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I consider branches of replica-symmetry-breaking (RSB) solutions in glassy systems that display a dynamical
transition at a temperature Td characterized by a mode-coupling-theory dynamical behavior. Below Td these
branches of solutions are considered to be relevant to the system complexity and to off-equilibrium dynamics.
Under general assumptions I argue that near Td it is not possible to stabilize the one-step (1RSB) solution beyond
the marginal point by making a full RSB (FRSB) ansatz. However, depending on the model, there may exist a
temperature T∗ strictly lower than Td below which the 1RSB branch can be continued to a FRSB branch. Such a
temperature certainly exists for models that display the so-called Gardner transition and in this case TG < T∗ < Td .
An analytical study in the context of the truncated model reveals that the FRSB branch of solutions below T∗ is
characterized by a two-plateau structure and it ends where the first plateau disappears. These general features are
confirmed in the context of the Ising p-spin model with p = 3 by means of a numerical solution of the FRSB
equations. The results are discussed in connection with off-equilibrium dynamics within Cugliandolo-Kurchan
theory. In this context I assume that the RSB solution relevant for off-equilibrium dynamics is the 1RSB marginal
solution in the whole range (T∗,Td ) and it is the end point of the FRSB branch for T < T∗. Remarkably, under
these assumptions it can be argued that T∗ marks a qualitative change in off-equilibrium dynamics in the sense
that the decay of various dynamical quantities changes from power law to logarithmic.
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I. INTRODUCTION

The connection between the replica method and dynamics
is one of the most interesting features of mean-field spin-
glass (SG) models [1–7]. This connection is more striking
in the context of the so-called one-step replica-symmetry-
breaking (1RSB) models. Equilibrium dynamics in these
models exhibits at some temperature Td a dynamical transition
characterized by the fact that the spin-spin correlation function
at different times no longer decays to the static equilibrium
value but remains blocked at a higher value q. Notably the dy-
namical behavior approaching Td from above exhibits the same
two-step relaxation predicted within mode-coupling theory
(MCT) [8]. Surprisingly, this purely dynamical phenomenon
can be captured within a simpler static replica computation
where it corresponds to the abrupt appearance of a 1RSB
solution with a Parisi breaking parameter m = 1. This implies
that the values of both q and Td can be obtained by means of
the replica method. More recently [9] it has been realized that
the replica method can be used to extract also the so-called
parameter exponent λ that controls the MCT exponents a and
b. At temperatures lower than Td 1RSB systems are no longer
able to reach equilibrium starting from a random configuration,
and exhibit aging. Quite remarkably, the off-equilibrium aging
regime for temperature T < Td has a structure that resembles
the phenomenology of equilibrium MCT for temperature
T > Td . Much as in equilibrium the main observable is the
spin-spin correlation defined as

C(τ + tw,tw) ≡ 1

N

N∑
i=1

〈si(τ + tw)si(tw)〉 , (1)

where the angular brackets are thermal averages and the over-
bar means the disorder average. According to the Cugliandolo-
Kurchan (CK) scenario at large values of the waiting time
tw the correlation has a two-step behavior as a function

of τ . More precisely, there is an initial relaxation towards
a plateau value q (similar to the β regime in structural
glasses) followed by a second relaxation to zero at much
larger times. The first regime is called the equilibrium regime
because it turns out that the correlation and response functions
obey the fluctuation-dissipation theorem (FDT). The second
regime is called the aging regime and is characterized by
the remarkable property that the response and correlation
still obey the FDT but with a lower effective temperature
Teff = T/X. In the thermodynamic limit these systems never
reach equilibrium, and in particular one-time quantities like the
energy approach at large times a limiting value different from
the equilibrium one. Quite surprisingly, it was found that in
the spherical model the value of the the plateau q, the limiting
value of the energy Eoff , and the value of the FDT-violation
parameter X are the same that can be obtained by considering a
1RSB solution of the replicated equilibrium theory with Parisi
breaking parameter m = X < 1 determined by the so-called
marginality condition, i.e., by requiring that the so-called
replicon eigenvalue vanishes [10]. It has been conjectured
that the connection between off-equilibrium dynamics and the
marginality condition holds for generic 1RSB models, and
positive evidences in favor of its validity was presented in [11]
although its origin remained somewhat obscure.

The connection between RSB solutions and off-equilibrium
dynamics has also been investigated in the context of the
Thouless-Anderson-Palmer (TAP) equations. At low temper-
atures there are many TAP solutions and the logarithm of their
number (the so-called complexity) is O(N ), where N is the
system size. It can be argued [6] that the complexity �(f ) of
TAP solutions with a given free energy f can be obtained from
the free energy φ(β,m) of the 1RSB solution with breaking
point m by means of the following formulas:

� = βm2∂mφ(β,m), f = ∂m[mφ(β,m)]. (2)
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In the spherical model the marginal solution relevant for
off-equilibrium dynamics is also the solution that corresponds
to the maximal complexity. On the other hand, in [12] it was
noticed that, at variance with the spherical p-SG model, in
the case of the Ising p-spin model the 1RSB solution that
gives the maximum of the complexity as a function of m

does not coincide with the marginal solution. Furthermore,
the maximal solution has a negative replicon eigenvalue and
therefore it is likely to be unphysical. A maximal complexity
criterion was advocated in [12] in order to determine the
RSB solution relevant for off-equilibrium dynamics, and it
was claimed that in order to attain the states with maximal
complexity the 1RSB branch of solutions has always to be
continued to a full RSB (FRSB) branch. As a consequence,
1RSB aging as discussed by Cugliandolo and Kurchan [5]
applies only to the spherical model. However, the claimed
FRSB branch was not exhibited at any finite temperature,
while an approximate 2RSB solution was computed at zero
temperature. Subsequent analytical studies of the complexity
of TAP equations indicate that the 1RSB branch of solutions
is not followed by a FRSB branch but rather by a branch that
breaks the Becchi-Rouet-Stora-Tyutin (BRST) invariance [13]
and these findings were later validated numerically in [14].
At the present level of knowledge there is no evidence that
the BRST-breaking states play any role in off-equilibrium
dynamics. Assuming that the FRSB branch does not exist
and that the BRST-breaking solutions are irrelevant, one could
think that off-equilibrium dynamics is just associated with the
marginal 1RSB solution. However, this assumption may lead
to the following paradox. Many SG models, like the Ising
p-spin model, exhibit at the so-called Gardner temperature TG

a phase transition where the equilibrium RSB solution changes
continuously from 1RSB to FRSB [15]. It turns out that
the static 1RSB equilibrium solution and the marginal 1RSB
solution coincide at TG [12,13] and therefore the marginality
criterion would yield the rather absurd prediction that the
system is not able to reach equilibrium at temperatures greater
than TG while it would be able to do so at TG. This paradox
can be avoided by means of the following results that will be
presented in this paper:

(a) Near the dynamical temperature of any SG system the
1RBS branch cannot be continued after the marginal point to
a FRSB branch.

