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Critical slowing down dynamics of supercooled glass-forming liquids is usually understood at the mean-field
level in the framework of mode coupling theory, providing a two-time relaxation scenario and power-law behaviors
of the time correlation function at dynamic criticality. In this work we derive critical slowing down exponents of
spin-glass models undergoing discontinuous transitions by computing their Gibbs free energy and connecting the
dynamic behavior to static “in-state” properties. Both the spherical and Ising versions are considered and, in the
simpler spherical case, a generalization to arbitrary schematic mode coupling kernels is presented. Comparison
with dynamic results available in literature is performed. Analytical predictions for the Ising case are provided
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I. INTRODUCTION

The slowing down of the dynamics of supercooled glass-
forming liquids corresponds to a nontrivial underlying thermo-
dynamic landscape. An unusual time behavior of the density
correlation function emerges, with respect to the exponential
decay: a separation between fast (8) and slow («) relaxation
modes takes place and the correlation function develops a
plateau approaching a dynamic arrest transition.'=

Theoretical advances have been made studying such sys-
tems with the so-called mode coupling theory (MCT),>® a
mean-field theoretical description of many-particle systems,
able to identify the separation of two relaxation processes and
a dynamical transition temperature T; at which ergodicity
breaks down with the system undergoing a structural arrest.
In this framework, for T — T; the time spent at the plateau
increases and diverges at Ty. At criticality a power-law
behavior arises for the correlation close to the plateau and
the exponents governing the approach to (~¢~%) and departing
from (~¢?) of the plateau are related as

(1 -a) T*(1+b)
I'(l—2a) T(+2b)

where A is called the exponent parameter, a model dependent
quantity (functional of the static structure factor”), that is
usually treated like a tunable parameter.

Since the works of Kirkpatrick, Thirumalai, and
Wolynes,'%!5 the behavior of glass-forming liquids and
structural glasses has been linked with dynamics and ther-
modynamics of a certain class of mean-field spin-glass (SG)
models, sometimes called mean-field glasses or discontinuous
spin glasses. These include the p-spin models,'¢'® displaying
a dynamic transition at which ergodicity breaks down, with
a behavior of the correlation function close or identical to
the one predicted by MCT. Below this dynamic transition the
Boltzmann measure splits in many well defined metastable
states. At a temperature Ty glassy states of lowest free
energy become thermodynamically stable inducing a phase
transition.!"!7-1° The static transition is governed by an entropy
crisis and plays the role of the hypothesized Kauzmann
transition, related to the vanishing of the configurational

A, (1)
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entropy of the liquid."?>?! Below this point, named random
first-order transition, the model develops a spin-glass phase
with one step replica symmetry breaking (1RSB). Besides the
conjectured thermodynamic analogy between discontinuous
spin glasses and structural glasses, cf. mosaic theory,'>*>*3 the
former can as well be exploited for studying critical slowing
down dynamics and MCT properties at the dynamic arrest
transition.

In this paper we do not address the study of thermody-
namics. We, rather, focus on the dynamic transition, applying
a recently introduced relationship between critical slowing
down exponents and thermodynamic “in-state” quantities.”*

The rest of the paper is organized as follows. In Sec. II
we present and discuss the static-dynamic relationship and the
analytic procedure leading to the determination of the critical
slowing down exponents. In Sec. III, using spherical p-spin
models whose dynamics down to 7, is equivalent to the one
of schematic MCT’s, we derive the critical exponents both in
the classical MCT way and with the static general method,
analytically verifying the correctness of such a static-dynamic
relationship. In Sec. IV we determine the critical slowing down
exponents at the dynamic transition of the Ising p spin.

