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Correction for “Quantitative field theory of the glass transition,”
by Silvio Franz, Hugo Jacquin, Giorgio Parisi, Pierfrancesco
Urbani, and Francesco Zamponi, which appeared in issue
46, November 13, 2012, of Proc Natl Acad Sci USA (109:
18725–18730; first published October 29, 2012; 10.1073/pnas.
1216578109).
On page 18727, right column, Eq.12 should instead appear as
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On page 18728, right column, Eq. 21 should instead appear as
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1
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1
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Z
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[21]

The authors note that Tables 1 and 2 appeared incorrectly.
The corrected tables appear below.

www.pnas.org/cgi/doi/10.1073/pnas.1309463110

Table 1. Numerical values of the coefficients of the effective action and the physical quantities from the HNC approximation

System T ρd −w1 −w2 m2 m3 σ μ λ ξ0 G0 Gi

SS-6 1 6.691 3.88·10−6 1.35·10−6 -0.000925 0.000110 0.000195 0.000525 0.348 0.601 224 0.0267
SS-9 1 2.912 0.0000772 0.0000272 -0.00539 0.000633 0.00163 0.00543 0.353 0.548 34.3 0.0125
SS-12 1 2.057 0.000275 0.0000973 -0.0116 0.00132 0.00378 0.0152 0.354 0.498 14.2 0.0118
LJ 0.7 1.407 0.00106 0.000376 -0.0258 0.00290 0.00989 0.0414 0.355 0.489 6.00 0.00833
HarmS 10−3 1.336 0.00129 0.000465 -0.0336 0.00343 0.00772 0.0779 0.359 0.315 2.82 0.0434
HarmS 10−4 1.196 0.00165 0.000622 -0.0403 0.00386 0.00819 0.109 0.378 0.274 1.69 0.0632
HarmS 10−5 1.170 0.00174 0.000663 -0.0416 0.00395 0.00845 0.109 0.382 0.278 1.66 0.0635
HS 0 1.169 0.00174 0.000664 -0.0418 0.00397 0.00847 0.108 0.381 0.280 1.67 0.0639

For each potential, lengths are given in units of r0 and energies in units of «, with kB ¼ 1. Data at fixed temperature, using density as a control parameter
with e ¼ ρd − ρ.

Table 2. Same as Table 1, but here the data are at fixed density, using temperature as a control parameter with e ¼ Td −T

System ρ Td −w1 −w2 m2 m3 σ μ λ ξ0 G0 Gi

LJ 1.2 0.336 0.00186 0.000663 -0.0361 0.00403 0.0147 0.0572 0.356 0.507 4.56 0.00730
LJ 1.27 0.438 0.00153 0.000541 -0.0321 0.00370 0.0128 0.0447 0.353 0.536 5.74 0.00771
LJ 1.4 0.684 0.00108 0.000383 -0.0260 0.00293 0.0100 0.0292 0.355 0.586 8.52 0.00825
WCA 1.2 0.325 0.00195 0.000686 -0.0389 0.00426 0.0133 0.0607 0.351 0.467 4.37 0.0134
WCA 1.4 0.692 0.00111 0.000388 -0.0270 0.00301 0.00966 0.0291 0.350 0.576 8.67 0.0106
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CHEMISTRY, BIOPHYSICS AND COMPUTATIONAL BIOLOGY
Correction for “Probing the relative orientation of molecules
bound to DNA through controlled interference using second-
harmonic generation,” by Benjamin Doughty, Yi Rao, Samuel W.
Kazer, Sheldon J. J. Kwok, Nicholas J. Turro, and Kenneth B.
Eisenthal, which appeared in issue 15, April 9, 2013, of Proc
Natl Acad Sci USA (110:5756–5758; first published March 25,
2013; 10.1073/pnas.1302554110).
The authors note that the following statement should be added

to the Acknowledgments: “We also acknowledge funding from the
Chemical Sciences, Geosciences and Bioscience Division, Office
of Basic Energy Sciences, Office of Science of the US Department
of Energy.”

www.pnas.org/cgi/doi/10.1073/pnas.1310422110

IN THIS ISSUE
Correction for “In This Issue,” which appeared in issue 21, May
21, 2013, of Proc Natl Acad Sci USA (110:8315–8316; 10.1073/
iti2113110).
The authors note that within “Measuring telomeres in single

cells” on page 8316 the writing credit “C.R.” should instead
appear as “C.B.” The online version has been corrected.

www.pnas.org/cgi/doi/10.1073/pnas.1310833110

NEUROSCIENCE
Correction for “Progressive dopaminergic cell loss with unilat-
eral-to-bilateral progression in a genetic model of Parkinson
disease,” by Maxime W. C. Rousseaux, Paul C. Marcogliese,
Dianbo Qu, Sarah J. Hewitt, Sarah Seang, Raymond H. Kim,
Ruth S. Slack, Michael G. Schlossmacher, Diane C. Lagace,
Tak W. Mak, and David S. Park, which appeared in issue 39,
September 25, 2012, of Proc Natl Acad Sci USA (109:15918–15923;
first published September 10, 2012; 10.1073/pnas.1205102109).
The authors note that the incorrect term appeared for the

mice background that they used. All instances of “C57BL/6J”
should instead appear as “C57BL/6.” The locations were:
On page 15918, left column, line 4 within the Abstract
On page 15918, right column, first full paragraph, line 5
On page 15922, left column, second full paragraph, line 2
These errors do not affect the conclusions of the article.

www.pnas.org/cgi/doi/10.1073/pnas.1310560110
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We develop a full microscopic replica field theory of the dynamical
transition in glasses. By studying the soft modes that appear at
the dynamical temperature, we obtain an effective theory for the
critical fluctuations. This analysis leads to several results: we give
expressions for the mean field critical exponents, and we analytically
study the critical behavior of a set of four-points correlation functions,
from which we can extract the dynamical correlation length. Finally,
we can obtain a Ginzburg criterion that states the range of validity
of our analysis. We compute all these quantities within the hyper-
netted chain approximation for the Gibbs free energy, and we find
results that are consistent with numerical simulations.

mode-coupling theory | perturbative expansion | replica theory

Dynamical heterogeneities in structural glasses have been
the object of intensive investigations in the last 15 y (1).

