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1Dipartimento Fisica, Università “Sapienza,” Piazzale A. Moro 2, I-00185 Rome, Italy
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An important prediction of mode-coupling theory is the relationship between the power-law decay exponents in
the β regime and the consequent definition of the so-called exponent parameter λ. In the context of a certain class of
mean-field glass models with quenched disorder, the physical meaning of λ has recently been understood, yielding
a method to compute it exactly in a static framework. In this paper we exploit this new technique to compute the
critical slowing down exponents for such models including, as special cases, the Sherrington-Kirkpatrick model,
the p-spin model, and the random orthogonal model.
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I. INTRODUCTION AND FRAMEWORK

It is well known that mean-field spin-glass models have
a low-temperature phase in which the replica symmetry is
broken, with a breaking pattern that depends on the specific
model. The models displaying a static discontinuous transition
which are consistently described by a finite number of
breakings are characterized by critical slowing down and a
dynamical transition at a temperature higher than the static
one.

They share some relevant properties of structural glasses;1–4

more specifically, the dynamical equations are exactly equiv-
alent to those predicted by mode-coupling theory (MCT)
above the mode-coupling temperature Tmc where ergodicity
breaking occurs. The time autocorrelation function in the high-
temperature phase displays a fast decay to a plateau (β regime)
and then a second relaxation to equilibrium (α regime).
Approaching the dynamical transition temperature (called Td

in the spin-glass context) the length of the plateau grows
progressively until it diverges exactly at Td , where the system
remains stuck forever in one of the most excited metastable
states in a complex free energy landscape. According to MCT
the approach to the plateau and the decay from it are both
characterized by a power-law behavior, respectively

C(t) � qd + ct−a, (1)

C(t) � qd − c′tb, (2)

where qd is the height of the plateau. The length of the plateau
(the α-relaxation time τα) diverges as

τα ∝ (T − Td )−γ . (3)

The three exponents satisfy the following relations that are
exact in the framework of MCT (see for example Ref. 5):

�2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
= λ, γ = 1

2a
+ 1

2b
, (4)

where � is the standard Euler Gamma function and λ is the
so-called exponent parameter.

This relation between the exponents has been proven to
be robust under higher order corrections to standard MCT.6

The exponent parameter λ and, consequently, the exponents
a and b have been computed exactly only for the spherical

p-spin model7 since the dynamical equations are particularly
simple and correspond to the so-called schematic MCT
models. In the general case, instead, an approximate value
of λ can be obtained analytically within MCT. Sources of
errors in its expression are the approximations for the vertices
describing mode coupling and the numerical uncertainties in
the computation of the static structure factor of the liquid. On
the other hand there is the possibility to fit experimental or
simulation results to get the exponents a and b. The estimated
exponents display a good agreement with relationship (4)
although, as expected, with a value of λ which is slightly
different from the approximate analytical expression obtained
in MCT. Therefore it is usually assumed that the relationship
(4) is exact while λ is treated as a tunable parameter
(see Refs. 8,9 for example).

In the case of continuous transitions, there is no dynamic
arrest preceding the static transition, the time correlation func-
tion does not display the two-step relaxation, and consequently,
no exponent b is defined. At the thermodynamic transition, for
long times, the correlation decays to the equilibrium value
qEA with a power law of the kind C(t) � qEA + ct−a . The
equilibrium order parameter qEA is zero at the transition in the
absence of magnetic field.

It has been recently pointed out10,11 that there exists a
connection between the exponent parameter and the static
Gibbs free energy, which allows one to compute λ in a
completely thermodynamic framework, even in cases which
go beyond schematic MCT. In the following we will briefly
summarize the method.

Given a fully connected model it is possible to compute the
Gibbs free energy �(Q) as a function of the order parameter
that, in the case of a spin-glass transition, is the well known
overlap matrix Q. The value of the order parameter can be
determined through a saddle point calculation and �(Q) can
then be expanded around this solution. For our “dynamic”
purposes, the expansion has to be performed around a replica
symmetric saddle point solution QSP

ab = qSP . This gives rise
to eight different kinds of third-order terms, but only two of
them will be relevant, namely,

w1Tr(δQ3) = w1

∑
a,b,c

δQabδQbcδQca (5)
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and

w2

∑
a,b

δQ3
ab. (6)

In the case of discontinuous transitions it can be shown10,11

that the following relation holds at the dynamical transition,
giving the connection between the dynamical exponents a and
b and the static coefficients, namely,

λ = w2(Td )

w1(Td )
, (7)

where λ is given in Eq. (4); the expansion of the Gibbs free
energy has to be performed around the value of the overlap
yielding the height of the plateau at the dynamical transition,
qd .

