Janus2: an FPGA-based Supercomputer for Spin Glass
Simulations

The Janus CoIIaboration*

ABSTRACT

We describe the past and future of the Janus project. The
collaboration started in 2006 and deployed in early 2008 the
Janus supercomputer, a facility that allowed to speed-up
Monte Carlo Simulations of a class of model glassy systems
and provided unprecedented results for some paradigms in
Statistical Mechanics. The Janus Supercomputer was based
on state-of-the-art FPGA technology, and provided almost
two order of magnitude improvement in terms of cost/perfor-
mance and power/performance ratios. More than four years
later, commercial facilities are closing-up in terms of perfor-
mance, but FPGA technology has largely improved. A new
generation supercomputer, Janus2, will be able to improve
by more than one orders of magnitude with respect to the
previous one, and will accordingly be again the best choice
in Monte Carlo simulations of Spin Glasses for several years
to come with respect to commercial solutions.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Physics

General Terms

Algorithms, Performance, Experimentation

Keywords
FPGA, Large Scale Simulations

1. INTRODUCTION

The Janus supercomputer [3] was designed and assem-
bled five years ago as a big facility for running simulations
of lattice systems with discrete variables. The application
around which we took most of the architectural design de-
cisions was the Monte Carlo simulations of glassy systems

*See the Additional Authors section for a detailed collabo-
ration member list

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1CS2012 Workshop “Future HPC systems: the Challenges of Power-
Constrained Performance” Venice, Italy, 2012

Copyright 2012 ACM 978-1-4503-1453-4/12/06 ...$15.00.

defined on regular lattices. Spin glasses [1] are a wide cat-
egory of prototypical glassy systems. Spin variables, taking
a small set of discrete values (e.g. two states, up and down)
sit at the nodes of a regular D-dimensional lattice, and tend
to take the same value of their neighbors if the coupling de-
fined on the edge connecting the corresponding nodes are
positive (and to misalign if the coupling is negative). Cou-
pling on nodes are fixed during the simulation and taken
to be positive or negative at random throughout the lattice
(quenched disorder configuration). The deceivingly simple
rules (we will briefly describe them later), governing the evo-
lution of a single node, reflects in a very complex collective
dynamics, especially when one deals with very large lattice
(order 10° nodes), as required to compute results that can
be compared with experiments on glassy materials.

One striking property of glassy materials — shared by the
systems by means of which we model them — is their ex-
tremely slow relaxation dynamics. At low temperature (be-
low the critical temperature) glasses remains out of equilib-
rium at all relevant experimental time scales. This translates
into (relatively) long-lasting experiments, to which we must
compare numerical results.

One usually relates the basic step in the simulated dynam-
ics, the Monte Carlo step (the trial of one spin-reversal on all
the nodes of the lattice), to the average spin-flip time in real
samples, which is estimated to be order 1 ps. Some real ex-
periments on materials span a time scale of order 1 second
and more, corresponding to 10'2? complete lattice updates
in the simulated dynamics. If one has to get in touch with
relevant length scales (besides the time scale mentioned),
the lattice size cannot be too small (actually, a practical
recipe to tailor lattice sizes as a function of the programmed
simulation time, in order to correctly reproduce the out-of-
equilibrium behavior, has been one of the main results of
our investigation [2]). For a three-dimensional cubic lattice,
a number of sites of 100% is sufficient to study the system
up to experimentally relevant time scales. The simulation
program then consists then in some 10'® spin-flip trials. In
addition, simulation must be repeated on several copies of
the system, to cope with finite size effects; in off-equilibrium
computations, one usually deals with about 100 different in-
dependent samples to minimize the effect of one particular
disorder configuration, amplifying the computational bur-
den to 10?° spin-flip trials. However, this is not the case for
equilibrium simulations, in which one deals with thousands
of copies of smaller systems; however the computational ef-
fort is of the same order of magnitude in both cases.

At the time the project started, available commercial CPU

technology made it possible to develop simulation codes that
partially exploited the (in principle very large) available par-
allelism; a large optimization effort involving simultaneous
handling of different sites, wise memory organization (multi-
spin coding), vectorization (SSE instructions, two- or quad-
core parallel implementation) resulted in a spin-flip time of
order 1 ns. A cluster of order 100 CPUs would then need
some 10° seconds (that is, more than 30 years) to complete
the simulation campaign described above.

The advent of Janus marked a substantial progress: Janus
deploys 256 processors built with state-of-the-art FPGAs.
The simple dynamical rules governing a single spin variable
can be easily implemented as a small block of logical rules; a
single FPGA hosts up to 1000 single-spin-flip engines. With
a conservative clock frequency of 62.5 MHz, one Janus node
has a 16 ps single spin-flip time. A simulation program as the
one outlined above can be completed in just a few months,
making it a viable option.

In more recent years, progress in computer architectures
pushed towards increasing parallelism; on one side, we have
many-core processors with intrinsics on sets of wider regis-
ters; also, GPU technology provides processors with thou-
sands of streaming processors. Careful optimization of our
applications for these architectures increases performance
by one order of magnitude with respect to standard archi-
tectures, coming close to Janus performances, but still not
making it possible for e.g. a graduate student to complete
a large simulation campaign during its PhD studies.

On the other side, a performance increase that is compat-
ible with Moore’s law is inevitably going to finally close-up
and compete with Janus on spin glass applications. Besides,
FPGA technology improved too, and larger and faster pro-
grammable devices will be shortly available on the market;
we foresee that a new generation FPGA-based supercom-
puter, named Janus2, will be able to outperform its ances-
tor by at least two order of magnitude, guaranteeing for
itself a long lifetime in terms of absolute performance and
cost/performance and power/performance ratios in the sim-
ulation of spin glass systems.

In what follow, we briefly describe a typical spin glass
model and the structure of a typical Monte Carlo simula-
tion and discuss why its implementation is more effective on
FPGAs than on conventional CPUs (and GPUs).

We then describe the hardware and software architecture
of Janus, and give performance an power consumption com-
parison figures with respect to other systems available at the
time the project started and available today.

We finally describe the new Janus2 supercomputer, that
is at an early architectural design stage, and discuss ex-
pected performance and expected its expected lifetime as a
top speed Carlo engine for spin glasses.

2. A SAMPLE SPIN GLASS APPLICATION

We start by introducing a sample application and describe
a typical computational kernel, discussing its features and
implications for an FPGA and CPU based implementation.

The three-dimensional Edwards-Anderson model [4] is eas-
ily described in terms of the energy of the system:

E==Y 0iJio;; (1)
(i3)

where o; are L® spin variables (modeling magnetic mo-

ments at atomic lattice sites) taking values +1 (spin up) and
—1 (spin down), sitting at the nodes of a three-dimensional
cubic lattice of linear size L. J;; are the strengths of the
interaction (couplings) along the edges connecting nearest-
neighbor nodes; a positive J;; favors alignment of the spins of
the two neighboring nodes; a negative value favors misalign-
ment. The sum in (1) spans all pairs of nearest neighbors.

