N3 = B)] +w§Y). (35)

This is exactly the scaling ansatz we made at the beginning, where \I!f,N) is some random
variable that (in distribution) remains of order 1 in the large-N limit. This result is
consistent with our numerical findings.

Merely rewriting equation (31) as equation (32) suffices to make it obvious that the
asymptotic statement in [17] is incorrect: the width of the distribution of the pseudo-
critical temperatures scales with N~/3. Indeed, if as done in [17], one simply derives in
equation (31) with respect to # in order to get the maximum of the susceptibility, one
finds that 1 — 3.; ~ N~?/3. But at such a value of 3. ; we have that (1 — 3)? ~ N~/ <«

(B/NZ/:S)@SN), In other words, at the scale of (1 — 3) ~ 1/N?/3 equation (31) predicts an
essentially constant behaviour, hence the supposed maximum of the susceptibility (recall
that for such a value of 8 the fully paramagnetic TAP minimum is probably no longer
the relevant one) has no physical meaning.
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Figure 6. Probability density functions for the Gaussian distribution and for the
Tracy—Widom distribution for the Gaussian orthogonal ensemble, both with zero
average and unitary variance.

3.3. The probability distribution of the pseudo-critical inverse temperatures

We have discussed in some detail about the features of the pseudo-critical, sample-
dependent temperatures in the mean-field SK theory, and we have determined their scaling
properties. The next step, that we present here, is in the study of their probability
distribution. Unfortunately, there is no clean analytical prediction for the shape that this
distribution function should take in the large- N limit. The only proposal known to us was
put forward in [17]: when properly scaled, the pseudo-critical temperatures should follow
a Tracy-Widom (TW) distribution, in our case for the Gaussian orthogonal ensemble
(GOE). Unfortunately, as we have explained in section 3.2, the reasoning leading to that
prediction is flawed (although, in the long run, the prediction itself could be correct).

Lacking analytical guidance, we will simply check whether our numerical data can be
described by either a TW distribution, or by the ubiquitous Gaussian distribution. Within
our limited statistics and system sizes, the two distributions turn out to be acceptable
(the Gaussian hypothesis fits slightly better our data, but a Tracy—Widom hypothesis is
certainly consistent as well). Given the preliminary nature of this study, we shall restrict
ourselves to the simplest determination of pseudo-critical temperatures, the one coming
from the spin glass susceptibility.

Let us start by noticing that the difference of a Gaussian distribution Fg(¢) and a
TW distribution for the GOE Frw/(¢) is indeed very small. We show in figure 6 both a
Gaussian and a TW distribution with zero average and variance equal to one: it is clear
that they are very similar. Some numerical values can be of help. In the case of zero
average and unitary variance a Gaussian has a fourth moment equal to 3, as opposed
to 3.165 for a TW. The Gaussian is symmetric and has zero skewness, while the TW
distribution has a small asymmetry, with a skewness equal to —0.29, The Gaussian has a

doi:10.1088/1742-5468/2011/10/P10019 14


http://dx.doi.org/10.1088/1742-5468/2011/10/P10019

Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses

kurtosis equal to 0, while a TW has a kurtosis equal to 0.165. We will use these numerical
remark at the end of this section for sharpening the outcome of our quantitative analysis.

It is clear that in this situation, where the two target distributions are very similar,
one has to keep under very strong control finite-size effects that could completely mask
the asymptotic behaviour. It is important to notice that the effects we are looking at
characterize not only the tails but the bulk of the distribution.

Let us give the basic elements of our approach. We consider the value of the pseudo-
critical inverse temperatures computed from the spin glass susceptibility for different N
values. We try to verify if a relation of the form

BN =n + an ¢, (36)
(where ¢ is a random variable with null expectation values and unit variance, Gaussian or
TWe-like) can account for our numerical data and, if yes, to determine the scaling behaviour
of vy and of ay. We now define the variable (3, = (6. — v)/a. Let us assume that for
a system of size N we have Ky samples, and therefore Ky pseudo-critical temperatures
Be(N,s),s =1,2,..., Ky. The empirical distribution function (EDF) is then

Hy(3) = 5= 3003 = A.(V.)), (37)

where 6 is the Heaviside step function. Note that the parameters a(N) and (N) in
equation (36) are unknown a priori. They will be determined through a fitting procedure
(see equation (38) below). In particular, they typically take different numerical values if
we adopt the TW hypothesis or the Gaussian hypothesis.