(b) Depending on the model, there may exist a temperature
T∗ < Td below which the 1RSB branch of solutions can be
continued to a FRSB branch.

(c) The temperature T∗ must exist for models that display a
Gardner transition and in this case TG < T∗. In principle it can
also exist for models where there is no Gardner transition.

(d) At temperatures below T∗ the branch of FRSB solutions
displays some general features. Notably, the end point of the
FRSB branch has a higher value of the energy of the 1RSB
marginal solution and it is thus a natural candidate to yield the
off-equilibrium energy and solve the off-equilibrium energy
paradox at TG.

The above results concern essentially the existence and
structure of particular branches of the RSB solution. However,
the interesting question is their relevance to off-equilibrium
dynamics. In particular I will consider the following
scenario:

(a) Between Td and T∗ the off-equilibrium dynamics
displays the 1RSB type of aging as described by CK. In
particular the large-time limit of the energy is given by the
1RSB marginal solution.

(b) Below T∗ the off-equilibrium dynamics is still of the CK
type but with a continuous set of scales [16]. In this case the
limiting value of the off-equilibrium energy and the function
X(q) are given by the end point of the FRSB branch.

I will not put to test this scenario by directly studying
the dynamical equations, instead I will assume its validity
and explore the implications. The most interesting prediction
is that the temperature T∗ marks a qualitative change in the
off-equilibrium dynamics. More precisely, at T∗ the functional
form of the long-time behavior of various off-equilibrium
quantities changes from power-law to a much slower loga-
rithmic decay. In a sense the dynamical transition occurring
at T∗ can be seen as the off-equilibrium analog of the so-called
A3 [8] singularity within equilibrium MCT.

The paper is organized as follows. In Sec. II I will
give a detailed presentation of the results and discuss them
in connection with off-equilibrium dynamics. The peculiar
structure of the FRSB branch of solutions will also be
described. I will quote some results that will be derived
in Secs. III and IV. These results are essentially model
independent and will be indeed confirmed a posteriori by
means of an explicit computation in the context of the Ising
p-spin model presented in Sec. V. In Sec. VI I will present
the outcome of off-equilibrium numerical simulations. Section
VII gives the conclusions.

II. 1RSB, FRSB, AND OFF-EQUILIBRIUM DYNAMICS

A. Absence of the FRSB branch near the
dynamical temperature

In this section we will give a general argument to show that
the 1RSB branch of solutions cannot be continued to a FRSB
branch near Td . Let us start by recalling the properties of the
phase diagram of the 1RSB solutions with Parisi breaking point
m in the (T ,m) plane for a generic model with a discontinuous
transition. An instance of such a phase diagram in the case of
the Ising p-spin model is displayed in Fig. 1. The dynamical
transition temperature Td is characterized by the appearance of
a 1RSB solution with m = 1. This solution is marginally stable
because the so-called replicon eigenvalue vanishes. Actually
the abrupt appearance of a solution leads to the vanishing of
the so-called longitudinal eigenvalue but at m = 1 the two
eigenvalues are degenerate; see, e.g., [17]. Precisely at Td the
solution disappears as soon as m < 1. At temperatures slightly
lower than Td the solution can be analytically continued to
values m < 1. Furthermore, the replicon eigenvalue is positive
at m = 1 and remains stable for m < 1 down to a value
mG(T ). The branch of solutions can be continued to even lower
values of m < mG(T ) down to the spinodal point mspinodal(T )
where the solution disappears abruptly and correspondingly
the longitudinal eigenvalue vanishes. For T < Td the TAP
complexity computed from these replica solutions according
to the standard recipe (2) attains a maximum as a function of m

at an intermediate value between mG(T ) and mspinodal(T ). This
value is called md (T ) in [12] because the maximal complexity
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FIG. 1. Phase diagram in the (T ,m) plane for the p = 3 Ising
spin glass. The thin vertical lines represent the temperatures TG =
0.240 26, T∗ = 0.501 227, Ts = 0.651 385, and Td = 0.681 598. Dot-
ted line: spinodal line mspinodal(T ) of the 1RSB solution. Thick
black line: marginal line mG(T ) of the 1RSB solution. Dashed line:
static 1RSB line ms(T ); this coincides with the equilibrium solution
between Ts and TG. Dash-dotted line: parameter exponent λ(T ) of the
marginal 1RSB solution. Thin solid line: effective parameter exponent
λeff ≡ λ(T )/mG(T ). Solid gray line: breaking point mend(T ) of the
end-point solution of the FRSB branch.

criterion is advocated to select the 1RSB solution relevant
for off-equilibrium dynamics. However, since for m < mG(T )
the branch of 1RSB solutions has a negative replicon, md (T )
cannot actually have any physical meaning and in [12] it is
claimed that the true stable maximum md (T ) must be attained
by continuing the 1RSB branch to a FRSB branch. Therefore
the first question we want to consider is the following: Is it
actually possible to stabilize the 1RSB branch of solutions for
m < mG(T ) by considering a FRSB ansatz? The answer is no,
at least near Td . In order to understand why it is so, we have to
go back to some recent results concerning equilibrium MCT
dynamics at Td .

The dynamical exponents a and b characterizing the β and
α regimes near Td are controlled by the so-called parameter
exponent through the following relationship [8]:

	2(1 − a)

	(1 − 2a)
= 	2(1 + b)

	(1 + 2b)
= λ. (3)

Therefore physical values of λ are constrained between zero
and 1. The case λ = 1 however is qualitatively different from
the case λ < 1. The latter describes a standard dynamical MCT
transition characterized by well-defined exponents a and b;
the former instead leads to a = b = 0 and corresponds to
a different type of dynamical singularity (called A3 in the
MCT literature) characterized by logarithmic decays instead
of power laws. Therefore since we are considering systems
with the standard MCT phenomenology we will assume that
λ < 1.

In [9] it has been shown that λ can be computed from
the replica method. One has to consider the expansion of
the replicated Gibbs free energy near the 1RSB solution with
m = 1 at Td at third order. The expansion in general has the

following form [18]:

G(δq)

= 1

2

(
m1

∑
ab

δq2
ab + m2

∑
abc

δqacδqab + m3

∑
abcd

δabδqcd

)

− 1

6

(
w1

∑
abc

δqabδqbcδqca + w2

∑
ab

δq3
ab

)
, (4)

and one has to determine the coefficients w1 and w2. Once they
are computed the parameter exponent is given by the following
formula:

λ = w2

w1
. (5)

From the above discussion it follows that the ratio w2/w1

must be definitely smaller than 1 at Td . Now we turn to the
replica problem and consider the possibility of stabilizing the
1RSB solution with breaking point m smaller than mG(T ) by
considering the Parisi function q(x) that exhibits FRSB in the
region x > m. In order to do so I will show that one should
consider a q(x) with a continuous part localized near the point
x = w2/w1, where the two coefficients are computed with
respect to the 1RSB solution with m = mG(T ). This result is a
generalization of earlier results and its detailed derivation will
be postponed to Sec. III. To complete the argument we note
that at T = Td we have mG = 1 and w2/w1 = λ < 1. Since
mG, w1, and w2 are continuous functions of the temperature it
follows that for temperatures smaller than but close to Td we
will still have w2/w1 < mG and therefore we cannot continue
the 1RSB branch to a FRSB branch because we should put
the continuous part of the q(x) at values of x smaller than the
breaking point mG.

