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Abstract—Approximating marginals of a graphical model is
one of the fundamental problems in the theory of networks. In
a recent paper a method was shown to construct a variational
free energy such that the linear response estimates, and maximum
entropy estimates (for beliefs) are in agreement, with implications
for direct and inverse Ising problems [1]. In this paper we demon-
strate an extension of that method, incorporating new information
from the response matrix, and we recover the adaptive-TAP
equations as the first order approximation [2]. The method is
flexible with respect to applications of the cluster variational
method, special cases of this method include Naive Mean Field
(NMF) and Bethe. We demonstrate that the new framework
improves estimation of marginals by orders of magnitude over
standard implementations in the weak coupling limit. Beyond the
weakly coupled regime we show there is an improvement in a
model where the NMF and Bethe approximations are known to
be poor for reasons of frustration and short loops.

I. INTRODUCTION

Bethe and Naive Mean Field (NMF) are two of the most
used variational methods, and can be considered special cases
of the cluster variational method (CVM) [3], [4], [5]. Fast
and robust methods are known for the minimization of the
CVM free energy [6], and expansion methods about minima
have been demonstrated [7], [8]. Generalizations and convex
approximations to CVM have allowed for the development of
fast and secure inference methods [9], [10]. Linear response
(LR) is often applied to the variational framework to determine
accurately pair correlation estimates [2], [11], [12], [13], [14].

In studying graphical models one is often interested in
the estimation of probability distributions over local variables,
and pair correlations; these can for example form the basis
for decimation methods or moment matching algorithms [15],
[16], [5]. In this paper we develop an extension of the
standard method for estimating marginal probabilities and pair-
correlations in CVM, such that the variational parameters
(beliefs) are self-consistent with the LR estimates. Our model
improves over standard implementations on arbitrary graphs if
couplings are weak. From the NMF framework we recover
the adaptive-TAP equations for pairwise spin models [2],
[14]. From the Bethe approximation, we recover the Sessak-
Monasson expression for correlation estimation from a vari-
ational framework [17]. We apply the method to the homo-
geneous triangular lattice model: Bethe and NMF are known
to perform poorly on this model due to the presence of short
loops and frustration. For brevity we will focus only on binary
variables (spins), pairwise couplings and two simple CVM
approximations; but the principle is more general and might

be combined with some of the aforementioned expansions and
algorithmic methods.

A. Cluster variational method and linear response

Consider a model defined over N spin variables {σi =
±1}, interacting through a symmetric coupling matrix J , with
external fields H , described by the Hamilonian (Cost function)

H(σ) = −
∑

s∈I

Js

∏

i∈s

σi −
∑

i

Hiσi . (1)

s are subsets, and I defines the set of non-zero couplings, for
the pairwise model I = {(i, j) : Jij 6= 0}. The exact free
energy (cumulant generating function) of this model is

F = − log Tr[exp(−H(σ))] . (2)

Tr[·] is a sum over the states in the enclosed expression. From
the free energy one can calculate quantities of interest such as
the magnetizations and pair connected correlations by linear
response. We define the linear response functions

χs = −
∏

i∈s

[

∂

∂Hi

]

F . (3)

Since these describe the correlations, they can be used to fully
parameterize the marginal probabilities

bLR
i (σi) =

1 + χiσi

2
; bLR

ij (σi, σj) = bLR
i bLR

j +
χijσiσj

4
.

(4)
We will on occasion omit the arguments, e.g. bLR

R = bLR
R (σR),

for brevity. Since the evaluation of the free energy is compu-
tationally intractable for many networks of interest we cannot
in general construct the marginals (4) by method (3) without
approximations to the free energy. The linear response identity
(3) can be used cautiously with an approximate free energy,
to obtain approximate marginal probability distributions (4).

