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Supercooled liquids: Equivalence between mode-coupling theory and the replica approach
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We show that the replica approach to glassy dynamics provides, in spite of its static nature, a characterization
of critical dynamics in the 8 regime of supercooled liquids that is equivalent to the one of mode-coupling-theory,
both qualitatively and quantitatively. The nature and extent of this equivalence is discussed in connection to the

main open problems of the current theory.
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I. INTRODUCTION

At present, it is well established that the mode-coupling
theory (MCT) yields an accurate description of the early stages
of the dynamical slowing down in supercooled glass-forming
liquids [1]. One of its main successes is the prediction that the
slow relaxation has a two-step nature with time correlators
developing plateaus that are expected to diverge at some
critical temperature characterized by a transition to a glass
phase.

The main drawback of the theory is that the critical temper-
ature is actually significantly larger than the glass transition
temperature in numerical simulations and it seems to mark a
dynamical crossover [2]. Nevertheless, various quantities, like
the so-called nonergodicity parameter (essentially, the height
of the plateau of the correlators), compare very well with the
numerical data. Furthermore, the theory provides a detailed
set of predictions for the behavior of the critical correlators
and the dynamical exponents [3] that reproduce quite well
the numerical data [4-6]. For these reasons, many believe
that the inclusion of some sort of corrections to the theory,
possibly taking into account finite-dimensional effects leading
to some some sort of hopping processes, could extend MCT
down to the laboratory glass transition. Unfortunately, due to
the uncontrolled nature of Sjogren’s approximation [7], which
is at the heart of standard MCT [8], it is not clear how to
systematically compute corrections to it.

On the other hand, it has been discovered by Kirkpatrick,
Thirumalai, and Wolynes [9] that a certain class of mean-field
spin-glass models exhibits the same dynamical features of
MCT. This result is important for various reasons. It shows
that MCT works for systems thatdiffer completely at the
microscopic level from a liquid, indicating that it might
have some universal features. Furthermore, it allows us to
include, at least phenomenologically, finite-size effects in
the theory. Indeed, critical dynamics in these models can
be tracked back to the splitting of the equilibrium state into
an exponential number of metastable states, and the use of
nucleation arguments on this mean-field picture has led to
the formulation of the so-called random-first-order theory of
glass transition [9,10]. Another important consequence is that
some features of critical dynamics of these models, namely the
critical temperature and the nonergodicity parameter, can be
computed without solving explicitly the dynamics by means
of an essentially static approach: the replica method. This
observation has led to the application of the replica method
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directly in the context of liquid theory, leading to a set of
quantitative predictions for the nonergodicity parameter and
the critical temperature [11].

The starting point of MCT is a set of exact equations for
the dynamics of the system under study. These dynamical
equations are closed by means of an appropriate approxi-
mation scheme and it turns out that the solution displays a
transition to a glassy phase at some critical temperature. The
replica approach instead deals with purely static equilibrium
quantities for the given model. Actually, one considers a
system of m replicas of the original system and computes the
replicated order parameter g, that describes the appropriate
microscopic two-point correlation (i.e., density-density in
liquids or spin-spin in spin-glasses) between two identical
replicas a,b = 1...m of the system. Using standard statistical
mechanics procedures, one derives a (usually approximate)
closed equation for ¢g,,. Much as in MCT, the dynamical
glass transition is characterized by the abrupt appearance of
a novel solution of the equation of state characterized by a
value of g, that differs from the value corresponding to the
high-temperature phase (say, the liquid or paramagnetic phase
depending on the system considered). The solution depends on
the number m of replicas considered and, for technical reasons,
one should take the limit m — 1 in order to obtain the correct
result. In the structural glass context, it is customary to use
methods based essentially on the hypernetted-chain (HNC)
approximation [11,12]. These methods yield predictions for
the ergodicity breaking parameter that are qualitatively similar
but quantitatively differ from those of MCT. Because of this
discrepancy it has been assumed in the past that the two
methods differ intrinsically. In Ref. [13] Szamel has shown
instead that, by starting from replicated Ornstein-Zernicke
equations and closing them with a suitable approximation
scheme, one can recover within the replica method the very
same quantitative results of MCT. Therefore, it can be argued
that the two approaches predict the same physics and that
discrepancies arise only when nonequivalent approximation
schemes are used.