B. The T∗ transition temperature and the structure
of the FRSB solution below T∗

The above argument guarantees that near the dynamical
temperature no FRSB branch of solutions exists after the 1RSB
marginal point mG(T ). The argument is purely topological and
it does not necessarily hold at all temperatures. In particular,
there may exist a temperature T∗ where the ratio w2/w1

computed using the marginal 1RSB solution is equal to mG.
As we will see in the following, for temperatures T < T∗ the
1RSB branch can actually be continued to values of m smaller
than mG(T ) by considering a FRSB ansatz.

The existence of the transition temperature T∗ depends on
the model; however, one can argue that T∗ must exist for models
that present a Gardner transition at some temperature TG <

Td . Indeed, the Gardner temperature by definition marks the
position where the static replica solution changes continuously
from 1RSB to FRSB, by developing a continuous part for x >

ms(T ), where ms(T ) is the breaking point of the equilibrium
1RSB solution [15]. The second-order nature of the transition
implies that ms(TG) = mG(TG) (leading to the energy paradox
discussed in the Introduction) and the above argument implies
that at TG we must have w2/w1 > mG. It follows that since
w2/w1 > mG at TG and w2/w1 < mG at Td there must exist
an intermediate temperature T∗ where w2/w1 = mG.

The FRSB branch of solutions for m < mG(T ) and T < T∗
will be studied in Sec. IV in the context of the so-called
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truncated model introduced by Parisi [19]. The qualitative
features of the solutions are likely to be general and indeed
will be recovered also in the Ising p-spin model that will
be studied in Sec. V. The function q(x) for m < mG(T ) has a
discontinuity at the breaking point m, followed by a continuous
part according to the following structure:

q(x) = qm for x < m,

q(x) = qm = q(xp) for m < x < xp,

q(x) for xp < x < xP ,

q(x) = q1 = q(xP ) for xP < x < 1.

Therefore the continuous part of the FRSB solution is
characterized by a plateau between m and xp, an increasing
part between xp and xP , and a second plateau between xP

and 1. Note that even for T < T∗ the solution is 1RSB for
m > mG(T ). Decreasing m below mG the two plateaus develop
in a continuous fashion with a small continuous region between
them concentrated near the point x = w2/w1. With decreasing
m, the difference in height of the two plateaus increases while
the length of the first plateau decreases until it shrinks to zero
at some value mend(T ). This point is the end point of the FRSB
branch because analytical continuation to smaller values of m

would require a plateau with negative length.
We note that for T > T∗ the end point of the 1RSB branch

of solutions is identified by the marginality condition. This
condition cannot work for T < T∗ because all solutions for
mend(T ) < m < mG(T ) are marginal due to FRSB (see [20]
and references therein). Therefore it is rather satisfactory to
have an alternative precise characterization of the end point as
the point where the the first plateau disappears.

C. Off-equilibrium dynamics

In the following I will discuss off-equilibrium dynamics in
the light of the previous results. I will not study off-equilibrium
dynamics directly but rather work under the assumption that
the connection with RSB observed in the spherical model
holds in general. More precisely I will assume tha: (i)
off-equilibrium dynamics is described by CK theory with
a scale-dependent FDT function X(q) that can be obtained
from a replica computation, (ii) the RSB solution relevant
for off-equilibrium dynamics is the 1RBS marginal solution
in the range (T∗,Td ), and (iii) the RSB solution relevant for
off-equilibrium dynamics is the end point of the FRSB branch
for T < T∗. A natural consequence of these assumptions is
that the long-time limit of the off-equilibrium energy is given
by the energy of the corresponding RSB solutions, leading to
the solution of the energy paradox implied by the marginality
condition at TG.

The above assumptions have further interesting impli-
cations for off-equilibrium dynamics, namely, a qualitative
change at T∗. Off-equilibrium dynamics in 1RSB systems
displays within the CK scenario a considerable degree of
similarity with the glass transition singularity of equilibrium
MCT. In particular, it turns out that the initial relaxation of
the correlation towards the plateau value q is described by
a power-law decay similarly to the β regime in structural

glasses [21]:

C(τ + tw,tw) ≈ q + ca

τ a
, (6)

while the early stage of the subsequent decay from the plateau
is described by a different exponent b:

C(τ + tw,tw) ≈ q − cb

(
τ

Tw

)b

, (7)

where Tw is a time scale that depends on tw. In the context of
the spherical model it was found [22] that the two exponents a

and b obey the following relationship that generalizes Eq. (3)
of MCT:

	2(1 − a)

	(1 − 2a)
= X

	2(1 + b)

	(1 + 2b)
, (8)

where the off-equilibrium parameter exponent λ can be
computed from the model-dependent spherical Hamiltonian
and X is the FDT violation ratio.

Recently, the connection between dynamics and replicas
has been studied in the context of equilibrium theories of glassy
systems [9] and also in off-equilibrium situations [23] for some
SG models. Similar arguments, to be presented elsewhere, can
be used also in the context of discontinuous SGs in order
to study the connection between RSB and off-equilibrium
dynamics. In this context one can show that, if a 1RSB solution
is actually relevant for off-equilibrium dynamics, then it must
satisfy the marginality condition. Furthermore, it can be argued
that Eq. (8) holds as well, with the parameter exponent λ

given by the ratio w2/w1 computed by expanding around
the marginal 1RSB solution. The last result has important
implications for off-equilibrium dynamics at T∗. Indeed the
presence of the factor X in the second term of Eq. (8) implies
that the effective parameter exponent is actually λeff ≡ λ/X.
This determines a second condition, besides the marginal one,
on the 1RSB solution relevant to off-equilibrium dynamics,
that is, λeff � 1. We see that at T = T∗ we have λeff =
w2/(w1 m) = 1 and therefore the 1RSB marginal solution
must be abandoned below T∗ because it cannot describe
consistently the decay from the plateau value. Furthermore, the
dynamical exponent b vanishes at T∗ meaning that the decay
from the plateau is slower than a power law. This is similar
to what happens at the so-called A3 singularity in equilibrium
MCT [8]. This singularity is indeed characterized by λ = 1 and
as a consequence the equilibrium decay of various quantities
changes from power law to logarithmic [24]. Summarizing,
the dynamical transition occurring at T∗ is the off-equilibrium
analog of the A3 singularity.

