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Ferromagnetic-glassy transitions in three-dimensional Ising spin glasses
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We investigate the ferromagnetic-glassy transitions that separate the low-temperature ferromagnetic and spin-
glass phases in the temperature-disorder phase diagram of three-dimensional Ising spin-glass models. For this
purpose, we consider the cubic-lattice ±J (Edwards-Anderson) Ising model with bond distribution P (J ) =
pδ(J − 1) + (1 − p)δ(J + 1), and present a numerical Monte Carlo study of the critical behavior along the
line that marks the onset of ferromagnetism. The finite-size scaling analysis of the Monte Carlo data shows
that the ferromagnetic-glassy transition line is slightly reentrant. As a consequence, for an interval of the
disorder parameter p, around p ≈ 0.77, the system presents a low-temperature glassy phase, an intermediate
ferromagnetic phase, and a high-temperature paramagnetic phase. Along the ferromagnetic-glassy transition line,
magnetic correlations show a universal critical behavior with critical exponents ν = 0.96(2) and η = −0.39(2).
The hyperscaling relation β/ν = (1 + η)/2 is satisfied at the transitions, so that β/ν = 0.305(10). This magnetic
critical behavior represents a new universality class for ferromagnetic transitions in Ising-type disordered systems.
Overlap correlations are apparently not critical and show a smooth behavior across the transition.
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I. INTRODUCTION

Spin-glass models are simplified, although still quite com-
plex, models retaining the main features of physical systems
that show glassy behavior in some region of their phase
diagram. They may be considered as theoretical laboratories
where the combined effects of disorder and frustration can
be investigated. Their phase diagram and critical behavior
can be used to interpret the experimental results for complex
materials. Ising-type spin glasses, such as the ±J Ising model,1

model disordered uniaxial magnetic materials characterized
by random ferromagnetic and antiferromagnetic short-ranged
interactions, such as Fe1−xMnxTiO3 and Eu1−xBaxMnO3
(see, e.g., Refs. 2–4). The random nature of the short-
ranged interactions is mimicked by nearest-neighbor random
bonds.

Three-dimensional (3D) Ising spin glasses have been
widely investigated. At low temperatures, they present fer-
romagnetic and glassy phases, depending on the amount of
frustration. The critical behaviors along the finite-temperature
paramagnetic-ferromagnetic and paramagnetic-glassy (PG)
transition lines have been accurately studied.5–12 On the
other hand, the low-temperature behavior, in particular,
the nature of the glassy phase and of the boundary between
the ferromagnetic and glassy phases, is still debated.

In this paper, we focus on the low-temperature transition
line that separates the ferromagnetic phase, characterized
by a nonzero magnetization, and the spin-glass (glassy)
phase in which the magnetization vanishes while the overlap
expectation value remains nonzero. We consider the 3D ±J
Ising model, defined by the Hamiltonian1

H = −
∑

〈xy〉
Jxyσxσy, (1)

where σx = ±1, the sum is over the nearest-neighbor sites
of a cubic lattice, and the exchange interactions Jxy are

uncorrelated quenched random variables with probability
distribution

P (Jxy) = pδ(Jxy − 1) + (1 − p)δ(Jxy + 1). (2)

The usual bimodal Ising spin-glass model, for which [Jxy] = 0
(brackets indicate the average over the disorder distribution),
corresponds to p = 1/2. For p %= 1/2, we have [Jxy] = 2p −
1 %= 0, and ferromagnetic (or antiferromagnetic) configura-
tions are energetically favored.

The phase diagram of the cubic-lattice ±J Ising model
is sketched in Fig. 1. We only consider p ! 1/2 because of
the symmetry p → 1 − p. While the high-temperature phase
is always paramagnetic (P), at low temperatures, there is
a ferromagnetic (F) phase for small frustration, i.e., small
values of 1 − p, and a glassy (G) phase with vanishing
magnetization for sufficiently large frustration. In Fig. 1, we do
not report any low-temperature mixed phase with simultaneous
glassy and ferromagnetic behavior as found in mean-field
models13 for which, at present, there is no evidence.14,15 The
different phases are separated by transition lines belonging to
different universality classes. They meet at a magnetic-glassy
multicritical point M located along the so-called Nishimori
line16,17 2/T = ln[p/(1 − p)], where the magnetic and the
overlap two-point correlation functions are equal. Scaling
arguments18,19 show that the transition lines must be all parallel
to the T axis at the multicritical point M .