The CVM provides such an approximation, based on a
weighted sum of local entropy and energy contributions. The
variational entropy and energy approximations are defined

S(b) = −
∑

R

cRTr[bR(σR) log bR(σR)] ; (5)

E(b) = −
∑

s∈I

Tr[Jsbs(σs)
∏

i∈s

σi]−
∑

i

HiTr[bi(σi)σi] ;(6)

R are regions (subsets of variables), bR are beliefs (approxi-
mate marginal probabilities) over the set of variables σR, and
cR are counting numbers.
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The theory of junction trees provides a justification for the
selection of regions and counting numbers [5], if one selects
regions according to a junction tree then one can recover the
exact free energy by a constrained minimization

FCV M = min
b

{E(b) − S(b)} , (7)

subject to 0 ≤ bR ≤ 1 and constraints

1 = Tr[bR(σR)] , ∀R ; (8)

bR′(σR′) = Tr\σR′
[bR(σR)] , ∀R′, R : R′ ⊂ R ;

where Tr\ is a trace over all variables excluding those listed in
the subscript. The beliefs recovered for a correct region selec-
tion are exactly the marginal probabilities, and are consistent
with those determined by linear response bR = bLR

R .

The regions prescribed by a junction tree have a maximum
size that depends on the graph width, if this topological
attribute is small then CVM can be an efficient way to calculate
the free energy. If the graph is uncorrelated (J = 0) then the
NMF approximation is exact, with cR = 1 for single variable
regions and cR = 0 for all other regions. For purposes of
evaluating the energy (6) we take bs =

∏

i∈s bi in NMF.
If the graph is a tree (or forest) the Bethe approximation is
exact, with edge regions for every element in I , in addition
to all vertex regions. In the Bethe case: cs = 1 ,∀s ∈ I;
ci = 1 −

∑

R⊂I:i∈R cR; and cR = 0 otherwise.

Unfortunately, junction trees are also impractical in gen-
eral. Typically the width of the graph is large, requiring
large regions for an exact solution, so that the evaluation
of the entropy (5) is impractical. One is therefore interested
in approximations; fortunately NMF and Bethe are found
to be good, or asymptotically exact in many circumstances.
Given that we resort to these methods in cases where the
method is not exact, how should one construct the marginal
probabilities? Two options exist for the regions exploited in the
approximation: one can use the maximum entropy estimate
PR ≈ bR; or one can use the linear response estimtate
PR ≈ bLR

R about the minima of FCV M . In general these
estimates differ; one measure of the quality of the variational
approach is the amount of agreement between these values.
This paper discusses a modification to FCV M that allows for
exact agreement.

Let us parameterize the beliefs over single variables in a
manner comparable to (4), using the set of magnetization (Ci),
and in the case of Bethe symmetric pair correlation parameters
(Cij = Cji)

bi(σi) =
(1 + Ciσi)

2
; bij(σi, σj) = bibj +

Cijσiσj

4
, (9)

where Cij = 0 for NMF. By this construction the constraints
(8) are made redundant and we have an unconstrained param-
eter space, subject to a parameter range 0 < bR(σR) < 1.
We exclude the possibility of boundary values {0, 1} since to
apply linear response we will assume a minima in which all
parameters can fluctuate.

In this paper we consider the following modification to the
entropy approximation: we introduce, in the case of NMF the
constraint that the self-response and magnetization agree as
per the exact free energy

χii = 1 − C2
i , ∀i . (10)

We can introduce a Lagrange multiplier in the standard form
to write the entropy approximation for NMF 1

SN
λ = −

∑

i

Tr [bi log bi] −
∑

i

λi

((

1 − C2
i

)

− χii

)

/2 .

(11)

Within the Bethe approximation agreement between bij =
bLR
ij requires the additional constraint

χij = Cij ; ∀ij ∈ I , (12)

the entropy approximation for Bethe becomes

SB
λ = SN

λ −
∑

ij∈I

{

Tr

[

bij log

(

bij

bibj

)]

− λij (Cij − χij)

}

.