II. STATIC COMPUTATION OF DYNAMIC SLOWING
DOWN EXPONENTS

In Ref. 24 the following relationship has been proposed be-
tween static observables and the so-called exponent parameter
A, cf. Eq. (1):

w2

A= 2)

wi
where coefficients w;, w, are obtained from the expansion
at the third order of the appropriate Gibbs free-energy I'[¢]
function of the order parameters, i.e., the replica overlap matrix
elements g,g. The thermodynamic potential I" is the Legendre
transform of the free-energy functional as a function of
replica “pinning” fields.?®-® It coincides with the Franz-Parisi
potential,”® by means of which the dynamic transition is
identified as the spinodal point of an excited local minimum
at a nonzero overlap value equal to the plateau value of the
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correlation function. Critical slowing down exponents can,
indeed, be obtained from the coefficients of the expansion of
I" around the replica symmetric (RS) saddle point ¢ *5 yielding
that local minimum.

For T 2 T, the Gibbs potential can be expanded in powers
of overlap fluctuations around the dynamic solution, 8g.s =
Qaﬁ - Qolfg

3I'[8qap] ~ Z Map y58qap3qys
(aB).(y8)

+ Z Waﬁy68<p8%xﬂ8q;/66qg(p’ (3)
(aB)(y8)(e9)

where 8T'[8qup] = T'[Qapl — F[Q 51 and the first-order term
is absent at the saddle point. Here and below, brackets in sums
over replica indices mean that only distinct replicas must be
considered.

The dynamic transition is associated to the vanishing of
the lowest eigenvalue of the mass term, the replicon. This
defines a critical direction in the replica space, along which
the relaxation is nonexponential. Projecting the expansion of
I > along the replicon direction §)¢,; (see next section for
the details), one obtains

8T8 gup] ~ wiTH(8g)* + w2 ) (67qap)’. (@)
(aB)

Summarizing, in order to obtain the MCT exponents for
mean-field discontinuous SG models one can proceed with the
following protocol:

(1) Compute the averaged replicated action I'[ Q].

(2) Compute the expansion around the dynamical RS
solution up to the third order, cf. Eq. (4).

(3) Solve the system equation for the saddle point and
the vanishing of the replicon, both in the n — 1 limit which
allows us to work on the dynamic metastable state of the Gibbs
potential.

(4) Evaluate the coefficients w, w, of the third order along
the replicon direction.

(5) Compute A by means of Eq. (2) and @ and b with Eq. (1).

III. SPHERICAL P-SPIN MODEL

In this section we focus on the spherical version of the fully
connected p-spin model. Its relevance in the context of mean-
field glasses is due to the equivalence of its equations of motion
with those provided by the schematic MCT for undercooled
liquids, the framework where the exponent parameter A and
its relation to critical slowing down exponents were first
introduced.

The static approach to the study of the dynamic properties
in the spherical model(s) is, therefore, a crucial verification of
the validity of Eq. (2). The Hamiltonian of the model reads

Z iyudyOiy - O, — hZo,-, 5)

i1<...<ip
where the couplings J are Gaussian independent identically
distributed variables with

Np-l NPl 5
P(J) = I~ exXp (— ' J) 6)
mp! p!
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and the spins o are real value variables subject to a global
constraint:
Z o2=N. @)

Due to the spherical constraint this model is analytically
solvable in all details needed for our scope. This allows us
to show how to compute third-order coefficients and dynamic
exponents a and b step by step.

Through a saddle-point calculation, it is possible to deter-
mine the replicated partition function:'”

_ [N
z" =e5(°°>/ —dqupsexp{—NT
\q\>0a1_[ o qap p{ (ol

h
— )0l - (ﬁ i ZQaﬂ
P B
1 (Bh)* ’
—5mlQl+ = (%Qab), (8)

where the overbar means average over disorder, cf. Eq. (6),
= pp*/2, Qus = 1/N Y, 00l and

eS(OO) — eN|1+1n(27t)|/27T71/2 [1 + 10) (%)] . (9)

Differentiating Eq. (8) with respect to Qg one obtains the
saddle-point condition:

pOby + (BhY +(Q Nap =0, Va# B,  (10)

where the term proportional to h* is absent because it is
irrelevant in both the n — 0,1 limits.

