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Abstract
The local purity of large many-body quantum systems can be studied by
following a statistical mechanical approach based on a random matrix model.
Restricting the analysis to the case of global pure states, this method proved
to be successful, and a full characterization of the statistical properties of
the local purity was obtained by computing the partition function of the
problem. Here we generalize these techniques to the case of global mixed
states. In this context, by uniformly sampling the phase space of states with
assigned global mixedness, we determine the exact expression of the first
two moments of the local purity and a general expression for the moments
of higher order. This generalizes previous results obtained for globally pure
configurations. Furthermore, through the introduction of a partition function
for a suitable canonical ensemble, we compute the approximate expression of
the first moment of the marginal purity in the high-temperature regime. In the
process, we establish a formal connection with the theory of quantum twirling
maps that provides an alternative, possibly fruitful, way of performing the
calculation.
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1. Introduction
In quantum mechanics, the purity of a quantum state measures the amount of indeterminacy
which originates either from lack of information on the process that led to its preparation,
or from the correlations that have been established with some external party (environment).
Mathematically speaking the two mechanisms are strongly interconnected, as the former can
always be represented as an instance of the latter via purification [1, 2]. For a composite
quantum system, one can distinguish between global purity (i.e. the purity of the system as a
whole) and the local (or ‘marginal’) purities (i.e. the purities associated with the subsystems
that compose it). Clarifying the connection between the global and local purities of a quantum
state is an important problem of quantum information theory [3–6] which is closely related to
the characterization of bipartite entanglement [7, 8]. In particular, for pure global states, the
local purity of a subsystem provides a direct measure of the bipartite entanglement between the
two parts: the smaller the purity, the larger the bipartite entanglement. For mixed (non-pure)
global states instead, the connection between local purity and entanglement is more subtle:
no direct relation between the two quantities exists and bipartite entanglement measures for
the global system can be obtained only by taking proper convex-roof extensions of the local
purity (the average being computed over all convex decompositions of the initial global state).
Still, studying how the global indeterminacy of a composite system affects the indeterminacy
of its constituents is important on its own and raises fundamental theoretical questions which
are deeply interwoven with thermodynamical issues and call for a thoughtful investigation.
Specifically, here we focus on the following basic question: given a certain level of global
mixedness of a many-body quantum system (say a mixture of gases at thermal equilibrium
at a given temperature), which portion of such indeterminacy can be ‘accounted for’ by its
constituents? (That is, how much does the local mixedness contribute to the global one?) While
for classical systems global and local mixedness are strongly interconnected (e.g., the former
is always greater than the latter), in quantum mechanics the relation is more ambiguous, as
qualitatively different sorts of correlations can be established between the various subsystems.

In order to account for the large spectrum of possibilities, we resort to a statistical
approach by exploiting tools and techniques imported from classical statistical mechanics.
The distribution of the local purity of pure global states of large composite systems was
studied in [9, 10] by using statistical mechanical methods. Here, we endeavor to generalize
the same techniques to a system in a global mixed state. In particular, by uniformly sampling
the states with a given value of the global purity, we determine the exact expression of the first
two moments of the local purity and obtain a general formula, valid for arbitrary moments.
These findings generalize previous results obtained for globally pure configurations by Lubkin
[15], Page [17], Lloyd and Pagels [16], Scott and Caves [19] and Giraud [24, 25]. Then,
through the introduction of a partition function for a suitable canonical ensemble endowed
with a Lagrange multiplier that plays the role of a fictitious temperature, we compute the
approximate expression of the first moment of the marginal purity in the high-temperature
regime. We also establish the scaling of all these quantities with the dimension of the system,
in the thermodynamic limit. Furthermore, an interesting connection appears between our
problem and the theory of quantum channels. More precisely, the symmetry properties of the
twirling transformations [26] can be proved to be very useful for the computation of the exact
expression of the first moment of the local purity. As a final remark, let us stress the key role
played by the introduction of a partition function for the system: it enables us to translate our
problem, and thus the results we found, in terms of the even more general context of the theory
of random matrices.

This paper is organized as follows. In section 2, we introduce the notation and set the
basis of the statistical mechanical approach to the problem, starting from the simpler case of
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pure states and generalizing it to the case of generic mixed states. In section 3, we consider
the high-temperature expansion of the partition function and compute the first moments of
the purity by making use of Zuber’s solution of some basic integrals over the unitary group
[11]. In section 4, we establish the connection between our problem and the properties of the
twirling maps. We conclude in section 5 by summarizing our findings and discussing them in
terms of future perspectives.

2. The statistical approach: partition function

In this section, we review the statistical approach introduced in [9] for studying the local
mixedness properties of pure states and discuss its generalization to the case of mixed states.

Consider a bipartite system X = AB made up of two subsystems A and B, described by the
Hilbert space HX = HA ⊗ HB, with dimHA = NA, dimHB = NB and dimHX = N = NANB.
Without loss of generality we will assume that NA � NB. The states of X are represented by
the set S(HX ) of non-negative unit-trace operators (density matrices) on the Hilbert space
HX . The purity of such states, defined as

πAB(ρ) := Trρ2 ∈ [1/N, 1], (1)

for each ρ ∈ S(HX ), provides a characterization of the global mixing of the system and induces
a partition of S(HX ) into a collection of distinct subsets Sx(HX ) := {ρ ∈ S(HX ) : Trρ2 = x}.
The minimum value of x = 1/N is attained when X is in the completely mixed state I/N,
whereas the maximum x = 1 is attained over the set S1(HX ) consisting of all pure states
|ψ〉X . For each ρ ∈ S(HX ), we can also define its A- and B-local purity functions as

πA(ρ) := Tr ρ2
A, πB(ρ) := Tr ρ2

B, (2)

with ρA = TrB ρ and ρB = TrA ρ being the reduced density matrices of the subsystem A and
B, respectively.

2.1. Total system in a pure state

On the special set S1(HX ) of pure states ρ = |ψ〉X 〈ψ | of X , the A- and the B-local purities
coincide,

π(ψ) := πA(|ψ〉X 〈ψ |) = πB(|ψ〉X 〈ψ |), (3)

and provide a measure of the bipartite entanglement between A and B: the smaller π(ψ), the
larger the entanglement contained in |ψ〉X 〈ψ |. The statistical distribution of π(ψ) on S1(HX )

has been studied in [9, 10]. This was done by introducing the partition function

Z(β) =
∫

dμ(ψ) e−β π(ψ), (4)

where the local purity π(ψ) of |ψ〉X plays the role of an effective energy of the system, β is a
Lagrange multiplier that fixes the value of the purity/energy and selects an isopurity manifold
[12] and dμ(ψ) is a (normalized) measure on the space of pure states S1(HX ). The natural
choice for the latter is induced by the Haar (probability) measure dμH (U ) on the unitary group
U (HX ) � U (N), through the mapping

|ψ〉X := UX |ψ0〉X , (5)

with |ψ0〉X an arbitrary reference unit vector of HX . Thus, the partition function becomes

