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The inevitable presence of decoherence effects in systems suitable for quantum computation neces-
sitates effective error-correction schemes to protect information from noise. We compute the stability of
the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex

Ising model. By studying the stability of the related ferromagnetic phase via both large-scale Monte Carlo
simulations and the duality method, we are able to demonstrate an increased error threshold of 18.9(3)%
when noise correlations are taken into account. Remarkably, this result agrees within error bars with the
result for a different class of codes—topological color codes—where the mapping yields interesting new

types of interacting eight-vertex models.
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L. INTRODUCTION

Moore’s law has accurately described the speedup of
current computer technologies for half a century, yet this
speedup is slowly coming to an end due to transistor
limitations. A promising alternative is given by quantum
computers. However, the qubit manipulations required for
information processing and communication are prone to
errors because qubits are more sensitive to noise than their
classical counterparts. Consequently, protecting qubits has
become an issue of paramount importance for the success
of quantum computation. The effects of single-qubit
operations can be decomposed into three processes—bit
flips, phase flips, as well as a combination thereof, which
can be represented by the three Pauli matrices o*, o%,
and o, respectively. This is in contrast to classical bits,
which can suffer only from a single type of error, namely,
bit flips.

More generally, the notion of a noisy channel is instru-
mental in characterizing the disturbing effects on physical
qubits. Such a quantum channel can be described by spec-
ifying the probability (or “qubit error rate”) p for each of
the aforementioned noise types. For instance, if only o*
occurs, then we have a bit-flip channel. In this paper, we
are interested in channels of the form

D,p)=0=pp+ DY p,ops”, (1)

W=X,y,2
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where the density matrix p fully describes the quantum
state, and the probability for each type of error to occur is
pw €[0,1] with p:=p,+ p, + p,. The depolarizing
channel exhibits equal probability p,, = p/3 for each error
type to arise. That being so, the depolarizing channel is
more general than the bit-flip channel, because it allows for
the unified, correlated effect of all three basic types of
errors. The implications of this error model for the per-
formance of a quantum code remains an open problem. In
addition, the depolarizing channel plays a fundamental role
in quantum-information protocols where noise has to be
taken into account, including quantum cryptography
[1,2], quantum distillation of entanglement [3], and even
quantum teleportation [4]. Experimentally, controllable
depolarization has been realized recently in photonic
quantum-information channels [5] with a Ti:sapphire
pulsed laser and nonlinear crystals, as well as 2-qubit
Bell states [6]. Here we compute the effects of depolariza-
tion on a set of entangled qubits.

A. Topological codes

The goal of quantum error correction [7,8] is to protect
quantum information from decoherence. One approach
using topology is based on encoding (few) logical qubits
in a particular state subspace of (typically many) physical
qubits which is not disturbed directly by noise. Such a
suitable subspace of states can be defined in terms of a
set of commuting observables, called check operators,

Si=glo?- oM, 2

each being a projective measurement with respect to the
code subspace (i.e., the eigenvalue signals errors on par-
ticipating qubits). Investigating all stabilizers S' allows one
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to limit the set of possible errors to those compatible with
the measured error syndrome. Our best strategy then is to
classify the remaining, nondistinguishable errors accord-
ing to their effect on the encoded logical information and
undo the effects of the most probable equivalence class E.

A hallmark of ropological quantum error-correction
codes [9-14] is the geometrical locality of these check
operators: Physical qubits are placed on a lattice and check
operators depend only on a few neighboring sites. The
logical information, which is encoded globally in a sub-
space of all physical qubits, is preserved as long as we can
successfully detect and correct local errors. If errors on the
physical qubits occur with a probability p, the error thresh-
old p.—a key figure of merit for any quantum code—is
defined as the maximum error probability p, such that error
classification is achievable. For error rates larger than p_,
the error syndrome’s complexity inhibits unambiguous
error recovery. It is therefore of current interest to find
codes where p.. is large.

B. Error threshold as a phase transition

The process of error correction resembles a phase tran-
sition and, indeed, it is possible to connect error correction
directly to an order-disorder phase transition in a suitable
classical statistical-mechanical model [12,15,16]. One can
derive a Hamiltonian Hg of interacting Ising spins s;,
labeled by a Pauli error E that controls the sign of the
couplings, such that the probability of each equivalence
class E is proportional to the partition function

p(E) = Zg(B) 1= Y e PHEG), 3)
{Si}

Equation (3) has to be interpreted as describing a random
statistical model with quenched couplings and two parame-
ters: the error probability p governing the fraction of
negative interaction constants J, € {* 1}, and the inverse
temperature 8 = 1/T. For low enough T and p the system
orders into a ferromagnetic state (see Fig. 1). Along the
Nishimori line [17] where Eq. (3) holds, the ordered
(disordered) phase corresponds to the topological code
being effective (ineffective). The intersection of the
Nishimori line and the phase boundary identifies the error
threshold p.,..