Since the coefficients have to be computed at the dynamical
transition, where quantities at infinite time do not relax to their
equilibrium (thermodynamic) value but remain stuck at their
value inside the most excited metastable states, the averages
should then be computed inside a single state. This corresponds
to taking a 1-RSB (replica symmetry breaking) ansatz with
breaking parameter m → 1 or, equivalently, a RS ansatz with
the number of replicas n → 1.12–15

In this paper we will use the second strategy which is
technically much simpler than the first one; therefore we
cannot treat the case of a dynamical transition in the presence of
a magnetic field, since the mutual overlap (q0) between states
is nonzero and the 1-RSB (m → 1)/RS (n → 1) equivalence
does not hold. On the other hand, for continuous transitions a
relation between the exponent a and the two coefficients w1

and w2 analogous to Eq. (7) holds at the static point:

λ = w2(Ts)

w1(Ts)
. (8)

In this case, since the continuous static transition coincides
with the dynamical one (e.g., in the Sherrington-Kirkpatrick
model), the dynamical quantities at infinite time relax to their
static value16 and the averages can be computed in a replica
symmetric ansatz taking finally the limit n → 0. For this
reason, if the transition is continuous, the RS ansatz will be
sufficient to treat the case in the presence of a magnetic field.

In order to compute the two coefficients w1 and w2 we must
compute the Gibbs free energy as a function of the overlap
and then expand it to third-order around the RS saddle point
value q. In fully connected models, we introduce a replicated
external field ε and the free energy reads

f (ε) = − 1

βnN
ln

∫
dQ exp N (S[Q] + Tr εQ) (9)

which, for N → ∞, can be evaluated at the saddle point

f (ε) = − 1

βn
maxQ (S[Q] + Tr εQ) , (10)

where we compute the maximum of the argument of the
exponential function. Notice that the equation above defines
f (ε) as the anti-Legendre-transform (L ) of the effective
action

f (ε) = L (S[Q]) (11)

and, by definition, the Gibbs free energy �(Q) is the Legendre
transform (L ) of f (ε), yielding

�(Q) ≡ L (f (ε)) = L (L (S[Q])) = S[Q]. (12)

Therefore, in fully connected models, the functional form of
the Gibbs free energy is equal to the one of the effective action
and we can then directly expand the latter. The general form
of the third-order term in the free energy is

S (3) =
∑

(ab)(cd)(ef )

Wab,cd,ef δQabδQcdδQef (13)

with

Wab,cd,ef = ∂3S(Q)

∂Qab∂Qcd∂Qef

. (14)

Since a �= b, c �= d, and e �= f and the coefficients W are
computed in the RS ansatz, they eventually can be expressed as
linear combinations of eight independent coefficients w1,...,8.
On top of this, restricting the variations to the replicon sub-
space (R),30 only two coefficients yield relevant information
approaching the dynamic arrest.10,11,17 We will denote them as
w1 and w2:

S (3)
R =

∑
(ab)(cd)(ef )

Wab,cd,ef δQR
abδQ

R
cdδQ

R
ef

= w1Tr(δQR)3 + w2

∑
ab

(
δQR

ab

)3
, (15)

which follows quite straightforwardly from Eq. (13) applying
the replicon constraint to the variations.

In this paper we apply this technique to study the critical
slowing down of a general model of mean-field Ising spin
glass which includes, as particular cases, the Sherrington-
Kirkpatrick (SK) model, the p-spin model, and the random
orthogonal model (ROM). The outline of the paper is the fol-
lowing: In Sec. II we introduce the general model; in Sec. III we
give the details of the computation of the parameter exponent
λ for the general case and briefly present the result for the SK
model and p-spin model. In Sec. IV we compute λ for the ROM
model and compare our exact result with numerical simula-
tions. Finally, in Sec. V we give our conclusions and remarks.

II. THE GENERAL MODEL

In this section we will consider a class of mean-field models
with Hamiltonian

H = −
∑
i<j

Jij σiσj −
∑

p

√
Rp

p!