(13)

B. Saddle-point equations and linear response identities

A minima of the free energy requires that the derivatives
with respect to the variational parameters are zero. The deriva-
tive with respect to Ci is

0 = atanh(Ci) − Hi −
∑

j( 6=i)

JijCj + Li − λiCi , (14)

where Li = LN
i = 0 for NMF, and for Bethe

LB
i =

∑

j:(i,j)∈I

Tr

[

bj

σi

2
log

(

bij

bi

)]

. (15)

For the Bethe method we must also consider the derivative
with respect to Cij

0 = LB
ij − Jij = Tr

[σiσj

4
log bij

]

+ λij − Jij . (16)

Note that both the entropic term λiCi and the leading
order of Li, are reaction terms (proportional to Ci); for fully
connected models these reaction terms are well understood in
the large system limit [2]. When λ is taken to be non-zero
and fixed by linear response, we find that quite generally we
recover the Onsager reaction term, as later discussed. When
the constraint (10) is not enforced λi = 0, in applying the
Bethe approximation the Onsager reaction term is recovered
for the case of independent identically distributed couplings.

When considering variation of the free energy we will treat
both χ and λ as fixed external parameters, the variation is
restricted to C. The Hessian, with components

Qs,s′ =
∂2FCV M (b)

∂Cs∂Cs′

, (17)

is required to be positive definite at the minima.

Supposing C = C∗ describes the minimizing arguments for
{H,J}, in response to a small variation in the fields H + δH
the new minima C = C∗ + δC can be determined from the
quadratic order expansion of the free energy

FX
λ (H + δH, J) = min

δC

{

FX
λ (H,J) + δCQXδC/2

−
∑

i

δizδHz(Ci + δCi)

}

, (18)

1An identical proposal for an on-diagonal consistency constraint was very
recently proposed [14].
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for NMF (X = N ) or Bethe (X = B); this will be the basis
for constructing the linear response identities.

1) NMF: In the case of NMF the components of the
Hessian are

QN
ij = −Jij + δi,j [

1

1 − C2
i

− λi] . (19)

The argmin for NMF is

δCi =
∑

z

[(QN )−1]izδHz . (20)

Now, the linear response identity in the limit δH → 0 allows
us to decompose δC as a sum of perturbations on individual
fields at leading order

δCi =
∑

z

χi,zδHz . (21)

As such

χi,j = [(QN )−1]i,j = [(ΦN − J)−1]i,j . (22)

We introduce notation ΦN to denote the entropic (approximate)
part of Q, separated from the energetic (exact) part. This matrix
gives us estimates for all pair correlations, as well as those
within regions. The constraint (10) is

[χ−1]i,i =
1

1 − C2
i

− λi . (23)

We have a closed set of equations for {C, λ} in (14) and
(23). Interestingly these equations are exactly those that define
the adaptive TAP [2]. It was shown by Opper and Winther that
a solutions to adaptive TAP do indeed reproduce the Onsager
reaction terms for correlated and uncorrelated distributions of
J (and without prior knowledge of the statistics of J).

2) Bethe: To describe the Hessian at the Bethe level
variation of the pair correlation parameters must be considered

QB
i,j = Q(1) =QN

i,j +cij

{

Tr

[

σiσj

4

(

log bij +
bibj

bij

)]}

;

QB
ij,k = Q

(2,1)
ij,k = cij

{

δi,kTr

[

bjσj

8bij

]

+ δj,kTr

[

biσi

8bij

]}

;

QB
ij,kl = Q

(2)
ij,ik = cijδij,klTr

[

1

16bij

]

. (24)

Recall cij = 1 if (i, j) ∈ I and 0 otherwise. If we break
the vector δC into two parts, one describing single variable
variation δC1 = {δCi} and one describing pairwise variation
δC2 = {δCij} we can determine the minimizing arguments
of (18) from

0 = Q(2,1)δC1 + Q(2)δC2 ; (25)