Obviously, the two methods cannot be completely equiv-
alent. In principle, MCT can describe dynamics on both
small and large time scales while the replica method is
intrinsically static. Therefore, it is reasonable that the latter
can describe a static (or, rather, quasistatic) quantity (like the
ergodicity-breaking parameter) while it obviously cannot tell
anything on short-time dynamics. Previously, it was assumed
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that it could not tell anything on dynamics at all. Instead it has
been recently realized [14] that it can be used to characterize
the critical behavior on the large time scale of the 8 regime,
i.e., the plateau in the time correlators. In the context of MCT
it was realized long ago [3] that this regime has essentially a
universal nature in the sense that its properties are qualitatively
model independent. In addition, they depend quantitatively on
the given model only through a single quantity, the so-called
parameter exponent A. The very same universal equation has
been derived within the replica method in Ref. [14]. In both
derivations universality follows essentially from an argument
d la Landau and, therefore, it is quite robust. In addition to
these universal results, in Ref. [14] two results were derived
concerning the nonuniversal parameter exponent A. As will
be explained in the next section the first one provides a
recipe to compute A within the replica approach, extending
the amount of information that can be extracted from existing
and future replica computations. The second one is more deep
and states that the XA is equal to the ratio of two quasistatic
six-point susceptibilities that can in principle be observed in
experiments.

The above recipe has been applied to a number of mean-
field spin-glass models yielding new analytical predictions
concerning critical dynamics [15—18]. When there was already
an explicit solution of the dynamics the computations offered
an a posteriori validation of the recipe, while, in other cases,
the new predictions were compared with existing numerical
simulations. More recently the recipe has been used in the
context of the replicated theory of supercooled liquids based
on the HNC approximation [12] and, for a wide range of
models, a (quite reasonable) value of A &~ (0.7 was obtained.

In the context of MCT an equivalent recipe exists in order
to compute the parameter exponent from the value of a more
general object, i.e., the mode-coupling functional F[ f)13].
In both MCT and the replica approach it can be argued
that the recipes are actually exact; therefore, in order to
show that the two methods are consistent with each other,
we have to show that quantitative differences in the actual
value of A arise only because different approximation schemes
are used in the estimate of the mode-coupling functional in
MCT or, correspondingly, the equation of state for g, in the
replica approach. Consequently, if equivalent approximation
schemes are used within the two approaches, then the same
(approximate) expression for A must be obtained. The main
result presented in this paper is that once the replica recipe
is applied to Szamel’s closure, the very same quantitative
predictions of MCT are obtained, proving that MCT and
the replica method are equivalent both qualitatively and
quantitatively.

The issue of the equivalence between the two approaches
is not an academic one. On the one hand, MCT predictions
are more accurate at present than those obtained with the
HNC approximation, at least in three dimensions. On the
other hand, there are situations in which the replica method
may have considerable advantages. Indeed, in order to derive
many quantities within MCT, one takes the large-time limit
in the dynamical equations. The replica approach can be
viewed as a compact way to describe the algebra of this limit
where different replicas correspond to configurations visited
dynamically at distant times. Certainly the main open problem
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concerning MCT is the systematic inclusion of corrections
and the role of finite-dimensional effects and finite-size
effects [19,20]. The replica approach offers the possibility of
studying these phenomena in a field-theoretic framework that
is definitively simpler than the dynamical one. Surprisingly, it
has been recently discovered that the loop corrections to this
theory can be controlled at all orders and a series of predictions
have been obtained [19]. However, this study confirmed that
the phase transition predicted by MCT is only a dynamical
crossover and, therefore, the purely static replica approach,
as expected, is inconsistent beyond perturbation theory. The
theory needs, therefore, to be supplemented with some form
of critical dynamics but, unfortunately, in spite of important
progress [21], we are still lacking full control of the critical
behavior of the dynamical propagators, like the well-known
X4 susceptibility.