Z(β) =
∫

dμH (UX ) exp
( − β Tr

(
TrB

(
UX |ψ0〉X 〈ψ0|U†

X

)2))
. (6)
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Then, by noting that for every UX ∈ U (N) the reduced density matrix ρA = TrB(|ψ〉X 〈ψ |)
can be written as ρA = UA�AU†

A , with UA ∈ U (NA) and �A = diag{λA,1, λA,2, . . . λA,NA},
expression (6) becomes

Z(β) =
∫

dμH (UA)

∫
dσ (�A) e−β Tr �2

A =
∫

dσ (�A) e−β Tr �2
A , (7)

where we exploited the fact that the measure induced over the density matrices ρA by dμH (UX )

factorizes into the product of a measure over the unitary group dμH (UA) (related to the
eigenvectors of ρA) and a measure dσ (�A) over the (NA − 1)-dimensional simplex of its
eigenvalues λA, j [13, 14]. In particular, it can be shown that [16–18]

dσ (�A)=CNA,NBδ

⎛
⎝1 −

∑
1�i�NA

λA,i

⎞
⎠ ∏

1� j�NA

θ (λA, j)λ
NB−NA
A, j ×

∏
1�l<m�NA

(λA,l − λA,m)2dNAλA,

(8)

with

CNA,NB = �(NANB)∏
0� j�NA−1 �(NB − j)�(NA − j + 1)

, (9)

and θ (x) and � being the unit step and the Euler gamma function, respectively. The derivatives
of Z(β), evaluated for β = 0, yield the moments of π(ψ) with respect to the measure dμ(ψ),
i.e.

Mn := 〈(
Trρ2

A

)n〉
S1(HX )

=
∫

dμ(ψ) π(ψ)n = (−1)n ∂nZ(β)

∂βn

∣∣∣∣
β=0

. (10)

These functions fully determine the statistical distribution of π(ψ) on S1(HX ) and, in the
high-temperature regime, provide an expansion of Z(β). More generally, in analogy to what
is commonly done in statistical physics, one can also define the moments of π(ψ) for β �= 0
as

Mn(β) := 〈(
Trρ2

A

)n〉
β,S1(HX )

=
∫

dμβ(ψ) π(ψ)n = (−1)n

Z(β)

∂nZ(β)

∂βn
, (11)

with dμβ(ψ) being the canonical measure

dμβ(ψ) := dμ(ψ)
e−β π(ψ)

Z(β)
. (12)

The latter is a deformation of the Haar measure dμ(ψ) obtained by including a non-uniform
weight which explicitly depends upon the local purity, through β. In particular, as β increases
dμβ(ψ) enhances the role of the states with lower values of π(ψ) (i.e. larger values of bipartite
entanglement) to the extent that for β → +∞ only the maximally entangled elements of
S1(HX ) contribute to the values (11). Since π(ψ) is bounded above, one can also consider
negative temperatures, where the role of less entangled states is enhanced, and when β → −∞
only the separable elements of S1(HX ) contributes to the values (11). Consequently, across
different ranges of temperatures, the moments in equation (11) characterize the statistical
distribution of the local purity of X computed with respect to a canonical ensemble whose
constituents are selected according to an effective thermal distribution characterized by the
parameter β.

In the limit of large N, the β-dependence of the statistics of the local purity π(ψ) (and
hence of the bipartite entanglement of the system) was characterized in [9, 10] by identifying
the class of states which maximize the distributions (12), i.e. typical states with respect to the
canonical measure (12). In this context, it was shown that the system undergoes two main
phase transitions related to different distributions of the eigenvalues �A of the typical states: a
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second-order phase transition, mentioned above, associated with a Z2 symmetry breaking, and
related to the vanishing of some eigenvalues of ρA, followed by a first-order phase transition,
associated with the evaporation of the largest eigenvalue from the sea of the others.

2.2. Total system in a mixed state

A natural question is what happens when the global system X is in a mixed state ρ of
purity x < 1, rather than in a pure state. A generalization of equation (4) is obtained by
replacing π(ψ) with (say) the A-local purity πA(ρ) of equation (2) and the measure dμ(ψ)

with a proper measure dμx(ρ) on the set Sx(HX ). This yields the following definition of the
partition function of the A-local purity,

ZA(x, β) =
∫

dμx(ρ) e−β πA(ρ) = Cx

∫
dμ(ρ) δ(Tr ρ2 − x) e−β πA(ρ), (13)

where dμ(ρ) is a probability measure on the set of mixed states (see below), and Cx :=
[
∫

dμ(ρ) δ(Tr ρ2 − x)]−1 a normalization factor. An analogous expression for the B-local
purity partition function ZB(x, β) is obtained by replacing πA(ρ) with πB(ρ) in equation (13):
note, however, that, at variance with the case analyzed in [9, 10], for x < 1 the partition
function ZB(x, β) will in general differ from ZA(x, β).

It is worth stressing that the function ZA(x, β) provides only statistical information on
the local mixedness of X , but not directly on its bipartite entanglement properties: this is
due to the fact that for generic mixed states ρ of X the local purities πA(ρ) and πB(ρ)

are not entanglement measures. A generalization of equation (4) that retains the ability
of characterizing the statistical properties of the bipartite entanglement of X for x < 1
could in principle be constructed by replacing π(ψ) with the convex-roof counterpart of
πA(ρ), namely π̄A(ρ) = maxE

∑
j p j πA(ψ j), where the maximum is taken over all

ensembles E := {p j, |ψ j〉X } j which yield a convex decomposition of the mixed state ρ (see
e.g. [20, 22]). The quantity π̄A(ρ) is a proper measure of the bipartite entanglement, but the
resulting partition function does not allow for a simple analytic treatment and will not be
discussed in this paper.

Finally, since there is no unique measure on mixed states [18], we need to properly specify
the choice of dμ(ρ) which enters in equation (13)—the consistency requirement that for pure
states equation (13) should reduce back to equation (4) (i.e. ZA(1, β) = Z(β)) does not
eliminate such ambiguity. Indeed, as previously discussed for ρA, the Hermitian matrix ρ can
always be diagonalized by a unitary operation, and as a consequence we can write the measure
dμ(ρ) as the product of a measure on the (N −1)-dimensional simplex of the eigenvalues and
a measure on the unitary group U (N) related to the eigenvectors. However, if on the one hand
it would be natural to take the Haar measure on U (N) so that dμ(ρ) = dμ(UXρU†

X ), on the
other hand the measure on the eigenvalues can be chosen in different possible ways [23]. In
order to overcome this ambiguity, we will use a balanced purification strategy. Let us introduce
hence the composite Hilbert space HXX ′ = HX ⊗ HX ′ , where HX � HX ′ are isomorphic. In
this N2-dimensional Hilbert space, each ρ of X can be represented by those pure states |
〉XX ′

which provide a purification for such density matrix, i.e. which satisfy the identity

ρ = TrX ′ (|
〉XX ′ 〈
|). (14)

Thanks to this identification, we can now induce a measure on S(HX ) by sampling the
pure states on HXX ′ according to the unique, unitarily invariant Haar measure which, as
usual, is induced by the Haar measure on the unitary group U (N2) through the mapping
|
〉XX ′ := UXX ′ |
0〉XX ′ , where |
0〉XX ′ is an arbitrary reference vector and UXX ′ ∈ U (N2).