The early Adams–Gibbs theory of glass formation was based on
the concept of cooperatively rearranging regions with sizes that
become larger and larger when the glass region is approached.
Such large cooperatively rearranging regions imply the exis-
tence of dynamical heterogeneities characterized by a large
correlation length. Large-scale dynamical heterogeneities are
expected to be present in any framework where glassiness is
caused by collective effects: They are, indeed, the smoking guns
for these effects (1–4). Therefore, it is not a surprise that two
popular approaches to glasses, mode-coupling theory (MCT)
(5) and the replica method (6, 7), both agree with the Adams–
Gibbs scenario and predict large-scale dynamical heterogeneities
with a dynamical correlation length that diverges at the transition
to the glass phase. This qualitative prediction is very interesting,
but to make additional progresses, it would be important to get
quantitative predictions that can be compared with numerical
simulations and experiments.
At the mean field level, where both thermodynamic and dy-

namic aspects can be solved exactly, it is found that the replica and
MCT approaches are intimately related. The study of spherical
p-spin models, where dynamics are exactly described by a sche-
matic MCT equation and equilibrium displays glassy phenomena
related to replica symmetry breaking, shows how the glass tran-
sition described by MCT is related to the emergence of metastable
states in equilibrium (8, 9). That basic observation, made more
then 20 y ago in the work by Kirkpatrick et al. (10), opened the
way to the application of the mean field theory of spin glasses to
the physics of supercooled liquids and glasses (11–13). Despite
this clear relation at the level of mean field schematic models,
when one tries to apply the mean field theory to realistic models
of simple liquids (5–7, 14, 15), approximations are mandatory, and
because of the approximations, the connection between statics and
dynamics becomes more difficult to establish. It has been shown
in the work by Szamel (16) that, under suitable approximations
(similar to the one of MCT), the long time limit of the MCT
equations could be derived from a replicated liquid theory. Un-
fortunately, this time limit leads to expressions that are not var-
iational, and one cannot get an approximation for the free energy
from the computation. Using standard liquid theory approxima-
tions within replica theory instead (6, 7, 14, 15), one finds strong

discrepancies between predictions from MCT and replicas, which
become particularly pronounced in large dimensions (7, 17).
Other than this consistency problem, in finite dimensions, one

would like to compute the corrections caused by fluctuations
around the mean field approximation. When this program is
carried out, one finds that there are two important sources of
corrections to the mean field scenario. The first corrections orig-
inate from critical fluctuations that become important around the
glass transition below the upper critical dimension, like in any
standard critical phenomenon (18, 19). The second corrections
are nonperturbative phenomena related to activated processes.
They can be taken into account by a phenomenological approach,
leading to a number of predictions that are in good agreement
with experiment (11); however, the theoretical foundations of this
approach are still controversial (20), and alternative (but possibly
related) phenomenological descriptions of activated relaxation
in glasses have been developed, mostly based on the concept of
dynamical facilitation (21).
In this paper, we will only consider critical fluctuations around

mean field, and therefore, we will not take into account activated
processes. Critical fluctuations have been previously described
within MCT (18, 22–24). However, field theoretical methods are
not yet under complete control in the context of dynamics, and it
is, therefore, extremely important to set up a static replica field
theoretical description of dynamical heterogeneities in such a way
that well-established equilibrium field theory methods, such as the
renormalization group, can be applied to the glass transition
problem. This result is what we achieve in this paper. We obtain
a low-energy effective action that describes critical fluctuations
on approaching the glass transition, with coupling constants that
are obtained directly from the interparticle interaction potential
using standard liquid theory. This process allows us to compute
prefactors to the singular behavior of physical observables in the
mean field approximation, such as the correlation length or the
four-point correlation functions. In addition, we show that an im-
portant characterization of dynamics, the MCT exponents, can
be obtained within the static replica framework. Using the well-
established hypernetted chain approximation (HNC) approximation
of liquid theory, we perform explicit computations for hard- and
soft-sphere models and Lennard–Jones potentials, and we obtain
good agreement with available numerical data. Finally, we in-
troduce a quantitative Ginzburg criterion defining a region, where
perturbative corrections to mean field theory can be neglected.

Dynamical Heterogeneities
In this section, we consider a system of N particles in a volume V
interacting through a pairwise potential v(r) in a D dimensional
space. The dynamical glass transition is characterized by an
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(apparent) divergence of the relaxation time of density fluctuations,
which becomes frozen in the glass phase. If ρ̂ðx; tÞ=PN

i=1δðx− xiðtÞÞ
is the local density at point x and time t and ρ= hρ̂ðx; tÞi is its
equilibrium average, the transition can be conveniently char-
acterized using correlation functions. Consider the density pro-
files at time 0 and time t, respectively, given by ρ̂ðx; 0Þ and ρ̂ðx; tÞ.
We can define a local similarity measure of these configurations
as (Eq. 1)