The first topological codes studied were toric codes [9],
still under intense investigation and scrutiny mainly due to
their simplicity and elegance. To determine their error
threshold, we show that toric codes under the depolarizing
channel connect to the celebrated eight-vertex model (see
Fig. 2) introduced by Sutherland [18], as well as Fan and
Wu [19], and whose general solution by Baxter [20-22]
stands as the culmination of a series of breakthroughs in
the theory of phase transitions and critical phenomena.

The aforementioned mapping onto a statistical-
mechanical model to compute the error tolerance of quan-
tum codes was first applied to toric codes with bit-flip
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FIG. 1. Phase boundary estimated from Monte Carlo simula-
tions for the estimation of the error threshold of the toric code, as
well as two realizations of color codes (see text). The error
threshold p. corresponds to the point at which the Nishimori
lines intersects the phase boundary. Remarkably, the phase
boundaries for all three codes agree within error bars. The stable
ordered phase corresponds to the regime where quantum error
correction is feasible.

FIG. 2. When computing the stability of the toric code to
depolarization, the problem maps onto a classical statistical
Ising model on two stacked square lattices. In addition to the
standard two-body interactions for both top (a) and bottom
(b) layers, the resulting Hamiltonian also includes four-body
terms (c) that introduce correlations between the layers.

errors [15], connecting them to the random-bond Ising
model. In general, for individual bit flips the error thresh-
old is p. = 10.9%, and the same is true for phase flips
alone. Therefore, under depolarizing noise and separately
correcting bit flips and phase flips, the threshold is p. =
(3/2)p, = 16.4%. However, this result neglects correla-
tions of bit flips and phase flips. We estimate the threshold
under depolarizing noise for ideal error correction, such
that, in particular, correlations are taken into account.
We find p. = 18.9(3)%. Remarkably, the error threshold
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increases significantly by taking correlation effects into
account. They should thus not be neglected by recovery
algorithms. A recent advance in this regard is the renor-
malization approach of Duclos-Cianci and Poulin [23]
where p. = 16.4% was confirmed, still leaving room for
further improvement [24]. Note also that p,. is very close to
the hashing bound p = 0.1893 [26], which is also the case
for uncorrelated bit-flip and phase-flip noise [15,27].

II. TOPOLOGICAL STABILIZER CODES

A. Error correction in stabilizer codes

Both toric codes [9] and color codes [10] are topological
stabilizer codes. A stabilizer code is described by a set of
check operators §; in the Pauli group. That is, they are
tensor products of Pauli operators o, o, and o*. These
check operators S; are a commuting set of observables with
eigenvalue =1 that generates an Abelian group S := (S;)
that does not contain —1, called the stabilizer group.
Encoded states | i) are those for which all check operators
satisfy S;|if) = +|). If errors affect the state, typically
they will change the value of the check operators, leaving a
trace that can be used to recover the original state. Note
that some errors are undetectable because they commute
with all check operators and thus leave no trace.

We are interested in noisy channels of the form

po— p1 = D p(E)Ep,ET, 4)
E

where the sum is over all Pauli group elements E, and p(E)
denotes the probability for E to occur. Several different
Pauli errors E have the same effect on the encoded state.
Therefore, it is convenient to place them in equivalence
classes E, such that E is equivalent to E' when EpEf =
E'pE't on an encoded state p or, equivalently, when EE is
proportional to a product of check operators. Therefore, the
total probability for a given class of errors is given by

p(E) = p(SE). (5)

SES

One can choose a set of undetectable errors D; and use
them to label the error classes compatible with any given
syndrome. Namely, if E is compatible with the syndrome,
then the possible error classes are E itself and the classes
DiE.