5



J. Phys. A: Math. Theor. 45 (2012) 015308 A De Pasquale et al

With this choice the partition function becomes

ZA(x, β) = Cx

∫
dμH (UXX ′ ) δ(x − Tr(TrX ′ (|
〉XX ′ 〈
|)2) e−β Tr((TrB(TrX ′ |
〉XX ′ 〈
|))2 ),

(15)

where we used the fact that ρA = TrBρ = TrB(TrX ′ |
〉XX ′ 〈
|). Analogously to what we have
seen for the pure case, x = 1, by writing ρ = UX�XU†

X with �X = diag(λ1, λ2, . . . , λN ), we
obtain

ZA(x, β) = Cx

∫
dμH (UX )

∫
dσ (�X ) δ

(
x − Tr �2

X

)
e−β Tr((TrB(UX �XUX

†))2 ), (16)

where dμH (UX ) is the Haar measure on U (N) and

dσ (�X ) = CN δ

⎛
⎝1 −

∑
1�i�N

λi

⎞
⎠ ∏

1�i�N

θ (λi)
∏

1�i< j�N

(λi − λ j)
2 dNλ, (17)

with

CN = �(N2)

�(N + 1)
∏

1�k�N �(k)2
. (18)

Therefore, we have identified the measure dμx(ρ) of equation (13) with

dμx(ρ) = CxdμH (UX ) dσ (�X )δ
(
x − Tr �2

X

)
. (19)

Note that in the case of pure states, i.e. x = 1, the density operator of the system reduces
to ρ = |ψ〉X 〈ψ |, where |ψ〉X = UX |ψ0〉X , |ψ0〉X being an arbitrary reference state (see
equation (5)), and the matrix �X becomes a rank 1 projection. Thus, expression (16) reduces
to (6), namely

ZA(1, β) = Z(β). (20)

2.3. Asymptotic behavior and analysis of moments

For x < 1, the integration over the unitary group U (N) in equation (16) does not factorize,
making the computation of the partition function far more complicated than for the case of a
pure state (7). The only notable exception is the case of maximally mixed states (i.e. x = 1/N),
when the Dirac delta in equation (16) selects a unique diagonal matrix �X (the totally mixed
state of X). This makes the exponent equal to e−β/NA for all UX and yields the following exact
expression:

ZA(1/N, β) = e−β/NA . (21)

Otherwise, for intermediate values of the purity, 1/N < x < 1, the situation is much more
complicated. Still, as we will show in the following, at small β the evaluation of the moments
MA

n (x, β) associated with ZA(x, β) admits an exact analytical treatment. The latter are
formally defined as

MA
n (x, β) :=

∫
dμx,β (ρ) πn

A(ρ) = (−1)n

ZA(x, β)

∂nZA(x, β)

∂βn
(22)

and represent the average value of πn
A(ρ) with the canonical measure

dμx,β (ρ) := dμx(ρ)
e−β πA(ρ)

ZA(x, β)
, (23)

with dμx(ρ) given by equation (19). For pure states (x = 1), the MA
n (x, β) coincide with the

moments Mn(β) defined in equation (11): at β = 0, in the large N limit the expression for

6



J. Phys. A: Math. Theor. 45 (2012) 015308 A De Pasquale et al

such quantities has been computed in [9], while the exact expressions for first five of them can
be found in [24]. In the case of a totally mixed state (x = 1/N), equation (21) yields instead
values which are independent of the temperature β, namely

MA
n (1/N, β) = MA

n (1/N, 0) = NA
−n. (24)

For intermediate values of x, by expanding equation (22) up to the first order in β, we obtain

MA
n (x, β) ∼ MA

n (x, 0) − β
[
MA

n+1(x, 0) − MA
1 (x, 0) MA

n (x, 0)
]
, β → 0. (25)

Incidentally, note that in agreement with equation (24), the β-corrections of equation (25)
vanish when x = 1/N. The above expression shows that, at least in the high-temperature
regime, we can focus on the unbiased moments MA

n (x, 0).

3. Moments of the purity at β = 0

3.1. First moment

In this section, we compute the exact first moment of the purity MA
1 (x, 0) by making use of

Zuber’s solution of some basic integrals over the unitary group [11]. In particular, we will
show that the only dependence on the spectrum of the density matrix of the global system is
in terms of its purity x, whose value is fixed in the partition function (13).

Let us fix the spectrum of the global density matrix ρ of the system:

�X = diag(λNB(α−1)+β ), (26)

with α = 1, . . . , NA and β = 1, . . . , NB. A purification of �X in the space HXX ′ , with X = AB
and X ′ = A′B′, is

|
〉XX ′ =
∑

1�α�NA

∑
1�β�NB

√
λαβ |αβ〉AB ⊗ |αβ〉A′B′ , (27)

where we have set, for simplicity, λαβ = λNB(α−1)+β and |αβ〉AB = |α〉A ⊗ |β〉B, {|α〉A} and
{|β〉B} ({|α〉A′ } and {|β〉B′ }) being the reference basis in HA and HB (HA′ and HB′), respectively.
The set of vectors in HXX ′ with the same Schmidt coefficients is given by UXX ′ |
〉XX ′ , where
UXX ′ = UX ⊗ UX ′ , with UX ,UX ′ ∈ U (N), and yields the set of density matrices with the same
spectrum �X , namely ρ = UX�XU†

X . By partial tracing over subsystem B one obtains the set of
reduced density matrices ρA(U ) = TrB(TrX ′ (UXX ′ |
〉XX ′ 〈
|U†

XX ′ )). Note that this expression
does not depend on UX ′ ∈ U (N):

ρA =
∑

1�α�NA

∑
1�β�NB

λαβ TrB
(
UAB|αβ〉AB〈αβ|U†

AB

)
=

∑
1�α�NA

∑
1�β, j�NB

λαβ B〈 j|UAB|αβ〉AB〈αβ|U†
AB| j〉B. (28)