The paramagnetic-ferromagnetic (PF) transition line starts
at the Ising transition of the pure system at p = 1, at20 TIs =
4.511 523 2(16), with a correlation-length exponent νIs =
0.6301 [ν = 0.630 02(10) from Ref. 20, ν = 0.630 12(16)
from Ref. 21, and ν = 0.630 20(12) from Ref. 22]. Along
the PF line, the magnetic critical behavior is universal5 and
belongs to the randomly dilute Ising universality class,23,24

characterized by the correlation-length critical exponent νPF =
0.683(2). It extends up to the multicritical point M , located
at19 pM = 0.768 20(4), TM = 1.6692(3), the multicritical
behavior of which is characterized by two even relevant
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FIG. 1. (Color online) Temperature-disorder phase diagram of
the 3D ±J Ising model. The phase diagram is symmetric under p →
1 − p (but for small values of p, the system is antiferromagnetic).

renormalization-group (RG) perturbations with RG dimen-
sions y1 = 1.02(5) and y2 = 0.61(2). The paramagnetic-
glassy (PG) transition line runs from M to the finite-
temperature transition at p = 1/2, at6 TB = 1.11(1). The
glassy critical behavior is universal along the PG line;6 the
overlap correlation-length exponent is quite large:6–11 νPG =
2.45(15). Finally, (at least) another transition line is expected
to separate the ferromagnetic and glassy phases. This is the
ferromagnetic-glassy (FG) transition line that marks the onset
of ferromagnetism and that runs from M down to the point
D at T = 0. The nature and the general features of this
transition line in Ising spin glasses are not known. Aside from
a few numerical works at T = 0,14,15 this issue has never been
investigated at finite temperature.

An interesting issue concerning the FG transition line is
whether it is reentrant, which would imply the existence of a
range of values of p for which the glassy phase is separated
from the paramagnetic phase by an intermediate ferromagnetic
phase. As proved in Refs. 16 and 17, ferromagnetism can only
exist in the region p > pM , which implies that pD ! pM .
We also mention that, using entropic arguments applied to
frustration, the FG phase boundary was argued to run parallel
to the T axis,17,25 i.e., pD = pM for any T < TM , with the
critical behavior controlled by a T = 0 percolation fixed
point.12 The FG transition was numerically investigated at
T = 0 in Ref. 14, obtaining the estimate pD = 0.778(5)
for the critical disorder, which is slightly larger than pM =
0.768 20(4). Thus, it suggests a slightly reentrant FG transition
line, although its apparent precision is not sufficient to exclude
pD = pM .

In this paper, we study the nature of the FG transition.
In particular, we investigate whether the magnetic variables
show a continuous and universal critical behavior from M
to D, and whether hyperscaling is violated as it occurs in
some systems, the critical behavior of which is controlled by
a zero-temperature fixed point, such as the 3D random-field
Ising model.26

Note that we focus on the low-temperature ferromagnetic
transition line, which marks the onset of ferromagnetism
moving from the glassy phase with zero magnetization. There
is also the possibility that a second low-temperature transition
line exists for larger values of p. In this case, there would
be a mixed low-temperature phase, in which ferromagnetism
and glassy order coexist. This occurs in mean-field models13

such as the infinite-range Sherrington-Kirkpatrick model.27

However, numerical T = 0 ground-state calculations in the
3D ±J Ising model on a cubic lattice14 and in related models15

do not seem to show evidence of a mixed phase and are
consistent with a unique transition.

In this paper, we present a Monte Carlo (MC) study of
the critical behavior along the FG transition line. We perform
simulations of finite systems defined on cubic lattices of size
L " 20. A finite-size scaling (FSS) analysis of numerical data
at T = 0.5 and 1 as a function of p shows that magnetic
correlations undergo a continuous transition along the FG
line. The critical behavior is universal, i.e., independent of
T along the line. For the magnetic critical exponents, we
obtain ν = 0.96(2) andη = −0.39(2). Moreover, hyperscaling
is verified. The FG transition line turns out to be slightly
reentrant. Indeed, we find pc = 0.7729(2) at T = 0.5 and
pc = 0.7705(2) at T = 1, which are definitely larger than
the disorder parameter pM = 0.768 20(4) at the multicritical
point. Therefore, for a small interval of the disorder parameter,
around p ≈ 0.77, the phase diagram presents three different
phases: a low-temperature glassy phase, an intermediate ferro-
magnetic phase, and a high-temperature paramagnetic phase.
Note that the critical behavior of the magnetic correlations
along the FG transition line shows a new universality class
of ferromagnetic transitions in Ising-type disordered systems,
which differs from the randomly dilute Ising universality class
describing the critical behavior along the PF transition line, and
from the random-field Ising universality class characterized by
hyperscaling violation.

The general features of the phase diagram presented in
Fig. 1 should also characterize the temperature-disorder phase
diagram of other 3D Ising spin-glass models with tunable
disorder parameters. For example, one may consider models
with Gaussian bond distributions, such as

P (Jxy) ∼ exp
[

− (Jxy − J0)2

2σ

]
, (3)

where the parameters J0 and σ control the amount of disorder
(the pure ferromagnetic model corresponds to J0 > 0 and σ =
0). This distribution is also characterized by the presence of a
Nishimori line T = σ/J0, where the magnetic and the overlap
two-point correlation functions are equal. We also mention that
an analogous temperature-disorder phase diagram, with three
transition lines meeting at a multicritical point like Fig. 1,
is also found in 3D XY gauge glass models.28 A similar
phase diagram is also expected for other continuous spin
glasses, such as XY and Heisenberg spin glasses with bond
distributions (2) or (3).