Ĉðr; tÞ =
Z
dx​ f ðxÞρ̂

�
r+

x
2
; t
�
ρ̂
�
r−

x
2
; 0
�
− ρ2; [1]

where f(x) is an arbitrary smoothing function of the density field
with some short-range A. In experiments, f(x) could describe the
resolution of the detection system and can be, for instance, a
Gaussian of width A.
Let us call CðtÞ= V−1 R drhĈðr; tÞi the spatially and thermally

averaged correlation function. Typically, on approaching the dy-
namical glass transition Td, C(t) displays a two-step relaxation,
with a fast β-relaxation occurring on shorter times down to a
plateau and a much slower α-relaxation from the plateau to zero
(5). Close to the plateau at C(t) = Cd, one has C(t) ∼ Cd + At−a

in the β-regime. The departure from the plateau (beginning of
α-relaxation) is described by C(t) ∼ Cd − Btb. One can define the
α-relaxation time by C(τα) = C(0)/e. It displays an apparent power-
law divergence at the transition, τα ∼ jT − Tdj−γ. All of these
behaviors are predicted by MCT (5). In low dimensions, a rapid
crossover to a different regime dominated by activation is ob-
served, and the divergence at Td is avoided; however, the power-
law regime is the more robust the higher the dimension (25, 26)
or the longer the range of the interaction (27).
It is now well-established, both theoretically and experimentally,

that the dynamical slowing is accompanied by growing heteroge-
neity of the local relaxation in the sense that the local correlations
Ĉðr; tÞ display increasingly correlated fluctuations when Td is
approached (1–3, 28). This result can be quantified by introducing
the correlation function of Ĉðr; tÞ (i.e., a four-point dynamical
correlation) (Eq. 2):

G4ðr; tÞ=
D
Ĉðr; tÞĈð0; tÞ

E
−
D
Ĉðr; tÞ

ED
Ĉð0; tÞ

E
: [2]

The latter decays, because G4(r, t) ∼ exp(−r/ξ(t)) with a dynam-
ical correlation length that grows at the end of the β-regime and
has a maximum ξ = ξ(t ∼ τα) that also (apparently) diverges as
a power law when Td is approached.
MCT (5) and its extensions (18, 22–24, 29, 30) give precise

predictions for the critical exponents. However, as discussed in
the Introduction, this dynamical transition can be also described,
at the mean field level, in a static framework. The advantage is
that calculations are simplified, and therefore, the theory can be
pushed forward, particularly by constructing a reduced field theory
and setting up a systematic loop expansion that allows us to ob-
tain detailed predictions for the upper critical dimension and the
critical exponents (19). Moreover, very accurate approximations
for the static free energy of liquids have been constructed (31), and
one can make use of them to obtain quantitative predictions for
the physical observables. These predictions are the aim of the rest
of this paper.

Connection Between Replicas and Dynamics
In the mean field scenario, the dynamical transition of MCT is
related to the emergence of a large number of metastable states,
in which the system remains trapped for an infinite time. At long
times in the glass phase, the system is able to decorrelate within
one metastable state. Hence, we can write (Eq. 3)

D
Ĉðr; t→∞Þ

E
=
Z
dx ​ f ðxÞ

D
ρ̂
�
r+

x
2

�E
m

D
ρ̂
�
r−

x
2

�E
m
− ρ2; [3]

where 〈•〉m denotes an average in a metastable state, and the
over line denotes an average over the metastable states with
equilibrium weights.
The dynamical transition can be described in a static frame-

work by introducing a replicated version of the system (14, 32):
for every particle, we introducem − 1 additional particles identical
to the first one. In this way, we obtain m copies of the original
system, labeled by a = 1, . . ., m. The interaction potential between
two particles belonging to replicas a, b is vab(r). We set vaa(r) = v(r),
the original potential, and we fix vab(r) for a ≠ b to be an attractive
potential that constrains the replicas to be in the same meta-
stable state. Let us now define our basic fields that describe the
one- and two-point density functions (Eq. 4):

ρ̂aðxÞ =
PN
i= 1

δ
�
x− x ai

�
;

ρ̂ð2Þab ðx; yÞ = ρ̂aðxÞρ̂bðyÞ− ρ̂aðxÞδabδðx− yÞ: [4]

To detect the dynamical transition, one has to study the two-
point correlation functions when vab(r) → 0 for a ≠ b, and in the
limitm→ 1, which reproduces the original model (14, 32). In this
limit, the two-replica correlation function is, for a ≠ b (Eq. 5),D

ĈabðrÞ
E
=
Z
dx​ f ðxÞ

D
ρ̂a

�
r+

x
2

�
ρ̂b

�
r−

x
2

�E
− ρ2: [5]

Because of the limit vab(r) → 0, the two replicas fall in the same
state but are otherwise uncorrelated inside the state; therefore,
we obtain hĈabðrÞi= hĈðr; t→∞Þi, which provides the crucial iden-
tification between replicas and dynamics. Similar mappings can
be obtained for four-point correlations.

Replica Field Theory for the Dynamical Transition
We introduce (for convenience) an external field νa(x) that derives
from a space-dependent chemical potential, in such a way that
the density correlation functions can be obtained by taking the
derivative of the free energy with respect to it (31). The free
energy is defined as the logarithm of the partition function, and
its double Legendre transform defines the Gibbs free energy
Γ½fρaðxÞg; fρð2Þab ðx; yÞg� (31, 33) (Eq. 6):

Γ =
1
2

X
a;b

Z
dxdy

"
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#
+
X
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Z
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× . . . ρanðxnÞ hana1ðxn; x1Þ+Γ2PI; [6]

where habðx; yÞ= ρð2Þab ðx; yÞ=ρaðxÞρbðyÞ− 1, and Γ2PI is the sum of
two-line irreducible diagrams (33). The average values of the
fields in Eq. 4, namely ρaðxÞ and ρabðx; yÞ, can be obtained by
solving the saddle point equation (Eq. 7),