The purity is given by

πA(UX�XU†
X ) = Tr ρ2

A =
∑

1�α1,α2�NA

∑
1�β1,β2�NB

∑
1� j1, j2�NB

λα1β1λα2β2

×AB〈α2β2|U†
AB| j2〉B〈 j1|UAB|α1β1〉AB

× AB〈α1β1|U†
AB| j1〉B〈 j2|UAB|α2β2〉AB, (29)

which, by the completeness relation for subsystem A, becomes

πA(UX�XU†
X ) =

∑
1�α1,α2�NA

∑
1�β1,β2�NB

∑
1�i1,i2�NA

∑
1� j1, j2�NB

λα1β1λα2β2

×AB〈α2β2|U†
AB|i1 j2〉AB〈i1 j1|UAB|α1β1〉AB

× AB〈α1β1|U†
AB|i2 j1〉AB〈i2 j2|UAB|α2β2〉AB. (30)
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Let us now compute the first moment of the purity (22) at β = 0. By recalling thatZA(x, 0) = 1,
dμx,0(ρ) = dμx(ρ) and dμx(ρ) = CxdμH (UX ) dσ (�X )δ

(
x − Tr �2

X

)
, we obtain

MA
n (x, 0) =

∫
dμx(ρ) πn

A(ρ)

= Cx

∫
dσ (�X )δ(x − Tr �2

X ) MA
n (�X ) =: 〈MA

n (�X )〉x, (31)

where

MA
n (�X ) :=

∫
dμH (UX ) πn

A

(
UX�XU†

X

)
. (32)

From (30) the average over the unitary group of the first moment particularizes to

MA
1 (�X ) =

∑
1�α1,α2�NA

∑
1�β1,β2�NB

λα1β1λα2β2

×
∑

1�i1,i2�NA

∑
1� j1, j2�NB

∫
dμH (UX )Ui1 j1,α1β1Ui2 j2,α2β2U

†
α2β2,i1 j2

U†
α1β1,i2 j1

, (33)

where Ui j,αβ = AB〈i j|UAB|αβ〉AB. This integral can be explicitly computed by using Zuber’s
solution [11]:∫

dμH (U )Ui1 j1 . . .Uin jn (U )U†
k1l1

. . .U†
knln

=
∑

τ,σ∈Sn

C[σ ]
∏

1�a�n

δ(ia, �τ (a))δ( ja, kτσ (a)), (34)

with

C[σ ] =
∑
|Y |=n

(χ (k)(1))2χ(k)([σ ])

n!2sk(I)
, (35)

where C[σ ] is the sum over the Young diagrams Y of the character χ(k)([σ ]) of the symmetric
group Sn associated with Y , depending on the conjugacy class [σ ] of the permutation σ , sk(I) is
the dimension of the representation and δ(a, b) is the Kronecker delta. Applying this solution
to (33) we obtain

MA
1 (�X ) =

∑
1�α1,α2�NA

∑
1�β1,β2�NB

λα1β1λα2β2

×
∑

τ,σ∈S2

C[σ ] f1(τ )δ(α1β1, ατσ (2)βτσ (2))δ(α2β2, ατσ (1)βτσ (1))

=
∑

1�α1,α2�NA

∑
1�β1,β2�NB

∑
τ,σ∈S2

∑
c∈C(S2)

C[σ ] f1(τ )δ([τσ s], c)λαc(1)βc(1)
λαc(2)βc(2)

,

(36)

where f1(π ) depends on the permutation π ∈ S2:

f1(π ) :=
∑

1�i1,i2�NA

δ(i1, iπ(1))δ(i2, iπ(2))
∑

1� j1, j2�NB

δ( j1, jπ(2))δ( j2, jπ(1)), (37)

s ∈ S2 is the transposition (swapping) of pairs of nearby indices ([s] = [2])

is(1) = i2 and is(2) = i1, (38)

and C(S2) = {[12], [2]} is the set of the conjugacy classes of the symmetric group S2. From
(36) it can be easily inferred that the only possible contributions of the spectrum are related to

8
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the conjugacy classes of the symmetric group S2:

[τσ s] = [12] ⇒
⎛
⎝ ∑

1�α�NA

∑
1�β�NB

λαβ

⎞
⎠2

= 1,

[τσ s] = [2] ⇒
⎛
⎝ ∑

1�α�NA

∑
1�β�NB

λ2
αβ

⎞
⎠ = Tr �2

X . (39)

By summing and by using the explicit expressions of the coefficients (35) [11]

C[12] = 1

(N − 1)(N + 1)
, C[2] = − 1

(N − 1)N(N + 1)
, (40)

we obtain

MA
1 (�X ) = NA

(
N2

B − 1
)

N2
AN2

B − 1
+ NB

(
N2

A − 1
)

N2
AN2

B − 1
Tr �2

X . (41)

The first moment of the purity of subsystem A is the average of (41) over the spectrum of the
system. By plugging (41) into (31), we finally obtain

MA
1 (x, 0) = NA

(
N2

B − 1
)

N2
AN2

B − 1
+ NB

(
N2

A − 1
)

N2
AN2

B − 1
x. (42)

Note that for x = 1, this expression reduces to the one given in [15–17, 19, 24, 25].

Some special cases. It is worth noting that for a balanced bipartition NA = NB = √
N � 1

equation (42) yields

MA
1 (x, 0) =

√
N(1 + x)

N + 1
∼ 1 + x√

N
. (43)

At x = 1 (i.e. pure global states), equation (43) coincides with that obtained in [9, 15, 24].
Finally, consider the case in which ρ is maximally mixed, i.e. is the density matrix I/N. In this
case x = 1/N and equation (42) gives

MA
1 (1/N, 0) = 1

NA
(44)

in agreement with the general result (24).

3.2. kth moment

The technique shown in the previous section can be easily generalized in order to compute
from (32) higher moments at β = 0. We obtain

MA
k (�X ) =

∫
dμH (UX ) π k

A(UX�XU†
X )

=
∑

1�α1,...,α2k�NA

∑
1�β1,...,β2k�NB

∏
1�i�2k

λαiβi

×
∑

1�i1,...,i2k�NA

∑
1� j1,..., j2k�NB

∫
dμH (UX )

∏
1���2k

Ui� j�,α�β�

×
∏

1�m�k

U†
α2mβ2m,i2m−1 j2m

U†
α2m−1β2m−1,i2m j2m−1

. (45)

Equation (34) for n = 2k gives

MA
k (�X ) =

∑
1�α1,...,α2k�NA

∑
1�β1,...,β2k�NB

∑
τ,σ∈S2k

∑
c∈C(S2k )

C[σ ] fk(τ )δ([τσ s], c)
∏

1�i�2k

λαc(i)βc(i) ,

(46)

9
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where fk(π ) depends on the permutation π ∈ S2k:

fk(π ) :=
∑

1�i1,...,i2k�NA

∑
1� j1,..., j2k�NB

∏
1���2k

δ(i�, iπ(�))
∏

1�m�k

δ( j2m−1, jπ(2m))δ( j2m, jπ(2m−1))

(47)

and, analogously to equation (38), s is the swapping of pairs of nearby indices

is(2�−1) = i2� and is(2�) = i2�−1 ∀ � = 1, . . . , k. (48)

Observe that when k = 1 we retrieve MA
1 (�X ) (see equation (36)). The different contributions

of the spectrum can be classified in terms of the conjugacy classes of the symmetric group,
as shown in equation (39). However, for k > 1, they do not depend only upon the purity
x = Tr �2

X , but exhibit a more complex dependence on the spectrum, through its higher order
invariants Tr �k

X , with k > 2. Thus, the integral on the spectrum (31) is in general non-trivial.