∑
i1<...<ip

K
p

i1,...,ip
σi1 · · · σip ,

(16)

where σi are N Ising spins. The 2-body interaction matrix is
constructed in the following way:18

J = OT �O, (17)

where O is a random O(N ) matrix chosen with the invariant
Haar measure,19 which is a uniform measure on the group
of orthogonal matrices.31 On the other hand, � is a diagonal
matrix with elements independently chosen from a distribution
ρ(ξ ). In order to ensure the existence of the thermodynamic
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limit, the support of ρ(ξ ) must be finite and independent of
N . The p-body interactions Kp are independent, identically
distributed (i.i.d.) Gaussian variables with variance

p!

Np−1
, (18)

and the parameters Rp define a function R(x) such that

Rp = dpR

dxp
(x)

∣∣∣∣
x=0

. (19)

As shown in Refs. 18,20 and 21 for this class of mean-field
spin glasses, the general form of the replicated free energy is

−nβf = maxQ,�S[Q,�] (20)

with

S[Q,�] = 1

2
Tr G(βQ) + β2

2

∑
ab

R(Qab)

− 1

2
Tr Q� + ln

[
Trσa

exp

(
1

2

∑
a,b

�ab σaσb

)]
,

(21)

where � is an auxiliary field and G : Mn×n → Mn×n is a (in
general rather complicated) function in the space of n × n

matrices, formally defined through its power series around
zero. The particular form of G depends on the choice of the
eigenvalue distribution ρ(ξ ). In the following we will consider
mainly two cases: Wigner law and bimodal.

For later convenience we define at this point

Gk(x) = dkG(x)

dxk
, Rk(x) = dkR(x)

dxk
. (22)

Given the effective action (21), the saddle point equations in
� and Q respectively read

Qab = 〈〈σaσb〉〉, �ab = β[G1(βQ)]ab + β2R1(Qab), (23)

where the average 〈〈·〉〉 is computed with the measure

W(�,σ ) = e(1/2)
∑

a,b �a,bσaσb

Trσ e(1/2)
∑

a,b �a,bσaσb
. (24)

In the replica symmetric ansatz (Qab = q,�ab = λ̂ for a �=
b and Qaa = qd,�aa = λ̂d ), Eq. (23) becomes

q = 〈m2〉,
λ̂ = β

n
[G1(β(1 + (n − 1)q)) − G1(β(1 − q))]

+β2R1(q), (25)

where m = tanh(z) and the average 〈·〉 is computed with the
measure

μ(λ̂) = e−(z2/2λ̂) coshn(z)
e−nλ̂/2

(2πλ̂)1/2
. (26)

In the next section we study in detail the (dynamical) critical
behavior of this class of models and we show how to compute
the critical slowing down exponents. One of our main results,
derived in detail in the next section, will be a closed formula
for the exponent parameter:

λ = w2

w1
= R3(q) + 2β4D(β,q)3 C2

βG3(β(1 − q)) + 2β4D(β,q)3 C1
, (27)

where

D(β,q) ≡ G2(β(1 − q)) + R2(q) (28)

and

C1 ≡ 〈(1 − m2)3〉, C2 ≡ 2〈m2(1 − m2)2〉. (29)

III. COMPUTATION OF THE MCT EXPONENTS

As explained in the Introduction, in order to compute the
parameter exponent λ we have to expand the effective action to
third order in Q and then restrict the variations to the replicon
subspace, obtaining straightforwardly the two coefficients w1

and w2. In the present case, the effective action contains the
auxiliary field � which will be eliminated making use of the
saddle point equation (23). The expansion of Eq. (21) to third
order gives

δS[Q,�] � 1

2
Tr

[
βG1(βQSP )δQ + 1

2
β2G2(βQSP )δQδQ + 1

3!
β3G3(βQSP )δQδQδQ

]

+ β2

2

∑
ab

[
R1

(
QSP

ab

)
δQab + 1

2
R2

(
QSP

ab

)
δQ2

ab + 1

3!
R3

(
QSP

ab

)
δQ3

ab

]

− 1

2
Tr[QSP δ� + �SP δQ + δ�δQ] + 1

2

∑
ab

〈〈σaσ b〉〉δ�ab

+ 1

2 × 4

∑
ab,cd

〈〈σaσ bσ cσ d〉〉Cδ�abδ�cd + 1

3! × 8

∑
ab,cd,ef

〈〈σaσ bσ cσ dσ eσ f 〉〉Cδ�abδ�cdd�ef . (30)