The paper is organized as follows. In Sec. II, we describe the
MC simulations and provide the definitions of the quantities we
consider. Section III presents the FSS analysis of the MC data,
reporting the main results of the paper. Finally, in Sec. IV, we
draw our conclusions. In the Appendix, we report some details
of the FSS analyses.

II. MONTE CARLO SIMULATIONS AND OBSERVABLES

In order to study the FG transition line, which connects
points M and D in Fig. 1, we perform MC simulations of
the ±J Ising model on cubic lattices of size L with periodic
boundary conditions. We use the Metropolis algorithm, the
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random-exchange method, and multispin coding. Implemen-
tation details can be found in Ref. 6. In the random-exchange
simulations, we consider NT systems at the same value of p
and at different temperatures in the range Tmax ! Ti ! Tmin,
with Tmax # 2 and Tmin = 0.5. The value Tmax is chosen so
that the thermalization at Tmax is sufficiently fast; typically, we
take Tmax # TM ≈ 1.67, while the intermediate values Ti are
chosen such that the acceptance probability for the temperature
exchange is at least 10%. We require one of the Ti to be along
the Nishimori line.16 The results for this temperature value can
be compared with the known exact results and thus provide a
check of the MC code and the thermalization. Finally, one of
the temperatures always corresponds to T = 1. The parameter
NT increases with L and varies from NT = 5 for L = 4 to
NT = 19 for L = 20. Thermalization is checked by verifying
that disorder averages are stable when increasing the number of
MC steps for each disorder realization. We average over a large
number Ns of disorder samples: Ns ≈ 2 × 106 samples for
L = 4,6,8; Ns ≈ 3 × 105 for L = 10; Ns ≈ 105 for L = 12;
Ns ≈ 5 × 104 for L = 16; and Ns ≈ 5 × 103 for L = 20.

The simulations are quite costly because of the very slow
dynamics for low temperatures. This makes the computational
effort increase with a large power of the lattice size. In our
range of values of L, the number of iterations that must be
discarded for thermalization apparently increases as L8 for
our largest lattices (with an increasing trend with increasing
L). Hence, taking into account the volume factor, the CPU time
for each disorder realization apparently increases as L11 (but
we should warn that its large-L asymptotic behavior may be
even worse). In total, simulations took approximately 40 years
of CPU time on a single core of a recent standard commercial
processor.

We consider the magnetization and the magnetic correlation
function defined as

m = 1
V

[〈∣∣∣∣
∑

x

σx

∣∣∣∣

〉]
,

(4)
G(x) ≡ [〈σ0σx〉],

where the angular and the square brackets indicate the thermal
and the quenched average over disorder, respectively. We
define the magnetic susceptibility and the second-moment
correlation length, respectively, as

χ ≡
∑

x

G(x),

(5)

ξ 2 ≡ 1
4 sin2(qmin/2)

G̃(0) − G̃(q)

G̃(q)
,

where q = (qmin,0,0), qmin ≡ 2π/L, and G̃(q) is the Fourier
transform of G(x). Moreover, we consider the cumulants

U4 ≡ [µ4]
[µ2]2

,

(6)

U22 ≡
[
µ2

2

]
− [µ2]2

[µ2]2
,

where

µk ≡
〈( ∑

x

σx

)k〉
. (7)

At the critical point Rξ ≡ ξ/L, U4, and U22 (in the following
we call them phenomenological couplings and denote them
by R) are expected to approach universal values in the
large-L limit (within cubic L3 systems with periodic boundary
conditions). In the ferromagnetic phase, we have U4 → 1,
U22 → 0, and Rξ → ∞, while in the glassy phase we expect
Rξ → 0. We also define analogous quantities using the
overlap variables qx ≡ σ (1)

x σ (2)
x , where σ (1)

x and σ (2)
x are two

independent replicas corresponding to the same couplings Jxy .
In particular, we consider ξo and Uo

4 , defined by replacing
the magnetic variables with the overlap variables in Eqs. (5)
and (6).

III. FINITE-SIZE SCALING ANALYSIS

In this section, we present a finite-size scaling analysis of
the MC data close to the FG transition line. We consider two
values of the temperature T = 0.5 and 1 below the temperature
TM = 1.6692(3) of the multicritical point M , and perform a
FSS analysis as a function of p.

A. Phenomenological couplings and universality

To begin with, we analyze the data at T = 0.5. In Fig. 2,
we show the MC estimates of Rξ as a function of 1 − p.
Analogous plots are obtained for U4 and U22. The data for
different lattice sizes clearly show crossing points, providing
evidence for a continuous transition. They cluster at values
of p that are definitely larger than pM , ruling out a vertical
transition line from M to the T = 0 axis.