3.3. Second moment

Now let us fully compute the second moment of the purity for arbitrary bipartite states, with
purity x ∈ [1/N, 1], generalizing some results found for pure states, x = 1, [9, 15, 24]. The
second moment can be directly computed by setting k = 2 in equation (45). The expression
for the coefficients C[π ] in (34) when π ∈ C(S4) is [11]

C[14] = N4 − 8N2 + 6

(N − 3)(N − 2)(N − 1)N2(N + 1)(N + 2)(N + 3)

C[2, 12] = − 1

(N − 3)(N − 1)N(N + 1)(N + 3)

C[22] = N2 + 6

(N − 3)(N − 2)(N − 1)N2(N + 1)(N + 2)(N + 3)

C[3, 1] = 2N2 − 3

(N − 3)(N − 2)(N − 1)N2(N + 1)(N + 2)(N + 3)

C[4] = − 5

(N − 3)(N − 2)(N − 1)N(N + 1)(N + 2)(N + 3)
.

(49)

The symmetric group S4 consists of five conjugacy classes that yield the following contributions
to the integral (46) in terms of the spectrum of ρ:

[τσ s] = [14] ⇒
⎛
⎝ ∑

1�α�NA

∑
1�β�NB

λαβ

⎞
⎠4

= 1

[τσ s] = [2, 12] ⇒
⎛
⎝ ∑

1�α1�NA

∑
1�β1�NB

λ2
α1β1

⎞
⎠

⎛
⎝ ∑

1�α2�NA

∑
1�β2�NB

λα2β2

⎞
⎠2

= Tr �2
X

[τσ s] = [22] ⇒
⎛
⎝ ∑

1�α�NA

∑
1�β�NB

λ2
αβ

⎞
⎠2

= (Tr �2
X )2

[τσ s] = [3, 1] ⇒
⎛
⎝ ∑

1�α1�NA

∑
1�β1�NB

λ3
α1β1

⎞
⎠

⎛
⎝ ∑

1�α2�NA

∑
1�β2�NB

λα2β2

⎞
⎠ = Tr �3

X

[τσ s] = [4] ⇒
∑

1�α�NA

∑
1�β�NB

λ4
αβ = Tr �4

X , (50)

10
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with τ, σ ∈ S4 and s ∈ S2 defined in (48) being k = 2. By gathering all we obtain

MA
2 (�X ) = {[

C[14]N2
AN4

B + C[2, 12]2NA
(
N2

A + 2
)

N3
B

+C[22]N2
A

(
N2

A + 2
)

N2
B + C[3, 1]8N2

AN2
B

+C[4]2NA
(
2N2

A + 1
)

NB
]

+ Tr �2
X

[
C[14]2NA

(
N2

A + 2
)

N3
B

+C[2, 12]2N2
AN2

B

(
N2

A + 3N2
B + 14

)
+C[22]2NANB

(
N2

A

(
N2

B + 4
) + 2

(
N2

B + 1
))

+C[3, 1]8NANB
(
N2

A

(
N2

B + 2
) + 2N2

B + 1
)

+C[4]4N2
A

(
N2

A + 8
)

N2
B

]
+ (Tr �2

X )2
[
C[14]N2

A

(
N2

A + 2
)

N2
B

+C[2, 12]2NANB
(
N2

A

(
N2

B + 4
) + 2

(
N2

B + 1
))

+C[22]N2
AN2

B

(
2N2

A + 3N2
B + 4

)
+C[3, 1]24N2

AN2
B

+C[4]2NANB
(
2N2

A

(
N2

B + 1
) + 4N2

B + 1
) ]

+ Tr �3
X

[
C[14]8N2

AN2
B

+C[2, 12]8NANB
(
N2

A

(
N2

B + 2
) + 2N2

B + 1
)

+C[22]24N2
AN2

B

+C[3, 1]8N2
AN2

B

(
N2

A + N2
B + 6

)
+C[4]8NANB

(
N2

A

(
N2

B + 2
) + 2N2

B + 1
) ]

+ Tr �4
X

[
C[14]2NA

(
2N2

A + 1
)

NB + C[2, 12]4N2
A

(
N2

A + 8
)

N2
B

+C[22]2NANB
(
2N2

A

(
N2

B + 1
) + 4N2

B + 1
)

+C[3, 1]8NANB
(
N2

A

(
N2

B + 2
) + 2N2

B + 1
)

+C[4]2N2
AN2

B

(
N2

A + 3N2
B + 14

) ]}
, (51)

from which it follows that

MA
2 (�X ) = cNA,NB

[(
N2

B − 1
)(

N4
AN2

B(N2
B − 1) − 2N2

A

(
6N2

B − 7
) + 22

)
+ Tr �2

X

(
2NANB

(
N2

A − 1
)(

N2
B − 1

)(
N2

AN2
B − 14

))
+ (

Tr �2
X )2

(
N2

A − 1
)(

N4
BN4

A + N4
BN2

A − 14N2
AN2

B + 6N2
B + 30

)
+ Tr �3

X 40
(
N2

A − 1
)(

N2
B − 1

)
+ Tr �4

X

( − 10NANB
)(

N2
A − 1

)(
N2

B − 1
)]

, (52)

where

cNA,NB = 1

N2
AN2

B

(
N2

AN2
B − 7

)2 − 36
. (53)

This expression generalizes the already known result for the pure case, when Tr �k
X = 1 for

all k [18, 19]. In particular, if NB = NA = √
N we obtain

MA
2 (�X ) = {[

C[14]N3 + C[2, 12]2N2(N + 2)

+C[22]N2(N + 2) + C[3, 1]8N2 + C[4]2N(2N + 1)
]

+ Tr �2
X

[
C[14]2N2(N + 2) + C[2, 12]4N2(2N + 7)

+C[22]2N(N(N + 6) + 2)

11
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+C[3, 1]8N(N(N + 4) + 1) + C[4]4N2(N + 8)
]

+ (Tr �2
X )2

[
C[14]N2(N + 2) + C[2, 12]2N(N(N + 6) + 2)

+C[22]N2(5N + 4) + C[3, 1]24N2 + C[4]2N(2N(N + 3) + 1)
]

+ Tr �3
X

[
C[14]8N2 + C[2, 12]8N(N(N + 4) + 1)

+C[22]24N2 + C[3, 1]16N2(N + 3) + C[4]8N(N(N + 4) + 1)
]

+ Tr �4
X

[
C[14]2N(2N + 1) + C[2, 12]4N2(N + 8)

+C[22]2N(2N(N + 3) + 1) + C[3, 1]8N(N(N + 4) + 1)