δH = Q(1)δC1 + [Q(2,1)]
T
δC2 . (26)

Eliminating δC2 we can proceed as for NMF

χ =
[

Q(1) − [Q(2,1)]T [Q(2)]
−1

Q(2,1)
]−1

= [ΦB − J ]
−1

. (27)

Evaluating ΦB for i 6= j and i = j we find

ΦB
i,j = cij

[

Tr[
σiσj

4
log bij ]−

Cij

(1−C2
i )(1−C2

j )−C2
ij

]

,(28)

ΦB
i,i =

1

1−C2
i



1+
∑

j( 6=i)

cij

C2
ij

(1 − C2
i )(1 − C2

j ) − C2
ij



 .(29)

Inversion of (27) yields

[χ−1]i,j =ΦB
i,j − Jij . (30)

which for i, j ∈ I , in combination with the constraint (12),
is the Sessak-Monasson expression for calculation of correla-
tions [17].

II. IMPLEMENTATION

A. Weak coupling limit

When couplings Jij (and consequently Cij) are small in
absolute value the solution to the free energy can be found
as an expansion about the decoupled case. Using the exact
entropy terms L∗ and Φ∗ one can determine as expansions in
{J} the corresponding solutions C∗,χ∗ and λ∗ (λ∗ = 0 in the
exact case).

For J = 0 Bethe and NMF are exact. We can make an
expansion of our expressions assuming C = C∗ + δC and
λ = λ∗ + δλ, with both δC and δλ small. We linearize
our equations, all terms are evaluated for the exact solution
{C∗, λ∗, χ∗} in the following expressions. From (14)

0 =
∑

s:i∈s

QX
i,sδCs + (LX

i − L∗
i ) − δλiCi . (31)

For the Bethe method we require, from (16),

0 = (LB
ij − L∗

ij) + δλij +
∑

s=i,j,ij

Qij,sδCs , (32)

which in the constrained case (12) defines δλij . Since δλij

enters no other equations it does not influence the error on C.

We can expand Φ about the exact result, distinguishing the
on and off-diagonal terms

Φ̃X
i,j = (ΦX

i,j − Φ∗
i,j) − δi,jδλi +

∑

s

∂ΦX
i,j

∂Cs

δCs . (33)

The constraints (10) and (12) dictate respectively

−2CiδCi = −[χΦ̃Xχ]ii ; δχij = −[χΦ̃Xχ]ij , (34)

where δχij = δCij in the latter case, otherwise {λi = 0} or
{λij = 0, δχij 6= δCij} if the respective constraints are not
introduced.

The errors in responses Li, and elements of Φ, are the
origin of all errors on the marginals. At leading order (

.
=) in

the weak coupling limit (J small), the off-diagonal error in Φ
is (i 6= j)

ΦN
i,j − Φexact

i,j

.
= 2J2

ijtitj +
2J3

ij

3
, (35)

ΦB
i,j − Φexact

i,j

.
=

∑

k( 6=i,j)

−2JikJjkTk

(

Jijk

+ 2 (Jikj + Jjki)

)

− 2J2
ikJ2

jkJjk , (36)
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where ti = tanh(Ji), Ti = 1 − t2i and we define Jijk =
JikJjktitjTk. The response and on-diagonal errors are

LX
i − L∗

i

.
= tiD

X
i ; ΦX

ii − Φ∗
ii

.
= DX

i . (37)

For the NMF and Bethe methods we define respectively

DN
i = −

∑

j( 6=i)

J2
ijTj ; DB

i = 2
∑

j<k( 6=i)

JjkJijJikTjTk .

(38)
In the Bethe method where Cij 6= χij the error on Cij is
dominated by

LB
ij − L∗

ij

.
=

∑

k( 6=i,j)

JikJjkTk . (39)

In (35) and (36) we demonstrate also the leading order diagram
relevant for high temperature at O(β3) and O(β5) respectively.