It is well known that the direct observation of the exponents
a and b from data at finite tw is not easy. It is usually easier to
work with off-equilibrium one-time quantities, say, the energy.
Unfortunately the theory of off-equilibrium dynamics in mean-
field spin-glass models is still incomplete, in the sense that
we are not able to characterize the off-equilibrium behavior
of one-time quantities in 1RSB systems. Observations in the
spherical [5,25–27] and in the Ising p-spin [28] models suggest
that the decay is power law but how to compute the actual
exponents is at present unknown. On the other hand, one can
imagine that this exponent is somehow related to the exponents
a and b, as in continuous spin-glass models [23]. Then one
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would expect that T∗ should also correspond to the vanishing
of the energy exponent and that the decay changes from power
law to logarithmic at and below T∗.

III. THE ONSET OF FULL-REPLICA-SYMMETRY
BREAKING

In this section we derive one of the general results that we
have used to argue that near Td there is no FRSB branch. We
will show that an unstable 1RSB solution may be stabilized
by means of the FRSB ansatz provided the ratio w2/w1 is

larger than the breaking point m of the 1RSB solution. This
is essentially a generalization of the result obtained originally
by Kanter, Gross, and Sompolinsky in the context of the Potts
SG [29]. The problem is essentially equivalent to a RS problem
with n replicas, where n is equal to the breaking parameter m

of the 1RSB solution. Therefore we work in the general case
where the order parameter is a replicated matrix qab of size n ×
n and we consider its power series expansion near the replica-
symmetric solution: qab = q + δqab. The replicated Gibbs free
energy of the block reads

G(δq) = 1

2

(
m1

∑
ab

δq2
ab + m2

∑
abc

δqacδqab + m3

∑
abcd

δabδqcd

)
− 1

6

(
w1

∑
abc

δqabδqbcδqca + w2

∑
ab

δq3
ab

+w3

∑
abc

δq2
abδqac + w4

∑
abcd

δq2
abδqcd + w5

∑
abcd

δqabδqacδqbd

+ w6

∑
abcd

δqabδqacδqad + w7

∑
abcde

δqacδqbcδqde + w8

∑
abcdef

δqabδqcdδqef

⎞
⎠ . (9)

The quantity δqab is determined by the condition

∂G

∂δqab

= 0. (10)

We work under the assumption that the solution with δqab = 0
is slightly unstable, meaning that the replicon eigenvalue
(which is given precisely by m1 [30]) is small and negative.
The derivative of the replicated Gibbs free energy with
respect to δqab will contain many terms; however, it can be
checked straightforwardly that the only three terms that depend
explicitly on both indicesa and b are

∂G

∂δqab

= 0 = 2m1δqab + w1(δq)2
ab + w2δq

2
ab + · · · , (11)

where the ellipsis represents terms that depend explicitly on
only one of the indices a or b (e.g., m2

∑
c δqac) or do not

depend at all on a and b (e.g., m3
∑

cd δqcd ).
Now we make the Parisi ansatz on the matrix δqab,

parametrizing it through the function δq(x) where n < x < 1,
and we plug the ansatz into Eq. (10). Due to the nature of the
Parisi ansatz any combination of δqab that depends on a single
index (e.g., m2

∑
c δqac) is independent of the index a (this

property is called replica equivalence). As a consequence the
only terms that depend explicitly on x in the equations are
precisely the terms that we have selected above. This means
that the equation of state can be rewritten as

0 = − 2m1δq(x) + w1

(
−2δq δq(x) − n δq(x)2

−
∫ x

n

[δq(x) − δq(y)]2dy

)
+ w2δq(x)2 + C, (12)

where δq ≡ ∫ 1
n

δq(x)dx and C is a constant that depend on
the function δq(x) and on all the remaining m’s and w’s but
that does not depend explicitly on x. Following Parisi [31] we
differentiate the above equation with respect to x, we divide
by δq(x), and we perform another differentiation with respect
to x, obtaining

(w1 x − w2)δq̇(x) = 0. (13)

The above equation means that we can have q̇(x) �= 0, i.e.,
FRSB only in a small O(m1) region around the point x =
w2/w1, and from this it follows that if w2/w1 < n we cannot
have any FRSB.

The behavior of δq(x) in the small O(m1) region near x1 =
w2/w1 [e.g., the slope δq̇(x1)] is controlled by the quartic
terms not shown in Eq. (9). On the other hand, while δq(x) is
O(m1) and therefore the terms written explicitly in Eq. (12)
are O(m2

1), the constant term contains terms proportional to
m2 and m3 that would be O(m1) unless the following condition
holds:

∑
c

δqac = δq =
∫ 1

n

δq(x)dx = O
(
m2

1

)
. (14)

Technically this can also be seen as a manifestation of the
regular nature of the longitudinal eigenvalue. The above
quantity depends explicitly on all the m’s and all the w’s,
instead the function δq(x) at leading order depends solely
on m1, w1, and w2. The function is defined indeed by the
height of the two plateaus separated by the small region
near x1 = w2/w1 where δq(x) is continuous. Considering the
difference between Eq. (12) evaluated at x = n and at x = 1
we can remove the constant C and obtain an equation for δq(1)
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and δq(n):

0 = (−2m1 − 2w1δq)(δq(1) − δq(n)) + w1(n − x1)(δq(1)

− δq(n))2 + (w2 − nw1)(δq(1)2 − δq(n)2) (15)

On the other hand, the condition δq = O(m2
1) leads to a second

equation:

δq(1)(1 − x1) + δq(n)(x1 − n) = O
(
m2

1

)
, (16)

and the two equations fix the values of the two plateaus:

δq(n) = m1

w1(x1 − n)
+ O

(
m2

1

)
,

(17)
δq(1) = −m1

w1(1 − x1)
+ O

(
m2

1

)
.

Note that δq(n) is negative while δq(1) is positive as it
should be.

In order to understand why the original 1RSB problem is
essentially equivalent to the RS problem considered in this
section, one can use the following arguments. For models
where the 1RSB ansatz is such that q0 = 0 the different blocks
of size x × x are uncorrelated; therefore it is evident that the
action within each block is given precisely by the Gibbs free
energy (9) with n equal to the breaking point x. In the case
where q0 �= 0 the actual Gibbs free energy will contain also a
correlation between δqab within different blocks. However, in
general these terms will produce regular correlations and one
can argue that at order O(m1) the function δq(x) inside each
block will be given by the same expression above.

We note that the same results (17) for δq(1) and δq(n)
together with the condition x = w2/w1 would be obtained by
considering a 1RSB δq(x) and extremizing with respect to the
breaking point x.

IV. THE STRUCTURE OF THE FRSB BRANCH

In this section we will study the FRSB branch of solutions
in the Ising p-spin model with p = 2 + ε with ε � 1. In the
case p = 2 this is the Sherrington-Kirkpatrick Model and near
the critical temperature the FRSB solution can be obtained by
considering the so-called truncated model [31]. As recognized
originally by Kirpatrick and Thirumalay [32] the advantage
of the 2 + ε limit is that it is a model that has a weakly
discontinuous transition that can be studied perturbatively. The
region of the dynamical transition occurs at a distance ε ln ε

from the SK transition temperature; see, e.g., Sec. III A in [33]
where the parameter w2/w1 at Td is computed.