+C[4]4N2(2N + 7)
]}

, (54)

that is,

MA
2 (�X ) = cN[(N5 − 2N4 − 11N3 + 26N2 + 8N − 22)

+ Tr �2
X (2N5 − 4N4 − 26N3 + 56N2 − 28N)

+ (Tr �2
X )2 (N5 − 15N3 + 20N2 + 24N − 30)

+ Tr �3
X 40(N − 1)2

+ Tr �4
X (−10N)(N − 1)2], (55)

with

cN = 1

N2(N2 − 7)2 − 36
. (56)

In the thermodynamical limit, N >> 1, we find

MA
2 = 1

N
(1 + x)2 + O

(
1

N2

)
. (57)

From equations (42), (52) and (53) we can now compute the exact expression for the second
cumulant of the purity at β = 0:

KA
2 (x, 0) = MA

2 (x, 0) − (
MA

1 (x, 0)
)2

= + 2
(
N2

A − 1
)(

N2
B − 1

)(
N2

AN2
B + 11

)
(
N2

AN2
B − 1

)2(
N4

AN4
B − 13N2

AN2
B + 36

)
+ x

2
(
N2

A − 1
)(

N2
B − 1

)( − 2NANB
)(

N2
AN2

B + 11
)

(
N2

AN2
B − 1

)2(
N4

AN4
B − 13N2

AN2
B + 36

)
+ x2 2

(
N2

A − 1
)(

N2
B − 1

)(
N4

AN4
B − 4N2

AN2
B + 15

)
(
N2

AN2
B − 1

)2(
N4

AN4
B − 13N2

AN2
B + 36

)
+ 〈Tr �3

X 〉x
40

(
N2

A − 1
)(

N2
B − 1

)
N2

AN2
B

(
N2

AN2
B − 7

)2 − 36

+ 〈Tr �4
X 〉x

( − 10NANB
)(

N2
A − 1

)(
N2

B − 1
)

N2
AN2

B

(
N2

AN2
B − 7

)2 − 36
. (58)

See [15, 24] for the case x = 1, when all the traces are 1.
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3.4. High-temperature expansion of the first moment of the purity

We can now compute the approximate expression for the first moment of the purity for small
β, by plugging equations (41) and (58) in equation (25), with n = 2:

MA
1 (x, β) ∼ MA

1 (x, 0) + β [(MA
1 (x, 0))2 − MA

2 (x, 0)]

= NB
(
N2

A − 1
)

N2
AN2

B − 1
x + NA

(
N2

B − 1
)

N2
AN2

B − 1

+β

[
− 2

(
N2

A − 1
)(

N2
B − 1

)
(N2

AN2
B + 11)

(N2
AN2

B − 1)2(N4
AN4

B − 13N2
AN2

B + 36)

− x
2
(
N2

A − 1
)(

N2
B − 1

)
(−2NANB)(N2

AN2
B + 11)

(N2
AN2

B − 1)2(N4
AN4

B − 13N2
AN2

B + 36)

− x2 2
(
N2

A − 1
)(

N2
B − 1

)
(N4

AN4
B − 4N2

AN2
B + 15)

(N2
AN2

B − 1)2(N4
AN4

B − 13N2
AN2

B + 36)

−〈Tr �3
X 〉x

40(N2
A − 1)(N2

B − 1)

N2
AN2

B(N2
AN2

B − 7)2 − 36

−〈Tr �4
X 〉x

(−10NANB)(N2
A − 1)(N2

B − 1)

N2
AN2

B(N2
AN2

B − 7)2 − 36

]
. (59)

For a balanced bipartition, NB = NA = √
N, we obtain

MA
1 (x, β) ∼ MA

1 (x, 0) + β [(MA
1 (x, 0))2 − MA

2 (x, 0)]

=
√

N(1 + x)

1 + N

+β

[
− 2(N2 + 11)

(N + 1)2(N4 − 13N2 + 36)

+ x
4N(N2 + 11)

(N + 1)2(N4 − 13N2 + 36)

− x2 2(N4 − 4N2 + 15)

(N + 1)2(N4 − 13N2 + 36)

−〈Tr �3
X 〉x

40(N − 1)2

N2(N2 − 7)2 − 36

−〈Tr �4
X 〉x

(−10N)(N − 1)2

N2(N2 − 7)2 − 36

]
, (60)

and in the thermodynamical limit

MA
1 (x, β) ∼ 1 + x√

N
− 2β

N2
x2 + O

(
1

N3/2

)
. (61)

One might wonder whether higher order cumulants follow a pattern similar to (61). Note that
(61) suggests a convergence radius for the high-temperature expansion βc ∼ N3/2(1 + x)/2x2,
which grows indefinitely when x → 0, in accordance with equation (21). See also figure 1.

Equation (61) at x = 1 can be compared with the results of [9] where β was replaced by
the scaled quantity β = β ′N3/2. With this choice our expression yields

MA
1 (1, β ′N3/2) ∼ MA

1 (1, 0) + β ′N3/2 [(MA
1 (1, 0))2 − MA

2 (1, 0)]

∼ (1 − β ′)
2√
N

, (62)
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1 (x, 0)

Figure 1. First moment of the purity as a function of β. The horizontal (red) line refers to the set of
totally mixed states, with MA

1 (1/N, β) = 1/NA; the (black) curve refers to pure states for β > 0;
the vertical (blue) line corresponds to the first moment of the local purity at β = 0, for arbitrary
mixed states; finally, the shaded (light-blue) region refers to high temperatures.

in perfect agreement with the behavior reported in figure 2 of [9]. Figure 1 yields an overview
and summarizes our results.

4. An alternative approach based on twirling

In this section, we will establish an interesting connection between our problem and the theory
of quantum channels. In particular, we present an alternative approach for computing the
moments MA

n (x, 0) of equation (22) which exploits the properties of twirling transformations
[26–28, 20, 21].

For explanatory purposes, we start in section 4.1 by deriving a general expressions for the
moments MA

n (x = 1, 0) associated with the case in which ρ is pure (i.e. the quantities Mn of
equation (10)) and verify that it yields the exact value given by Lubkin [15] for n = 1. The
case of mixed states is then addressed in section 4.2 showing that for n = 1 it reproduces the
results of section 3.1.