In the critical limit, the phenomenological couplings R
scale as

R = fR[(p − pc)L1/ν], (8)

where we have neglected analytic and nonanalytic scaling
corrections. Equivalently, one can test FSS by considering two
different couplings R1 and R2. In the FSS limit, R1 = F12(R2),
where the function F12(R2) is universal, i.e., identical in any
model that belongs to a given universality class. Clear evidence

0.225 0.226 0.227 0.228 0.229 0.230 0.231 0.232
1-p

0.7

0.8

0.9

Rξ

L=4  
L=6
L=8
L=10
L=12
L=16
L=20

T=0.5

FIG. 2. (Color online) Estimates of Rξ at T = 0.5. The vertical
lines show the location of the multicritical point M: 1 − pM =
0.231 80(4).
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FIG. 3. (Color online) U4 (bottom) and U22 (top) vs Rξ at T = 0.5.

of FSS is provided in Fig. 3, where the phenomenological
couplings U4 and U22 are reported versus Rξ ≡ ξ/L. The data
appear to rapidly approach a nontrivial limit with increasing
the lattice size. Scaling corrections are only visible in the case
of U22, but they decrease with increasing L.

In order to determine the critical parameter pc and the
exponent ν, we fit U4, U22, and Rξ ≡ ξ/L to Eq. (8). Details
are reported in the Appendix, Sec. 1. We obtain

pc(T = 0.5) = 0.7729(2), ν = 0.96(2), (9)

R∗
ξ = 0.764(6), U ∗

4 = 1.331(5), U ∗
22 = 0.305(2), (10)

where R∗ = fR(0) is the value of the phenomenological
coupling R at the critical point. Scaling corrections turn out to
be small.

An analogous FSS analysis can be performed at T = 1,
with the purpose of checking universality, i.e., of determining
whether all transitions along the FG line belong to the same
universality class. For this purpose, we use the fact that, given
any pair of RG invariant quantities R1 and R2, the FSS function
R1 = F12(R2) is universal. In Fig. 4, we plot U4 and U22
versus Rξ for both T = 0.5 and 1. The plot of U4 provides
good evidence of universality: all data fall onto a single curve
with remarkable precision. The results for U22 show instead
significant scatter, but they are also consistent with universality
if one takes into account scaling corrections: indeed, as L
increases, the data for T = 1 approach the T = 0.5 results.
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FIG. 4. (Color online) U4 (bottom) and U22 (top) vs Rξ at T = 1
and 0.5 (only data with L ! 12).

For a more quantitative check, we must explicitly take
into account scaling corrections at T = 1, since they are
significantly larger than those observed at T = 0.5. For
instance, fits of the phenomenological couplings at T = 1 to
Eq. (8) show a somewhat large χ2/DOF (DOF is the number
of degrees of freedom of the fit). Moreover, the estimates
show systematic trends as the lattices with smaller values of L
are discarded in the fit (see Appendix, Sec. 1 for details). To
include scaling corrections, we fit the data to

R = fR[(p − pc)L1/ν] + L−ωgR[(p − pc)L1/ν]. (11)

The smallest χ2/DOF is obtained for 0.8 $ ω $ 0.9. Corre-
spondingly, ν = 0.91(3), in substantial agreement with the
estimate (9). Also, the estimates of R∗

ξ , U ∗
4 , and U ∗

22 (see
Appendix, Sec. 1) are in agreement with the estimates
(10) at T = 0.5. Therefore, all results strongly support the
universality of the critical behavior along the FG line. It is
difficult to estimate reliably the exponent ω from the data.
If we assume universality and fit the results at T = 1 fixing
ν = 0.96(2), we obtain ω = 0.95(10). Note that the fits of the
data at T = 0.5 give much larger values for ω, i.e., ω # 2
(see Appendix, Sec. 1). This is probably due to the fact that
corrections withω ≈ 1 have very small amplitudes at T = 0.5,
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so that we are simply measuring an effective exponent that
mimics the behavior of several correction terms.

The FSS fits also provide estimates of pc at T = 1. We
obtain

pc(T = 1) = 0.7705(2). (12)

Note that pc(T = 1) > pM ≈ 0.7682, confirming the reen-
trant nature of the FG transition line.

B. Magnetic susceptibility

As discussed at length in Ref. 6, in the critical limit, the
magnetic susceptibility scales as

χ (p,L) = uh(p)2L2−ηfχ [(p − pc)L1/ν], (13)

where uh(p) is related to the magnetic scaling field and is an
analytic function of p (and also of the temperature). Fits of χ
at T = 1 and 0.5 are good (χ2/DOF of order 1) if we include
all data such that L ! 6, provided that uh(p) is taken into
account (see Appendix, Sec. 2 for details). We end up with the
final estimate

η = −0.39(2). (14)

Since ξ/L is a function of (p − pc)L1/ν in the FSS limit [see
Eq. (8)], we can rewrite Eq. (13) as

χ (p,L) = uh(p)2ξ 2−ηFχ (ξ/L). (15)

The function Fχ (x) is universal apart from a multiplicative
constant, which takes into account the freedom in the normal-
ization of the function uh(p). In Fig. 5, we show the quantity
χ̃ = χu−2

h ξ−2.39 for T = 1 and 0.5. For each temperature, the
function uh(p) is determined by fitting the susceptibility data
to Eq. (15), fixing η = −0.39. Moreover, the scaling fields are
normalized so that χ̃(T = 1,L = 16) ≈ χ̃ (T = 0.5,L = 16)
for ξ/L ≈ 0.8. If we discard the data with L = 4 and 8
at T = 0.5, all points fall on top of each other, confirming
universality.