In the following we will focus on a region of the parameter
space where the solution can be see as a perturbation of the
solution with q = 0. One can argue that the equation for
Parisi’s q(x) for the problem is the same as in the truncated
model plus a term that vanishes for ε = 0:

2 (τ − q) q(x) + yq3(x) −
∫ x

0
[q(x) − q(y)]2dy

+ [q(x) − q1−ε(x)] = 0. (18)

In order to study possible FRSB solutions of the above
equation, following Parisi [31] we differentiate the above
equation with respect to x and divide the result by q̇(x),

obtaining

2 (τ − q) + 3yq2(x) − 2
∫ x

0
[q(x) − q(y)]dy

+ [1 − (1 − ε)q−ε(x)] = 0. (19)

Differentiating once again, we obtain the condition that the
continuous part of q(x) [where q̇(x) �= 0] obeys the following
equation

x(q) = 3yq + ε(1 − ε)

2q1+ε
. (20)

The function x(q) for positive values of q has a minimum
different from zero for ε > 0 located at xmin = √

6yε. As a
consequence the inverse function q(x) can take two possible
values, q+(x) > q−(x). Both q+(x) and q−(x) are defined
only for x > xmin. Near xmin both approach the value qmin =√

ε/(6 y) with a square-root singularity. The physical solution
is the increasing one, that is, q+(x). We consider a FRSB
solution parametrized by the three parameters m, qm, and q1

according to

q(x) = 0 for x < m,

q(x) = qm for m < x < xp ≡ x(qm),

q(x) = q+(x) for xp < x < xP ≡ x(q1),

q(x) = q1 for x(q1) < x < 1.

Now evaluating Eq. (18) in xp divided by qm and subtracting
Eq. (19) in xp, we obtain the following equation for qm and m:

2yqm = m − ε

q1−ε
m

, (21)

and combining it with Eq. (20) we can obtain

xp − m = yqm − ε

2qm

+ O(ε qm). (22)

The quantity xp − m is the size of the first plateau and it must
be positive by definition. The first important thing that we note
from the above expression is that it is negative when evaluated
at the lowest possible value qm = qmin = √

6yε [where the
function q+(x) has a square-root singularity]. This means that
it is not possible to find a solution such that qm = qmin. The
lowest possible value of m for which a FRSB solution can be
obtained is thus the one in which the size of the first plateau is
zero (xp = m), which is given by

qm 

√

ε

2y
, mend 
 2

√
2εy. (23)

For m > mend the value of qm (and thus of xp) is determined
by Eq. (21). In order to complete the characterization of the
solution and determine q1 we go back to Eq. (18) evaluated in
xp and we divide it by qm, obtaining

2(τ − q) + yq2
m − qmm + (

1 − q−ε
m

) = 0. (24)

Now q can be expressed in terms of qm and q1 by means of
the function x(q) defined in (20); the result is

q = q1 − mqm − 3y

2

(
q2

1 − q2
m

) − ε ln(q1/qm)

2
. (25)

The above expression can be plugged into Eq. (24), yielding
an exact equation expressing q1 in terms of τ , ε, m, and qm.
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Eliminating qm by means of Eq. (21) we finally obtain

2τ − 2q1 + 3yq2
1 = −ε + O(ε2 ln2 ε). (26)

For ε = 0 this reduces to the equation for q1 in the truncated
model as obtained originally in [31]. Note that the leading-
order correction to q1 is O(ε) and it is independent of m,
and that a small nonzero value of ε induces a regular O(ε)
deviation onq(x) except in the region of small x = O(

√
ε),

where it produces an O(
√

ε) deviation.

V. RSB SOLUTIONS IN THE FULLY CONNECTED
ISING p-SPIN MODEL

In this section we investigate the phase diagram of the fully
connected Ising p-spin model. In the case p = 3 we confirm
the existence of a temperature T∗ between Td and TG. The
solution below T∗ is studied by solving numerically the FRSB
equations. The fully connected Ising p-spin model is defined
by the following Hamiltonian:

H = −
∑

i1<···<ip

Ji1··· ip si1 · · · sip , (27)

where the quenched random couplings J have zero mean and
variance J 2 = p!/(2Np−1). By making the Parisi ansatz the
free energy reads [15]

β� = −β2

4

[
1 −

∫ 1

m

qp(x)dx + 2
∫ 1

m

λ(x)q(x)dx − 2λ(1)

]

− 1

m
ln

∫ ∞

−∞

1√
2πλ(n)

exp

[
− y2

2λ(m)
+ βmf (m,y)

]
.

(28)

The above expression has to be extremized with respect to the
Parisi functions q(x) and λ(x). We recall that the parameter m

is the breaking point of the solution such that for x < m we
have q(x) = λ(x) = 0. The function f (x,y) obeys the Parisi
equation:

ḟ = − λ̇

2
[f ′′ + β x(f ′)2] (29)

with initial condition

f (1,y) = 1

β
ln 2 cosh βy, (30)

where the overdots indicate x derivatives and the primes y

derivatives. The variational equations for the free energy can
be obtained using Lagrange multipliers [34] and they read

λ(x) = pqp−1(x)/2, (31)

q(x) =
∫ ∞

−∞
P (x,y)μ2(x,y)dy, (32)

where μ(x,y) ≡ f ′(x,y) and

μ̇ = − λ̇

2
(μ′′ + 2 β x μμ′). (33)

The function μ(x,y) is usually called m(x,y) in the literature,
but we renamed it to avoid confusion with the breaking point
value m. The auxiliary function P (x,y) obeys

Ṗ = λ̇

2
[P ′′ − 2 β x (P μ)′] (34)

with initial condition at x = m

P (m,y) = c exp

[
− y2

2λ(m)
+ βmf (m,y)

]
, (35)

where c is a normalization constant ensuring that∫
P (m,y)dy = 1. Other equations can be obtained by repeated

differentiation of the variational equations with respect to x in
the FRSB region. This is simplified by the use of the following
Sommers identity [35]:

d

dx

∫
dyPg =

∫
dyP�g, (36)

where g(x,y) is any function and � is the following operator:

� = ∂

∂x
+ λ̇

2

(
∂2

∂y2
+ 2βxμ(x,y)

∂

∂y

)
. (37)

Differentiating Eq. (32) and dividing by q̇(x) we obtain

2q2−p(x)

p(p − 1)
=

∫
dyP (μ′)2. (38)

Repeating the process once again, we obtain

4(2 − p)q3−2p

p2(p − 1)2
=

∫
dy P (μ′′)2 − 2βx

∫
P (μ′)3, (39)

which can be rewritten as

x =
4(p−2)q3−2p(x)

p2(p−1)2 + ∫
P (μ′′)2

2β
∫

P (μ′)3
. (40)

Equations (38) and (40) hold in the continuous region of the
FRSB solution, and in general they are not satisfied by a 1RSB
solution. However, they must be satisfied consistently at the
point where the 1RSB branch can be continued to the FRSB
branch; one can check that the condition (38) evaluated on
a 1RSB solution is precisely the marginality condition given
in [15]. Similarly, it follows that near the marginal solution the
continuous part of the FRSB solution is concentrated near a
value of x given by (40). Therefore the right-hand side (RHS)
of Eq. (40) must be equal to the ratio w2/w1 according to
the results in Sec. III, and indeed Eq. (40) agrees with the
computation of w2/w1 at Td given by Eqs. (50)–(52) in [33].
Following [35] one could perform another differentiation of the
equation in order to compute the value of q̇(x) at the breaking
point.