δ  Γ
h
fρag;

n
ρð2Þab

oi
δρð2Þab ðx; yÞ j

ρabðx;yÞ

=
1
2
vabðx; yÞ; [7]
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and similarly, they can be obtained for ρa(x). Here, we consider a
homogeneous liquid; hence, ρa(x) = ρ.
We have to assume, at this point, that a mean field approx-

imation of the free energy is available, which we shall use as the
starting point of our computations. Within this approximation, we
want to study the behavior of ρa≠bðx; yÞ in the double limit m → 1
and va≠b → 0, which signal the dynamical transition: if T > Td, then
ρa≠bðx; yÞ= ρ2, whereas if T ≤ Td, a nontrivial off-diagonal so-
lution persists in the limit va≠b → 0. At the mean field level, the
appearance of the nontrivial solution is a bifurcation phenome-
non, and therefore, if we come from below the transition and we
define « = Td − T, we have, for « → 0 (Eq. 8),

ρa≠bðx; y; eÞ = ρ2g~ðx− yÞ+ 2ρ2
ffiffiffi
e

p
 κ k0ðx− yÞ; [8]

where k0(x) is normalized as
R
dxk0ðxÞ2 = 1, and κ is a constant.

From the saddle point (Eq. 7), we obtain that the Hessian matrix
for the off-diagonal elements (i.e., for a ≠ b, c ≠ d) (Eq. 9),

Mab;cdðx1; x2; x3; x4Þ =
δ2Γ
h
fρag;

n
ρð2Þab

oi
δρð2Þab ðx1; x2Þδρð2Þcd ðx3; x4Þ

; [9]

which is considered as a kernel operator both in standard and
replica space, develops a zero mode at Td. This finding means
that, if the transition is approached from below, the fundamental
eigenvalue of this operator is proportional to

ffiffiffi
e

p
because of the

bifurcation-like phenomenology. Moreover, the eigenvector cor-
responding to it is k0(x − y).
Exploiting the replica symmetry of the saddle point solution

(Eq. 7), the most general form of the Hessian matrix is given by
(Eq. 10)

Mab;cdðx1; x2; x3; x4Þ = M1

�
δacδbd + δadδbc

2

�

+M2

�
δac + δad + δbc + δbd

4

�
+M3; [10]

where M1, M2, and M3 depend on x1, . . ., x4. From this equation,
one can show that, because the zero mode k0(x − y) is indepen-
dent of the replica indices, in the replica limit m → 1, it is an
eigenvector of the kernel operator M1. To study the correlation
functions for the fields in Eq. 4, we can produce a power series
expansion of the Gibbs free energy in terms of the fluctuation of
the field ρð2Þa≠bðx; yÞ from its saddle point value. Defining the field
Δρabðx; yÞ= ρð2Þab ðx; yÞ− ρabðx; yÞ, we can expand the Gibbs free
energy up to the third order. It is convenient to define pi and
qi as the momenta conjugated to the half-sum and the difference
of the spatial arguments of Δρab(xi, yi). Using translation invari-
ance, we write the replica action in Fourier space as (Eq. 11)

Γ½fΔρabg� = Γ
hn

ρab

oi

+
1
2

X
a≠b;c≠d

Z
dpdq1dq2
ð2πÞ3D Δρabðp; q1ÞMðpÞ

ab;cdðq1; q2ÞΔρcdð−p; q2Þ

+
1
6

X
ab;cd;ef
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dpdp′dq1dq2dq3

ð2πÞ5D
Lab;cd;ef
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p; p′; q1; q2; q3

�

×Δρabðp; q1ÞΔρcd
�
p′; q2

�
Δρef

�
−p− p′; q3

�
: [11]

Because of the zero mode of the Hessian matrix, the connected
correlation function of Δρab(x, y) shows critical fluctuations at
the transition.

To make the connection with the dynamical correlation, we
define an overlap function among replicas, qab(r), as in Eq. 1,
substituting the configurations at time 0 and t by replicas a and b.
We expect that all of the critical fluctuations of qab(r) can be
captured by a projection on the zero mode, leading from Eq. 11 to
an effective action. We can study the fluctuations of qab(r) for
generic functions f by performing a Legendre transform of Eq. 11.
However, the results are quite involved, and here, for clarity, we
will first consider the simplest case, where f(x) = k0(x). Of course,
this process is not a practical choice for numerical simulations or
experiments, because k0 is quite difficult to measure; however, the
theoretical computations are much simpler in this case. Later, we
will show that any other choice of f leads to the same results for
the critical quantities, and it only affects the prefactor of the
correlation functions. The projection onto the zero mode can be
done by choosing Δρabðx; yÞ= k0ðx− yÞϕab

�
x+ y
2

�
and substituting

this finding in Eq. 11. The field ϕab(x) is the component of the
overlap along the zero mode, and we perform a perturbative ex-
pansion at small momentum p. The effective replica field theory
that arises is equivalent to a Landau-like gradient expansion along
the critical modes (Eq. 12):
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�
p′
�
ϕab

�
−p− p′

�
: [12]

Eq. 12 is the effective low-energy replica field theory that we will
use to compute the critical properties of the system. All of its
coefficients can, in principle, be computed from the microscopic
details of the systems after an approximation for Γ is available. In
fact, they can be given explicit expressions as functions of deriv-
atives of the Gibbs free energy and the zero mode, which both
derive from the interaction potential (SI Text).