The values in the set of couplings J;; is usually extracted
from a distribution with zero mean and unit variance; we
consider the case in which the couplings are +1 or —1 with
probability 0.5 (binary model). A set of 3L* J;; is a sample
of the system; the couplings in a sample remain fixed and
do not participate in the dynamics;

The local energy of a single spin, say oy at site k, is deter-
mined by the interaction with its six neighbors only (z,y,z
one lattice-site steps in the three directions of the lattice):

e(or) = —ordr; 2)

o = Jrjo;, 3)
j=ktz,kty,ktz

for a given configuration of its neighbors o7, it’s a two valued
function, taking values ¢(+1) = —¢y and ¢(—1) = ¢,. The
local field ¢y, is determined only by nearest neighbors of oy.

If we make the assumption that the spin oy is always at
equilibrium with its nearest spins (the local field) at a given
temperature T', the probabilities of the spin to be up or down
is given by the Boltzmann-Gibbs distribution:

exp [£B¢x]
exp [Bér) + exp [—Bdk] '

with 8 = 1/T the inverse temperature (we take the Boltz-
mann constant kg to be one in our units). This defines the
Heat-Bath algorithm (see ref. [5] for a review on dynamic
Monte Carlo algorithms): at any given time, we may decide
if the spin oy is up or down by comparing the probability
to be up with a (pseudo-)random number p extracted uni-
formly in the interval [0, 1).

The recipe for the simulation of the dynamics of a single
sample of the model (1) is then as follows:

P(O’k = :|:1) =

(4)

1. Extract the complete J;; configuration (each J;; can
be +1 or —1 with equal probability.

2. Extract the complete o; configuration (each spin can
be up or down with equal probability; note that by
eq. (4) this implies preparing the system at very high
temperatures).

3. Begin a trial spin-flip: pick a site k at random, each
site equal probability.

4. compute the local field ¢(ox), eq. (3) and the spin up
probability P(+1), eq. (4)

5. Pick a uniformly distributed pseudo-random number
0 < p <1 from your favorite generator.

6. If p < P(+1), then put ox = +1, otherwise put o} =
—1; end of the trial spin-flip.

7. Repeat from step 3 above as many times as needed.

A Monte Carlo steps in this scheme is a number of trial
spin-flip equal to the number of sites in the lattice; it is the
duration of the Monte Carlo steps to be compared to the

average spin-flip times in experiments, as discussed in the
introduction.

Each Monte Carlo step produces a brand new spin con-
figuration on the lattice; at regime, one would expect that
the sampled configurations follow the Boltzmann-Gibbs dis-
tribution at the given inverse temperature (8 for the to-
tal energy (1) (but this is not actually the case for off-
equilibrium simulations of spin glasses, as real equilibrium
is never reached, conforming to the behavior of samples of
glassy materials; notwithstanding this, the chosen micro-
scopic dynamics still tends to real equilibrium).

A nice property of this scheme is that when one performs a
huge number of Monte Carlo steps, the statistical properties
of the observables that one measures (averages over all sites
and averages over Monte Carlo steps) do not depend any-
more on the particular order in which the algorithm visits
each lattice sites.! It turns out that this property is indepen-
dent of any particular lexicographic order we could impose
on the site-visiting scheme, so it is useful to choose an order,
and impose that each site is visited once and only once in
each Monte Carlo step, and always in the same order. This
brings substantial simplification and makes room for a very
efficient exploitation of the internal parallelism, as we will
see shortly.

As pointed out earlier, when one completes the necessary
N Monte Carlo steps, the simulation must be repeated for
a different realization of the disorder configuration, repeat-
ing the scheme above from point 1, generating results for
many (hundreds, thousands) disorder samples. Yet another
degree of replication is needed, however: some properties
of the system comes out when comparing two independent
simulations of the same sample, starting from independent
initial spin configurations. Usually each sample must be
simulated twice at least; the two identical copies with inde-
pendent histories are called replicas.

Let’s discuss some of the usual techniques used in coding
efficient routines for the problem depicted above. The prin-
cipal optimization is usually obtained by multi-spin coding.
In order to compute the local field acting on a spin (step 4),
we need to perform a small number of products and sums of
two-valued variables. We then turn to the representation:

o — Sp= (1+O’k)/2, (5)
Jig = Jij =1+ Ji)/2, (6)
S — Fe=1 Ju®S;=(6-¢x)/2, (7)

J

where the products are substituted by logical XORs. There
is an obvious advantage: spins and couplings may be ar-
ranged in long integer words (say 64-bit), and products of
many spin and coupling variables may be carried out by bit-
parallel logical operations on machine (e.g. 64-bit) words
(this technique also offers huge memory saving). Some com-
plication arises when one has to extract the values of the
local field; still, F}, takes only seven integer values between 0
and 6, and only three 64-bit words are needed to accumulate
the sums of XOR products in a bitwise fashion. Note that
few values for Fj means that P(+1) values (whose computa-
tion might in principle be very lengthy) can be precomputed

1Both random and deterministic sequences guarantee that the asymp-
totic distribution for the spin configurations on the whole lattice obey
the Boltzmann-Gibbs distribution at the given temperature 1/8 with
energy given by Eq. 1, see ref. [5] for details.

and stored in a look-up table, addressed by the values of Fj.

This efficient representation has two main variants de-
pending on the internal or external level of parallelism in-
volved when filling each multi-spin coded word.

In the Asynchronous Multi-Spin Coding (AMSC) approach,
one fills bit positions in the long word with spins (or cou-
plings) belonging to the same site of independent samples.

In the Synchronous Multi-Spin Coding approach, one fills
the bits with spin variables (and couplings) taken from a
single sample, choosing of course a set of spins that can be
updated simultaneously. A possibility consists in classifying
the lattice sites as black or white following a checkerboard
scheme. We see that if we choose to update all the black
sites first, and subsequently all the white ones, the partic-
ular order in which we visit them is completely irrelevant
to the specific outcome, in terms of spin configuration, of
the Monte Carlo step. We may then in principle update
in parallel all black (white) sites, as they have only white
(black) neighbors. For what we discussed earlier, any par-
ticular update order is good as long as, when one performs
a measure, each spin has been visited an equal number of
times on average.

Both approaches have advantages and weaknesses. In the
AMSC scheme, being all spins in a multi-spin-coded word
pertaining to completely independent samples, we might tol-
erate some amount of correlation between samples (sample-
to-sample fluctuations will still be the main source of sta-
tistical uncertainty) and use a single random number for all
the probability comparisons (step 6) in the spin-flip trials
of each of the 64 spins of a multi-spin-coded word. This
amounts to an important saving in terms of random num-
ber generation and increase in the overall throughput. This
is not possible at all in the SMSC scheme, in which any small
spurious correlation between spins in the same sample would
produce unphysical artifacts. On the other side, the AMSC
processes just one spin at a time for each single sample, so
the wall-clock-time needed to complete a given simulation
is not reduced by this technique. The SMSC instead ac-
celerates the simulation time for single sample, shortening
considerably the wall-clock time for completing the simula-
tion of a single realization; however, if many samples are
needed, SMSC is of no help. Sometimes a trade-off between
the two schemes is needed to meet the features of the spe-
cific architecture on which the application is implemented.
But when one has to deal with very large lattices, as in off-
equilibrium dynamics simulations, having a large number of
samples is less critical than in equilibrium simulations, and
the SMSC is the approach of choice.