The error-correction process starts with the measure-
ment of the check operators ;. Measuring each S; yields
an eigenvalue s; = = 1. Only certain errors are compatible
with these eigenvalues. In particular, £ is compatible with
the error syndrome if ES; = s;S;E. Ideally, given a syn-
drome s = {s;}, one can compute the relative probabilities
P(E|s) of the different error classes E compatible with s.
If E, is the class that maximizes this probability, the
best guess is that this is the error that occurred and thus
should be corrected. The net effect of such an ideal error
correction is

pr—= P2 =pop + Y piDipD}, (6)

where the success probability p, and the probability for an
effective error D; are

poi=PE),  pi=2pDE). (O
Note that in Eq. (7) the sum is over possible syndromes.
Furthermore,

1 _ P(Ey) 1

==, —=py =1, 8
where D is the number of error classes per error syndrome.
In practice, this ideal error correction might be too costly
from a computational perspective. Therefore, approxima-
tions are needed.

B. Toric codes and color codes

Topological codes have two interesting features: First,
they can be defined for different system sizes in such a way
that check operators remain local—involving only a few
neighboring qubits—and, at the same time, nontrivial un-
detectable errors are global and thus involve a number of
qubits that depend on the system size. Second, they exhibit
an error threshold. For error rates below the threshold, the
success probability [Eq. (7)] approaches 1 for increasing
system size, whereas 1 — p, decreases exponentially.

In toric codes [9], physical qubits are placed on the
edges of a square lattice. Notice that, for each edge in the
direct lattice, there is an edge in the dual lattice. Check
operators S are attached to faces f, in either the direct or
the dual lattices. Toric codes can thus be defined in two
similar, but distinct ways: In the original definition by
Kitaev [9], if f is a face in the direct (dual) lattice
composed by the edges r, s, t, and u, then the correspond-
ing check operator is Sy = 0, ® oy ® 07 @ 0y, (Sp:=
oi® 0i® 0: ® 0%). The second definition, which is
from Wen [28], does not distinguish between dual and
direct faces. If f has a top edge r, a bottom edge s, and
side edges 1, u, then we take Sy = 07 ® 0§ ® 07 ® 0.
Both definitions are equivalent up to a rotation of half of
the qubits. However, for the depolarizing channel, Kitaev’s
definition is related to the alternating eight-vertex model
and Wen'’s definition to the standard eight-vertex model.

In color codes [10], physical qubits are placed on the
vertices of a trivalent lattice with three-colorable faces,
such as, for example, the honeycomb lattice. There are
two check operators S;i and S} attached to each face f,
taking the form §} := @,07 and S} := @07, respec-
tively, with i running over the qubits on the vertices of f.

Because the computing capabilities of color codes
depend on the underlying lattice where the qubits are
placed, we study two different scenarios: the honeycomb
lattice for its simplicity, and a lattice of octagons and
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FIG. 3. For the hexagonal arrangement, there is a stabilizer
operator Z° for each of the hexagon plaquettes (a). In the
mapping, these stabilizer operators translate to classical Ising
spins, which are placed on the dual lattice [regular triangular
lattice, (b)]. The square-octagonal setup (c) has wider computing
capabilities because it allows for a larger class of quantum gates
to be implemented. There are stabilizers Z* (Z%) on the rectan-
gles (octagons). The corresponding dual lattice in the mapping is
the union-jack lattice (d).

squares that allows for the implementation of additional
types of quantum gates. In the mapping onto a statistical-
mechanical model to compute the error threshold, these
two arrangements correspond to the triangular and union
jack lattices, respectively (see Fig. 3).

III. RANDOM EIGHT-VERTEX ISING MODELS

To determine the error threshold, we show that topologi-
cal codes under the depolarizing channel connect to certain
random classical-spin models.

For the toric code, the error-correction process maps
onto a statistical-mechanical interacting eight-vertex
model [18-21]. Remarkably, this class of models exhibits
critical exponents that depend on the coupling constants,
Eq. (22) in Sec. IV B, thus challenging the very notion of
universality. Eight-vertex models were originally formu-
lated in the “‘electric picture,” where the degrees of free-
dom are electric dipoles placed at the bonds surrounding
each vertex of a square lattice [22]; i.e., the number of
independent dipole configurations per vertex is eight. In
addition, a mapping to a ““magnetic picture” was found by
Wu [29], as well as Kadanoff and Wegner [30]: Consider
two independent Ising systems, each on a square lattice,
with classical spin variables s; and s} taking on values *1,
and bonds J;; and J ,, respectively. The lattices are stacked
as shown in Fig. 2 such that the vertices (spin sites) of one

lattice are at the center of the plaquettes of the other. The
Hamiltonian takes the explicit form

H= _Z(Jijsisj + JreSiSe T4 8i88y8p)- 9
+

This can be thought of as two interacting Ising models by
means of a four-spin interaction (denoted by the symbol +)
between original and dual lattices.

