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By comparing the response to external strains in metallic glasses and in Lennard-Jones glasses we find a
quantitative universality of the fundamental plastic instabilities in the athermal, quasistatic limit.
Microscopically these two types of glasses are as different as one can imagine, the latter being determined
by binary interactions, whereas the former is determined by multiple interactions due to the effect of the
electron gas that cannot be disregarded. In spite of this enormous difference the plastic instability is the
same saddle-node bifurcation. As a result, the statistics of stress and energy drops in the elastoplastic
steady state are universal, sharing the same system-size exponents.
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The nature of the fundamental plastic instability in
simple models of amorphous solids with binary interac-
tions was elucidated in recent years [1-8]. The fundamen-
tal plastic instability is best studied in athermal, quasistatic
deformation of an amorphous solid such as to eliminate the
effect of thermal fluctuations and finite strain rates.
Contrary to some pictures suggesting that plastic instabil-
ities occur at predetermined ‘“weak’ sites called “‘shear
transformation zones” [9,10], it was discovered that the
plastic instability occurs as the vanishing of an eigenvalue
of the Hessian matrix H where the latter is defined as
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where U is the total potential energy which is a function of
the positions of all the N particles in the system. Besides
the three obvious zero eigenvalues associated with
Goldstone modes, all the other eigenvalues of H are real
positive as one expects from a real positive-definite sym-
metric matrix. The plastic instabilities exhibit a universal
nature for all the studied binary glasses: at zero external
strain (y = 0) all the eigenvalues of H besides the
Goldstone modes are positive, and the low lying eigenval-
ues are associated with extended eigenfunctions. As the
external strain is increased one eigenvalue begins to go
down towards zero, and at the same time its associated
eigenfunction becomes localized. The eigenvalue, denoted
Ap, hits zero at yp via a saddle-node bifurcation (such that
a minimum in the potential energy landscape hits a saddle)
and the way that it does so is universal, i.e.,
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This scaling law has many interesting consequences. One
immediate consequence is that the barrier AE between the
minimum in which the system resides and the saddle that it
eventually collides with tends to zero like [11]

AE = (yp — y)*/2 3)
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Less obvious (and maybe more interesting) is the conse-
quence of these scaling laws on the system-size depen-
dence of the statistics of stress and energy drops in the
elastoplastic steady state. Once the stress level reaches the
“yielding transition” and the system settles in a steady
state, every plastic instability is associated with a station-
ary statistics for the drops Ao in the stress and AU in the
potential energy. The long strain averages of these quanti-
ties scale with the system size according to [3,4,7].

(AU) ~ N?, (Ao) ~ NP. 4)

It was shown that the numerical values of the exponents are
determined by two ingredients. The first is the scaling laws
(2) and (3). The second one is the assertion that after the
yielding transition the probability to see a zero value of AE
is not zero, in distinction from the unstrained solid in which
this probability is zero, [12,13]. The two ingredients com-
bined result in @ = 1/3 and B = —2/3 universally for all
binary glasses and in both two and three dimensions [12].
In addition, it was shown that the statistics of plastic events
continue to be dominated by the fundamental plastic in-
stabilities discussed here also for finite strain rates and
temperatures up to about 2/3 of T,, see Ref. [14].

In this Letter we study the fundamental plastic instabil-
ity in a totally different class of glasses, i.e., metallic
glasses where the microscopic interaction is very different
from binary since the conducting electron cloud mediates
interactions beyond the pairwise. We study the response of
a model of the metallic glass CuygZrs, in two and three
dimensions using the embedded atom model, and show
quantitative universality with the binary glasses. In spite of
the tremendous difference in microscopic interactions, the
scaling laws (4) will be shown to repeat verbatim, with the
very same scaling exponents.

In order to simulate the consequences of the electron
cloud we use a many-body potential. This potential repre-
sents the cohesive energy of an atom by the local electron
density at that atom, the latter quantity itself being
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determined by the neighbors of the atom. A pure pairwise
interaction is added in order to represent the electrostatic
repulsion (see [15] and references therein for a more de-
tailed description). The expression for the total potential
energy is
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Here ¢ is the pairwise potential, F(p,,) is the many-body
term representing the energy of the mth atom, and p,, is a
measure of the local electron density at the location of the
mth atom, due to contributions from the neighboring atoms
[15]. The functional form of F(p,,) is taken as customary
in the literature, cf. [16,17], i.e., the semiempirical ap-
proximation F(p,,) ~ —./p,,. We employed the functional
forms of ¢ and ¢ from Ref. [18] where fits were obtained
for this model to density functional quantum mechanical
calculations, for the case of the bulk metallic glass
Cuyg¢Zrsy. For the sake of computational speed we cut off
the functions ¢ and ¢ to go to zero smoothly (up to second
derivative) at a finite distance. Explicitly, we used the
following functional forms [18]:
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Here the coefficients A, B, and C have been added to
achieve smooth first and second derivatives of ¢ and
at the cutoff. The values of the parameters p, ¢ €, o, and ¢
in Egs. (7) and (8) are taken from [18]. Note that cutting off
the binary functions at a finite distance does not remove the
multibody interaction because the force between any pair
or particles is configuration dependent through the second
term in the total energy. For our purposes it suffices to
smooth the potential up to second derivative since we are
interested in the Hessian matrix. We use a (scaled) value of
cutoff 1.707 corresponding to an absolute value of 4.5 A
used in [18]. The scaled value of density is 0.951 obtained
from the data in [18] corresponding to 2000 atoms occupy-
ing a volume of 38.5 nm? (close to T, in [18]). All the
simulations reported here are in three dimensions, keeping
a constant density in a three-dimensional box with periodic
boundary conditions in all directions.