In Fig. 1 we present the phase diagram in the (T ,m) plane of
the case p = 3. The dotted line is the spinodal line mspinodal(T )
of the 1RSB solution. On the left of this line the 1RSB
variational equations admit two solutions with q > 0, besides
the paramagnetic one q = 0. For our purposes only the one
with a larger value of q is important and we will be referring
to it in the following discussion. The two solutions merge on
the spinodal line and disappear with a square root singularity,
leading to the vanishing of the longitudinal eigenvalue.

The thick black line is the marginal line mG(T ) of the 1RSB
solution where the replicon eigenvalue vanishes according to
Gardner [15] or equivalently where the 1RSB solution satisfies
Eq. (38). On the right of this line the 1RSB solution has
negative replicon and therefore the whole region between
the mspinodal(T ) and mG(T ) lines is unphysical. Note that
the two lines cross for m = 1 and T = Td = 0.681 598, and
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this is consistent with the fact that at m = 1 the replicon and
longitudinal eigenvalues are degenerate, leading to a nontrivial
critical behavior at Td [17].

The dashed line corresponds to the breaking point ms(T )
of the 1RSB solution that extremizes the free energy (28) as
a function of m. This solution is the equilibrium one in the
range of temperatures between the static temperature Ts =
0.651 385 and the Gardner temperature TG = 0.240 26. The
static temperature is identified by the condition ms(Ts) = 1
while the Gardner temperature is where the marginal line and
the static line cross: mG(TG) = ms(TG). As shown by Gardner,
for lower temperatures the static solution has a continuous
FRSB structure for values of x larger than the breaking point m.

The dash-dotted line is the ratio λ(T ) ≡ w2/w1 of the
marginal 1RSB solution as a function of the temperature
and it is given by the RHS of Eq. (40). As expected λ(T )
is smaller than mG(T ) below Td and therefore the 1RSB
branch of solutions cannot be continued below mG(T ) near Td .
However, we see that the line λ(T ) crosses the marginal line at
a temperature T∗ = 0.501 227. This confirms a posteriori the
argument of the previous sections that in general the existence
of TG implies the existence of T∗. For temperatures T < T∗
the 1RSB branch of solutions can be continued to values of the
breaking point m < mG(T ) by considering a FRSB ansatz.

According to what we said in Sec. II C we expect that
both the marginal condition and the condition λeff ≡ λ/m < 1
are necessary in order for the 1RSB solution to be relevant
for off-equilibrium dynamics. The thin solid line in Fig. 1
represents λeff(T ); we see that it starts from the value λeff =
λ = 0.743 at Td (consistently with [33]) and increases up to
λeff = 1 at T∗. This determines a qualitative change in off-
equilibrium dynamics at T∗ and implies that the marginal 1RSB
solution must be abandoned below T∗ in order to describe
off-equilibrium dynamics because λeff > 1. On the other hand,
below T∗ a continuous branch of FRSB solutions appears and
the end point of the branch is the natural candidate to describe
off-equilibrium dynamics.

In Fig. 2 we plot q(x) at T = 0.3 for various values
of the breaking point m. At m = mG(0.3) = 0.3914 we
have the marginal 1RSB solution. For smaller values of

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
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0.88

0.90

0.92
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0.96

x

q
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FIG. 2. The q(x) of the Ising p-SG for p = 3 for different values
of the breaking point m = 0.368,0.37,0.38,0.3914 at T = 0.3 < T∗.
The length of the first plateau decreases linearly to zero as m

approaches the end point mend = 0.3677. q(x) = 0 for x < m.
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FIG. 3. The end-point solution q(x) of the Ising p-SG for p = 3
for different values of the temperature; from top to bottom T =
0.2,0.25,0.3,0.35. q(x) = 0 for x < mend(T ).

m = 0.38,0.37,0.368 the solution becomes FRSB with two
plateaus. As expected according to Sec. III, for m near mG

the continuous region is concentrated at values of x near
λ(T ) = 0.572 68, and actually the starting point xP of the
second plateau and the values of q(xP ) do not change too
much even at lower values. The end point xp of the first
plateau instead decreases for m < mG until the end point
m = mend = 0.3677 where the first plateau has zero length.
The FRSB solution cannot be continued to lower values of m

because we would have a negative plateau. As we can see in
Fig. 1 the line mend(T ) (solid, gray) is almost a straight line
connecting the point (T∗,m∗) = (0.501 227,0.618 25) and the
point (0,0). Technically the numerical procedure used to solve
the equation breaks down at mend and therefore its value was
estimated by extrapolation, plotting parametrically the length
of the first plateau l1 as a function of m and extrapolating
m to the point l1 = 0. This procedure confirms that, as we
saw in the previous section, the function l1(m) is regular near
mend and also that q(x) at x = mend is regular. In Fig. 3 we plot
the function q(x) for m = mend(T ) for T = 0.35,0.3,0.25,0.2.
They were actually obtained by choosing a value of m as close
as possible to mend. A computation down to zero temperature
is feasible, possibly by means of the methods of [34], but it
goes beyond the scope of this work.

The energy of a given solution is given by

E = −β

2

(
1 −

∫ 1

m

qp(x)dx

)
. (41)

In Fig. 4 we plot the energy of various solutions of the
variational equations as a function of the temperature for
p = 3. The dotted line is the energy −β/2 of the paramag-
netic solution that gives the equilibrium value for T > Ts =
0.651 385. The dashed line is instead the energy of the 1RSB
solution that extremizes the free energy with respect to m and
that yields the equilibrium energy in the temperature range
(TG,Ts). The solid line is the energy EG(T ) of the marginal
solution. The energy of the marginal solution coincides with
the equilibrium energy at Td where the equilibrium dynamics
has the MCT-like dynamical singularity. Between Td and
T∗ the marginal solution is a natural candidate to describe
off-equilibrium dynamics. Below T∗ the marginal solution is
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FIG. 4. Energy vs temperature plot of the various solutions of
the Ising p-SG with p = 3. The thin vertical lines represent the
temperatures TG = 0.240 26, T∗ = 0.501 227, Ts = 0.651 385, and
Td = 0.681 598. Dotted line: energy of the paramagnetic solution
Epara = −β/2. Dashed line: energy of the static 1RSB solution Es(T )
that gives the equilibrium energy between TG and Ts . Solid thick
line: energy EG(T ) of the marginal 1RSB solution. The points at
T = 0.2,0.25,0.3,0.35, T∗ = 0.501 227 are the values of the energy
Eend(T ) of the end point of the FRSB branch. Solid thin line: quadratic
fit between the five points reported in the text. For any model the
end-point energy Eend(T ) must be tangent to EG(T ) at T = T∗.