We define the distance among the EDF and the theoretical distribution as

= = Y IF(AN.5) - Hy(3(N. ) (38)

In order to get an error estimate we repeat the procedure for 1000 bootstrap samples
for each value of N. In figure 7 we consider the theoretical hypothesis of a Gaussian
distribution. We show in the top part of the figure a((N) versus N~'/3, and our best fit
including the first scaling corrections. In the middle frame we show ~(N) versus N—1/3,
and our best fit. Here the fitting function only includes the leading term, since this form
already gives a good value for x2. In the bottom frame we show the collapse of the EDF
for different IV values and of the theoretical distribution function, as described in the text.
In figure 8 we show the same data for the hypothesis of a TW distribution.

In short, even if the Gaussian hypothesis is slightly favoured over the TW one, this
analysis does not allow us to decide clearly in one sense or in the other. The values of
D are always comparable among the two cases. The estimates of 7(/N) are indeed more
consistent for the Gaussian case, but the difference of the quality of the two fits does not
allow us to say a clear, final word.

In order to try to sharpen our analysis we have used the Cramer—von Mises
criterion [28]-[30]. We will not give here technical details (see, however, footnote®),

6 Given two independent samples of N and M values respectively of a random variable z, whose empirical
distribution functions are Fn(z) and Gu(z), and being Hn4ar(z) the empirical distribution function of the
sample obtained by combining the two original samples together, the two samples’ Cramér—von Mises statistics
is the distance T(N, M) = [NM/(N + M)] [*_[Fn(z) — Gu(2)]* dH N v ().
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Figure 7. (Top): a(N), defined in equation (36), versus N~'/3 and our best fit
including the first scaling corrections. (Middle): v(N), defined in equation (36),
versus N~/ and our best fit. Here the fitting function only includes the leading
term, since this form already gives a good value for x2. (Bottom): collapse of
the EDF for different N values and of the theoretical distribution function, as
described in the text. Here we show the case of a Gaussian distribution.
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Figure 8. As in figure 7, but for a TW probability distribution.

but will only discuss the most important features and the results. When we normalize
the distribution to zero average and unitary width we introduce a correlation about the
values to be tested: also because of that we find a better fit to our needs in the two-
sample formulation of the criterion, with a non-parametric approach, where we have to
start by fitting the test statistics (since we cannot use tabulated values, because we are
determining ay and vy in equation (36) from our finite-size statistics). Again, as in our
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Figure 9. Measured fourth moment of the probability distribution, both for data
from xsg and for data from the pseudo-Binder parameter, versus 1/N. Thick
straight line is for a Gaussian distribution (where the value is 3), while the thinner
straight line is for a TW distribution.

previous analysis, tests do not allow us to select a Gaussian or a TW distribution: they
are both characterized by very similar levels of significance.

A very simple analysis is maybe the most revealing. As we have discussed at the
start of this section the fourth moment of a normalized Gaussian is equal to 3, while
the fourth moment of a TW distribution is equal to 3.165. We plot in figure 9 the
measured fourth moment of the probability distribution, both for data from ysg and for
data from the pseudo-Binder parameter, versus 1/N. The thick straight line is for a
Gaussian distribution (where the value is 3), while the thinner straight line is for a TW
distribution. Again, these data do not allow for a precise statement, but they seem to
favour the possibility of a Gaussian behaviour (the data for ysg give maybe the clearer
indication).

Our conclusions are that, given the quality of our data and the sizes of our thermalized
configurations that do not go beyond N = 4096, a Gaussian distribution is favoured, but
we cannot give a clear, unambiguous answer.

4. Conclusions

We have presented a simple method to study the probability distribution of the pseudo-
critical temperature for spin glasses. We have applied this method to the 3d EA Ising
spin glass and to the fully connected SK models. Our results are in excellent agreement
with a median of the distribution that behaves asymptotically like T, + O(L~'/*) (or
1+O(N~1/3) for the SK model), and a width of the distribution that behaves like O(L~'/*)
(or 14+O(N~Y/3) for the SK model). The value of v we find for the EA model is compatible
with state-of-the-art results. Furthermore, even if our number of samples is modest as
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compared with [23], our determination of v and T, is competitive. An analysis of the
probability distribution of the pseudo-critical inverse temperatures for the SK mean-field
model does not lead to firm conclusions, but hints to a Gaussian behaviour.
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