The paper is organized as follows. In Sec. II we will recall
the predictions of MCT and the replica approach concerning
the B regime and illustrate the method obtained in Ref. [14].
In Sec. III we will present our computation, showing that the
two methods lead to the same results. In Sec. IV we will give
our conclusions.

II. THEORY OF THE g REGIME WITHIN MCT AND THE
REPLICA APPROACH

The central quantity of MCT is the normalized auto-
correlation function of density fluctuations at a given wave
vector K,

(k1) = (5p"(k,1)3p(k,0))/S(k), 1)

where S(k) = (|8p(k,0)|?) is the static structure factor. Within
MCT, dynamical equations for ®(k,¢) are obtained. The key
feature of these equations is that below the critical temperature
T, they predict that the long-time limit of the correlator
is no longer zero (corresponding to the liquid phase) but
becomes positive, limt — oo ®(k,7) = f(k) # 0, meaning
that the system is in a glassy phase.

For temperatures near the critical temperature one identifies
the B regime corresponding to time scales over which the
correlator is almost equal to f(g). In the liquid phase (T' > T)
this regime is followed by the o regime during which the
correlator decay from f (k) to zero. In the B regime, the time
dependence of the correlator is controlled by the following
scaling law:!

O(k,t) = f) + T2 fult/T) ER (), 2)

where 7 is a linear function of 7, — T, i.e., it is negative in the
liquid phase and positive in the glassy phase; correspondingly,
the scaling function f(x) is to be used in the glassy phase
while f_(x) has to be used in the liquid phase. The function
f+(x) obeys the scale-invariant equation

+1= f20)(1—2) +/0 [felx =) = fe)] fe(3)dy.
3

'In the following presentation we will follow closely Gotze’s
original paper [3].
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For small values of x both the functions f(x) diverge as 1/x,
while for large values of x f, (x) goes to a constant while f_(x)
diverges as —x” where the exponents a and b are determined
by the so-called parameter exponent A according to

_Pd-a  TI0+b)
T T'(1=2a) T(1+2b)

The parameter exponent A also controls the time scale of the
regime that diverges with T from both sides as 75 o |7 |~1/Co
with an unknown model-dependent factor.

The above expressions display a great deal of universality.
In order to be quantitative, one needs to specify the so-called
mode-coupling functional £;[{f(g)}], which depends on the
model considered. The knowledge of the mode-coupling
functional allows us to determine quantitatively the critical
temperature T, the ergodicity-breaking parameter f(gq), the
corrections &% (k), and the parameter exponent . The ergodic-
ity breaking parameter is determined indeed by the following
equation:

“4)

Q)
1 — f(k)

The other quantities depend on the first and second derivative
of the mode-coupling functional evaluated at f (k). From now
on we limit study to the two-mode case, which corresponds to
the assumption that the mode-coupling functional is quadratic
in its arguments:

= Fl{f(@}. ®)

. 1
Fllf (ot = 3 Z VO ky ko) f k) f (ko). (6)

ki.ky

We define, then,
Cug =Y VOkqp) f(P — f@) (7

p

With the above definitions the critical temperature is deter-
mined by the condition that Eq. (5) admits a nonzero solution
and the linear operator Cy q has a (critical) eigenvalue equal
to 1, whose corresponding right eigenvector is precisely the
quantity & (k) appearing in (2):

8 =) Cuetl@. ®)
q
Normalizing the left and right eigenvectors of Cy q as
/ﬂ¥®#®=L ©)
/ dkEFREFRE ) — fk) = 1, (10)

the parameter exponent instead turns out to be related to
the second derivative of the mode-coupling functional, its
expression being

1 L @
r= | dkdqdpg! )V k.q.p)

x[1— f(@QPI1 — f(pPef@elp). ()

As already noted, Egs. (2)—(4) are considered exact while in
order to compute f(gq), 7., and A one needs to specify the
mode-coupling functional. It is well known that very good
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results are obtaining considering a quadratic functional as in
(6) with V@ (k; q,p) given by the Sjogren expression [7],

S(k)S(g)S
VO(k q.p) = %ﬁf&(’”a[k —p—al
x (k - [qe(q) + pe(p)])?, (12)

where n is the density.