For our purposes we also need the third-order Taylor
expansion of I' in the overlap fluctuations around the RS
solution,

8qup = Qup — Qb3 08 =1 —q)8f +q.
where 8¢ is the Kronecker . It yields

1
28T (8q) = > Tl 584up8qys

" (@B)(yd)
1
+ o D Tl sy00epddysdqey, (1)
" (@B)(yd)(ep)

where §I'[8q] = T'[Q] —
the saddle point and

C[QXS]. The first order is absent at

r’ 82F ( 1) QI’—Z(SV(S(S
o =75 a5 - W= bhul, o
T 00500, p %
+ (@ Nay (0 Nsp + (B (12)
l—w/ _ 83F
B 9000 059 ey

~(p — D(p — QL 87 85058%
— 200 e (0™ gy (O Mg (13)

In order to study the critical dynamic behavior we work within
aRS Ansatz withn — 1,2672830 and restrict our analysis to the
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replicon subspace, defined by the conditions

Z 8qap = Z 8qup = 0.
o 3

The second condition is a consequence of the first one
as far as g,g is a symmetric matrix. The vanishing of the
eigenvalue of the Hessian in this subspace, the so-called
replicon eigenvalue, yields the criticality condition.

We initially perform the analysis to the case without
external magnetic field (A = 0). Imposing the saddle-point
condition, cf. Eq. (10), at the dynamic transition point (RS
with n — 1) we have the saddle-point equation

(14)

-1 q
ug” = : (15)
1-q)
Imposing the vanishing of the replicon we furthermore find
1
(p—Dug"? = ——. (16)
(1-q)?
leading to
p—=2 (p—pr!
= —) = — 17
9= M (=22 17

for the value of the overlap at the dynamic transition and the
inverse dynamic temperature. The dynamic transition point
is also the point at which the nontrivial dynamic saddle-point
solution appears (g = g4 # 0): Egs. (15) and (16) are therefore
not independent and indeed Eq. (16) can be obtained also as
the derivative of Eq. (15).

Considering fluctuations exclusively in the replicon sub-
space (r), one can considerably simplify the expansion of I,
cf. Eq. (11), as

r - 3
26T[8q" ] ~ —(p — D)(p — ug" > Y (8437)
(aB)

2 Mg ()
C(1—g) Z Sqa)ﬂ(sqﬂry‘sq;rv)t'
1" @y

(18)

In this case the tensorial form of Eq. (13) is so simple that we
can straightforwardly compute the values of the cumulants w
and w,, yielding

ws _(p=D(p=2)

ng" (1 = q)°, (19)
w1 2
which, imposing Eq. (16), reduces to
—2)1 —
w_(p-2d-q) 20)

w1 2q
Using the value of g, at the transition, cf. Eq. (17), one obtains
for XA the p-independent value

1
A= 22| =2

— , 21
ol =2 @1)

which coincides with the result reported in Refs. 18 and 31.

A. Case of uniform magnetic field

The presence of a magnetic field term (4 # 0) can change
the nature of the transition. As shown in Refs. 17 and 18 for

values of the field h > h,, =/ p?~P(p — 2)? /2 the transition
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becomes continuous: no plateau occurs and, at the transition,
the long-time limit of the correlation function does not jump
discontinuously, though the relaxation behavior in time is still
a power law in the 8 regime. The exponent a (sometimes
called v) is the only one defined. We first study this continuous
transition and then we move to the discontinuous one.

The value of a can be computed as for the discontinuous
transition case, except for the fact that now one has to work
in the n — 0 limit.>*?> This implies that the RS expression of
Eq. (10) becomes

na" +(pny = 2

(1—q)?
rather than Eq. (15). Equations (16) and (19), instead, do
not change. From Ref. 17 we know that the transition line
is parametrically defined as

_plp—1
2
=2
with 1 —2/p < g < 1. Given a value of the field %, one can
thus straightforwardly compute the corresponding values of ¢
and T from Egs. (23) and (24) and obtain X from Eq. (20).