In fact, two types of eight-vertex models can be related
to error correction in toric codes: the standard eight-vertex
model, where J;; = J (J;; = J') if a bond is a horizontal
(vertical) link [see Figs. 2(a) and 2(b)], and the alternating
eight-vertex model, where J;; =J (J;; = J') if a bond
belongs to the direct (dual) lattice. In both cases, we set
the 4-spin interaction to J,. = Jy, as depicted in Fig. 2(c).
Thus, both types of eight-vertex models share the same
lattice structure but differ in the pattern of coupling con-
stants. This difference has fundamental consequences in
the exact solvability of the model: While the standard
eight-vertex model is exactly solved for arbitrary cou-
plings, the alternating eight-vertex model is generally not
exactly solvable. In fact, the latter corresponds to the
Ashkin-Teller model [31]. Notice that, when J, = 0, the
eight-vertex model reduces to two decoupled Ising models,
while for J, # 0, the model has two critical temperatures.

The error threshold for correction in quantum codes
corresponds to the critical line separating ordered from
disordered phases. The ordered phase represents a situation
in which quantum error correction can be performed with
arbitrary precision. Determining the location of this critical
line in eight-vertex models is facilitated by the existence of
a self-duality symmetry in the partition function: a duality
transformation relating a high-temperature eight-vertex
model to a low-temperature one on the same lattice. Self-
duality implies that the coupling constants for 2-spin in-
teractions are isotropic, i.e., J = J'. Altogether, an iso-
tropic, self-dual eight-vertex model has a critical line
given by [22]

J =17, e 2AJs = sinh(2BJ), (10)

with the restriction that J, = J. The point in the plane
Jy = J., J =J,. ) at which the self-dual line ceases to
be critical is given by

BJ. = Hog(3) = 0.2746.. .. (11)

This is already a remarkable and encouraging result be-
cause it yields a critical point that is approximately 60%
larger than in the standard square-lattice, two-dimensional
Ising model. Note that the error threshold for bit-flip or
phase-flip errors in the Kitaev model is computed via a
mapping to the aforementioned two-dimensional Ising
model. In that case, the critical point can be computed
from the relationship sinh(28J,) = 1, i.e., BJ. = 0.4406.
Recall that the critical exponents depend continuously on
the value of J,.
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FIG. 4. For topological color codes, qubits are arranged on
trivalent lattices (hexagonal or square-octagonal). These codes
are mapped to triangular lattices (triangular and union jack,
respectively) with plaquette interactions (a),(b) on each layer,
as well as six-body interactions correlating the two layers (c).

In this work we extend the standard eight-vertex model
by adding quenched disorder to the couplings between the
spins. Given that, for the eight-vertex model, BJ,. =
0.2746 is smaller than for the square-lattice Ising model,
we can expect to find a larger error threshold for the
depolarizing channel than for bit-flip or phase-flip errors.

In addition to depolarizing errors in the toric code,
where the problem maps onto Eq. (9), we also study color
codes (see Fig. 3). In this case, the underlying statistical-
mechanical model to study the error stability to depolariz-
ing errors is defined on a triangular lattice. There are two
Ising variables—s; and s/—per site. For convenience, we
introduce an artificial third variable s/ = s;s.. The
Hamiltonian is then given by

— /! ol of " /i
H, = Z (Jijksl-sjsk + Jijksisjsk + Jijksi sisy). (12)
(i, j, k)

Equation (12) is illustrated in Fig. 4 where the top (bottom)
layer corresponds to the s; (s!) Ising variables, with
the corresponding 3-spin interaction term as shown in
Fig. 4(a) [4(b)]. The third term in the Hamiltonian with
6-spin interactions is represented by Fig. 4(c).

When Ji%, = 0 in Eq. (12), we obtain two independent,
triangular, three-body Ising models. Interestingly, this
model can be mapped onto an eight-vertex model on a
kagome lattice [32]. Therefore, the color-code Hamil-
tonian H, in Eq. (12) can be thought of as an interacting
eight-vertex model (or coupled eight-vertex models). In
this work, we consider two different lattice geometries:
triangular and union jack (see Fig. 3).

IV. MAPPING

A. Spin models for depolarizing noise

The goal is to relate the stability of a topological stabil-
izer code to depolarizing noise to the ordered phase of a

suitably chosen classical spin model. However, here we
consider the more general qubit channel shown in Eq. (1).
This channel adds transparency to the mapping and reveals
the differences between Kitaev’s and Wen’s versions of the
toric code with respect to error correction. When Eq. (1) is
applied to each qubit in a code, the net result is a channel of
the form presented in Eq. (4). In particular, the probability
for each Pauli error is

pE) = (1= pr [] ( P WP)E“', (13)

W=X,,2 1

where 7 is the total number of qubits and E,, is the number
of appearances of ¢ in the tensor product that forms E.