By contrast with MCT the replica approach is purely static.
In MCT one is interested in the ergodicity breaking parameter
defined as the long-time limit of the correlator; in this limit one
can assume that the configuration at time ¢ has lost correlation
with that at time ¢ = 0. In the replica approach this limit is
somehow taken from the beginning by considering a two-
point function not at distant times but rather between two real
uncorrelated replicas of the system. Therefore, time is removed
from the problem and one is left with a purely statical problem.
The central object of the theory becomes, thus, a replicated
object. In the original spin-glass literature the order parameter
is typically a global quantity, e.g., the overlap between two
configurations,

N
qabzz

i=1

(sasP), (13)

where s{' are spin at site i of the replica a, the angle brackets
denote thermal averages, and the overline denotes disorder
average. In the supercooled liquid theory the natural analog of
the spin overlap would be the integral of the density-density
fluctuations over space:

_ [ dk(3p;(0)0,1))
ab = [dkS(k)

(14)

The replicated two-point correlator g, (or, equivalently, @,
in supercooled liquids) obeys his own equation of state that
can be computed approximately by means of many different
statistical physics methods. In the high-temperature phase the
system is in the paramagnetic (liquid) phase characterized by
a vanishing g,;. Much as in MCT the transition temperature
is characterized by the abrupt appearance of a solution of the
equation of state with a nonzero q,, = ¢. In Ref. [14] it has
been shown that the replica method allows computation of not
only ¢ and the critical temperature but also of the parameter
exponent A. In order to do so, one has to perform an expansion
of the equation for the order parameter g, around the solution
qap» = q corresponding to the glassy phase. Independently of
the approximate method used in order to obtain the equation,
it follows that we should get an equation in powers of q,, =
q + 8qp of this form:

O=1t+mm (Z Sch + 56]ac> + ms3 Z chd
c cd

+ w1 (8¢ ap + wadq>, + 0(5q%). (15)

where t is linear in 7, — T corresponding to the fact that
8qq, = 0 at T = 0. In general, in the right-hand side of the
above equation we should have also a term of the form
my 8q,, which is missing because the critical temperature is
determined precisely by the condition m; = 0 in order that
the solution of the above equation ceases to exist for negative
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T (corresponding to the liquid phase). The other coefficients
my, m3, wi, and w; are instead finite and depend on the given
model and on the external parameters. It can be shown that the
dynamics at long time can be mapped to the replicated equation
of state and that the above equation (15) leads precisely to the
scaling form of MCT described in Eq. (2). More precisely,
the dynamical analog of the replicated order parameter (13)
defined as

N
Cw =) 505 0) (16)

i=1

exhibits a § regime given by
C(t) = q + 71" fa(t/p). a7

where the functions f(x) and the time scale 74 obey the very
same equations (3) with the parameter exponent given by the
ratio between the quadratic coupling constant appearing in the
equation of state Eq. (15):

w2
A=—. (18)

wi
The above result provides therefore a simple recipe to
determine A within the replica approach: One has to obtain
a closed equation for the nonergodicity parameter using his
preferred approximation scheme, expand the equation around
the critical value of g, up to second order as in Eq. (15), read
the coefficients w,, w1, and, finally, identify A with their ratio.

III. COMPUTATION OF THE PARAMETER EXPONENT

In this section we will compute the parameter exponent
within the replica approach as formulated by Szamel in
Ref. [13]. Our starting point is the replicated Ornstein-Zernicke
equations:

Snap(®) = n’cap ) + 1Y cac®bnep®), (19

where én,,(K) is the Fourier transform of ng,p(ry,rp) =
nap(ry,r2) — 12, ie., the nontrivial part of the two-particle
density, n being the total particle density. The above equations
can be closed provided an expression for the direct correlations
cap(K) in terms of the dn,4;(K) itself is given. The single replica
correlation functions are associated by the definition to the
static structure factor according to