0.6 0.7 0.8 0.9 1.0
ξ/L

1.5

2.0

2.5

(χ
/u

h2 )ξ
−2

.3
9

L=4   T=0.5
L=8
L=12
L=16
L=20
L=4   T=1
L=8
L=12
L=16
L=20

FIG. 5. (Color online) χ̃ ≡ χu−2
h ξ−2.39 versus ξ/L for T = 1

and 0.5.

C. Evidence of hyperscaling

Since the FG transition line extends up to T = 0, hence,
the critical behavior may be controlled by a zero-temperature
fixed point, hyperscaling might be violated, as it happens
in the 3D random-field Ising model.26 In order to check
whether hyperscaling holds along the FG line, we consider the
magnetization, which is expected to behave as m ∼ L−β/ν at
the critical point, and the magnetic susceptibility, which scales
as χ ∼ L2−η. If hyperscaling holds, β and η are related by

β

ν
= d − 2 + η

2
(16)

(in the present case, d = 3), which guarantees that χ/m2

scales as Ld .29 In order to verify whether Eq. (16) holds, we
consider H ≡ χ/(m2L3) and assume that it behaves as

H ≡ χ

m2L3
∼ LζfH [(p − pc)L1/ν]. (17)

If hyperscaling holds, ζ vanishes. A FSS analysis of the data
at T = 0.5 and 1 gives the rather stringent bound (details in
the Appendix, Sec. 3)

|ζ | < 0.01, (18)

which allows us to conclude, quite confidently, that
hyperscaling holds. If this is the case, by using estimates (14)
and (9) of η and ν, we obtain

β/ν = (1 + η)/2 = 0.305(10), β = 0.29(1). (19)

As a further check, we consider the sample distribution P (mt )
of the thermal averages of the magnetization

mt ≡ 1
V

〈∣∣∣∣
∑

x

σx

∣∣∣∣

〉
(20)

at the critical point p = pc = 0.7729, T = 0.5, which is
expected to behave asymptotically as

P (mt ) ≈ Lβ/νP(Lβ/νmt ). (21)

In Fig. 6, we plot P(Lβ/νmt ) using β/ν = 0.305. The data
clearly show the expected scaling behavior. In conclusion,

0.0 0.5 1.0 1.5
L

β/ν
mt

0.0

0.5

1.0

1.5

L-β
/ν

P
(m

t)

L=6
L=8
L=12
L=16
L=20

β/ν=0.305

T=0.5,  p=0.7729

FIG. 6. (Color online) Scaling behavior of the distribution of the
thermal averages of the magnetization at T = 0.5 and p = pc =
0.7729. We set β/ν = 0.305.
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FIG. 7. (Color online) H ≡ χ/(m2L3) versus ξ/L for T = 1
and 0.5.

the numerical results do not show evidence of hyperscaling
violations in the critical behavior of magnetic correlations.

Our data for H (p,L) can also be used to provide further
evidence of universality. Indeed, if we use the fact that ξ/L is a
function of (p − pc)L1/ν [see Eq. (8)], we can rewrite Eq. (17)
for ζ = 0 as

H (p,L) = FH (ξ/L) + O(L−ω), (22)

where FH (x) should be the same at T = 0.5 and at T = 1 if
all transitions along the FG transition line belong to the same
universality class. The plot of the data (see Fig. 7) clearly
confirms universality: all points fall onto a single curve.

D. Overlap correlations

In our numerical study, we also consider quantities involv-
ing the overlap variables, such as ξo/L and Uo

4 , defined at the
end of Sec. II. In Fig. 8, we show MC data up to L = 12
(since their computation turned out to be significantly more
demanding, we restricted the measurements for the lattices
L = 16, 20 to the magnetic correlations). Unlike the magnetic
quantities, the overlap data do not show crossings in the
interval of p we have investigated. Apparently, Uo

4 decreases
continuously, while ξo/L increases as L → ∞. This may
reflect the fact that the FG transition line separates two ordered
phases with respect to the overlap variables. Note that the
differences between data at the same p and T and at different
values of L decrease as 1 − p increases. Hence, if there is
a line in the (p,T ) plane where the overlap variables show
crossings, it must be such that 1 − p > 0.234, i.e., it must lie
in the region p < pM , where no ferromagnetism is possible.

IV. CONCLUSIONS

We investigate the critical behavior along the
ferromagnetic-glassy transition line of the T -p phase
diagram of the cubic-lattice ±J (Edwards-Anderson) Ising
model [cf. Eq. (1)], which marks the low-temperature
boundary between the ferromagnetic phase and the glassy
phase where the magnetization vanishes, i.e., the transition
line that runs from M down to the point D at T = 0 in Fig. 1.