At the time the Janus project started, it was clear, analyz-
ing the structure of the data sets and operation sequences
involved in the algorithm presented here, that a reconfig-
urable device would have been an outstanding choice for an
efficient implementation.

e First of all, most computations involve a small number
of logical operations on a small set of discrete variables
(just two values in the “simplest” case discussed above).

e There is a lot of internal parallelism, unveiled, for in-
stance, in the checkerboard decomposition.

e The main computational kernel (steps 4, 5, and 6)
when repeated over the whole lattice, gives rise to reg-
ular loops performing the same set of operation on

a data base which has a regular structure, with data
values stored in memory in regular patterns that do
not depend on the computation itself; Simple state-
machines might control the flow of data from and to a
set of identical computational blocks.

e The nature of the main basic computation block may
be cast to exclusively combinatorial logic.

e Pseudo-random number generation, which is an im-
portant time-consuming task in the algorithm, is com-
pletely independent on the rest of details of the algo-
rithm; a set of specialized cores could compute pseudo-
random numbers with the necessary sustained rate.

The ideal machine for spin glass application would then be
a large set of identical cores, able to perform efficiently only
the small set of logical manipulation and a little arithmetics;
a single control structure can drive all the cores working con-
currently and performing all the same thread at the same
time. The cost in term of each core would be order 1000
gates, and thousands of them could be arranged in recon-
figurable devices. Modern FPGA also come with sufficient
internal RAM blocks to store dynamical variables and sus-
tain the required bandwidth.

Traditional architectures, at the time the project started,
were poor in extracting the internal parallelism. Even with
the SMSC scheme, the generation of several high-quality
random numbers (one per spin) was the principal bottle-neck
in the computation. Traditional CPU are in fact tailored to
manage complex basic computations (integer and floating-
point arithmetics) on (relatively) large data sets (32- and
64-bit words).

The ideal spin glass machine would be instead more sim-
ilar to an application specific GPU, with data paths tai-
lored to perform the specific sequence of logical operations,
a control structure shared by a number of cores larger than
in state-of-the-art GPUs, data storage on on-chip memory
only and a memory controller optimized for typical access
patterns as required by the chosen algorithm.

We resorted then to assemble a mesh of FPGA processors,
that gave us freedom to meet all requirements of the proto-
typical application. Janus is essentially an array of hundreds
of thousand of properly tailored small computational cores
for the SMSC simulations of systems of interacting discrete
variables on regular structures.

Resorting to reconfigurable devices as our enabling tech-
nology allows for a large degree of customization and recon-
figuration of the applications. In this sense, Janus is not an
application specific facility, performing well on a wide range
of applications, and with outstanding performances on spin
glasses.

3. THE JANUS ARCHITECTURE

The smallest subsystem of Janus is the Janus board (see
fig. 1), that contains 16 + 1 FPGA-based components: 16
SPs (Simulating Processors) and an IOP (the Input-Output
Processor). A board needs an host PC to be operated (but
a single PC may control several boards). The SP is the
unit in which we exploit internal parallelism, efficiently im-
plementing SMSC algorithms for the chosen applications.
External parallelism is usually obtained by farming SPs (16
per board) and driving more boards. In its full configura-

) JANUS core .
'sp| |sP| |sp]| |sP|

T
|SP |-/ SP|~sP]| |sP]|
— 3

'sP| |sp| [sP] |sP|

JANUS host

'sp| |sp| [sP] |sP|

Figure 1: Top: a schematic view of the Janus board
internal ed external connections. Bottom: a picture
of a Janus board, outside is enclosure box.

tion, Janus is a stack of 16 independent boards, totaling 256
SPs. There are 8 Linux hosts, each connected to two boards.

On a single board, the 16 SPs are connected in a 2D (4x4)
toroidal network with nearest neighbors physical links. More
complex communications between nodes may be performed
by the IOP processor, as more point-to-point connection
links the IOP to each SP in the board.

For some applications, the internal parallelism is applied
at board level (splitting the simulation of a single sample to
2 or more SPs in the board) and replicating simulations on
several boards.

All the devices inside the Janus Board can be managed
through the IOP, which is connected to the host PCs via
a gigabit Ethernet interface. The host PC runs a standard
Linux operating systems, and a set of specific C libraries
designed on top of raw socket API allow a user to get through
the link to and from the IOP.

We choose the Xilinx Virtex-4 LX200 FPGA as the recon-
figurable device for IOPs and SPs. The main clock in the
board is 62.5 MHz and it is distributed to all IOP and SP de-
vices. Such a conservative choice has been useful to guaran-
tee mapping of our application to very dense firmware codes
(we reached near 95% resource occupation for our heaviest
applications).

The 16 SPs and the IOP are housed on daughter cards,
plugged onto the Janus motherboard. The choice of daugh-
ter cards came from ease of maintenance and possibility of
hardware upgrade.

3.1 I0P

The architectural choices for the IOP comes directly from
the features of typical spin glass : a Janus board acts as
a coprocessor to a standard PC running the simulations,
connected on a standard network interface, and with lim-
ited interactions between host and board with respect to
computational tasks. The FPGA on the IOP is a Xilinx
Virtes-4 LX200; the IOP module hosts 8 MB of static mem-
ory, a PROM programming device (to load the IOP’s FPGA
firmware on power-up) and some I/O interfaces: two Gigabit
Ethernet and a serial link (useful for debugging purposes).

The IOP’s FPGA firmware is not designed to be recon-
figured during uptime: it’s main task is to manage data
streams between the host PC and the SPs. The IOP firmware
is logically divided in two main blocks:

e The IOlink block is responsible for managing the low
level details of communications between IOP and host
PC, in particular, manages the Gigabit Ethernet pro-
tocol and performs data integrity checks.

e The MultiDev block comprises several sub-blocks (de-
vices), each responsible od one specific task; there is
a device for each hardware subsystem that might be
reached for control or data transfer; among them:

— A Program Interface (Proglnt) connected to the

programming interfaces of the FPGAs loads firmware

modules onto the SPs

— Memory Interfaces (MemlInt) to read/write inter-
nal FPGA memory and the external 8 MB static
memory.

— A SP Interface (SPint) is responsible for routing
data to SPs and collecting data from them.

e The Stream Router routes the data streams from the
10link to each specific device in the MultiDev, depend-
ing on control data present in the data stream itself.

The logic occupancy of the IOP firmware is small com-
pared to typical simulation firmwares in SPs; the IOP oc-
cupancy is 4% of logic and 18% of total internal memory,
leaving room for implementation of more complex tasks: to

perform some global algorithmic operation, for example, or
. . . ™ . .
to include an instance of a MicroBlaze = microprocessor in

order to further loose the coupling to the host PC.