4.1. Pure initial states

Let us consider a fixed (normalized) pure state of the global system X = AB, |ψ0〉X , and
parametrize the pure states of HX as in (5), i.e. |ψ〉X := UX |ψ0〉X , with UX ∈ U (HX ) � U (N)

distributed according to the Haar measure dμH (U ). Its local purity (3) can be expressed as

π(ψ) =
∑

1��,�′�NB

Tr
(

B〈�|UAB|ψ0〉AB〈ψ0|U†
AB|�〉B B〈�′|UAB|ψ0〉AB〈ψ0|U†

AB|�′〉B
)

=
∑

1��,�′�NB

AB〈ψ0|
(
U†

AB|�〉B〈�′|UAB
)|ψ0〉AB AB〈ψ0|

(
U†

AB|�′〉B〈�|UAB
)|ψ0〉AB, (63)

where {|�〉B} is an orthonormal basis of HB, and the cyclicity of the trace was used. We can
recast this expression into a more compact form by doubling the Hilbert space, i.e. adding two
auxiliary copies A′ and B′ of A and B, respectively. We obtain

π(ψ) = Tr
[(

UAB ⊗ UA′B′
)(|ψ0〉AB〈ψ0| ⊗ |ψ0〉A′B′ 〈ψ0|

)(
U†

AB ⊗ U†
A′B′

)(
SB|B′ ⊗ IAA′

)]
, (64)

where the trace is over all degree of freedom (i.e. AA′BB′), IAA′ is the identity operator on AA′

and

SB|B′ :=
∑

1��,�′�NB

|�〉B〈�′| ⊗ |�′〉B′ 〈�| (65)
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is the SWAP operator on BB′—this is the unitary, self-adjoint transformation which, for all
operators �B and ϒB′ , gives

SB|B′ (�B ⊗ ϒB′ )SB|B′ = ϒB ⊗ �B′ . (66)

Recalling that first moment MA
1 (x = 1, 0) = M1 of equation (10) is obtained by averaging

over all possible UX , we can then write

M1 = Tr
(
T (2)(|ψ0〉X 〈ψ0| ⊗ |ψ0〉X ′ 〈ψ0|)

(
SB|B′ ⊗ IAA′

))
, (67)

where X = AB, X ′ = A′B′, and where T (2) is the completely positive, trace-preserving twirling
channel [26–29] which transforms the operators �XX ′ of XX ′ into

T (2)(�XX ′ ) =
∫

dμH (U ) (UX ⊗ UX ′ ) �XX ′
(
U†

X ⊗ U†
X ′

)
. (68)

This map plays an important role in quantum information theory where it was first introduced
as a tool for characterizing the distillability of bipartite entanglement [21, 20]. It has several
properties which allow us to simplify the calculation. For instance, it is known that T (2) maps
all the states of the system into (generalized) Werner states [26, 27]. Furthermore, it is self-
adjoint—i.e. its description in Heisenberg picture coincides with T (2). In particular, this last
property can be used to rewrite (67) as

M1 = (
X 〈ψ0| ⊗ X ′ 〈ψ0|

)
T (2)

(
SB|B′ ⊗ IAA′

) (|ψ0〉X ⊗ |ψ0〉X ′
)
. (69)

Explicit expressions for the action of T (2) can be obtained by exploiting the symmetry of
dμH (U ). In particular, it is possible to show that T (2)(�XX ′ ) can be decomposed as a
linear combination of the projections on the symmetric and anti-symmetric subspaces of
XX ′ = ABA′B′ (with respect to the bipartition AB|A′B′). Introducing then the SWAP operator
which exchanges X with X ′ this can then be written as

T (2)(�XX ′ ) = NIXX ′ − SX |X ′

N(N2 − 1)
Tr �XX ′ + NSX |X ′ − IXX ′

N(N2 − 1)
Tr(SX |X ′�XX ′ ) (70)

= N Tr �XX ′ − Tr(SX |X ′�XX ′ )

N(N2 − 1)
IXX ′ + N Tr(SX |X ′�XX ′ ) − Tr �XX ′

N(N2 − 1)
SX |X ′ , (71)

where N = NANB is the dimension of HAB. (Here IXX ′ is the identity operator while
SX |X ′ = SAB|A′B′ = SB|B′ ⊗ SA|A′ is the SWAP which exchanges AB with A′B′.)

Thanks to this expression, we can now easily compute the value of M1, either
using equation (67) or equation (69). Consider for instance the first approach. We have
first to compute the quantities Tr �XX ′ and Tr(SX |X ′�XX ′ ) with �XX ′ being the operator
|ψ0〉X 〈ψ0| ⊗ |ψ0〉X ′ 〈ψ0|. This is

Tr(|ψ0〉X 〈ψ0| ⊗ |ψ0〉X ′ 〈ψ0|) = 1,

Tr
(
(SB|B′ ⊗ SA|A′ )|ψ0〉AB〈ψ0| ⊗ |ψ0〉A′B′ 〈ψ0|

) = 1, (72)

where in the second expression we used the fact that |ψ〉AB ⊗ |ψ〉A′B′ is invariant under SX |X ′ ,
i.e. (SB|B′ ⊗ SA|A′ )(|ψ〉AB ⊗ |ψ〉A′B′ ) = |ψ〉AB ⊗ |ψ〉A′B′ . Replacing all this in equation (70) we
obtain

T (2)(|ψ0〉X 〈ψ0| ⊗ |ψ0〉X ′ 〈ψ0|) = IXX ′ + SX |X ′

N(N + 1)
, (73)

and thus

M1 = 1

N(N + 1)
Tr((IAB A′B′ + SB|B′ ⊗ SA|A′ ) (SB|B′ ⊗ IAA′ ))

= 1

N(N + 1)
(Tr(SB|B′ ⊗ IAA′ ) + Tr(IBB′ ⊗ SA|A′ )) (74)
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(here we exploited the fact that S2
B|B′ = IBB′ ). Now, we can use N = NANB and the identities

Tr(SB|B′ ⊗ IAA′ ) = NBN2
A, Tr(IBB′ ⊗ SA|A′ ) = NAN2

B (75)

to obtain

M1 = NA + NB

NANB + 1
, (76)

which coincides with the correct value [15, 24].
We mention that the same techniques can also be applied to higher moments Mn. The

extension of equation (67) for n � 2 is obtained by introducing 2n copies of AB organized
in the n pairs, i.e. A1B1A′

1B′
1, A2B2A′

2B′
2, . . ., AnBnA′

nB′
n. We then introduce the following

generalized twirling transformation acting on XX ′ = A1B1A′
1B′

1, A2B2A′
2B′

2, . . ., AnBnA′
nB′

n,
i.e.

T (2n)(�XX ′ ) =
∫

dμH (U ) (U ⊗ U ⊗ · · · ⊗ U︸ ︷︷ ︸
2n

) �XX ′ (U† ⊗ U† ⊗ · · · ⊗ U†︸ ︷︷ ︸
2n

), (77)

with �XX ′ being a generic operator on HXX ′ := H⊗2n
AB . This channel is a proper generalization

of the map T (2) whose properties can be established along the lines of [11]. With this choice
equation (10) then can be expressed as

MA
n (x = 1, 0) = Mn = Tr

(
T (2n)

(|
⊗2〉〈
⊗2|⊗n
)(

S(2n)

B ⊗ I(2n)

A
))

, (78)

where |
⊗2〉⊗n := ⊗n
j=1(|ψ〉AjB j ⊗ |ψ〉A′

jB
′
j
), IA being the identity on the 2n copies of A, i.e.