Correlation Functions, Correlation Length, and Critical
Exponents
The effective replica field theory in Eq. 12 can be used to
compute the MCT parameter λ. This quantity is related to the
MCT critical exponents that control the approach to the plateau
by the relation (Eq. 13)

λ =
Γð1− aÞ2
Γð1− 2aÞ =

Γð1+ bÞ2
Γð1+ 2bÞ: [13]

In addition, the exponent that controls the growth of the relax-
ation time τα ∼ jT − Tdj−γ is given by γ = 1/(2a) + 1/(2b). Al-
though λ is a dynamical parameter, it has been explicitly shown
recently in disordered mean field models, and it can be argued
on general ground (34) that this parameter can be related to
a ratio of six-point static correlation functions computable in
the replica field theory that we have just derived. In this scheme,
the exponent parameter is given by (Eq. 14)

λ =
w2

w1
: [14]

Moreover, the field theory above can be used at the Gaussian
level to obtain the correlation functions of the overlap. The
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analysis of the quadratic part of Eq. 12 shows that the correlation
length is controlled by the diagonal part, being m2 and m3 finite
at the transition. The result is (Eq. 15)

ξ= ξ0e
−1=4;   ξ0 =

ffiffiffiffi
σ

μ
;

r
[15]

and it corresponds to the divergence of the dynamical correlation
length ξ(t) in the β-regime (22–24).
Moreover, we can compute in detail the critical behavior of

many possible dynamical four-point functions that are identified
with different matrix elements of the inverse of the Hessian matrix
in Eq. 9 (19). Here, we give the results for the simplest one, the so-
called in-state or thermal susceptibility, which is given by (Eq. 16)

Gthðr; tÞ=E0

hD
Ĉðr; tÞĈð0; tÞ

E
−
D
Ĉðr; tÞ

ED
Ĉð0; tÞ

Ei
; [16]

where E0[·] has to be intended as the average over the initial
positions of the particles, whereas 〈•〉 is an average over dif-
ferent trajectories (i.e., over the noise for Langevin dynamics or
over the initial velocities for Newton dynamics). In the long time
limit, this quantity is one of the critical contributions to theG4(r, t)
in Eq. 2, and it can be computed directly from the replica field
theory above (19). Here, we had to generalize the calculation in
ref. 19 to take into account the structure of the zero mode and the
presence of the smoothing function f(x). The result is (Eq. 17)

GthðpÞ= G0e
−1=2

1+ ξ2p2
;  G0 =

1
μ

Z
dq

ð2πÞD f ð−qÞk0ðqÞ: [17]

We obtain that the correlation length and its prefactor are not
dependent on the function f(x) and are always given by Eq. 15.
The only dependence on f(x) of the four-point function is in the
prefactor G0. The full four-point correlation (Eq. 2) is known to
display a doubled singularity with respect to Eq. 17. In fact, with
the choice f(x) = k0(x), one finds G4(p) = Gth(p) − (m2 + m3)
Gth(p)

2 (19). For generic f(x), the computation of the prefactor is
more involved and will not be presented here.

A Ginzburg Criterion
All of the calculations above are based on the assumption that a
mean field approximation of the free energy of the system is given.
From these calculations, we derive the effective Landau field
theory (Eq. 12). From its coefficients, we extracted all of the mean
field critical exponents as well as microscopic expressions for the
prefactors. Now, we can check whether loop corrections to the
effective field theory strongly affect the mean field predictions by
means of a Landau–Ginzburg computation. In other words, we
want to see whether the loop corrections to the bare correlation
function are small. In principle, we should take the field theory
derived above, and then, we should compute the first nontrivial
loop diagrams that give the first correction to the propagator in
replica space. This computation is quite involved, because we
have to deal with replica indices. However, it has been shown
in ref. 19 that the leading divergent behavior of the above field
theory can be mapped to the one of a scalar field in a cubic
potential with a random field (Eq. 18):

SðϕÞ= 1
2

Z
dxϕðxÞ�−σ∇2 + μ

ffiffiffi
e

p
+ δmðg;ΔÞ�ϕðxÞ

    +
g
6

Z
dxϕ3ðxÞ+

Z
dxðh0ðxÞ+ δhðg;ΔÞÞϕðxÞ; [18]

where the random field has zero mean and correlation
h0ðxÞh0ðyÞ=Δδðx− yÞ, and the coupling constants are given by
g = w2 − w1 and Δ = −m2 − m3.

The terms δm(g, Δ) and δh(g, Δ) are counterterms needed to
enforce that the critical point is not shifted by loop corrections.
By computing the first one-loop diagram and imposing that the
relative correction is small with respect to the bare quantity, we
arrive to the following Landau–Ginzburg criterion (19)

1 � Giξ8−D; [19]

where the (dimensional) Ginzburg number is given by (Eq. 20)

Gi =
g2Δ

4ð4πÞD=2
Γ
�
4−

D
2

�
: [20]

This computation is correct only below the upper critical dimension
Du = 8. For D ≥ Du, the theory is divergent in the UV, and the
Ginzburg number depends on the microscopic details; however,
the critical exponents coincide with the mean field ones.

Results in the HNC Approximation
Up to now, the calculations were very general, and the results
above hold for any given approximation of the replicated free
energy functional that displays the correct mean field glassy
phenomenology. One of the advantages of our static approach
is, indeed, that it can be systematically improved by considering
more accurate approximations of Γ.
Here, we report results obtained from the replicated HNC

approach that amount to neglecting the Γ2PI term in Eq. 6,
which has been shown to give the correct glassy phenome-
nology at the mean field level (14, 15). Applying the formulae
above, we find that, in the HNC approximation, the parameter
λ is given by (Eq. 21)

λ =

1
ρ4

Z
dx

k30ðxÞ
~g2ðxÞ

1
ρ3

Z
dq

ð2πÞD k30ðqÞ½1− ρΔcðqÞ�3
; [21]

where g~ðxÞ= ρa≠bðxÞ=ρ2, ΔcðqÞ= caaðqÞ− ca≠bðqÞ, and the direct
correlation function cab(q) is related to hab(q) by the replicated
Ornstein–Zernicke relation (14). Similar expressions can be
obtained for all of the other coefficients (SI Text).
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Fig. 1. The zero mode k0(q), the structure factor S(q), and the nonergodicity
factor f(q) for HS at the dynamical transition ρd = 1.176 in the HNC
approximation.