The classical spin Hamiltonian is constructed as follows:

(1) Attach a classical spin s, to each check operator S'.

(2) Associate with each single-qubit Pauli operator o an
interaction term J,s{s37 - - - s such that the spins
s; correspond to the check operators S’ affected by
o, i.e., such that S;0 = —oS;.

(3) Attach to each coupling a sign 7, = *1 dictated by
the Pauli error E labeling the Hamiltonian, through
the conditions 0FE = 7, E0.

The resulting Hamiltonian takes the general form

Hp= =Y J,Tys{sg 55, (14)
a

where the sum is over all Pauli operators o and there are
only three different couplings J,, since we set J o = S
with w = x, y, z, and k as the qubit label.

For the mapping, we require the interaction constants
to be

1 PxPyP:
—— log—5+——",

4 "pu(1 —p)
This relates the error probability in Eq. (13) to the

Boltzmann factor for the ordered state, {s; = 1}, given
the interactions generated by E:

J, = w=Xx,Y,2Z (15)

p(E) o< e BHes=1)), (16)

To recover Eq. (3), just notice that replacing the error
E — E' = S'E is equivalent to considering a different
spin configuration in the original Hamiltonian:

Hgip({s;}) = Hg({(1 — 25ij)si})- (17)

Finally, to complete the mapping, the label E in the
Hamiltonian must describe quenched randomness. In par-
ticular, the coupling configuration dictated by E appears
with probability p(E). Equivalently, this means that, for
every qubit &, the probability p(7}, 7}, 75) for each con-
figuration of coupling signs is given by

p(+1,+1,+1)=1—p, p(+1,—1,—-1) = p,,
p(=1,+1,—1) = p,, p(=1,—1,+1)=p..

In the case of the depolarizing channel,

(18)
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px=py=p.=p/3 and J,=J,=J =J (19

The resulting model has two parameters, p and 8J, with
BJ = 1/T. For low p and T, the model orders ferromag-
netically and along the Nishimori line,

3

VYN /L
(1-p)

this order is equivalent to the noise being correctable.

Indeed, comparing error-class probabilities amounts to
computing free-energy differences:

PDE) _ ZpieB) _. _prpr
P(E)  Zg(B) '

In topological codes, we expect the existence of an error
threshold p.—or several for different error types, but we
do not need such generality. When p < p. in the limit of
large systems, the success probability is expected to ap-
proach unity, i.e., pg — 1. Thus, due to Eq. (8), along the
Nishimori line the free-energy difference is asymptotically
infinite, because for any real t, P(A;(B, E)>1t) — 1.
Similarly, when p > p,., the success probability is ex-
pected to become minimal (p, — 1/D) and thus the free-
energy difference converges in probability zero. Therefore,
for any ¢ > 0, we have P(|A;(B, E)| <) — 1. This shows
that the free-energy differences A; are order parameters,
and p, is the critical value of p along the Nishimori line.
In the models of interest here, these are domain-wall free
energies.

(20)

21

B. Models for toric and color codes

Let us now study what the above mapping, Eq. (14),
produces when applied to toric codes and to topological
color codes.

For the toric code, the single-qubit operators o* and o*°
produce two-body interactions, because each bit flip (phase
flip) affects the stabilizer operators on two neighboring
dual [direct] faces. The o operators, which combine
correlated spin-flip and phase-flip errors, introduce four-
body interactions (see Fig. 2). The result is an alternating
eight-vertex model with coupling signs that are parame-
trized by a Pauli error E, namely,

Hp = —Z(JxTﬁsisj + I Tisps) + Sy Tsisisgs)). (22)
+

The classical spin variables s; (s}) live on the top (bottom)
layer of two stacked, two-dimensional, Ising square lattices
with interaction constants J, (J,) (see Fig. 2). The two
layers are shifted by half a lattice spacing, and the third
term in Eq. (22) describes the combined four-spin interac-
tion at each of the crossings marked with the + symbol.
Note that, in Eq. (22), there is one qubit per cross +. For
Wen’s toric code, one recovers the standard eight-vertex
model. In either case, there is a global Z, X Z, symmetry
because one can flip all spins in each lattice separately
without affecting the total energy.