3.2 Running applications on Janus

The SPs are the computational nodes of Janus. Each SP
may operate independently or together with other SPs, de-
pending on the firmware loaded by the user program running
in the host PCs. The user application consists basically of
two layers: a firmware layer, loaded on the SPs, implements
the many cores performing the computational tasks as de-
scribed in section 2. The main flow of the simulation, data
initialization, firmware selection and load to SPs, data load-
ing to SPs, SPs operation start, status check and stop, and
data retrieve are managed by the user application. From the
user point of view, the Janus machine appears as a grid of
32 identical nodes (each host PC manages two boards, but
could in principle manage many more). A software layer,
the Janus Operating System (JOS), comprises a program
running as a background process in the host PC (josd); it
performs the abstraction and acts as a job queue manager,
reserving resources to users’ jobs depending on their requests

on number and topology of SPs (one might require sixteen
SPs anywhere in the machine or require them on a single
board, actually reserving it as a whole). josd sits on the
low level communication libraries that write and read data
to and from the Gigabit Ethernet devices; josd is also aware
of internal IOP functions, and is able to translate high-level
user requests to data streams that IOP can understand and
route to devices in the MultiDev. For instance, if an user
wants to send a buffer as a new configuration for spins to a
specific SP, josd builds the data burst to be sent through
Ethernet to the IOlink; the data burst contains the appro-
priate headers that will be stripped by the Stream Router
and the data stream will reach the appropriate device (the
SPint); the latter will route the data stream to the chosen
SP node. At this point, it is up to the user to ensure that
data reaching the SPs be correctly interpreted by the SP.
Development of a Janus application consists in facts of two
tasks: programming the firmware (in a hardware descrip-
tion language, VHDL is our choice, for instance) for the
SPs, complying with the I/O requirements of the SPint in
the IOP, and programming the mid-level library functions
that, based on the josd interface to user application (the
jlib library), implement the chosen protocol for communi-
cation with the SPs. In other words, the user application
and the SP firmware can speak their own language, that
will be incapsulated in the data flow between josd and the
SPint in the IOP. Other functionalities common to any possi-
ble application (firmware loading onto SPs, data read/write
to memory interfaces of the MultiDev, read/write of com-
munication interfaces status registers in the IOlink) can be
accessed by other JOS user interfaces (J0S1ib), or through
an interactive shell built on top of them.

3.3 A Sample Spin Glass Application Imple-
mentation

We briefly describe our FPGA implementation of the al-
gorithm described in Section 2; for more details we refer the
reader to Refs. [3].

We try to exploit all FPGA resources (mainly configurable
logic and RAM blocks) to achieve best performance. The
Virtex-4 LX200 FPGA by Xilinx comes with many small
RAM blocks that we can logically combine and stack to re-
produce the 3D array of spins on a lattice of size L (L 2D
memories with width L and depth L). In addition, we have
to simulate two replicas at least as mentioned in section 2.
Then, we consider two replicas of a single disorder sample
and divide them in black and white sites in a checkerboard
scheme; then, we arrange all black spins of one replica to-
gether with all white spins of the other replica in the same
3D memory structure. We end up with two mixed 3D mem-
ory structures (we call them structure P and structure Q);
each spin in one structure has neighbors only in the other
structure: no spins in the same structure are neighbors of
each other in the physical lattices. Now, we can read or write
an L-wide word from each memory of the 3D structure P
per clock cycle; it turns out that having L memories, we can
read an entire plane of the 3D memory P, update it and
write back to memory at the next clock cycle; we only need
three planes of neighbors from the 3D memory structure Q;
if we update planes from, say, bottom to top; of the three
planes of neighbors in) needed to update a plane in P, two
of them will be neighbors also for the subsequent plane of
the structure P. At regime, spanning the whole 3D mem-

Memory structure:

Update Engine (UE):

0
o

Pl

Figure 2: Diagram of the SP firmware operation
for the sample application. In the UE, the logic
block H computes the local field, and use it as an
address to the probability Look-Up Table L; the MC
check block compares the probability value with an
incoming pseudo-random number RND and returns
the outcome as the new spin value.

ory structure, only one read and at most one write is needed
from each RAM block in order to update an entire plane of
the P structure. We can then update an entire plane of L2
spins per clock cycle. Besides, we instantiate identical 3D
memory structures to store all the necessary coupling con-
stants, to be fetched with the same rate as the spins in the
P structure. We then arrange a set of L? identical update
engines (UE); each UE receives in input the six neighbors of
a single spin and combinatorially computes the local field;
the pre-computed and constant-in-time spin-up probabili-
ties, normalized to 32-bit unsigned integers, are stored in
a Look-Up Table; each UE contains its own table and ac-
cesses it independently; the UE also receives a 32-bit word
of random bits; a comparison between the addressed 32-bit
probability and the 32-bit random number is performed and
the new value of the updated spin is returned; Look-Up
Tables un UEs are small 32-bit wide memories, for which
we exploit distributed RAM (instantiated from configurable
logic and not consuming RAM blocks).

Once the whole P structure is updated, the controlling
state machine interchanges the roles of P and @, and the
update of the @ structure starts with the same procedure
described above. When the @ structure is updated, a Monte
Carlo step is complete. The whole machinery is depicted in
fig. 2

A key advantage of the FPGA implementation is that we
can generate pseudo-random numbers concurrently with the
rest of the computation and feed them to UEs at a proper
rate. We usually resort to the 32-bit Parisi-Rapuano random
number generator [6].

A single Parisi-Rapuano 32-bit shift register is a sequence
I(k) of 32-bit integers; if we initialize externally the first 62
values, the set of rules

(k)
R(k)

I(k —24) + I(k — 55) (8)
I(k)® I(k —61),

generates I(k) as the new element of the sequence and R(k)

is the generated pseudo-random value. This simple gener-
ation rule is easily arranged on configurable logic only, so
that exploiting cascaded structures each wheel is capable of
hundreds of iterations per clock cycle. (a close inspection
of the rules, for example, reveals that 24 consecutive values
can always be generated independently; requiring more than
24 numbers at once, forces keeping intermediate values on
registers and cascading the necessary combinatorial logic)
This saves us a lot of resources, as a single shift register re-
quires to keep 62 32-bit integers in registers or distributed
RAM, and we need hundreds of generated random numbers
per clock cycle.

Increasing the number of random generation by a single
wheel increase its combinatorial complexity but saves re-
sources; having more generators is resource greedy but allow
for easier routing of paths at compilation time.

The trade off between the number of generators and how
many numbers any of them could produce per clock cycle
impacts on the total number of UEs we may insert in the
implementation. Another constraint on the number of UEs
is the size of the system: it is advisable, to reduce the com-
plexity of the control logic, that the number of UEs be an
integer divider of the number L? of sites in a plane;

It is usually possible to place more than 512 UEs and up
to 1024 UEs in a single FPGA, thus sustaining an update
time of 16 ps per spin at 62.5 MHz clock speed.

3.4 Other applications

There are straightforward generalizations of the model
presented in Section 2. If we consider g-valued spin vari-
ables, we obtain the g¢-states disordered Potts model (the
Edwards-Anderson model is the 2-states Potts glass). We
can also easily add dilution variables (a binary variable on
each site representing the presence or absence of a spin on
that site) and forcing fields (another binary variable repre-
senting a preferred orientation for a spin, adding to the local
field).