18728 | www.pnas.org/cgi/doi/10.1073/pnas.1216578109 Franz et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1216578109/-/DCSupplemental/pnas.201216578SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1216578109


To produce concrete numerical results, we have numerically
solved the HNC equations by standard methods (14) for a large
variety of systems in D = 3. In particular, we have considered

Hard Spheres (HS): v(r) = 0 for r > r0 and v(r) = ∞ otherwise.
Harmonic Spheres (HarmS): vðrÞ= « ðr0 − rÞ2θ  ðr0 − rÞ.
Soft Spheres (SS-n): vðrÞ= « ðr0=rÞn;with n= 6; 9; 12.
Lennard–Jones (LJ): vðrÞ= 4«½ðr0=rÞ12 − ðr0=rÞ6�.
Weeks–Chandler—Andersen (WCA): vðrÞ= 4«½ðr0=rÞ12 −
ðr0=rÞ6 + 1=4�θðr021=6 − rÞ.
In all cases, we fix units in such a way that r0 = 1, « = 1, and the

Boltzmann constant kB = 1. For HS and SS, temperature is irrel-
evant (for SS, the only relevant parameter is a combination of
density and temperature; hence, we fix T = 1 for convenience), and
we study the system as a function of density to determine the
glass transition density ρd. For the other systems, we studied the
transition as a function of both density and temperature.
To obtain numerically the zero mode, we have used the defi-

nition in Eq. 8 and estimated it by the numerical derivative of
g~ðrÞ with respect to

ffiffiffi
e

p
when « → 0. A plot of the zero mode for

HS is in Fig. 1. Interestingly, we find that the zero mode has the
same structure in Fourier space as the static structure factor S(q)
and the nonergodicity parameter f(q), which is the Fourier
transform of the long time limit of Eq. 1 in the glass phase (5).
This finding offers a rationalization of the common practice of
concentrating on momenta of the order of the peak of S(q) in the
study of glassy relaxation.
From the zero mode, we can compute all of the coefficients

of the effective action from which we obtain the physical quan-
tities. In particular, we can compute the prefactor ξ0 of the growth
of the correlation length and the Ginzburg number. Moreover,
we have computed the prefactor G0 of the in-state susceptibility
(Eq. 17) using a box function f ðxÞ= ð2AÞ−D=2∏D

α=1θðA2 − x2αÞ,
where θ(x) is the Heaviside step function and A = 0.1r0. All of
the results are collected in Tables 1 and 2.
The value of λ that we find is almost the same for all investigated

systems and is consistent with the result of MCT (5) and numerical
results for these systems. Note, however, that the location of the
critical point predicted by HNC is different from the one of MCT

(e.g., for HS, HNC predicts ρd = 1.169, whereas MCT predicts
ρd = 0.978) (5). This result is an example of the fact, already
mentioned in the Introduction, that different approximation
schemes lead to different results. Another example of this
problem is obtained by comparing the results for LJ and WCA
at ρ = 1.2, 1.4 (Table 2) with MCT and the numerical data
reported in table 1 in ref. 35. The most interesting numerical
result is the Ginzburg number. We predict that (perturbative)
corrections to mean field results in D = 3 should remain small
as long as the dynamical correlation length is smaller than ∼1.
Note that a different Ginzburg criterion for the validity of MCT,
based on a phenomenological approach, has been derived in
ref. 20: the results of that analysis also suggest that corrections to
mean field will appear when the correlation length is ∼1.
Unfortunately, notmanydata for the critical behavior of four-point

correlations in the β-regime are available (36, 37). It would, thus, be
very interesting to get high-precision simulation data in the β-regime.

Conclusions
We have studied the replica field theory for the dynamical transi-
tion in glasses in detail. By using the HNC approximation, we have
computed many physical observables directly from the microscopic
expression of the interaction potential. First, we provided a way to
compute the mode-coupling exponent parameter λ. The numerical
values obtained are in good agreement with the experimental and
numerical estimates. Second, we have computed the prefactor of
the correlation length at the transition together with the prefactor
of the in-state four-point correlation function. Third, we have self-
consistently closed our analysis by looking at the loop corrections
to the mean field quantities to produce a Ginzburg criterion that
states how close we have to be to the dynamical transition to see
deviations from mean field theory. We found that the range
currently accessible to numerical simulations in 3D is close to the
point where such corrections should become important. Of course,
nonperturbative corrections (activated processes) are not included
in our analysis, but they are responsible for strong deviations
from the MCT regimen when the transition is approached.
Our analysis is quite general, because it relies only on the as-

sumption that the approximation scheme used for the Gibbs free
energy shows the correct mean field glassy phenomenology.

Table 1. Numerical values of the coefficients of the effective action and the physical quantities from the HNC
approximation

System T ρd w1 w2 m2 m3 σ μ λ ξ0 G0 Gi

SS-6 1 6.691 0.121 0.0845 −0.229 0.0273 0.0484 0.130 0.697 0.601 224 0.370
SS-9 1 2.912 2.41 1.70 −1.34 0.157 0.405 1.35 0.705 0.548 34.3 0.166
SS-12 1 2.057 8.58 6.08 −2.89 0.328 0.938 3.77 0.709 0.498 14.2 0.154
LJ 0.7 1.407 33.1 23.5 −6.39 0.719 2.45 10.3 0.709 0.489 6.00 0.108
HarmS 10−3 1.335 40.4 29.1 −8.34 0.850 1.92 19.3 0.719 0.315 2.82 0.535
HarmS 10−4 1.196 51.5 38.9 −10.0 0.957 2.03 27.0 0.756 0.274 1.69 0.622
HarmS 10−5 1.170 54.3 41.5 −10.3 0.979 2.09 27.1 0.764 0.278 1.66 0.593
HS 1.169 54.5 41.5 −10.3 0.984 2.10 26.7 0.761 0.280 1.67 0.606

For each potential, lengths are given in units of r0, and energies are given in units of «, with kB = 1. Data are at fixed temperature
using density as a control parameter with « = ρd − ρ.