A comment is needed for the first line of Eq. (30): The “scalar like” Taylor expansion of a matrix functional f (M), f : Mn×n →
Mn×n around some M0 (different from the null matrix), is correct only if [M0,δM] = 0.
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In the present case QSP is replica symmetric while δQ is,
in principle, simply symmetric. The commutation condition
for a RS matrix with a symmetric matrix reads∑

c

δQcb =
∑

c

δQac ∀ a,b, (31)

which is satisfied in any subspace orthogonal to the anomalous
one (see Ref. 17), i.e., both in the longitudinal and in the
replicon sector.32 Equating to zero the first order of Eq. (30)
we obtain the saddle point equations (25).

Considering that the variations δQ and δ� are in the
replicon subspace the second order term simplifies as follows:

[β2(g̃2 − g2) + β2r2]
∑
ab

δQ2
ab

− 2
∑
ab

δ�abδQab + 〈(1 − m2)2〉
∑
ab

δ�2
ab, (32)

where here and in the following formulas we define the four
constants (two diagonal and two off-diagonal):

g̃k = (n − 1)Gk(β(1 − q)) + Gk (β(1 + (n − 1)q))
n

,

gk = Gk (β(1 + (n − 1)q)) − Gk(β(1 − q))
n

, (33)

r̃k = Rk(1), rk = Rk(q),

and Gk and Rk are defined in Eq. (22). For the system to be
critical, the replicon eigenvalue must vanish and, consequently,
the Hessian determinant must be zero. Imposing this condition
we get the following equality:

〈(1 − m2)2〉 = 1

[β2(g̃2 − g2) + β2r2]
. (34)

Equation (34), together with Eq. (25), leads to the criticality
condition, which locates the dynamical or static transition
point depending on the value (n = 1,0) of the replica number.

Now we want to eliminate the auxiliary field. The � saddle
point equation (23) reads (up to second order)

δQab = 1

2

∑
cd

〈〈σaσ bσ cσ d〉〉Cδ�cd

+ 1

4

∑
cd,ef

〈〈σaσ bσ cσ dσ eσ f 〉〉Cδ�cdd�ef . (35)

Exploiting the property of the replicon subspace and the
criticality condition we can write the variation in the following
way:

δQab = 〈(1 − m2)2〉δ�ab + 〈(1 − m2)3〉
∑

c

δ�acδ�cb

+ 2〈m2(1 − m2)2〉δ�2
ab. (36)

Inverting the equation we obtain

δ�ab = [β2(g̃2 − g2) + β2r2]δQab − [β2(g̃2 − g2) + β2r2]3

×
[
〈(1−m2)3〉

∑
c

δQacδQcb+2〈m2(1−m2)2〉δQ2
ab

]
.

(37)

Now we recall that

C1 ≡ 〈(1 − m2)3〉, C2 ≡ 2〈m2(1 − m2)2〉, (38)

and plug the constraint (37) into (30), obtaining three different
contributions to the third order in δQ, namely

−1

2
Tr[δ�δQ] → 1

2
[β2(g̃2 − g2) + β2r2]3

×
[
C1δQab

∑
c

δQbcδQca + C2δQ
3
ab

]
,

(39)

1

2 × 4

∑
ab,cd

〈〈σaσ bσ cσ d〉〉Cδ�abδ�cd →

− 1

2
[β2(g̃2 − g2) + β2r2]3

×
[
C1δQab

∑
c

δQbcδQca + C2δQ
3
ab

]
, (40)

1

3! × 8

∑
ab,cd,ef

〈〈σaσ bσ cσ dσ eσ f 〉〉Cδ�abδ�cdd�ef →

1

3!
[β2(g̃2 − g2) + β2r2]3

×
[
C1

∑
abc

δQabδQbcδQca + C2

∑
ab

δQ3
ab

]
. (41)

Summing all the third-order contributions in Eq. (30), we
eventually find

w1 = 1

2

β3

3!
(g̃3 − g3) + 1

3!
[β2(g̃2 − g2) + β2r2]3C1,

w2 = 1

2

β2

3!
r3 + 1

3!
[β2(g̃2 − g2) + β2r2]3C2. (42)

Substituting Eq. (33) one immediately obtains a general
expression for the exponent parameter, which is the main result
of this paper, cf. Eq. (27):

λ = w2

w1
= R3(q) + 2β4D(β,q)3 C2

βG3(β(1 − q)) + 2β4D(β,q)3 C1
,

where D(β,q) is defined in Eq. (28). Notice that the expression
(27) is completely general and holds for every model belonging
to this class, while the details of the model enter in the specific
form of the functions G and R.