When dealing with equilibrium simulations, one must en-
sure that equilibrium has been reached for the simulated
dynamics. Due to the sluggish dynamics that character-
ize these systems, it is very hard to approach equilibrium
by means of a local simulated dynamics like the Heat-Bath
algorithm described in Section 2. In these situations, one
resorts to the Parallel Tempering scheme [8], in which the
local dynamics is interleaved with global moves that try to
change the temperature of the systems. Actually, one simu-
lates in parallel a number N of replicas of a samples, each at
a different temperature, from very high (the system freely
moves away from its initial configuration) to very low (the
system configuration is almost frozen, correlations are hard
to decay with time). Periodically, the interchange of temper-
ature is proposed between the replicas, so that frozen ones
get the chance to evolve at higher temperature and decor-
relate faster; even if the computational burden appears to
increase by a factor N, the decrease in terms of time needed
to thermalize a single sample at constant temperature is
dramatic. When the algorithm is at regime, each replica is
always in equilibrium at the respective temperature. The
(Monte Carlo) time needed to reach the equilibrium con-
dition strongly depend on the disorder of each sample: for
such reason, even if we need thousands of samples to extract
statistical measures, it is convenient to pursue synchronous
parallelism.

The computation for the trial temperature exchange is as
follows: one has to compute the difference in total energy
AFE between the two replicas, an multiply it by the difference
Ap in the inverse temperature of the two replicas, and then
generate a uniformly distributed random number in [0, 1).
Then the following condition

logp < ABAE 9)

triggers the acceptance of the temperature exchange (if ABAFE

is positive then the test is always successful?); the trials
are performed in a specific order, usually among replicas
with adjacent 8 values and starting from the hottest repli-
cas down to the coldest.

To implement parallel tempering, we simulate the Heat-
Bath dynamics of the N replicas inside one FPGA, arranging
them in P, @ pairs as described above (now we must differ-
entiate the Look-Up Tables as the two replicas in the P, Q
structures have different temperatures; there will be in total
N sets of 7 probability values; we store all of them on RAM
blocks, and the sets are indexed by a beta index; each replica
refers to a single probability set using the beta index; when
the parallel simulation of a pair of replicas starts, we load
the corresponding sets of of probabilities into the UEs Look-
Up Tables consistently with the checkerboard scheme); ev-
ery now and then, say each 10 complete lattice sweeps of all
replicas, we perform the Parallel Tempering update; the AE
computation is straightforward (it amounts, random num-
ber generation apart, as a full lattice sweep, with inhibited
P or @ memory writes; the local energies on the sites as
computed in the UEs can be summed up in one clock-cycle
by a pipelined binary tree adder) but the logarithm compu-
tation takes several cycles; being it completely independent
on the 10 Monte Carlo steps outcome, it can be put in par-
allel with the Heat-Bath dynamics to avoid slowing down
the simulation.

Due to limited resource in the SPs’ FPGAs, our implemen-
tation of Parallel Tempering is limited to N = 128 replicas
of a single samples of linear size up to L = 32;

In order to speed up the simulations of particularly hard
samples, a variant implementation provides the Parallel Tem-
pering scheme at board level, distributing replicas among the
16 SPs and performing the temperature exchange protocol
in the IOP.

We successfully programmed and used the Janus com-
puter to simulate various glassy systems, studying in great
detail their properties at equilibrium and out of equilibrium.
The interested reader can find in Refs. [7] an exhaustive sur-
vey on grounbreaking results.

4. JANUS PERFORMANCES

We refer mainly to the sample algorithm outlined in sec-
tion 2. We consider an application running at 62.5 MHz
clock cycle and performing the conservative number of 800
updates per clock cycle (this is actually the firmware version
used for production in the work presented in [2]) in a single
SP.

2VVe are trying to transition from a state with replica ¢ at temper-
ature ; and replica j at temperature 3; to a state with 3 values
interchanged. Equation 9 comes from requiring that either the proba-
bility of the transition or its inverse be the maximum possible (unity):
this is essentially then a Metropolis algorithm [5] for moving around
replicas in the space of 3 values.

In what follows we consider the single spin-update-time
(SUT, the time needed to perform steps 3, 4, 5, and 6 of the
procedure described in section 2 on a single spin variable)
as the unit of performance. On an SP running 1024 updates
per clock cycle, the SUT is 16 ps. In 2007, one year after
the project started, our best Ising spin glass application on
a Core 2 Duo CPU ran at 400 ps SUT with a fully AMSC
implementation on 256 independent samples; our best SMSC
implementation ran at 1 ns SUT.

Since then, commodity CPUs have largely improved in
terms of explicit parallelism; the performance gap with Janus
is closing-up, being the latter still 10 times more efficient
than any commercially available solution. We performed
several performance measures on a wide range of many-core
systems (Cell Broadband Engine, 4-core Nehalem Intel CPU
Xeon 5560, Tesla C1060 GP-GPU) [9], and some partial
tests on a 8-core Intel Sandy Bridge processor (Xeon E5-
2680). Results are summarized in Table 1.

We described the SP of Janus as a module for strict SMSC,
and that we trivially obtain repetition by farming over the
whole Janus machine. A comparison to commercial pro-
cessor is still unfair in this sense, since the latter greatly
benefit, in terms of performance, by the use of AMSC tech-
niques. Usually, a mixed degree of parallelization has been
introduced by either mixing the AMSC data-word filling
scheme with internal (synchronous) parallelization or the
SMSC scheme with external (asynchronous) parallelization,
using all available cores on the CPU or vector registers, in
order to exploit peculiar features and to maximize perfor-
mances. In what follows, we compare Janus performances
to mixed AMSC-SMSC implementations, reporting on two
kind of SUT measures: the time needed for completing the
simulation divided by the total amount of trial spin-flips
needed to update a single sample (single-system SUT): this
has to be compared with the full SMSC implementation in a
single Janus SP; the time needed for completing the simula-
tion divided by the total amount of trial spin-flips needed to
update all the simulated sample (global SUT): we compare
this to the performance of a Janus board, in which one may
consider both AMSC and SMSC levels of parallelism.

Another important point in making comparisons is that
many-core CPUs performances become better as the lattice
size increases, exploiting more efficiently the possibility to
split the system on several cores. In addition, a compari-
son for very large sizes is not possible, as the Janus SPs is
strongly limited by the on-chip RAM, which is about 6 Mbit
for the devices we chose (we need roughly 5 bits of memory
per lattice size; at largest sizes, routing difficulties between
logical devices and RAM blocks arise, as the use of FPGA
resources approaches 100%). In this respect, standard CPUs
do not suffer for very large lattice sizes as long as there is
enough cache memory, and even for the reasonably largest
lattice size, multi-spin-coded implementation have very low
memory occupancies. On the other side, performance of
Janus depends on lattice sizes only by our particular choices
in the firmware implementation: having a number of UEs
equal to an integer multiple of a power of 2 greatly simpli-
fies our coding; it comes from requiring the number of UEs
to be equal to or an integer submultiple of the number of
sites in a lattice plane; it happens then that our code for
L = 16 runs at 256 updates per clock-cycle, the L = 32 and
L = 64 codes run at 1024, the L = 80 code runs at 800, the
L = 48 code runs at 768 and the L = 96 code can be com-

single-system SUT (ns/spin)
L Janus SP I-NH (8 Cores) | CBE (8-SPE) | CBE (16-SPE) | Tesla C1060 | I-SB (16 cores)
16 0.063 0.98 0.83 1.17 - -
32 0.016 0.26 0.40 0.26 1.24 0.37
48 0.021 0.34 0.48 0.25 1.10 0.23
64 0.016 0.20 0.29 0.15 0.72 0.12
80 0.020 0.34 0.82 1.03 0.88 0.17
96 0.027 0.20 0.42 0.41 0.86 0.09
128 — 0.20 0.24 0.12 0.64 0.09

global SUT (ns/spin)