8naq(K) = n[S(k) — 1]. (20)

Under the assumption of replica symmetry (RS) the equation
for the diagonal components factorizes from that of the off-
diagonal components in the limit m — 1 and equation (19)
reduces to

Snaq(K) = n*caq(K)S(k), (2D
the above equation combined with the definition (20) can be
seen as a definition of the direct correlation function:
Sk)—1

nSk)
Indeed, the static structure factor is usually considered an

input in MCT computations. Szamel has shown that that by
making an appropriate set of approximations in the context

Caa(K) = c(k) = (22)
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of the Yvon-Born-Green hierarchy one obtains an expression
for the off-diagonal direct correlation identical to Sjogren’s
vertex; see Eq. (12). More precisely, if we define the replicated
nonergodicity parameter f;,;(K) according to

dnap(K) = n fap(k)S(k), (23)

we obtain the expression

cap(k) = / dadp G.0.0) fun@) fus(p)s  (24)

where the function G(k,q,p) has precisely Sjogren’s form:

1
G(k.q.p) = mﬂk —P —4ql5(g)S(p)

x (k - [qe(q) + pe(p)])*. (25)

We now multiply Eq. (19) by the inverse of the matrix nl +
dn40(K) (1 is the identity in replica and momentum space), and
we use the above equation to obtain

)
(—” ) (k) = n / dqdp G(K.q.p) fup(@) fup(p). (26)
nl+én ab

The above equation corresponds essentially to the equation of
state for the replicated order parameter 6n,;(K). According to
the recipe described in the previous section, we have to expand
this equation around the RS solution; therefore, we rewrite

Snap(k) = dniy (K) + nSK)[1 — f()*8qapk),  (27)
where 8naRbS (k) has a RS structure,

sn®S(k) = n [S(k) — 1], (28)

snRS(k) = n f(k)S(k) a #b. (29)

The factor nS(k)[1 — f (k)]? has been used in the definition in
order to make contact with the formulas of Ref. [3] reproduced
in the previous section. In order to perform the expansion of
Eq. (26) in powers of §g,;(k) we first note that its right-hand
side (where the crucial approximations concerning the MCT
functional are made) has a simple diagonal structure in replica
space and only the left-hand side has a nontrivial structure. The
zeroth-order term of the left-hand side of (26) can be computed
using standard properties of replica symmetric matrices and
leads after some algebra to

Y gyl W
(n I+ 8n>ab (k) = S([L — f(k)] + 0(8q), a#b.

(30)

In order to compute the next terms we rewrite it as an expansion
of in powers of én,;(k),

on - o0 B ;
(nl—i—Sn)ab(k)_ JX_;( dn/n)y,(K), (31)

where the various powers (—én/ n); ,(K) are intended in matrix
sense. After the substitution the form (27) into these products
and neglecting all terms where 8¢, (K) has a power higher than
two we are left with the evaluation of three possible classes
of matrix products: (i) (8nrs).,, (ii) (Snggdqg dnyg)as and
(ili) (8nkgdq dnyg8q dnkg)ay for general integer r,s,t (all
products and powers are intended in the matrix sense and we
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have not written explicitly the replica and Fourier indexes).
At linear order the expansion generates terms of three types:
m18¢ap, M2 Y (8Gac + 8qpe), and msz Y, 8q.q. However, as
we noted in the previous section, we are interested in m18q,p
because the transition temperature is specified by the condition
m) =0 while the other terms control quantitatively the
fluctuations [19] but are not relevant for the present discussion
and will not be displayed in the final result. At variance with the
remaining two terms, the term m8q,; depends simultaneously
on both indexes a and b. As a result, its computation is
simpler because since both indexes a and b must be explicitly
present in the final result every time we have a multiplication
by Sngs(k) = n{SK)[1 — f(k)] — 1}8ap + f(k)S(k), we are
forced to take the term that contains the Kronecker §. The same
observation is correct also at quadratic order in 4q(k), i.e.,
for the term ). 8¢,.(K)8q.»(K). These technical arguments
justify the fact that, in order to compute m; and w;, we
can replace (27) with the much simpler form &n,,(k) =
n{SU[1 — f(k)] — 1}84p + nSU)[1 — f(k)]*8¢qp (k) into the
left-hand side of Eq. (26), greatly simplifying the computation.
With this prescription we finally obtain