For the discontinuous transition in a field & < h;., two
nonzero overlap values are relevant: the plateau value ¢g; and
the long-time limit gy = C(00). Comparing with the results of
Ref. 17 we observe that the exponent parameter A is still given
by the ratio w,/wy, cf. Eq. (20), now evaluated on ¢ = g,
solution of the following equations for the dynamic critical
values of T;(h), go(h), and gq;(h):

(22)

T2 (1—q)q"2, (23)

n? (24)

1 )
——— =u(p—DgP™", cf Eq.(16),
(I—qp P70 a
and
1 1
p—1 p—1
- = - ;
l—q1 1—qo (a1 %)
p—1 qo 2
nal ™ = ———— — (BhY’,
0 (1 — o)

which are the 1RSB saddle-point equations [cf. Eq. (10)].

B. Generalization to arbitrary schematic MCT models

Comparing the dynamics of the p-spin spherical model'®
with the MCT differential equation for the correlation
function,® one can notice that the function pug?~' (ug?~!
in the MCT notation), derivative of the first term of the action
(8), plays the role of the MCT memory kernel.!':!8 One can
generalize this argument, through schematic MCT, to a generic
polynomial kernel,?

At) = Fl{vh®)] =Y v,pt)" " (25)
p

First, it is convenient to introduce the so-called modified
Laplace transform:

LTIGHI(2) =i / b eG(ndt, Imz>0. (26)
0

In order to lighten the notation, in the following G(z) will
denote the Laplace transform of the function G(¢).
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Studying the critical relaxation of the correlation function,
we are interested in describing the power-law approach to the
plateau,

o(t) = ga + (to/1)", 27

where g, is the plateau value (also called the nonergodicity
parameter) and 7y is the characteristic microscopic time,
smaller than any time at which nonexponential slowing down
occurs. We are interested also in the Von Schweidler law for
the departure from the plateau,

() >~ qq — (t/7), (28)

where 7 is the relaxation time to equilibrium, that goes to oo
as(T —Ty)VasT — Ty.

Deviations of the correlation ¢(¢) from the plateau are thus
small both in the so-called B regime (approach to plateau)
and in leaving the plateau when the system starts relaxing to
equilibrium. We can indeed assume that

G(1) = ¢(1) — qa- (29)

The correlation function and its Laplace transform,

GO < 1,

6(2) ~ —qz—d +G(2), (30)

have to satisfy the MCT dynamical equation and its Laplace
transform:

T00,¢(1) + (1) = —/ duM(t —u)d,¢(u) (1)
0

¢(2)
1+ z2¢(2)

Plugging Eq. (30) into the left-hand side of Eq. (32) and
expanding up to the second order, one obtains (r > 1)

() —qa+2G(2) [1 _16) | Z6E@) ]

Tr200 l1-q 1—q0 " (1—qu?
(33)

=ity + A2). (32)

The Laplace transform of the expansion of the memory kernel
reads

ZA(2) ~ —F({v},qa) + F ({v},9)G(2)
1
+ EJ’f”({v},qd>.CT[G<r>2]<z>. (34)

One has to compare Eqgs. (33) and (34) order by order in G(¢).
The zeroth and first order are the standard long-time MCT
equation and its derivative, cf. Egs. (15) and (16),

F(v)aa) = 5 a4 (35)
— {44
F'({v},qq) = 1 (36)
AR TR
The third order yields
G2 + 2z LT[GH)*1(2) =0 (37)
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with
A= 3F"({v}.qa)(1 — qa)°. (38)

Assuming a power-law solution G(t) ~ (to/t)*, else ~ (¢/7)°,
one gets back Eq. (1) with an exponent parameter X coinciding
with Eq. (38).