L Janus I-NH (8 Cores) | CBE (8-SPE) | CBE (16-SPE) | Tesla C1060 | I-SB (16 cores)
16 | 0.004 (16) 0.031 (32) 0.052 (16) 0.073 (16) = =
32 | 0.001 (16) 0.032 (8) 0.050 (8) 0.032 (8) 0.31 (4) 0.048 (8)
48 | 0.0013 (16) 0.021 (16) 0.030 (8) 0.016 (16) 0.27 (4) 0.015(16)
64 | 0.001 (16) 0.025 (8) 0.072 (4) 0.037 (4) 0.18 (4) 0.015 (8)
80 | 0.0013 (16) 0.021 (16) 0.051 (16) 0.064 (16) 0.22 (4) 0.011 (16)
96 | 0.0017 (16) 0.025 (8) 0.052 (8) 0.051 (8) 0.21 (4) 0.012 (8)
128 - 0.025 (8) 0.120 (2) 0.060 (2) 0.16 (4) 0.011 (8)

Table 1: Comparison of Janus performance on the sample application to some commercial processor: Intel
Nehalem (dual socket board with two 4-core Xeon 5560), Tesla C1060 and Intel Sandy-Bridge (dual socket
board with two 8-core Xeon E5-2680). In the upper part, the single-system spin update time, to be compared
with the SMSC implementation of a single SP of Janus. In the lower part, the global spin-update time, to
be compared to the global spin-update time of a whole Janus board. The number of independent systems
simulated in parallel in the AMSC scheme is shown in parentheses

piled meeting timing requirement at 576 updates per cycle
“only”. There is an intrinsic limit in the number of update
cells which is around 10® with our implementation, due to
resource limits in the FPGA; our code for the L = 64 lat-
tice running at 1024 updates per clock cycle occupies 93% of
the available logic cells and 57% of memory (RAM blocks)
resources.

The upper part of Table 1 show single-system SUTSs for
Janus compared to that of some commercial architectures,
for several lattice sizes. In the lower part, the compari-
son between global SUTs is made with a Janus board (16
SPs); number in parentheses represent the degree of exter-
nal parallelism adopted by each solution (i.e. the number of
independent systems updated in parallel).

The figures we show for the GPU processor deserve a fur-
ther comment. Floating-point application usually get large
advantages by the use of GPUs, but this is not the case for
our sample application; in facts, the Tesla C1060 does not re-
ally outperform other standard architectures, and keeps one
order of magnitude less performing than Janus hardware.
GP-GPU are more effective on applications with reduced
memory accesses; the computational kernel of our applica-
tion requires few operations: the local field of a single spin,
for instance, can be computed with 6 XORs and 5 sums
on a set of 12 variables (6 neighbor spins and 6 couplings).
The GP-GPU performances are then limited by memory-
bandwidth (and thread synchronization overheads) despite
peak performances are one order of magnitude larger than
competing multi-core architectures.

Let’s now try an estimate and comparison of power con-
sumption, computing approximatively the energy needed for
a typical simulation campaign, as, for instance the one from
which we obtained the results presented in [2]. We per-
formed 10'* Monte Carlo steps in the Heat-Bath dynamics
for a three dimensional Edwards-Anderson model, of linear
size L = 80, with 256 samples, each replicated twice, and
farming out the samples to the 256 SPs of the whole ma-
chine. Each SP simulated a single couple of replicas, so it
performed 80% x 10*! x 2 spin flips, at a net single-system
SUT of 20 ps, which amount to approximately 2000000 sec-

onds (~ 24 days). For this application, 16 boards run unin-
terruptedly at a constant power consumption of around 560
W each (35 W per SP, neglecting IOP’s contribution, and
considering all power conversion between the power supply
and the SPs), for a total energy cost of 16 x 600 x 2000000 =~
18 GJ. Let’s take the best figure for the global SUT (allow-
ing the best total energy performance) for the L = 80 case
from table 1, the 8-cores Intel Sandy-Bridge: 0.011 ns global
SUT corresponding to 0.17 ns single-system SUT running
16 samples in parallel. This count for completing the above
program with a 16 processors farm (256 samples) running
uninterruptedly for 17000000 seconds (201 days; note that
five years ago on dual-core CPUs, the wall-clock time would
have been 10 times longer), and consuming in total 26 GJ,
counting a contribution of 95 W per CPU.

Six years ago, our best code on a single dual-core CPU
performed at 0.385 ns global SUT with no external par-
allelism implemented (full AMSC); the two cores together
would have simulated all the 256 samples in parallel, with
a single-system SUT of ~ 100 ns, (taking 5000 times longer
than Janus), and with a power consumption of about 65
W would have needed 660 GJ. A SMSC implementation
running at 3 ns single-system SUT would have shortened
considerably the wall-clock time (roughly a factor 30), at
the cost of a worse global SUT (256 CPUs involved), and
then approximately 8 time more power consumption (about
5 TJ).

We see then that recent standard architecture did indeed
fill the gap with Janus in terms of energy consumption. Still,
the Janus computer, based on six-year-old technology, re-
mains architecture of choice for spin glass simulations. The
figures we presented show that Janus is capable of perform-
ing a given simulation in 10 times shorter wall-clock-time.
Still, FPGA technology has followed its course and we expect
that today state-of-the-art FPGA based processors would
outperform the Janus SPs.

Finally, we remark that straightforward generalizations of
the Edwards-Anderson model, e.g. the g-states disordered
Potts model, come with small degradation of performances
in terms of spin update time (and almost no degradation

device logic cells | distributed RAM | block RAM
XC4VLX200 200448 1392 Kb 6048 Kb
XC7VX485T 485760 8175 Kb 37080 Kb

Table 2: Resource comparison between FPGAs
in Janus (Xilinx XC4VLX200) and Janus2 (Xilink
XC7VX485T) (figures reported from Xilinx data-
sheets).

at all in terms of SUT/log, q). In facts, we only need to
make room for log2q bits to store for a single Potts variable,
paying a cost in simulable system sizes and number of UEs
(that will be slightly more complex than described in the
2-states case) but we can always reconfigure the FPGA to
perfectly balance the data bandwidth needed to feed the grid
of local updating engines. On standard CPUs, this small
increase in complexity reflects invariably in heavier compu-
tational kernels and increased bandwidth demand with the
same data-paths.