A. SK model on the dAT line

The Sherrington-Kirkpatrick model22 is described by the
Hamiltonian

H = −1

2

∑
ij

Jij σiσj − H
∑

i

σi, (43)

where the couplings are i.i.d. random variables distributed
according to a Gaussian with zero mean and variance 1/N .
This model belongs to the class defined above, with

R(x) = x2

2
, G(x) = 0,
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or, conversely, R = 0 and G = x2/2 (see Ref. 22), except for
the presence of the magnetic field term. We will see in a while
that this affects the result in a very simple way.

It is well known that in the SK model there exists a line of
instability of the replica symmetric solution in the β-H plane,
the de Almeida–Thouless (dAT) line,23 where the so-called
replicon eigenvalue of the stability matrix vanishes. In this
section we want to compute the decay exponent of the time
correlation function along this line. In order to get the result
we first have to find solutions simultaneously satisfying saddle
point and dAT equations, respectively

q =
∫

dμ(z) tanh2(β
√

qz + βH ), (44)

1 = β2
∫

dμ(z) sech4(β
√

qz + βH ),

(45)

dμ(z) = 1√
2π

e−(z22) dz.

In the case of continuous transitions, the presence of the
magnetic field only modifies the definition of the parameter
m in Eq. (27) which becomes

m = tanh(z + βH ) (46)

without changing the formal expression for the coefficients.
As R(x) = 1

2x2, implying R2(x) = 1 and R3(x) = 0, the
expression for the exponent parameter in the SK model in
a field reads

λ = C2

C1
≡ 2〈m2(1 − m2)2〉

〈(1 − m2)3〉 . (47)

Our result exactly coincides with the one obtained by Som-
polinsky and Zippelius16 in a purely dynamical framework.

B. Multi-P-spin Ising model

Starting from a Hamiltonian of the kind of Eq. (16)
without the first term leads to a generalized version of
the p-spin model,24 in which many multibody interaction
terms are considered, depending on the actual form of the
function R. As shown in Refs. 25–27, in these models, the
thermodynamic properties, the critical dynamics, and replica
symmetry breaking structure depend on the relative strength
of the coupling terms (the coefficients of the expansion of R).
Indeed, in order to treat a particular case, before applying
our technique, one should understand the behavior of the
corresponding model.

The simple p-spin Ising model is characterized by R(x) =
axp, where an a �= 1 affects only the variance of the couplings
distribution and indeed rescales the temperature. For p > 2, in
the absence of any external magnetic field, the model displays
a dynamical transition at Td , then at a lower temperature a static
discontinuous transition from the paramagnetic RS phase to
the 1-RSB spin glass and, at a further lower temperature, a
second transition to a full-RSB spin glass.24 Focusing on the
first transition, we can compute the critical dynamic exponents
in the present general framework while a specific analysis was
presented by some of us in Ref. 28. In order to recover the same
model, we have to set R(x) = xp/2, which reduces Eq. (25)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01  0.1  1

α

Td
Ts

FIG. 1. The static and dynamical critical temperature as a func-
tion of the parameter α. They both diverge for α → 0 and are zero at
α = 1.

and (34) to

q = 〈m2〉, λ̂ = pβ2

2
qp−1,

(48)

1 = p(p − 1)β2qp−2

2
〈(1 − m2)2〉,

and Eq. (27) to

λ =
2〈m2(1 − m2)2〉 + 2(p−2)q3−2p

β4p2(p−1)2

〈(1 − m2)3〉 , (49)

as was found in Ref. 28.