This result can also be obtained studying a model whose
action is a slight generalization of the simple p-spin action, cf.
Eq. (8),

1 1
LIl =5 ) A(Qup) — 5InIQl, (39)
ap

such that F[{v},x] = A’(x). For polynomial function A(x)
this action describes a model with a Hamiltonian composed
by a sum of p-spin interaction terms, like Eq. (5).>>* From
the action Eq. (39) one can easily derive Egs. (35) and (36),
with a kernel given by Eq. (25), yielding critical temperature
(identical to the mode coupling temperature) and critical
plateau value of the correlation.
Expanding Eq. (39) to third order, cf. Eq. (11), yields

%) 1 " 3
A=—= EA (ga)(1 — qa) (40)

wi

coinciding with Eq. (38) and verifying the method proposed
for the schematic MCT models. This is the simplest case,
where equations of motion can be solved and analytic results
are available. We now move to consider a more difficult case
for which A cannot be computed directly solving the dynamic
equations and Eq. (2) remains the only way, known so far, to
determine the critical slowing down exponents.

IV. ISING p-SPIN MODEL

In this section we focus on the Ising version of the fully
connected p-spin model. The Hamiltonian of the model reads

H=— Y Jii0i-..0 (41)

i1<--<ip

where the couplings J are Gaussian distributed again with
Eq. (6) and 0; = #1.Itis well known' that this model displays
a random first-order transition at 7 = T to a glassy 1RSB
stable phase preceded by a distinct dynamic transition at T =
T, and, at a lower temperature, a continuous thermodynamic
transition to a spin-glass full RSB phase. For our purposes, we
only focus on the dynamic transition at 7.

Averaging over disorder and introducing the overlap matrix
through an auxiliary matrix A, yields the replicated action:

2
1
rQ.Al= % > Qs — 5 2 AapQup + InTriy WIA; o],
(@p) (aB)
(42)

1
WAl =exp | 5 > Aupoaoy (43)
(@p)
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that has to be evaluated through a saddle-point calculation.
The derivative with respect to Qg yields

o B (44)

leading to

— B2
riQl = —% > QL + InTr, WIQ: o,
(@B)

1 pB?
WIQiol = exp | = > 0l 0u0y 45)
(aB)

This concludes the first step of our protocol. The first-order
derivative reads

F/

«p = BQ =600/, ((00:0;3)

Qup)s (46)
where 6 = p(p — 1)B%/4 and (...) means average over the
weight W[Q], cf. Eq. (45). The vanishing of this equation

yields the saddle-point condition that, solved in the RS Ansatz
with n — 1, yields

g=(m’=N" / dzWI[z] tanh(z)?, (47)
m = tanh(z),
Z2
Wlz] = exp <_—p,32q1"1 > cosh(z), (48)

2 p—1
N :/dZW[Z] = \/ﬁﬁq(p_l)/2exp (_p,B Zp ) )

The second-order derivative reads
F//ﬂ s = =0(p— 2)Q 8y8ﬁ(<0a0ﬂ>
+9Q5ﬂ2(egzﬁ (04050, 05).c

gzaﬁ)
—818p).  (49)

where the presence of connected averages (...). is a con-
sequence of the direct derivative of the term InTr, W[Q; 0]
(cf. the Appendix). In order to impose criticality, Fgﬂn/J’
evaluated at the saddle-point condition and projected onto the
replicon subspace, should vanish. The first part of Eq. (49) is
proportional to Faﬂ, cf. Eq. (46), and it does not contribute.
The vanishing of the second part, in the RS Ansatz, reads

0g" 21 —=2g+r)—1=0, (50)

as detailed in the Appendix. Here r = (r;z)4. This allows us to

rewrite Eq. (50) as
3 =0q"(

Once the saddle point and the vanishing of the second-order
derivative [Eq. (49)] are imposed, the third-order derivative
reads

—m2)?) = 0gP2(sech*(x)).  (51)

63
Qaﬂ g "
93 aB.yd.ep
(P =207
%5?5%83‘” + (04050,050:0,)c  (52)
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TABLE I. Dynamic exponents in the Ising p-spin model.