In the case of color codes, there is one spin per face. The
o* and ¢ single-qubit operators produce three-body in-
teractions in Eq. (14), whereas ¢ operators produce
six-body interactions. The Hamiltonian is then given by
Eq. (12) but with coupling signs parametrized by a Pauli
error E, namely,

Hy==3 3 J,7lsysysy, (23)
(i.j k) w=y2
with s7s]s? = 1. Therefore, we obtain two stacked, trian-
gular lattices having three- and six-body interactions (see
Fig. 4), with the six-body interactions introducing correla-
tions between both layers. In this case, the global symme-
try is Z, X Z, X Z, X Z,. Indeed, the sites can be colored
with three colors in such a way that each triangles has a site
of each color. Thus one can flip all spins for two given
colors in either of the two lattices separately without
affecting the total energy.
For p = 0 in Egs. (22) and (23), self-duality predicts a
critical temperature of 7, = 1/8J,. =~ 3.641, a value that
we confirm numerically in our Monte Carlo simulations.

V. MONTE CARLO SIMULATIONS

We investigate the classical statistical spin models ac-
quired in the mapping, Egs. (22) and (23), via large-scale
classical Monte Carlo simulations using the parallel tem-
pering Monte Carlo technique [33].

In the parallel tempering Monte Carlo method, several
identical copies of the system at different temperatures are
simulated. In addition to local simple Monte Carlo
(Metropolis) spin updates [34], one performs global moves
in which the temperatures of two neighboring copies are
exchanged. It is important to select the position of the
individual temperatures carefully such that the acceptance
probabilities for the global moves are large enough [35]
and each copy performs a random walk in temperature
space. This choice, in turn, allows each copy to efficiently
sample the rough energy landscape, therefore speeding up
the simulation enormously.

Detecting the transition temperature T.(p) for different
fixed amounts of disorder allows us to pinpoint the phase
boundary in the p-T phase diagram. The error threshold p..
is then given by the intersection of the phase boundary with
the Nishimori line.

A. Observables and simulation details

For the toric code, it is expedient to partition the lattice
into two sublattices such that the only interconnection is
given by the four-body interactions of the Hamiltonian in
Eq. (22). The ground state of the pure system is realized
when the spins of each sublattice are aligned (but the
alignment may be different, as the sign would cancel out
in both the two- and the four-spin terms). In this case, the
sublattice magnetization is a good order parameter,
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m = L S, 24)
Nep Sp

where P denotes one of the sublattices. Similarly, we note
that each layer of the triangular lattice for color codes is
tripartite, with spins aligned in each sublattice for all
realizations of the pure system’s ground state. Hence,
we can define an order parameter analogous to Eq. (24)
for a suitable sublattice P’. Note that particular caution is
required when implementing the periodic boundary con-
ditions to ensure that these distinct sublattices are well
defined. We can now use the magnetization defined in
Eq. (24) to construct the wave-vector-dependent magnetic
susceptibility,

Xn(K) = N%((Zj}&e“"“f)z%, 25)
e

where (---); denotes a thermal average and R; is the
spatial location of the spin §;. From Eq. (25), we construct
the two-point finite-size correlation function [36],

_ 1 (X (0)]oy
2 Sin(kmin/z) [Xm(kmin)]av

where [---],, denotes an average over disorder, and
Kin = (27/L, 0,0) is the smallest nonzero wave vector.
Near the transition, £&; is expected to scale as

£L

-1, (26)

E/L~X[LV(T —T,)] (27)

TABLE I.  Simulation parameters: L is the linear system size,
Ny, is the number of disorder samples, 7.4 = 2% is the number of
equilibration sweeps (system size times number of single-spin
Monte Carlo updates), Ty (Thmax) 1S the lowest (highest) tem-
perature, and Nt is the number of temperatures used. For the
toric code, we use L = {12, 16, 18, 24, 32, 36}, while, for color
codes, we use L = {12, 15, 18, 24, 30, 36}, following the coloring
constraints that the system size must be a multiple of 3.