In addition, we also expect, with the new supercomputer,
to expand both time and length scales of our simulations of
an order of magnitude at least, with a limited increase in
power requirement. A similar improvement in simulations
with standard processors would imply roughly 100 times
more computation, and then 100 more power consumption
(supposing an optimistic linear increase in wall-clock time).

S. JANUS2

The next generation of the Janus supercomputer will re-
spect the general architecture of its predecessor, with many
improvements made possible by technology advances in the
last years.

We plan the following main improvements:

e Latest-generation FPGA devices.
e A tighter coupling between the IOP and the host PC.

e A faster and more flexible communication between IOP
and SPs inside one board and across boards.

Janus2 will be a again cluster of processing boards. Each
board is a set of 16 SPs and an IOP as in Janus, built as
piggy-back modules on a processing board (PB). The PB
provides all electrical links and connectors to arrange the
SP grid into a 4 x 4 x 1 3D toroidal network: the added
third dimension with respect to the Janus board allow for
communication between SPs on adjacent boards; a Janus2
machine with a number B of boards will be a 4 x 4 x B 3D
toroidal network. The PB also provides the 125 MHz master
clock to all devices.

The IOP features the largest increase in complexity with
respect to other Janus components. It will integrate all of
the previous IOP functionality and will integrate the host
PC. A Computer-On-Module (COM) express board plugs
onto the IOP piggy-back module. The COM express sys-
tem will have an Intel Nehalem or Sandy-Bridge class CPU
and at least 4 GB DDR3 memory. A Solid State Disk will
be connected to the COM express via SATA links. The
core of the IOP will of course be an FPGA performing all
data-routing and featuring all control features described for
the Janus IOP (see Sec 3.1). We select the Xilinx Virtex-
7 XC7VX485T. The FPGA processor will export a 8x PCI
Express Gen 2 link to the COM module and provide enough

high-speed serial links (GTX) to all the SPs on the board
and to IOPs in other boards. The IOP interfaces to the
world via an Infiniband adapter; there will be service connec-
tions also: two Gigabit Ethernet channel and two serial in-
terfaces (one of each type for both the COM and the FPGA).
The IOP of course provides also the programming interface
for on-the-fly configuration of the SPs’ FPGAs; each SP will
be configurable independently one on each other.

The SP also features one Xilinx Virtex-7 XC7VX485T. At
variance with the previous Janus SP, it will also host some
DDR3 DRAM. It will have direct connections to neighbor-
ing SPs in the 3D logical toroidal network (1 per space di-
rections, 6 total), physically implemented with high-speed
serial transceivers in the FPGA (5 GB/s transfer rate min-
imum in each direction).

The fast interconnection network and the new FPGA fea-
tures provide large margins for performance improvements
with respect to the previous Janus computer. Janus 2 fea-
tures FPGAs with more than twice the logic, 6 times more
distributed memory and 6 times more block RAM (see ta-
ble 2) than the largest Virtex-4 devices.

The available logic permits a factor 2 increase in terms of
number of updates per clock-cycle. Another factor 2 comes
from the faster clock of the system (in Janus it was 62.5
MHz). This amounts for a global SUT increase of a factor
4. Please note that we consider running even at faster speed
inside the SPs, and that we are conservatively supposing
that our application will run at the rate given by the mas-
ter clock. Another factor 2 improvement could come from
extreme tailoring our application to the new available fast
FPGA) The main difference with Janus will be the high-
speed direct connections between the SPs in the 3D mesh:
each link is about five times faster than each link in the 2D
SP mesh of a Janus board.

Taking in consideration the sample application described
in section 2, available memory and connection speed allow
for simulating two replicas of a single sample of a 3D spin
glass on a lattice of linear size L = 1200 dividing it into
sublattices of 300 x 300 x 150 among the 128 SPs of 8 adja-
cent boards. With a sustained update rate of 2000 spins per
clock on 300 x 300 planes cycle inside each SPs, the most
demanding bandwidth would be the border spins transfer
through the links connecting SPs in different boards, requir-
ing 2000 bits transfered in 150 cycles (before they become
necessary to start the next update sequence in the neighbor
SP) corresponding to 3.3 Gb/s.

Such implementation would then be capable of an up-
date rate of 256000 spins per clock-cycle, corresponding to
a single-system SUT of 32 x 107! (and the global SUT is
just half that amount in a compete configuration with 16
Janus2 boards): in Janus2 many SPs in many boards will
be able to concur in exploiting all the internal parallelism.
With such very large simulated lattice sizes, the fluctuations
of measures between different disorder samples become less
important, and we could be contented with tens of samples
instead of hundreds. A simulation program as the one de-
scribed at the end of section 4 (two replicas, 10'* Monte
Carlo steps) with only 16 samples, would obtain relevant re-
sults in about one year (if one decides to sacrify a large frac-
tion of the machine durability to a single ambitious task).

In a single SP the single-system SUT would be around 4
times better than in Janus. With only two SPs, we could
allocate two replicas of a L = 150 system and simulate them

-
[}
™

-
o
©w
[

Gspins/s
>
N
T

etburst| 1 1 L 1

2005 2007 2009 2011 2013 2015 2017

Figure 3: Sketch of performance growth in time of
our simulation codes following the technology im-
provement; each point correspond to the time (ab-
scissae) we actually get a code running on a spe-
cific architecture; the obtained performances, as re-
ported in table 1 are in ordinates, in billions of up-
dated spins per second units. Green points are the
Intel series (one CPU); the red point corresponds
to the CBE and the blue point is the Tesla GPU.
The black line are performances of one board of
the Janus machines (Janus2 is expected starting
scientific production in mid 2013). The red line
represents the performance growth predicted by a
Moore’s Law with doubling performance each 18
months (taking our first implementations in 2005).
The green line is the performance growth trend ex-
tracted by considering only our data points for the
Intel series, giving a doubling in performance each
year, approximately.

with a 4500 updates per spin rate and complete the task in
a month. On a farm of 16 8-cores Sandy-Bridge processors
it would take almost two years (assuming the measured per-
formance for a L = 128 system from table 1 applies). It is
very difficult to foresee the equivalent energy consumption,
as we can only forecast the SPs power consumption by the
software development tools, without direct measures on the
running hardware. We foresee an optimistic figure of 50 W
per SP, obtaining a 30 GJ total needed to complete the sim-
ulation program for a L = 150 system (it would be 5 GJ
for the L = 80 lattice). The farm of 16 commercial CPUs
(Sandy-Bridge) would consume 92 GJ.

The Janus2 computer then establish again near two orders
of magnitude in the gap with commercial processors. Power
consumption improvements are sizeable but no so impressive
as in that case of Janus with respect to its competitors six
years ago; in this respect, standard CPUs’ have largely im-
proved in terms of energy-per-performance in the last years.

6. CONCLUSIONS

We have described two Janus generations of supercom-
puter for Spin Glass application. In the second generation
we expect a significant improvement with respect to the pre-
vious one, due to progresses in FPGA technology and some
major architectural design modifications (mainly the inter-
connection network topology) that will significantly decrease

wall-clock time of simulations of Spin Glasses.