P T, qa A a b

-2 1 0 1/2 0.395 1
2.05 0.916 0.051 0.556 0.379 0.892
2.2 0.808 0.198 0.652 0.346 0.768
2.5 0.724 0.428 0.719 0.320 0.609
3 0.682 0.643 0.743 0.308 0.570
4 0.678 0.815 0.746 0.307 0.565
5 0.700 0.881 0.743 0.308 0.570
6 0.727 0.915 0.739 0.310 0.576
7 0.756 0.935 0.736 0.311 0.581
8 0.784 0.948 0.733 0.313 0.586
9 0.812 0.957 0.731 0.314 0.589
— 00 e 1 2/3 0.340 0.700

and this allows us to write the coefficients of the expansion,
cf. Eq. (4), as

6-3p
g w1 = 1= 30+ 3 —ua = (A=), (53)
6—3p
g93 wy = 2qa — 2rg +ua) + A
=2(m%(1 — m*)?) + A, (54)
_2p—2q; " .
o BIPA(p — 1)

where u = (1;1)6. As it happens in the Sherrington-Kirkpatrick
(SK) model,>*3¢ the term A vanishes if p =2 and it can
be considered as the correction to w, due to the multibody
interaction. With this results one can obtain the numerical
values of the coefficients and the exponent a reported in
Table I.

A. p — 2limit

The interest in the behavior of the model for p close to
2 is due to its relation with the SK model. Carrying on an
expansion for small € = p — 2, one can expect and, actually,
self-consistently verify that the finite jump of the overlap at the
transition is of order €. One can consequently expand the action
for small Qg, still considering the transition as discontinuous.
From Eq. (44) one obtains

1 1—-¢
EA = Qup- (56)

Putting this result in the action I', Eq. (42), and expanding for
small Ayg leads to

1
= E £ E Ai
4/32 44 p

1 3 4
+ S TrA + 0(A%), (57)
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The first three derivatives read

/ 2-¢ 1—¢ 2
ZF(Xﬂ = _Z_ﬂzAaﬂ + Aaﬁ + (A )aﬁa (58)
, 2—-el—-¢) _ s
21"04/5 7 _2—14821\“683;5‘9
+ 8785 + 87 Asp + Ay 5, (59)
" (2 - 8)(1 - 8)8 —l—s 8 [
2 yian = g A L8308
+ 818580 + 858755, (60)

The first two derivatives yield the criticality conditions. In the
RS Ansatz, in the n — 1 limit, these reduce to the equations

— i =4 =32 (61)

1—5
132

=1-23, (62)

for B and 4, where 4 is the off-diagonal part of Agg. At the
dynamic transition, the system equation is solved by

e (63)
1
Ba~1— Eslne. (64)

Evaluating the third-order derivative, Eq. (60), on 8; and a
leads to
a2 21 (65)
Wi |4 2
This result agrees with the a = 0.395 proposed by Kirkpatrick
and Thirumalai'? studying the dynamics of a soft-spin version
of the model in the p — 2 limit.

We note that the behavior of the parameter A is discontin-
uous as a function of p at p = 2. Indeed in the SK model,
i.e., precisely at p = 2, we have A = w, = 0, while as soon as
€ > 0 we have A = 1/2. This happens because the coefficient
w, is proportional to the third derivative of ¢>*¢ which is
singular at ¢ = 0 as soon as € is different from zero.

B. p — oo limit

The behavior of the p-spin model for large p has been
previously studied, due to its relation to the random energy
model (REM).>’3? In this section we indeed present the
calculation of A = w,/w in the limit p — oo.