P L N sa b Tmin Tmax N T
0.00 12-16 5000 18 3.500 4.000 42
0.00 18-24 1000 19 3.500 4.000 42
0.00 30-36 500 20 3.500 4.000 42
0.04-0.05 12-16 5000 20 3.200 3.800 42
0.04-0.05 18-24 1000 21 3.200 3.800 42
0.04-0.05 30-36 500 22 3.200 3.800 42
0.08-0.12 12-16 5000 20 2.700 3.500 42
0.08-0.12 18-24 1000 22 2.700 3.500 42
0.08-0.12 30-36 500 24 2.700 3.500 42
0.15 12-16 5000 20  2.300 3.200 42
0.15 18-24 1000 22 2.300 3.200 42
0.15 30-36 500 24 2.300 3.200 42
0.17-0.20 12-16 5000 21 1.500 2.800 42
0.17-0.20 18-24 1000 23 1.500 2.800 42
0.17-0.20 30-36 500 25 1.500 2.800 42

where X is a dimensionless scaling function. Because at the
transition temperature, 7 = T, the argument of Eq. (27)
becomes zero (and hence independent of L), we expect
lines of different system sizes to cross at this point. If,
however, the lines do not meet, we know that no transition
occurs in the studied temperature range.

In all simulations, equilibration is tested using a loga-
rithmic binning of the data. This is done by verifying that
all observables averaged over logarithmically increasing
amounts of Monte Carlo time are, on average, time inde-
pendent. Once the data for all observables agree for three
logarithmic bins, we deem the Monte Carlo simulation for
that system size to be in thermal equilibrium. The simula-
tion parameters can be found in Table I.

B. Sample results

For the pure system (p = 0), there is a sharp transition
visible directly in the sublattice magnetization. The tran-
sition temperature T . =~ 3.64 coincides with the value
found analytically. For larger amounts of disorder, a tran-
sition can still be located precisely by means of the cross-
ings in the two-point finite-size correlation function
[Eq. (26)] for different system sizes. Sample data for a
disorder strength of p = 0.170 (i.e., meaning that on
average 17% of the physical qubits are “broken’) are
shown in Fig. 5, indicating a transition temperature of
T.(p) = 2.14(2). The error bars are calculated using a
bootstrap analysis of 500 samples. There are small finite-
size effects which are addressed by analyzing the intersec-
tion T:(L,2L) of pairs of system sizes. We estimate the
limit value for L — oo by means of a linear fit in a 1/L

é’lL/L T T T

1.6 1.0

14 0.9

1.2 0.8

1.0

&/L

2.10

215 2.20 T

0.8 |

0.2 —a— L =12

FIG. 5. Crossing of the correlation function &; /L for the toric
code with a disorder rate of p = 0.170. The data exhibit a clear
crossing at a transition temperature of T.(p) = 2.14(2).
Corrections to scaling are still minimal at this disorder rate,
but they increase closer to the error threshold. Inset: Close-up of
the area where the crossing occurs. The conservative estimate for
the transition temperature is indicated by the vertical shaded
area.
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plot—This is our estimate for the best value in the physi-
cally relevant thermodynamic limit. For disorder rates
approaching the error threshold, corrections to scaling
increase and a careful finite-size scaling analysis has to
be performed to determine 7', [37]. At p = 0.189, the lines
touch only marginally such that both the scenario of a
crossing as well as no transition are compatible within
error bars. This gives rise to the large error bars in the
phase diagram (Fig. 1). For error rates p > p,, the lines do
not meet, indicating that there is no transition in the
temperature range studied.

The crossing of the critical line T, (p) with the Nishimori
line [Eq. (20)] determines the error threshold to depolar-
ization. Our (conservative) estimate is p, = 0.189(3). Our
results are summarized in Fig. 1, which shows the esti-
mated phase diagram.

VI. DUALITY METHOD

An alternative approach to estimating the critical value
p. is to use the duality method [38], originally developed
within the context of spin glasses.

The critical point of a statistical model expressed only
by local interactions between degrees of freedom can be
analyzed using the duality method under the assumption of
a unique transition temperature. The partition function
Z[A] is then given by the local Boltzmann factor A, =
exp(BJ cosm), where ¢ € {0, 1} is the difference be-
tween adjacent spins such as cos(w¢) = 1. We define
the principal Boltzmann factor A, as the case where all
spins are parallel. The partition function has to be invariant
under a Fourier transform, i.e., Z[A] = Z[A"], where A" is
a dual principal Boltzmann factor (via a Fourier trans-
formation). In that case, the critical point is determined
via the equality Ay = A(. This implies that all the compo-
nents of the local Boltzmann factors are equal for several
self-dual models such as the standard Ising model.
Although this self-duality does not work a priori for sys-
tems with quenched disorder in the general case, the
method can be applied in a special subspace called the
Nishimori line [38]. The results can be improved by con-
sidering extended local Boltzmann factors over a restricted

FIG. 6. Clusters used to estimate the error threshold for the
depolarizing channel. The blue lines and triangles denote
quenched random variables 77, and the red lines and triangles
correspond to 7¥. The central site is the spin variable summed
over. The outer sites represent the spin variables fixed in the up
direction.

range of interactions [38,39] (see Fig. 6, which illustrates
the used clusters). Because the resulting statistical-
mechanical Hamiltonians for both the toric code and the
topological color codes are self-dual, we can apply this
efficient technique to obtain estimates (up to systematic
deviations that depend on the clusters used) of the error
threshold.