Table 2. Same as Table 1, but here, the data are at fixed density using temperature as a control
parameter with « = Td − T

System ρ Td w1 w2 m2 m3 σ μ λ ξ0 G0 Gi

LJ 1.2 0.335 58.2 41.4 −8.94 0.999 3.65 14.2 0.711 0.507 4.56 0.0937
LJ 1.27 0.438 47.9 33.8 −7.96 0.916 3.18 11.1 0.705 0.536 5.74 0.102
LJ 1.4 0.683 33.7 23.9 −6.46 0.726 2.49 7.24 0.710 0.586 8.52 0.106
WCA 1.2 0.325 61.0 42.9 −9.65 1.05 3.29 15.1 0.703 0.467 4.37 0.179
WCA 1.4 0.692 34.5 24.2 −6.68 0.746 2.39 7.21 0.701 0.576 8.67 0.143
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Hence, it can, in principle, be repeated in different approximation
schemes to go beyond HNC and obtain more accurate expressions
for physical quantities.
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SI Text
This text is organized in three parts. In the first part, we give a
sketch of the line of reasoning that leads to the effective action
used to describe the dynamical transition, and we give all of the
expressions for the coefficients of the same action in terms of the
interparticle potential. We use a generic framework without spec-
ifying the approximation used to compute the Gibbs free energy,
and then, we give the expressions in the hypernetted chain ap-
proximation (HNC) case. The second part is devoted to the
Ginzburg criterion: we describe the guidelines of the computation
by showing which diagrams have been taken into account to
produce the first correction to the bare four-point function that
has been given in the text. The third section contains some details
on the numerical calculations, and it is useful just to understand
how our results can be improved numerically.

Coefficients of the Replica Gibbs Free Energy. As in the text, we
assume that the glassy phenomenology manifests itself in the
singular behavior of the off-diagonal field ρa≠b(x, y) that has a
diverging derivative with respect to temperature when the criti-
cal point is approached. This finding implies that the Hessian (or
mass) kernel operator develops a zero mode. Actually, we re-
member here that, because of the replica symmetry of the saddle
point, only one (i.e., M1) of the three kernel operators M1, M2,
andM3 has a zero mode. This result implies that the field ρ(2) can
be decomposed on the eigenvectors of M1. Because we want to
give the expressions for the diverging part of the correlation func-
tion, we can simply disregard the excited modes that are finite
and take into account only the projection of the dynamical field
ρ(2) on the zero mode. Practically, this process is the same as
putting to infinity the masses relative to the projections of the
dynamical field on the excited states of the kernel operator M1.
By using this process, we can produce a gradient expansion for
the replicated Gibbs free energy. The simplest way is to impose
that the fluctuations of the dynamical field from the saddle point
solution are proportional to the zero mode (Eq. S1):

Δρabðx; yÞ ¼ ϕab

�xþ y
2

�
k0ðx− yÞ: [S1]

Therefore, the expressions for the coefficients of the effective
action for the critical fluctuations can be computed straightfor-
wardly. Let us consider first the expression for σ and μ. They
come along in this way. The kernel operatorM1 has a ground-state
eigenvalue λ0ðpÞ ¼ μ

ffiffiffi
e

p þ σp2 þOðp4Þ. For small momentum
(which means that we look at the correlation of two fluctuations
of the dynamical field that is at a very large distance), the ex-
pressions for μ and σ can be computed using perturbation theory
for the eigenvalue problem for the kernel M1, where the small
perturbative parameter is exactly the momentum p. The final
expressions are given by (Eq. S2)

μ ¼ lim
e→0

d
d

ffiffiffi
e

p
Z

dDqdDk

ð2πÞ2D k0ðqÞMðp¼0Þ
1 ðq; kÞk0ðqÞ [S2]

and (Eq. S3)

σ ¼ lim
e→0

Z
dDqdDk

ð2πÞ2D k0ðqÞ ∂
∂p2

MðpÞ
1 ðq; kÞ

����
p¼0

k0ðqÞ; [S3]

where the zero mode is supposed to be normalized. In the same
spirit, the two other masses mi, i = 2, 3, are given by (Eq. S4)

mi ¼ lim
e→0

Z
dDqdDk

ð2πÞ2D k0ðqÞMðp¼0Þ
i ðq; kÞk0ðqÞ: [S4]

At this point, it is clear how the expressions for the two cubic coef-
ficients w1 and w2 can be obtained, defining (Eq. S5)

Lab;cd;ef ðx1; . . . ; x6Þ¼
δ3Γ

�
ρ; ρð2Þ

�
δρð2Þab ðx1; x2Þδρð2Þcd ðx3; x4Þδρð2Þef ðx5; x6Þ

: [S5]

Then, they are given by the following equations (Eq. S6):

w1;2 ¼
Z

dDx1; . . . dDx6k0ðx1 − x2Þ . . . k0ðx5 − x6ÞW1;2; [S6]

where (Eq. S7)

W1 ¼ Lab;bc;ca − 3Lab;ac;bd þ 3Lac;bc;de −Lab;cd;ef [S7]

and (Eq. S8)

  W2 ¼ 1
2
Lab;ab;ab − 3Lab;ab;ac þ 3

2
Lab;ab;cd

þ3Lab;ac;bd þ 2Lab;ac;ad − 6Lac;bc;de þ 2Lab;cd;ef : [S8]