0.222 0.224 0.226 0.228 0.230 0.232 0.234
1-p

1.0

1.1

1.2

U4
o

L=4   T=1
L=6
L=8
L=10
L=12
L=4   T=1/2
L=6
L=8
L=10
L=12

0.222 0.224 0.226 0.228 0.230 0.232 0.234
1-p

0.5

1.0

1.5

2.0

ξo/L

L=4   T=1
L=6
L=8
L=10
L=12
L=4   T=1/2
L=6
L=8
L=10
L=12

FIG. 8. (Color online) Estimates of ξo/L (bottom) and Uo
4 (top),

defined in terms of the overlap variables, at T = 0.5 and 1.

We present a numerical study based on MC simulations
of systems of size up to L = 20, obtaining MC estimates of
several quantities at T = 0.5 and 1 [which are well below
the temperature TM = 1.6692(3) of the multicritical point
M] as a function of the disorder parameter p. The results
of the FSS analyses are consistent with the two continuous
magnetic transitions belonging to the same universality class.
The corresponding critical exponents are ν = 0.96(2) and
η = −0.39(2). Since the critical line extends up to T = 0,
the critical behavior may be controlled by a zero-temperature
fixed point. Correspondingly, it is possible to have hyper-
scaling violations, as it occurs in the 3D random-field Ising
model. Our MC results show that the hyperscaling relation
β/ν = (1 + η)/2 is satisfied, so that β/ν = 0.305(10) and
β = 0.29(1). The FSS results provide a robust evidence of
a universal magnetic critical behavior along the FG transition
line. A reasonable hypothesis is that also the zero-temperature
transition belongs to the same universality class. This is
supported by the available numerical data at T = 0. The
numerical study of Ref. 14 for the ±J Ising model at T = 0,
using lattice sizes up to L = 14, provided evidence of a
magnetic transition at pD = 0.778(5), with critical exponents
ν = 1.3(3) and β = 0.2(1). More recently, Ref. 30 obtained
pD = 0.7747(7) and ν = 1.07(7) using up to 103 lattices.
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FIG. 9. (Color online) Numerical results for the phase boundaries
of the cubic-lattice ±J Ising model (1) in the T -p plane. The dashed
lines are interpolations of the data (Ref. 33).

Numerical analyses15 for other Ising spin-glass models at T =
0 give consistent values of the critical exponents ν = 0.9(2)
and β = 0.3(1) using data up to L = 12. These estimates of the
critical exponents are substantially consistent with our results
along the FG transition line, supporting a universal critical
behavior along the FG transition from the multicritical point
M down to the T = 0 axis.

We also investigate the behavior of overlap correlations.
They do not appear to be critical and show an apparently
smooth behavior across the FG transition. Our numerical
results do not show evidence of other transitions close to the
transition line where ferromagnetism disappears. Thus, they
do not hint at the existence of a mixed ferromagnetic-glassy
phase, as found in mean-field models,13 in agreement with
earlier T = 0 numerical studies.14,15

The FG transition line is slightly reentrant. Indeed, we find
that pc = 0.7729(2) at T = 0.5 and pc = 0.7705(2) at T = 1,
which are definitely larger than pM = 0.768 20(4), although
they are quite close. This implies that there exists a small
interval of the disorder parameter, around p ≈ 0.77, showing
three different phases when varying T : with increasing
the temperature, the system goes from the low-temperature
glassy phase with zero magnetization to an intermediate
ferromagnetic phase, and finally to the high-temperature
paramagnetic phase. Correspondingly, it first undergoes a
glassy-ferromagnetic transition with ν = 0.96(2) and then a
ferromagnetic-paramagnetic transition with ν = 0.683(2). We
mention that a slightly reentrant low-temperature transition
line, where ferromagnetism disappears, also occurs in the
phase diagram of the 2D ±J Ising model.31,32

The main features of the FG transition line are not expected
to depend on the particular discrete bond distribution of the
±J Ising model [cf. Eq. (2)]. They should also apply to more
general distributions with tunable disorder parameters, such
as the Gaussian distribution reported in Eq. (3), and also to
experimental spin-glass systems with tunable disorder.