A. Zeroth-order approximation

The effects of the depolarizing channel on topological
codes can be expressed by a spin-glass model with the
partition function [40]

(7",’,‘.,7'77_.)
Z1A] = ; > !_! Apb, b3, (28)
)

where
AEZ(’{Z) = exp{BJ7* cosmd + BJT¢ cosmeh
+ BITE T cosm cosT ). (29)
7} € {=1}and 7§; € {*1} are quenched random variables
chosen from the distribution

P(7;,

Tf’j) o Bl ) (30)
This model has a gauge symmetry in the subspace J = J,,
which corresponds to the Nishimori line.

To determine the multicritical point, we replicate the
partition function to take into account the quenched ran-

domness of the variables 7}; and 77, i.e.,

zZ=[(ES047, )] oo

bi G, if)

where the brackets denote a configurational average. The
local Boltzmann factor is then given by

n .
(75,75,
A :[ ALl g ] , (32)
nk 1!:[1 qﬁi—(ﬁj,(ﬁ[—qﬁ/- av

where k distinguishes the specific configuration (%, ¢%).
The n-binary Fourier transformation gives the dual
Boltzmann factor A; . It follows [38,39] that A,y = A},
determines the critical point along the Nishimori line.
Taking the leading term in n, we obtain the error threshold
for the depolarizing channel of the toric code as p, =
0.189. .. under the conditions J = J, and 3exp(—4J) =
p/(1 — p) for the Nishimori line. Because the local
Boltzmann factors for the topological color codes on
both the hexagonal and square-octagonal lattice are the
same, we obtain the same estimate for the error threshold.

B. First-order approximation using finite clusters

To reduce systematic errors, we consider finite-size
clusters with four bonds on each square lattice for the toric

021004-8



STRONG RESILIENCE OF TOPOLOGICAL CODES TO ...

PHYS. REV. X 2, 021004 (2012)

code, six triangles taken from each triangular lattice for the
color codes on the hexagonal lattice, and four triangles
from each union-jack lattice for color codes on the square-
octagonal lattice (see Fig. 6). We compute the principal
Boltzmann factors on the clusters, i.e.,

A-[(Z Ay e

bo-
ooy () 0-Po

as well as its dual A:%) via an n-binary Fourier trans-
formation. As before, the critical point along the
Nishimori line is determined via A% = A:%). Taking the

leading order in n, we obtain for the error thresholds

pe = 0.1888.. . (toric code), (34)
pe. = 0.1914 ... (color code, hexagonal), (35)

p. = 0.1878 ... (color code, square octogonal). (36)

Although there are small variations in the estimates, the
estimates are all of the order of approximately 19% and in
agreement with our results from Monte Carlo simulations.

VII. RESULTS AND CONCLUSION

We have shown that the stability under depolarizing
noise of toric codes can be related to the existence of a
magnetic phase in a random eight-vertex model. Similarly,
color codes turn out to be related to a class of “interacting”
eight-vertex models. We analyze the models resulting from
the mapping via both large-scale parallel tempering
Monte Carlo simulations [16,37] and the duality method
[38,39]. By determining T.(p) for different error probabil-
ities p, we are able to determine the phase boundary in the
p-T plane (Fig. 1). Both approaches confirm the existence
of a stable ordered phase and by locating the intersection of
the phase boundary with the Nishimori line, we compute,
in a nonperturbative way, the disturbing effects of noise on
topological codes. The external noise considered in this
work is more realistic than in previous studies because it
applies to bit-flip errors, phase-flip errors, and, more im-
portantly, a nontrivial combination thereof.

The error threshold to depolarization errors for different
classes of topological codes studied is approximately 19%,
which is larger than the threshold for noncorrelated errors.
This is very encouraging and shows that topological codes
are more resilient to depolarization effects than previously
thought. The profound relationship between complex
statistical-mechanical models, such as the eight-vertex
model, and topological quantum error correction promises
to deliver a plethora of new paradigms to be studied in both
fields in coming years.
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