We expect Janus2 to be a durable facility; we can compare
the performances of one board of the Janus machine and the
expected performances of a Janus2 board to the performance
growth trend of commercial CPUs (see fig. 3). In both cases,
we consider a technology available when we have optimized
code ready for testing; of course, in the case of janus ma-
chines, this includes the necessary long development time;
on the other side, carefully optimize the simulation code on
commercial CPUs can be a hard and lengthy task.

In figure 3 we compare best performance values taken from
table 1. The black line represents performances in terms of
billions of spins updated per second for a single board of a
Janus-type computer (we expect Janus2 to start operation
in summer 2013).

We also report on the figure (the green line) the perfor-
mance growth trend we experienced with the Intel series for
our applications (a doubling in performance every year ap-
proximately) and the red line is the expected growth since
2005 by a Moore’s law (doubling each 18 months).

We have only two "measurements” of the performances of
FPGAs in Spin Glass applications, and one of them is the
conservative estimate we provide for Janus2. Performance
increase with reconfigurable devices appear slower than the
average performance growth rate of other technologies. It
should be noted that, in the case of Intel processors, scaling
of performances in our application either fell behind Moore’s
law or surpassed it between two consecutive microarchitec-
ture releases (as in the case of Nehalem-Sandy Bridge transi-
tion). Newer FPGAs get larger and faster, but the technol-
ogy used to improve them could not be ideal to our applica-
tions (this is the case, for example, of the largest devices in
the Virtex-7 family, whose structure made of stacked smaller
devices may introduce a bottleneck in the data-paths due to
the physical links between layers, that are slower than the
typical signal path in any smaller device). On the other side,
any increase of a factor X in the target clock frequency is
transferred directly as a factor X in performances, and is
usually easier to meet time requirements when compiling a
firmware for a larger devices.

If the trend in Intel performance growth should continue,
and if the estimate we provide for the Janus2 computer
holds, the latter has an advantage of almost four years,
which is enough to ensure a significant output of scientific
production. If the trend continues by the usual Moore’s law
starting form the Sandy-Bridge performances, Janus2 will
remain unrivaled for two years more than in the previous
case.

7. ADDITIONAL AUTHORS

M. Baity-Jesi, L.A. Fernandez, V. Martin-Mayor and B.
Seoane (Departamento de Fisica Tedrica I, Universidad Com-
plutense, 28040 Madrid, and Instituto de Biocomputacién
y Fisica de Sistemas Complejos (BIFI), 50018 Zaragoza,
Spain);

R.A. Bafos, A. Cruz, J. Monforte-Garcia and A. Tarancon
(Departamento de Fisica Tedrica, Universidad de Zaragoza,
50009 Zaragoza, and BIFI);

J.M. Gil-Narvion, M. Guidetti and S. Perez-Gaviro (BIFI);
A. Gordillo-Guerrero (Departamento de Ingenieria Eléctrica,
Electrénica y Automaética, Universidad de Extremadura,
10071 Céceres, and BIFI);

D. Ihiguez (Fundacion ARAID, Diputacién General de

Aragén, Zaragoza, and BIFI);

A. Maiorano and D. Yllanes (Dipartimento di Fisica,
Sapienza Universita di Roma, 00185 Rome, Italy and BIFI);
F. Mantovani (Dipartimento di Fisica, Universita di Ferrara,
44100 Ferrara, Italy);

E. Marinari, G. Parisi and F. Ricci-Tersenghi (Dipartimento
di Fisica, IPCF-CNR, UOS Roma Kerberos and INFN,
Sapienza Universita di Roma, 00185 Rome, Italy);

A. Munoz-Sudupe (Departamento de Fisica Tedrica I, Uni-
versidad Complutense, 28040 Madrid, Spain);

D. Navarro (Departamento de Ingenierfa, Electrénica y Co-
municaciones and Instituto delnvestigacién en Ingenierfa)
de Aragén (IBA), Universidad de Zaragoza, 50018 Zaragoza,
Spain);

M. Pivanti (Dipartimento di Fisica, Sapienza Universita di
Roma, 00185 Rome, Italy);

J.J. Ruiz-Lorenzo (Departamento de Fisica, Universidad de
Extremadura, 06071 Badajoz, Spain and BIFI);

S.F. Schifano (Dipartimento di Matematica e Informatica,
Universita di Ferrara and INFN - Sezione di Ferrara, 44100
Ferrara, Italy);

P. Tellez (Departamento de Fisica Tedrica, Universidad de
Zaragoza, 50009 Zaragoza, Spain);

R. Tripiccione (Dipartimento di Fisica, Universita di Ferrara
and INFN -Sezione di Ferrara, 44100 Ferrara, Italy)

8. REFERENCES

[1] M. Mézard, G. Parisi and M.A. Virasoro, Spin Glass
Theory and Beyond (World Scientific, Singapore,
1987); A. P. Young (editor), Spin Glasses and Random
Fields, (World Scientific, Singapore, 1998).

[2] The Janus Collaboration, Phys. Rev. Lett. 101,
(2008) 157201;

[3] The Janus Collaboration, Comp. Phys. Comm. 178,
(2008) 208-216; IANUS: Scientific Computing on an
FPGA-based Architecture, in Proceedings of
ParCo2007, Parallel Computing: Architectures,
Algorithms and Applications (NIC Series Vol. 38,
2007) 553-560; Computing in Science & Engineering 8,
(2006) 41-49; Computing in Science & Engineering 11,
(2009) 48-58.

[4] S. F. Edwards and P. W. Anderson, J. Phys. F: Metal
Phys. 5, (1975) 965-974; ibid. 6, (1976) 1927-1937.

[5] A.D. Sokal, Functional Integration: Basics and
Applications (1996 Cargése School) ed. C.
DeWitt-Morette, P. Cartier and A. Folacci (1997 New
York: Plenum)

[6] G. Parisi and F. Rapuano, Phys. Lett. B 157, (1985)
301-302.

[7] The Janus Collaboration: J. Stat. Phys. 135,
1121-1158 (2009); Phys. Rev. B 79, 184408 (2009); J.
Stat. Mech. (2010) P05002; J. Stat. Mech. (2010)
P06026; Phys. Rev. Lett. 105, 177202 (2010); Phys.
Rev. B 84, 174209 (2011); Proc. Natl. Acad. Sci. USA
(2012) 109, 6452-6456

[8] Hukushima, K., Nemoto, K. Exchange Monte Carlo
Method and Application to Spin Glass Simulations J
Physical Soc Japan 65,16044A$1608 (1995),
arXiv:cond-mat/9512035, E. Marinari, Optimized
Monte Carlo Methods in Advances in Computer
Simulation. Lecture Notes in Physics, 1998, Volume
501/1998, 50-81 (1996), arXiv:cond-mat/9612010.

[9] M. Guidetti et al., Spin Glass Monte Carlo
Simulations on the Cell Broadband Engine in Proc. of
PPAMO0Y, (Lecture Notes on Computer Science
(LNCS) 6067, Springer 2010) 467-476. M. Guidetti et
al., Monte Carlo Simulations of Spin Systems on
Multi-core Processors (Lecture Notes on Computer
Science (LNCS) 7133 K. Jonasson (ed.), Springer,
Heidelberg 2010) 220-230.