We conclude showing Fig. 9, which reports all available
numerical results for the phase boundaries of the cubic-lattice
±J Ising model (1) in the T -p plane, taken from Ref. 5 for the
PF transition line, from Ref. 19 for the multicritical point along

the Nishimori (N) line T = 2/ln[p/(1 − p)], from Ref. 6 for
the data along the PG line, from this paper along the FG line,
and from Ref. 30 for the T = 0 transition point. The dashed
lines are interpolations of the data along the transition lines,
which satisfy the expected scaling behavior at the multicritical
point where they meet, controlled by the crossover exponent
φ = 1.67(10) (see Refs. 19 and 31 for details).33
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APPENDIX: ANALYSIS DETAILS

1. Phenomenological couplings

In order to determine the exponent ν and the critical
parameter pc, we analyze the phenomenological couplings
U4, U22, and Rξ ≡ ξ/L. In the critical limit, each quantity R
behaves as

R(p,L) ≈ fR[up(p)L1/ν] + uω(p)L−ωgR[up(p)L1/ν], (A1)

where the nonlinear scaling fields up(p) and uω(p) are analytic
functions of p. We have up(pc) = 0 while, in general, we
expect uω(pc) %= 0. For both temperatures, our data belong to
a small interval of values of p, so that we expect the approxima-
tions up(p) ≈ p − pc and uω(p) ≈ uω(pc) = aω to work well.
To check it, we also performed fits assuming up(p) = p −
pc + k(p − pc)2. We did not find any significant difference.

We first analyze the results at T = 0.5. We perform
combined fits of the three quantities to Eq. (A1) without
scaling corrections (we set aω = 0). If the scaling functions

TABLE I. Results of combined fits of U4, U22, and Rξ to Eq. (A1)
without scaling corrections. χ 2 is the sum of the residuals in the
fit and DOF is the number of degrees of freedom. Each column
corresponds to results in which only data satisfying L ! Lmin are
included. R∗ ≡ fR(0) is the value of the phenomenological coupling
at the critical point. Errors are computed by performing a jackknife
analysis over the disorder samples.

T = 0.5

Lmin 4 6 8 10

χ 2/DOF 5594/289 567/229 203/169 79/109
ν 0.971(4) 0.964(5) 0.954(8) 1.00(2)
pc 0.77230(1) 0.77275(2) 0.77284(3) 0.77281(5)
R∗

ξ 0.7453(2) 0.7564(3) 0.7592(6) 0.759(2)
U ∗

4 1.3450(2) 1.3364(4) 1.3343(6) 1.334(2)
U ∗

22 0.3046(2) 0.3045(3) 0.3057(6) 0.310(2)

T = 1
Lmin 4 6 8 10

χ 2/DOF 10593/289 1842/229 365/169 98/109
ν 1.054(5) 0.995(5) 0.963(8) 0.982(20)
pc 0.76819(2) 0.76920(2) 0.76975(3) 0.76994(5)
R∗

ξ 0.6826(2) 0.7019(3) 0.7147(6) 0.7220(17)
U ∗

4 1.3973(3) 1.3779(4) 1.3662(6) 1.3613(19)
U ∗

22 0.3094(3) 0.3020(4) 0.2977(5) 0.3013(17)
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fR are approximated by fourth-order polynomials, we obtain
the results reported in Table I. We report estimates for
different Lmin: in each fit, we only include data satisfying
L ! Lmin. Corrections are quite small and indeed the results
corresponding to Lmin = 8 and 10 mostly agree within errors.
We also perform fits that take into account scaling corrections.
We fix ω, approximate gR(x) by a second-order polynomial,
and repeat the fit for several values of ω between 1 and 5. If
we perform a combined fit of U4 and Rξ (we include all results
with L ! 4), the smallest χ2/DOF (DOF is the number of
degrees of freedom of the fit) is obtained for 3 $ ω $ 4 and
one would estimate ν = 0.96(1) and pc = 0.7729(1). If instead
we use U4, Rξ , and also U22, we obtainω ≈ 2, ν = 0.95(1), and
pc = 0.7731(1). These results indicate that scaling corrections
are quite small, and quite probably can not be parametrized
be a single correction term. Our best estimates of ω are
simply effective exponents that parametrize the contributions
of several different correction terms, which are all relevant for
our small lattice sizes.

If we compare all results, we end up with the estimates
pc = 0.7729(2) and ν = 0.96(2), reported in Eq. (9). For
the phenomenological couplings at criticality R∗ ≡ fR(0), we
obtain the estimates reported in Eq. (10), i.e., R∗

ξ = 0.764(6),
U ∗

4 = 1.331(5), and U ∗
22 = 0.305(2). The final estimates and

their errors take into account the results of the fits with and
without scaling corrections.

The same analyses can be performed at T = 1. Combined
fits to Eq. (A1) without scaling corrections give the results
reported in Table I. It is quite clear that scaling corrections at
T = 1 are larger then those at T = 0.5. The goodness of the
fit is worse and the fit results show systematic trends. It is,
however, reassuring that they apparently converge toward the
estimates (9) and (10), in agreement with universality.