A = A1A′
1 · · · AnA′

n, and with S(2n)

B being the SWAP operator which exchanges B1B2 · · · Bn

with B′
1B′

2 · · · B′
n pairwise, i.e. S(2n)

B = ⊗n
j=1SBj |B′

j
.

4.2. Mixed initial states

Consider now the case with x < 1. Following the parameterization introduced in sections 2
and 3, we split the average over the set Sx(HX ) of the density matrixes of global purity x,
as an average over the unitary rotations of acting on HX followed by an average over the
space of the eigenvalues ρ—see equation (16). Specifically, this is accomplished by writing
ρ(U ) = UAB �AB U†

AB, with UAB being a generic unitary transformation on HAB, while �AB

represents a given arbitrary choice of the system spectrum, see equation (26). For convenience,
let us rewrite the purification (27) of the density matrix ρ as

|
〉ABab =
∑

1�α�NA

∑
1�β�NB

√
λαβ |α〉A ⊗ |β〉B ⊗ |α〉a ⊗ |β〉b, (79)

where now the ancillary systems, isomorphic to A and B, are labeled by a and b, respectively.
The reduced density matrix ρA(U ) = TrB ρ(U ) can thus be written as

ρA(U ) = TrBab(UAB|
〉ABab〈
|U†
AB)

=
∑

1�q�NAN2
B

Bab〈q|UAB|
〉ABab〈
|U†
AB|q〉Bab, (80)

with {|q〉Bab} being an orthonormal basis of Bab. Similarly, the local A-purity of ρA(U )

becomes

πA(ρ) = Tr ρ2
A(U ) =

∑
1�q,q′�NAN2

B

Tr
(

Bab〈q|UAB|
〉ABab〈
|U†
AB|q〉Bab

×Bab〈q′|UAB|
〉ABab〈
|U†
AB|q′〉Bab

)
=

∑
1�q,q′�NAN2

B

ABab〈
|U†
AB|q〉Bab〈q′|UAB|
〉ABab

×ABab〈
|U†
AB|q′〉Bab〈q|UAB|
〉ABab (81)

16



J. Phys. A: Math. Theor. 45 (2012) 015308 A De Pasquale et al

which, once more, can be casted as an expectation value on |
〉⊗2 by doubling the space (see
equation (29)). Therefore, by integrating over UAB we obtain

MA
1 (�X ) = Tr(T (2)(|
〉Xx〈
| ⊗ |
〉X ′x′ 〈
|) (SBab|B′a′b′ ⊗ IAA′ ))

= (Xx〈
| ⊗ X ′x′ 〈
|)T (2)(SBab|B′a′b′ ⊗ IAA′ )(|
〉Xx ⊗ |
〉X ′x′ ), (82)

where T (2) being the twirling transformation on XX ′ of equation (68) with X = AB, X ′ = A′B′,
x = ab and x′ = a′b′ (here A′, a′, B′ and b′ are the auxiliary copies of A, a, B and b,
respectively). The above expression is the average purity of the subsystem A computed for
states ρ having the same spectra �X .

To compute the above quantity this time we use the last identity of equation (82). According
to equation (71) we have to compute Tr �XX ′ and Tr(SX |X ′�XX ′ ) with �XX ′ being the operator
SBab|B′a′b′ ⊗ IAA′ = SB|B′ ⊗ Sb|b′ ⊗ Sa|a′ ⊗ IAA′ . That is

TrABA′B′ (SBab|B′a′b′ ⊗ IAA′ ) = TrABA′B′ (SB|B′ ⊗ Sb|b′ ⊗ Sa|a′ ⊗ IAA′ )

= Tr(SB|B′ ) Tr(IAA′ ) Sb|b′ ⊗ Sa|a′ = N2
ANB Sb|b′ ⊗ Sa|a′ , (83)

TrABA′B′ (SAB|A′B′ (SBab|B′a′b′ ⊗ IAA′ )) = TrABA′B′ (IBB′ ⊗ SA|A′ ⊗ Sb|b′ ⊗ Sa|a′ )

= Tr(IBB′ ) Tr(SA|A′ ) Sb|b′ ⊗ Sa|a′ = N2
BNA Sb|b′ ⊗ Sa|a′ . (84)

Thus from equation (71) we obtain

T (2)(SBab|B′a′b′ ⊗ IAA′ ) = NB(N2
A − 1)

N2
AN2

B − 1
IBB′ ⊗ IAA′ ⊗ Sb|b′ ⊗ Sa|a′

+ NA(N2
B − 1)

N2
AN2

B − 1
SB|B′ ⊗ SA|A′ ⊗ Sb|b′ ⊗ Sa|a′ , (85)

where we used N = NANB. Replace now this into equation (82) and employ the identities

(Xx〈
| ⊗ X ′x′ 〈
|)(IXX ′ ⊗ Sx|x′ )(|
〉Xx ⊗ |
〉X ′x′ ) = Tr �2
X ,

(Xx〈
| ⊗ X ′x′ 〈
|)(SX |X ′ ⊗ Sx|x′ )(|
〉Xx ⊗ |
〉X ′x′ ) = 1. (86)

The final result is thus

MA
1 (�X ) = NB

(
N2

A − 1
)

N2
AN2

B − 1
Tr �2

X + NA
(
N2

B − 1
)

N2
AN2

B − 1
(87)

which is equation (41) and depends upon the spectrum �X only through its purity. By averaging
upon on �X while keeping fix x gives us the same result (42).

5. Conclusions

From the results obtained in the previous sections one can infer that the same phenomenon
of concentration of measure that occurs for the eigenvalues of the reduced density matrices
of pure states [9, 10] occurs in the present case as well. Indeed, we observe that for large N
the leading order of all k-moments equals the kth power of the first moment (43), that, for a
balanced bipartition NA = NB = √

N, reads

MA
1 (x, 0) = (1 + x)√

N
+ O

(
1

N3/2

)
. (88)

This observation spurs from the calculation of the second moment (55):

MA
2 (x, 0) = (1 + x)2

N
+ O

(
1

N2

)
. (89)
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Therefore,

MA
2 (x, 0) = MA

1 (x, 0)2 + O
(

1

N2

)
. (90)

By observing that the contributions of O(1/N) to the second moment come from the
coefficients proportional to C

[
14

]
in (46), i.e. the identity permutation σ = 0, and conjecturing

that the leading contribution for all the kth moments comes only from C
[
1k

] ∼ 1/Nk one
obtains

MA
n (x, 0) =

(
(1 + x)√

N

)k

+ O
(

1

N(k+2)/2

)
. (91)

Another check of the validity of (91) derives by the interpolation between maximally mixed
and pure global states. See figure 1. The scaling with N is preserved, therefore allowing us to
interchange the x → 1 and N → ∞ limits.

This uncovers the issue of computing the subdominant terms in the kth moments’
expansion that become instead leading-order terms in the kth cumulants. This could be possible
if we had an appropriate asymptotic expansion of the combinatorics coefficients C, which we
do not know. We leave this as a challenge for future work.
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