We have put our model metallic glass under a shear
strain using the usual algorithm for an athermal quasistatic
process [7]. Figure 1 demonstrates typical stress vs strain
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FIG. 1. Upper panel: typical stress vs strain curve for a system
of 4000 particles. Lower panel: a typical potential energy vs
strain curve for the same system as in the upper panel.

and potential energy vs strain curves for a metallic glass
consisting of 4000 particles. We see the usual linear regime
in the upper panel where the stress is linear in the strain,
and the corresponding regime where the potential energy is
quadratic in the strain in the lower panel. Every drop in the
curves represents a plastic failure, and we are interested in
the statistics and system-size dependence of those. Indeed,
in Fig. 2 we show the potential energy per particle vs strain
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FIG. 2 (color online). Potential energy per particle versus
strain for systems of different sizes between N = 400 and N =
8000. Note the energy peak and then dip before the elastoplastic
steady state is established, this seems particular to the metallic
glass and not commonly seen in binary glasses.
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FIG. 3 (color online). The scaling of (AU) (upper panel) and
(Ao) (lower panel) with the system size N. Symbols indicate
numerical data while the dashed line is a fit. The dashed curves

are power laws with exponents a = 0.330 and 8 = —0.647,
respectively, in good agreement with the power laws (4) which
predict universal exponents @ = 1/3 and B8 = —2/3.

for systems of different sizes from N = 400 to N = 8000.
We see the decline in the amplitude of the fluctuations but
also a small reduction in the average energy in the elasto-
plastic steady state. Note the energy peak and then dip
before the elastoplastic steady state is established; this
seems particular to the metallic glass and not commonly
seen in binary glasses.

The scaling laws with respect to the system size are
examined in Figs. 3. We see that Eqs. (4) are reproduced
by the data with the scaling exponents being very close to
the theoretical values « = 1/3 and 8 = —2/3. This dem-
onstration of universality is determined by the fundamental
plastic instability which, in this case of metallic glass, in
spite of the huge difference in microscopic interactions, is
the same saddle-node bifurcation as in all the simple cases
of binary glasses. To show that this is so we need to
diagonalize the Hessian whose computation is somewhat
delicate in the present case. The analytic form of the
Hessian for our embedded atom model is a bit cumbersome
to write here explicitly, but it can be found in [19]. A
typical calculation of the lowest eigenvalue for the case
N =400 and 1000 is shown in Fig. 4. We see how the

05 T T T T T T
|
0.4 -9
-6~
L ”’«A
03 i o
o 9/‘)’9
< o
0.2 /,‘7 -
0
L ,°/
0.1F, a
Of L 1 L 1 A 1 L
0 0.0002 0.0004 0.0006 0.0008
VY
T T T T T T T
| |
_o
_o
02 - 9/6/0 -
. P
4
o t o7 B
'
< P
/9/
0.1 - & —
l¢’
0 g . 1 . 1 . 1 .
0 0.0002  0.0004 0.0006 0.0008
Y- Y

FIG. 4 (color online). The lowest eigenvalue of the Hessian
matrix as it drops to zero at a typical plastic event in the
elastoplastic steady state for N = 400 (upper panel) and N =
1000 (lower panel). Note that vy p stands for any one of the strain
values at which a plastic event is taking place. The proportion-
ality constants are not universal, but the exponent 0.5 is. The
agreement with the saddle-node bifurcation scenario (dashed red
curve) seems perfect.

eigenvalue goes to zero at a value yp precisely as expected
for a saddle-node bifurcation, i.e., according to Eq. (2).
The conclusion of this study is twofold. First, we learn
that the nature of the precise microscopic model does not
matter much in determining the fundamental plastic insta-
bility of amorphous solids. Once coarse grained, or up-
scaled to provide us with an energy landscape, the plastic
instability occurs when the strain distorts the landscape
such that a local minimum collides with a nearby saddle.
Such a collision is a generic saddle-node bifurcation that
will be seen as an eigenvalue of the Hessian matrix nearing
zero with a square-root singularity. The power of genericity
of bifurcations exceeds the details of the interparticle
potential. Second, we learn once more that it is futile to
seek ‘““shear transformation zones” in the material. At rest,
unstrained, the material does not exhibit any preexisting
local weak points where the plastic event will take place.
The plastic event is a result of the straining process, in
which an extended eigenfunction of the Hessian matrix
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FIG. 5 (color online). A two-dimensional demonstration of the
nature of the plastic instability. Upper panel: at y = 0 the
eigenfunction associated with the smallest nonzero eigenvalue
is perfectly extended without any sign of the position of the
incipient instability. Lower panel: the localized eigenfunction
associated with the very same eigenvalue when it approaches
zero (see Fig. 4). Close to the instability the arrows represent the
relative nonaffine velocity associated with the plastic event.
(Lower panel) The largest arrow represents a nonaffine velocity
which is = 220 times the smallest velocity (the smallest arrow)
in the plot.

gets localized at the position of the plastic event. This
lesson is as true for simple glasses as for the metallic glass.
We conclude this Letter by showing the eigenfunction
associated with the lowest eigenvalue at y = 0 and at yp
in a two-dimensional metallic glass (for ease of display
cf. Fig. 5). In equilibrium the eigenfunction is perfectly

extended, and there is nothing in it that can predict the
position of the incipient instability. Once localized, the
eigenfunction exhibits the typical quadrupolar structure
that is associated with the well-known Eshelby inclusion
[20], which is universal for elastic materials independent of
the microscopic details.
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