J (k)
[1— fk)]

S / dadp Gk.q.0)f(@) ()

0= — — 8qap®) + [1 — £U)Bg%)an(k)

+2nS(k)_/dqdp G, q.PI1 — f(@)I*8¢a(@ f(P)

+nS(k)/dqdp G(k,q,p)

X [1 = F@P = f(P)I8qar(@3qas(P)- (32)

The equation at zeroth-order determines the nonergodicity
parameter while the next orders determine the critical temper-
ature and the parameter exponent. This is the same equation
obtained by Szamel and it is quantitatively identical to the one
found in MCT, as can be seen using Egs. (25), (5), (6), and
(12). The critical temperature is fixed by the condition that
there is a direction for 8¢, (k) such that the coefficient m of
the linear term vanishes. This corresponds to the condition that
the following linear operator has a zero eigenvalue u = 0:

nEfk) = —£5k) + 2nS(k)/dqu G(k.q.p)

x[1— fOIPEX @ f(p), (33)

where £ X (k) is the right eigenvector corresponding to the zero
eigenvalue. This condition is also identical to the condition
Eq. (8) encountered in MCT where it is obtained requiring that
the derivative with respect to f(q) of Eq. (5) vanishes. Here,
instead, it follows from the condition m| = 0; technically, this
equivalence between two different conditions is a consequence
of the m — 1 replica limit and of the fact that in this limit the
so-called replicon and longitudinal eigenvalue are degenerate,
leading to many nontrivial features concerning fluctuations
[19]. The behavior at the critical point is controlled by the
critical eigenvector éf (k) of (33) and we may write at leading
order

8qan(k) = 8qa, EX (K). (34)
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Note the similarity of the above expression with (2), which
makes apparent that different replicas play essentially the role
of different times. The above definition must be supplemented
with a normalization condition for the eigenvector, in order to
make contact with the result of the previous section we adopt
the following normalization for the right and left eigenvectors:

/ dkgl(ek k) = 1,

/ dk L1 — fERK)ER (k) = 1.

Multiplying the quadratic part of equation (32) by the left
eigenvector (k) and integrating, we obtain the following
expression:

[ / dk L — f(R)IER (k)&f(k)} (8qa)*
+n[ / dkdqdp £-(k)S(k)G(k,q,p)

x [1— f(@P[l - f(p)]zsf(q)sf(p)}aq,%b , (35)

Note that the first coefficient is fixed to 1 by the normalization.
According to Eq. (18), the parameter exponent is given by the
ratio between the two quadratic coefficients, leading to

h=n / dkdqdp EL(K)S()G (k.q.p)

x[1— f(@P11 — f(pPel@elp).  36)

Using Eq. (25) we see that the above expression is identical to
(11) with the vertex given by (12).

IV. CONCLUSIONS

The recipe of Ref. [14] has been applied to the approxi-
mation scheme proposed by Szamel in order to show that the
replica approach gives a characterization of the f regime of
supercooled liquids that is equivalent to the one of MCT both
qualitatively and quantitatively, provided the same approxima-
tions are used. Quantitative differences within the predictions
of the two methods, see, e.g., the results of Ref. [12],
may arise only as a consequence of using approximations
schemes that are not equivalent.

We note that a result obtained within the replica approach
is that an equation like (15) follows from a replicated free
energy [14]. This allows us to connect the coefficients w,
and w, with two six-point susceptibilities @ and w,, which
are, in principle, measurable in a quasistatic framework.
According to Ref. [14], their ratio is equal to A and, therefore,
Eq. (36) fixes their value up to an unknown constant.
The computation of this constant is left for future work. In
the present framework, it could be determined considering the
response of the nonergodicity parameter to a random pinning
field along the lines of Ref. [22].
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