not consistent with off-equilibrium dynamics because λeff > 1
and the natural candidate becomes instead the end point of
the FRSB branch. As was done for mend(T ) the energy of
the end point can be obtained by plotting parametrically the
energy as a function of l1 (the length of the first plateau) and
extrapolating to l1 = 0. The procedure, however, is affected by
large numerical errors that become larger both near T∗ and near
zero temperature. In Fig. 4 we plot the numerical estimates for
four temperatures reported in the following table:

T 0.2 0.25 0.3 0.35

Eend −0.7931 −0.7908 −0.7888 −0.7858
mend 0.2444 0.3054 0.3677 0.4289

The above values for mend were used in order to draw the line
mend(T ) in Fig. 1 by interpolation. The values for the energy
together with the (much more precise) value E∗ = −0.768 700
at T∗ = 0.501 227 are well fitted by the following quadratic
form which is also plotted in Fig. 4:

Eend(T ) = −0.788 29 − 0.063 07T + 0.203 54T 2. (42)

The above simple fit should be used for interpolation only
in the range of temperatures (0.2,0.501 227) and is certainly
not accurate for lower temperatures, where a more refined
numerical analysis should be made.

It is interesting to consider the behavior of the FRSB
solution near T∗. If we go back to Eqs. (17) we see that
for temperatures T = T∗ + �T near T∗ the quantity (x1 − n)
in the marginal solution is O(�T ). Continuing the marginal
solution to lower values of the breaking point m = mG + �m,
the replicon m1 is proportional to �m and we have δq(m) ∝
�m/�T and δq(1) ∝ �m. Assuming that the q(x) has a finite
derivative, the size of the continuous region �x separating the

two plateaus grows linearly with their difference in height,
leading to �x ∝ �m/�T . The end point of the branch is
located where �x becomes comparable to x1 − n, from which
we obtain �mend = O(�T 2). It is easily seen that the energy
also has the same behavior, meaning that mend(T ) and Eend(T )
are tangent to the corresponding Gardner lines at T∗:

mend(T ) = mG(T ) + O(T − T∗)2, (43)

Eend(T ) = EG(T ) + O(T − T∗)2. (44)

Note that the above result is model independent and may be
useful in situations where the actual solution of the FRSB
equations is not feasible. From Fig. 4 we see that the fit (42)
of the p = 3 model reproduces quite accurately this property
of the true Eend(T ).

We conclude this section with some technical remarks on
the numerical solutions of the variational equations. Following
[34,36] we have used an iterative procedure that involves
discretization of the functions P (x,y) and μ(x,y) on a two-
dimensional grid (x,y). For fixed breaking point m we start
from an initial linearly increasing q(x) defined between m and
1 and evaluate the functions P (x,y) and μ(x,y) by means of
Eqs. (34) and (33); then a new value of q(x) is obtained by
means of Eq. (32) and the process is iterated. For values of m

larger than mG(T ), q(x) converges to a constant corresponding
to the 1RSB solution, while for m < mG(T ) and T < T∗ a
nonconstant solution can be found down to values slightly
larger than mend(T ). Technically, an important point is that
some smoothing of q(x) must be applied at each iteration
in order to avoid it developing derivatives that are too high,
making the use of the differential equations not appropriate.

A more subtle technical issue it that the derivative of the
true solution has a discontinuity at the points xp and xP where
the continuous part is joined with the plateaus. As observed
already in [36], the numerical solution tends to be rounded
near these points due to the discretization. This effect can be
removed if one has precise estimates of the locations of xp and
xP and solve the equations only in the region where q(x) has a
nonzero derivative. In order to obtain such an estimate a rather
complex procedure was suggested in [36] (see Figs. 7, 8, and 9
in that paper). Instead a direct estimate of the breaking points
can be quickly obtained using Eq. (40), and we employed this
method in order to update the position of the breaking points
at each iteration.

VI. NUMERICAL SIMULATIONS

In order to validate the scenario put forward in Sec.
II C I have studied off-equilibrium dynamics by means of
numerical simulations. The results are quite interesting but
not conclusive; further studies are needed in order to settle the
issue. It turns out, in brief, that the off-equilibrium decay of the
energy E(t) at T = T∗ can be fitted by a power law but with
a limiting value E(∞) higher than E∗. This is consistent with
the fact that if E(∞) = E∗ the dynamics must be slower than
a power law. However, we cannot decide if the limiting value is
actually E∗ or is higher. The same phenomenon occurs for the
remanent magnetization m(t), with the important difference
that in this case the standard expectation is that m(∞) = 0
while a power-law extrapolation yields m(∞) > 0. Finally, a
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parametric plot of the energy vs the remanent magnetization
supplemented with the assumption m(∞) = 0 yields a value
E(∞) consistent with E∗ within the overall precision.

Numerical simulations of the fully connected Ising p-
spin model of size N require O(Np) interactions and are
therefore limited to relatively small system sizes. In order to
overcome this problem I have considered systems with large
connectivities and extrapolated to the infinite-connectivity
limit. In the simulations I considered a set of N variable
nodes (the Ising spins si = ±1) and a fixed number αN

of three-spin factor nodes. Each factor node is connected
randomly to three variable nodes ijk and a quenched random
coupling Jijk = ±1 is assigned to it. The average connectivity
of each site is thus c ≡ 3α. In order to compare systems at
finite connectivities with the fully connected model one has
to choose the temperature according to β ≡ β ′/

√
2c, where

β ′ is the target temperature in the fully connected model. The
dynamics is the standard Monte Carlo form starting from a
random configuration. I measured the time decay of the energy
and of the remanent magnetization, defined as the overlap
between the initial configuration and the configuration at time
t .