As in the p — 2 case, it is more convenient to work with
the auxiliary variable A, the RS off-diagonal element of the
matrix Aqg, which is related to g by Eq. (44). Furthermore,
in order to keep ¢ finite, one should expect and consistently
verify that A diverges in the large p limit. From Eqs. (44) and
(47) one obtains

23 1/(p—1) pe
H=[2Z ~l—e*? | A1, (66
q(A) <p,3> 3 (66)

where, in the last expression, only the leading term, for > 1,
has been retained. Differentiating this equation and keeping the

PHYSICAL REVIEW B 86, 014204 (2012)

2q( .
9N _ i [T 67)
PA 2A

one recovers the set of equations for the criticality condition.
Solving Egs. (66) and (67) for A and for ¢ yields

leading order,

4 =~ 2Inp, (68)
p

T; >~ . 69

4=\ 4Inp (69)

As p — oo the critical dynamic temperature diverges and the
dynamic overlap g; — 1, cf. Eq. (66).

We now move to the computation of the exponent parameter
M. Equations (53) and (54) and their ratio A, in the large 2 limit,
reduce to

3 _):/2 1
w; = —e —, 70
1 s -y (70)
wy = Ze 2 [ 1 LA 1)
4 2 A
2 s [ 324
=2 =214 a2 (72)
w1 3 T

Evaluating the last term one obtains

/ 321 2
27 ln3 41n )

which goes to zero as p — oo.
Our result is, indeed, A — 2/3, corresponding to an
exponent a = 0.340.

(73)

C. Addition of ferromagnetic couplings

It is possible to generalize the previous results allowing the
couplings J to have a nonzero mean:

Np-1 NPl 1o\

exp | — J — , (14)
p! p! Npr-l
To treat the case Jyp # 0 one has to introduce a nonzero

magnetization for the system and the Gibbs effective action,
cf. Eq (45), becomes

2
S SRS S
ab a
- % Z QabAab - Zma-xa
ab a

WWIA,x;0],

WIA,x;0] = exp ( Z Agpo,0p + Zx“0“> , (75

where the fields x, play for the magnetization m, the same
role of A for the overlap. Through a saddle-point calculation

P(J)=

I'o,A,m,x] =

+ InTry,
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one arrives at two coupled equations:

q:@#ﬁ;M”/dwwﬂmm@ﬂ (76)
rmﬂ@:N”/ﬁmemu (77)
Wizl = exp <—M> ; (78)
pB*qr!
Af:t/lkWVR]=a¢Eﬁﬂq@‘“ﬁ. (79)

The solution with m = 0, the SG phase, is always present but,
for Jy large enough, a ferromagnetic (FM) RS solution appears
discontinuously with m = g > 0 and turns out to be the stable
one.

Since in the action (75) Jy couples only to the magnetization
m, the SG phase, where m = 0, is not affected by the presence
of a nonzero mean of the couplings. As a result, along the
whole dynamic SG transition the physics does not change and
the values of the exponents a and b are constant.

The paramagnetic/ferromagnetic (PM/FM) transition is a
usual thermodynamic first-order transition with a ferromag-
netic spinodal line.** Two relevant point are, indeed, present:
the tricritical point between the SG, FM, and PM phases, and
the intersection between the dynamic transition line and the
FM spinodal line. It has been shown***! that both the relevant
points belong to the Nishimori line (NL)

1
NL
Jo (1) = 7. (80)
a line in the Jy,T phase diagram. This fact is due to the
following property of systems on the NL:*!

lim (8,75 (B).¢.m)|,,_, = im I'(8,0,¢,0). ~ (8D
Equation (81) corresponds to the statement that the static Gibbs
free-energy potential along the NL is equal to the dynamic
Gibbs free energy along the Jy = 0 axis. This means that, in
order to obtain the ratio w,/w; at the dynamical transition
with n — 1, one can, simplifying the numerical calculation,
evaluate those coefficients along the NL, at the spinodal point
and working with n — 0. Furthermore, since on the NL the
melting process is equivalent to a glassy transition,* one
can argue that the exponent calculated through our procedure
controls this melting process too.