From the expressions for w1 and w2, we can extract the general
expression for the exponent parameter λ. However, all of the
calculations above rely on the assumption that the replicated
Gibbs free energy can be computed exactly. This result is not
possible in the general case, and, as we have said in the text, we
have to recast in some given mean field-like approximation that
has the correct glassy phenomenology. Here, we will give all of
the expressions above in the HNC approximation, where the
derivatives of the Gibbs free energy can be computed exactly.
The expressions for σ and μ are (Eq. S9)

μ ¼ 2κ
ρ

Z
dDq

ð2πÞD k30ðqÞ½1− ρΔcðqÞ�− κ

Z
dDx

k30ðxÞ
ρ2~g2ðxÞ

σ ¼ 1
8ρ

Z
dDq

ð2πÞD k20ðqÞ½ ρΔcðqÞ− 1�

×
�	

Δc″ðqÞ−Δc′ðqÞ
q



cos2θ þ Δc′ðqÞ

q

�

−
1
8

Z
dDq

ð2πÞD k20ðqÞ
�
Δc′ðqÞ
2cos2θ; [S9]

where ΔcðqÞ ¼ cðqÞ−~cðqÞ is the difference between the diag-
onal and off-diagonal part of the matrix of the direct correla-
tion functions defined through the Ornstein Zernike equation,
and θ is the polar angle in D-dimensional polar coordinates.
The expressions for the other two mass terms are given by
(Eq. S10)
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m2 ¼ −
Z

dDq

ð2πÞD k20ðqÞ~cðqÞ
�
1
ρ
−ΔcðqÞ

�

m3 ¼ 1
2

Z
dDq

ð2πÞD k20ðqÞ~c2ðqÞ: [S10]

By computing the third derivative of the replicated Gibbs free
energy in the HNC approximation, we get the expression for w1
and w2 (Eq. S11):

w1¼ −
1
8ρ3

Z
dDq

ð2πÞD k30ðqÞ~cðqÞ½1− ρΔcðqÞ�3

w2¼ −
1

16ρ4

Z
dDx

k30ðxÞ
~g2ðxÞ:

[S11]

Ginzburg Criterion. In this section, we give a guideline for the
computation of the Ginzburg criterion. In the text, we have said
that, at the dynamical point where the number of replicas goes
to one, the leading behavior of the correlation functions of the
two-points function ρ(2) can be computed using a field theory
for a scalar quantity described by a cubic potential in a random
field. This observation simplifies a lot of the loop expansion,
because it does not involve replica indices that complicate the
perturbative analysis. With reference to the action defined in
Eq. 18 in the text, we can give a perturbative expression for the
two-point function of the field ϕ(x). The bare propagator is given
as usual by G−1

0 ðpÞ ¼ σp2 þ μ
ffiffiffi
e

p þ δm. To obtain the two-point
function, it is quite useful to write down the generating func-
tional of the correlation functions W[J] = ln Z[J], where we can
put J(x) = h0(x) + δh, and h0 is an external field that can be used
to extract the correlation function by taking the derivative with
respect to it. Introducing the following diagrammatic notation
(Eq. S12)

, [S12]

we have that (Eq. S13)

[S13]

We impose that the critical point is not shifted by the per-
turbative terms; therefore, we also want hϕðxÞi ¼ 0, from
which we see that the counterterm δh is of order g. Now let
us look at the one-loop correction to the propagator. Using

the fact that the expectation value of ϕ is zero, we obtain

We are interested in the most infrared divergent diagrams (in
the limit where T → Td). This interest means that we can neglect
the second diagram, and we can consider only the first one
(which is exactly what happens in the perturbative expansion of
the Random Field Ising Model). The inverse of the renormalized
susceptibility reads (Eq. S14)

m2
R ¼ G−1ðp ¼ 0Þ ¼ m2

0 þ δm−
Δg2

2ð2πÞD
Z

∧ dDq
1�

σq2 þm2
0


3;
[S14]

where m2
0 ¼ μ

ffiffiffi
e

p
. By taking the derivative with respect to m2

0, we
obtain (Eq. S15)

dm2
R

dm2
0
¼ 1þ 3

Δg2

2ð2πÞD
Z

∧ dDq
1�

σq2 þm2
0


4: [S15]

By imposing that the second term on the right side is smaller than
one and computing the loop integral, we get the expression 19 and
Eq. 20 in the text.

Details on the Numerics. To produce the numerical values collected
in the tables, we have solved numerically the HNC equations in
3D. This solving is a quite easy task, because such equations can be
solved by an iterative Picard scheme.However, the solution requires
the use of Fourier transforms. Working in spherical coordinates
thanks to the rotational invariance of the system, we have two
natural cutoffs. The first one fixes the maximal distance L (infrared
cutoff); hence, we only keep g(r) for 0 ≤ r ≤ L. The other one is
related to the precision with which we measure the position of the
particles (UV cutoff): the possible values of r are discretized in
such a way that, in the unit interval, there are N equispaced pos-
sible positions; therefore, the precision is 1/N. The data presented
in the tables are relative to the larger cutoffs that we have. In
particular, the infrared cutoff is fixed to L = 16, where the unit
distance is the diameter of the particles or the interaction range
of the potential. The UV cutoff is fixed at n = 256. A remark must
be made on the way that we computed the critical point and the
zero mode. In fact, to observe the correct

ffiffiffi
e

p
behavior of the off-

diagonal solution, we need to be quite close to the critical point,
because otherwise, this behavior is hidden by the subleading «
behavior. To give a precise estimate of the critical point, we have
collected a sequence of solutions of the HNC equation varying
the temperature or the density, depending on the case under study,
and we have fitted these data with a

ffiffiffi
e

p
behavior. After we have

identified the critical point, we have computed the zero mode using
the definition given by Eq. 8 in the text directly.
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