In Fig. 5 we plot the decay of the energy as a function of
the number of Monte Carlo steps (MCS) for connectivities
c = 24,45,90, system size N = 106, T = T∗ = 0.501 227 at
times t = 2k with k = 11, . . . ,17. The data were obtained from
ten runs of 217 MCS and a new random graph is generated
at each run. The value of the energy at time t = 2k is an
average over the time interval (2k−1,2k). Assuming O(1/c)
corrections induced by the finite connectivity, an estimate
for the infinite-value limit is given by Eest = 2E90 − E45.
Corrections to the estimate in the considered time range are
negligible within the overall precision, as was confirmed by
an analysis at lower connectivity c = 24. Data for N = 106/2
(not shown) are superimposed (within the errors) with the
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FIG. 5. (Color online) Off-equilibrium dynamics at T∗ in the
three-spin Ising model. Plot of the energy minus the marginal energy
E∗ vs t−.319 in MCS units. From top to bottom we have E24 − E∗,
E45 − E∗, E90 − E∗, and Eest − E∗ where Eest ≡ 2E90 − E45. The
error bars are smaller than the points when not shown. The straight
line is the three-parameter fit Eest − E∗ = 0.0038 + 0.191 t−0.319.
The points correspond to t = 2k with k = 11, . . . ,17 and the values
of the energy are time averages over the corresponding time intervals
and over ten runs. System size is N = 106.
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FIG. 6. (Color online) Off-equilibrium dynamics at T∗ in the
three-spin Ising model. Plot of the remanent magnetization vs t−0.292

in MCS units. From bottom to top we have m45, m90, and mest ≡
2 m90 − m45. The straight line is a three-parameter fit on the mest

data, m(t) = 0.0150 + 0.359 t−0.292. The points correspond to t = 2k

with k = 12, . . . ,17 and the values of the remanent magnetization
are time averages over the corresponding time intervals and over ten
runs. System size is N = 106.

corresponding data at N = 106 and therefore we assume that
we are sufficiently close to the thermodynamic limit.

The data are shifted vertically by an amount E∗ =
−0.768 700, according to the result of the previous section.
We see that the estimated E(t) is compatible with a power-
law decay 1/ta with an exponent a = 0.319 obtained from
a three-parameter fit Eest(t) − E∗ = 0.0038 + 0.191 t−0.319.
This leads to E(∞) − E∗ = 0.0038, i.e., the limiting value
of the energy will be definitively larger than E∗. Note also that
this deviation is significant also on the scale of Fig. 4.

In a sense these results are compatible with the scenario we
put forward in the previous sections. According to it the energy
decays to E∗ more slowly than any power law at T = T∗.
Therefore if we fitted the data in a limited time window with a
power law we would get a (wrong) estimate definitively larger
than E∗. Nevertheless this is not very strong evidence, and we
cannot rule out the fact that the scenario is wrong altogether,
i.e., that the decay is really a power law and the limiting value
of the energy is definitively larger than E∗.

More insight comes from the study of the remanent mag-
netization. In Fig. 6 we plot m45, m90, and mest ≡ 2 m90 − m45

as functions of t−0.292 for the same runs as in Fig. 5. As
before the value at time t = 2k is obtained as an average over
the time interval (2k−1,2k) for each run. Once again we see
that mest(t) is compatible with a power-law decay 1/ta with
an exponent a = 0.292 obtained from a three-parameter fit
m(t) = 0.0150 + 0.359 t−0.292. Note, however, that the infinite
limit of the remanent magnetization would be different from
zero and, much as in the case of the energy, it seems that
the difference, although small, is definitively larger than the
overall error. The picture is similar to what we found for the
energy except for the fact that the expectation that the remanent
magnetization decays to zero is much more standard than the
expectation that the energy decays to E∗. Indeed, it is related to
“weak long-term memory” which is a key assumption within
Cugliandolo-Kurchan theory [16].
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FIG. 7. (Color online) Off-equilibrium dynamics at T∗ in the
three-spin Ising model. Parametric plot of the estimated energy Eest

minus E∗ vs the estimated magnetization mest to the power 1.266; data
as in the previous figures. The straight line is the three-parameter fit
Eest − E∗ = −0.000 428 + 0.859m1.266

est .

The above results for the energy and remanent magneti-
zation are compatible with the fact that they decay to their
limiting values, respectively E∗ and zero, more slowly than
any power law. One could just say that the time scales
explored are too small to display the asymptotic behavior.
As a consequence one would expect that the data would not
contain precise information on the limiting values. Surpris-
ingly, instead it turns out that if we plot parametrically the
energy vs the remanent magnetization [E(t),m(t)] and assume
that m(∞) = 0, the deviation of E(∞) − E∗ is reduced to
within the overall precision. In Fig. 7 the estimated energy
is plotted parametrically as a function of ma

est, where the
exponent a = 1.266 is obtained from a three-parameter fit
E(t) − E∗ = −0.000 428 + 0.859m1.266. We see that while
a power-law fit on E(t) gives a deviation E(∞) − E∗ =
0.0038 with an error not compatible with zero, a parametric
plot supplemented with m(∞) = 0 reduces the deviation to
E(∞) − E∗ = −0.000 428, which is clearly compatible with
zero within the errors.

VII. CONCLUSIONS

We have shown that near the dynamical transition tem-
perature it is not possible to stabilize the 1RSB solution
beyond the marginal point by making a FRSB ansatz. This
may change at a temperature T∗ strictly lower than Td , below
which the 1RSB branch can be continued to a FRSB branch.
The existence of a T∗ temperature depends on the detail of
the model considered, but we showed that it certainly exists
for models that display the so-called Gardner transition and
in this case TG < T∗ < Td . The above results follow solely

from the structure of the replicated Gibbs free energy near Td

and therefore are quite general. They were indeed confirmed
by a study of the Ising three-spin model. They are also in
agreement with recent results in the context of RSB theory
for dense amorphous hard spheres in high dimension, which
also exhibit a Gardner transition as a function of the packing
fraction [37].

The FRSB branch of the solution below T∗ was studied
analytically for the truncated model and it is characterized by
a two-plateau structure. The branch ends where the length of
the first plateau vanishes because analytical continuation to
lower values m < mend(T ) would require a plateau of negative
length. These features have been confirmed in the context
of the Ising p-spin model with p = 3 by numerical solution
of the FRSB equations. Note that the transition occurring at
T∗ is not an ordinary 1RSB-FRSB transition; indeed (T∗,m∗)
is actually a critical point that marks the end of a line of
ordinary 1RSB-FRSB transitions occurring on the line mG(T )
for T < T∗.

The results were discussed in connection with off-
equilibrium dynamics within Cugliandolo-Kurchan theory. I
considered a scenario where the RSB solution relevant for
off-equilibrium dynamics is the 1RBS marginal solution in the
range (T∗,Td ) and it is the end point of the FRSB branch for
T < T∗. Remarkably, under these assumptions it can be argued
that T∗ marks a qualitative change in off-equilibrium dynamics
in the sense that the effective parameter exponent λeff goes to
1 at T∗ and as a consequence the decay of various dynamical
quantities changes from power law to logarithmic. This
suggests that the critical point (m∗,T∗) is the off-equilibrium
analog of the so-called A3 singularity in equilibrium MCT,
which is also characterized by logarithmic decays [24]. These
peculiar dynamical features could be relevant in the context of
aging numerical experiments in randomly packed soft spheres
that have been reported recently [38].

Numerical simulations are consistent with the above sce-
nario but further studies are needed in order to assess its
validity. One possible route is to reconsider models on Bethe
lattices [28], supplementing the analysis of the data with
the computation of T∗ in these models. Besides numerical
simulations one could also solve the off-equilibrium dynamical
equations numerically in the appropriate spherical models
[39], possibly by means of adaptive algorithms [26,27].
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