It is interesting to check whether scaling corrections can
explain the differences that occur among the results for T = 1
reported in Table I and the results obtained at T = 0.5. Since
the results for U ∗

22 at T = 1 are nonmonotonic as a function of
Lmin, at least two correction terms must be included to explain
the observed trend of the data. Therefore, the fit of the U22
data with a single scaling correction makes no sense. In any
case, the estimate obtained for Lmin = 10 differs from the one
reported in Eq. (10) by one combined error bar, and therefore is
in agreement with universality. We then perform combined fits
of U4 and ξ/L to Eq. (A1), approximating gR(x) by a second-
order polynomial and fixing ω to several values between 0.5
and 1.5. The smallest χ2/DOF is obtained for 0.8 $ ω $ 0.9.
Correspondingly, we obtain pc = 0.7705(1), R∗

ξ = 0.765(10),
and U ∗

4 = 1.32(1). The estimates of the phenomenological
couplings at criticality are now in very good agreement with
the estimates at T = 0.5. As for ν, we obtain ν = 0.91(3),
which is slightly smaller than, but still consistent with, the
estimate at T = 0.5. If we fix ν = 0.96(2) as obtained at T =
0.5, we find ω = 0.95(10), pc = 0.7704(1), R∗

ξ = 0.757(7),
U ∗

4 = 1.326(6).
These fits provide an estimate of pc at T = 1. We quote the

estimate pc = 0.7705(2) already reported in Eq. (12), which
satisfies the inequality pc # 0.7700, which one would obtain
from the results reported in Table I. It is unclear how reliable
our estimates of ω are. In any case, they suggest a value close
to 1.

TABLE II. Estimates of the exponent η obtained by fits to
Eq. (A3), where f̂χ is approximated by a fourth-order polynomial
and û(p) by a second-order polynomial. In each fit, we only include
the data that satisfy L ! Lmin. We fix ν = 0.96(2) and the value of
pc: pc = 0.7729(2) at T = 0.5 and pc = 0.7705(2) at T = 1.

T = 0.5 T = 1

Lmin χ 2/DOF η χ 2/DOF η

4 516/94 −0.414(6) 62/94 −0.393(6)
6 39/74 −0.400(8) 18/74 −0.389(9)
8 22/54 −0.397(12) 16/54 −0.389(12)
10 11/34 −0.398(16) 6/34 −0.390(16)

2. Magnetic susceptibility

We analyze the magnetic susceptibility, which should scale
as

χ (p,L) = uh(p)2L2−ηfχ [up(p)L1/ν], (A2)

where uh(p) is related to the magnetic scaling field and is an
analytic function of p; scaling corrections have been neglected.
In order to determine η, we perform fits to

lnχ = (2 − η) ln L + f̂χ [(p − pc)L1/ν] + û(p), (A3)

where f̂χ is approximated by a fourth-order polynomial and
uh(p) is normalized so that û(p = pc) = 0. In this expression,
we have replaced up(p) with p − pc. Inclusion of the second-
order term does not change the quality of the fit and the results.
Instead, even if the interval in p is small, the function uh(p)
can not be approximated by a constant, hence, û(p) can not be
set to zero. Indeed, the fits in which û(p) is approximated
by a second-order polynomial have a χ2/DOF, which is
significantly smaller than those in which we set û(p) = 0.
For instance, for T = 0.5 and Lmin = 6 (we fix pc and ν, see
caption of Table II), we have χ2/DOF = 265/76 and 39/74
for the fit with û(p) = 0 and the fit with a second-order
polynomial, respectively. The results of the fits in which
we fix ν and pc are reported in Table II. The results are
very stable with Lmin and are completely consistent with
universality. Note that, at variance with what is observed for
the phenomenological couplings, corrections for T = 1 are
apparently smaller than for T = 0.5. This may indicate the
presence of several corrections that cancel out for our values
of L. A conservative final estimate is η = −0.39(2), already
reported in Eq. (14).

TABLE III. Estimates of the exponent ζ . In each fit, we only
include the data that satisfy L ! Lmin. We fix ν = 0.96(2) and the
value of pc: pc = 0.7729(2) at T = 0.5 and pc = 0.7705(2) at T = 1.

T = 0.5 T = 1

Lmin χ 2/DOF ζ χ 2/DOF ζ

4 88/98 −0.007(2) 161/98 −0.015(1)
6 9/78 −0.003(2) 15/78 −0.009(2)
8 8/58 −0.002(3) 3/58 −0.006(3)
10 4/38 −0.005(5) 2/58 −0.005(5)
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3. Hyperscaling

In order to study hyperscaling, we consider the ratio

H ≡ χ

m2L3
. (A4)

If hyperscaling holds, it should behave as

H (p,L) = fh[up(p)L1/ν] ≈ fH [(p − pc)L1/ν], (A5)

where we have neglected scaling corrections. In order to allow
for a possible hyperscaling violation, we introduce a new
exponent ζ and assume that

H (p,L) = LζfH [(p − pc)L1/ν]. (A6)

To determine ζ , we perform fits to

ln H (p,L) = ζ ln L + f̂H [(p − pc)L1/ν], (A7)

where f̂H (x) is approximated by a second-order polynomial.
Fit results are reported in Table III. Here, we fix ν and pc to
the values determined above. The quality of the fits is very
good and scaling corrections are apparently small for both
values of the temperature. The exponent ζ is clearly compat-
ible with zero, proving that hyperscaling is satisfied. More
precisely, we obtain the bound |ζ | < 0.01, already reported in
Eq. (18).
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