IV. RANDOM ORTHOGONAL MODEL

The random orthogonal model (ROM)18,20 is obtained with
the choice R = 0 and the following eigenvalue distribution for
the matrix � in Eq. (17):

ρ(ξ ) = α δ(ξ − 1) + (1 − α) δ(ξ + 1). (50)

This model displays a glassy transition regardless of the value
of the tunable parameter α. The case with α = 1/2 has been

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α

qd
qs

FIG. 2. The static and dynamical critical overlap as a function of
the parameter α.
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 0.3
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 1

 0  0.2  0.4  0.6  0.8  1

α

λ
a
b

FIG. 3. Solid line: the exponent parameter λ. Dashed line: the
exponent a. Dot-dashed line: the exponent b.

extensively studied in Ref. 20 while the general case was
treated in Ref. 18.

It has been shown that as a consequence of the choice of
the eigenvalue distribution (50), the function G appearing in
the effective action reads33

2G(x) = (2α − 1) ln{ψ(x,α) + 2x + 2α − 1}
− ln{ψ(x,α) + 1 + 2(2α − 1)x}
− (2α − 1) ln(2α) − 1 + ln(2) + ψ(x,α), (51)

with

ψ(x,α) = [1 + 4x(2α − 1 + x)]1/2.

Using Eqs. (23) we can determine the transition temperature
Td and the dynamical overlap qd which are shown in Figs. 1
and 2 and coincide with those found in Ref. 18.

Once the critical point is obtained as a function of α, using
formula (27) specialized to the ROM case, we obtain the value
of the exponent parameter λ(α) and of the critical slowing
down exponents a(α) and b(α) which are shown in Fig. 3. We
find numerically that for α → 1 the exponent parameter goes
to λ = 2

3 as in the Ising p-spin model for p → ∞, while for
α → 0 we find λ = 1

2 as in the Ising p-spin model for p → 2
(see Table I). In particular, for α = 13/32 we have b = 0.628.
We now use this value to compare with numerical simulations.

A. Comparison with Monte Carlo data

There are recent numerical simulations by Sarlat et al.29 on
the fully connected ROM which give an estimate for the MCT
exponents a, b, and γ . They choose α = 13

32 � 0.4 in order
to have higher transition temperatures and a good separation
between the static and dynamical critical temperature.

Their direct estimate of the exponent b is 0.62, while their
direct estimate of γ is 2.1 which, through the exact MCT

TABLE I. The exponent parameter λ for special values of α.

α λ to compare with

1 2/3 p → ∞ Ising28

13/l32 0.7076 Num. Sim.29

0 1/2 p → 2 Ising3,28

relations given in Eq. (4) that we recall,

�2(1 + b)

�(1 + 2b)
= �2(1 − a)

�(1 − 2a)
= λ, γ = 1

2a
+ 1

2b
,

yields bMCT � 0.75. Our exact computation yields instead
bth � 0.628 (see Table I), which suggests that the best estimate
of the exponent b in Ref. 29 is the direct one, which is very
close to the actual value.

V. SUMMARY AND CONCLUSIONS

In the present work we have introduced a general fully
connected model for Ising spins, which combines an orthog-
onal two-body interaction with a set of p-body interactions.
Exploiting a technique that has been recently introduced,10,11

based on the equivalence between statics and long-time
dynamics, we have been able to find an analytic expression
for the exponent parameter λ, in a purely static framework.
As particular cases of the general model we have studied
the Sherrington-Kirkpatrick model along the de Almeida–
Thouless line, the p-spin model, and the random orthogonal
model. For the SK model we find the same result found by
Sompolinsky and Zippelius in Ref. 16. For the p-spin model
we recover, as a by-product of the general model, the results
given in detail in Ref. 28.

We have studied the critical behavior of the parametric class
of random orthogonal models at arbitrary values of the constant
α ∈ [0,1], which determines the distribution of the eigenvalues
of the interaction matrix. The exponent parameter and the two
MCT exponents have been determined analytically for any
α and in particular we have looked at α = 13/32 in order to
make a comparison with existing numerical simulations.29 Our
exact result is in very good agreement with the one obtained in
the Monte Carlo study, through the numerical estimate of the
exponent b (late β regime). On the other hand, a direct estimate
of the exponent γ gives a result that is quite far from what we
found here. Assuming that in Ref. 29 a proper interpolation
was performed, this might suggest that, for the present model,
the strong finite-size corrections affect the value of γ much
more than b.

Numerical interpolations at criticality are very sensitive for
glassy models and the corresponding estimates can strongly
suffer from this drawback. Our analytic computation allows
one to overcome this difficulty.
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