V. CONCLUSIONS

In the present work we have applied a method®* to compute
the slowing down exponents on the Ising and spherical versions
of the frustrated p-spin model with Gaussian interaction. This
method allows us to derive the mode coupling exponents of
the critical dynamics by means of an analytical static-driven
computation. These exponents govern the power-law approach
to [C(t) =~ g4 + (t/70)~%] and departure from [C(t) ~ q; —
(t/7)"] the plateau value at C(t) = gqg.

For the spherical case, the method is exactly equivalent to
standard schematic dynamic approaches. We verified this, re-
producing the analytic results obtained by means of a Langevin
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description of the dynamics in Ref. 18 and reproducing, in full
generality, all schematic MCT exponents.>

For the Ising version we presented our computation and the
exact values of both exponents for any value of p. One can,
and it is usually done, approximate discrete by soft spins in
order to construct a dynamic equation. In that case, though, the
final computation for p > 2 differs: the discrete case depends
on the value of p, whereas the soft one does not. Our results
agree with the computation performed in Ref. 12 on a soft-spin
approximation in the p — 2 limit. In this limit we found a
discontinuity with the Sherrington-Kirkpatrick model (p = 2),
with a finite jump of the exponent parameter A from 0 to 1/2.
For the sake of completeness, also the p — oo limit has been
characterized. The study of the Ising p-spin model eventually
includes the case of a nonzero mean of the couplings (Jy # 0):
up to a critical value, where a ferromagnetic transition takes
place, the behavior of the model does not change with Jy,
validating our estimates for the exponents along the whole SG
transition line.

ACKNOWLEDGMENTS

We thank F. Caltagirone, A. Crisanti, S. Franz, F. Ricci-
Tersenghi, and E. Zaccarelli for useful discussions. The
research leading to these results has received funding from
the People Programme (Marie Curie Actions) of the EU’s
FP7/2007-2013 under REA Grant No. 290038 and from
the Basic Research Investigation Fund (FIRB/2008) of the
Italian Ministry of Education, University and Research under
CINECA Grant No. RBFR08M3P4. The European Research
Council has provided financial support/ERC grant agreement
no [247328].

APPENDIX: COMPUTATION OF THE CUMULANTS IN
THE REPLICON SUBSPACE

In this appendix we present the calculation of the connected
cumulants of four and six replicas projected in the replicon
subspace. At first it should be noticed that in the RS Ansatz
four replica index quantities could take only three different
values, depending on how many replica indices are repeated.
For

@
Clapyys) = (02050, 05)c

= (040p0,,05) — (0a0p){(0y0s) (A1)
we have
Cgif)‘maﬁ) =1-q". (A2)
Cltpay =4 — 4 (A3)
C&)(M) =r—q’ (A4)

where here «, 8, y, § are considered different. This allows us
to express the tensorial form of C*:

*) - 5 | b
Clapyys) = (1 =24 +1)(8] 85 + 8,5%)
+(q —r)(87 + 8+ 8 +8))

+(r —g?). (AS)
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Summing over all replica indices the C® times the fluctuations
in the replicon subspace [Eq. (14)], the only term that does not
vanish is (1 — 2¢g + r), with a factor 2 due to the exchange of
o with §:

4
Y ndalsaly =200 —2q + 1) (345)°. (A6)
(@B),(y3) (aB)
Six replica index quantities, like
(6)
Clapyysyen) = (0a0p0y050:0)c
= (04080, 050:0,) — (0,080,05){0:0,)
- <Uy06020<p><aaaﬂ> - <Gaoﬂ680¢)(0y06>
+2<0a6ﬁ><6y06><080¢)a (A7)
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can take eight different values. The computation follows as in
the previous case*” leading to

© g (Mg (r)
Y Clomorep 9535453848,
@B).(73)ew)

= 8(1=3q+3r —u)) _8qu35qy,5q"
(aBy)

+16(g —2r +u) Z (Sq(r)
(aB)

(A8)

which concludes the calculation.
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