We calculate errors for both the weak coupling (small J)
and high temperature (J and H are O(β)) cases solving the
linearized equations. We summarise the consequences for the
error in Ci, χi6=j and Cij according to constraints introduced
(left label in list). For NMF errors are

∅ From (31) and (37) δCi is determined as O(J2, β3).
The response error δχij is O(J2, β3).

(10) We find λN
i = DN

i , removing the most significant
source of error in δCi, the error on the magnetization
improves to O(J3, β4), the error on δχij remains
limited to O(J2, β3) by the error (35).

For Bethe errors are

∅ δCi and δχij are O(J3, β4).

(10) We find δCi is improved to O(J4, β5), δχij remains
O(J3, β4). Error sources (37) are improved, but (39)
remains a significant constraint on accuracy of δχij .

(12) δCi remains O(J3, β4) but δχij is improved to
O(J4, β4). The errors on δC are made independent
of (39), but the error sources (37) are unimproved.

(10,12) The combined effect is to remove the most signif-
icant sources of error, both δCi and δχij become
O(J4, β5). The remaining error on δχij is limited at
leading order only by (36).

For Bethe introducing the constraint (12) always reduces the
error on δCij , which is O(J2, β2) in the standard method.

B. Iterative scheme

The non-convex nature of the constraints we are introduc-
ing makes algorithm development a challenge, but we can
solve in general these equations for weak-coupling, with a
naive iterative scheme

Ct+1
i = tanh



Hi +
∑

j

Jijmj + λt
iC

t
i − Lt

i



 . (40)

If applying the constraint (10), we can simultaneously infer

λt+1
i = λt

i − Φt
ii((1 − (Ct

i )
2) − χt

ii)Φ
t
ii , (41)
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Fig. 1. Full correlations estimates on nearest neighbors based on linear
response bLR

ij
, compared to the exact result (black think curve), and the

parameters bij determined for a standadrd implentation of the Bethe approxi-
mation (thin red). Curves are labeled in the legend according to the constraints
introduced. For negative J the new methods perform admirably compared to
standard implementations. All methods perform poorly in the vicinity of the
phase transition, the paramagnetic solutions of the new methods can be stable
even beyond the true critical point J > 0.275, though performance is poor.

otherwise λi = 0. Applying constraint (12), for the Bethe
method,

χt
ij = [(Φt − βJ)−1]ij ; Ct+1

ij = χt
ij . (42)

with λij fixed by (16); otherwise λij = 0 and we fix

bt
ij = argminbij

{bij log bij − JijTr[bijσiσj ] : Ct
i , C

t
j} . (43)

To fix bt
ij at fixed Ct

i and Ct
j is equivalent to fixing Ct

ij .

The instantaneous mean field is used to update the mag-
netization in (40), a linear expansion of (10) is used to deter-
mine (41), a naive iteration matching successively the linear
responses is used in (42). At large |J | (40)-(42) can be unstable
individually or in combination, damping and annealing can be
effective strategies to arrive at a solution for strong coupling.
The procedure (43) is one of convex optimization and doesn’t
contribute to instability.

C. Strong coupling regime experiments

We consider a simple model the triangular lattice model
with uniform couplings Jij = J and zero fields Hi = 0
in the large system limit. This model is problematic for
standard Bethe and NMF for several reasons: it involves short
loops not accounted for by the region selection; there is a
continuous symmetry breaking transition at J = 0.275 with
associated long range correlations [18]; for J < 0 there is
frustration; for J < 0 there are Kosterlitz-Thouless transitions,
but no symmetry breaking transitions [19], [20]. For these
reasons Bethe and NMF estimates for bR or bLR

R can be
poor. The solution can be found for our new methods by
Fourier analysis. Figure 1 presents a comparison of methods.
We present only the solution found continuously from J = 0
by the iterative method, and we do not present the symmetry
breaking solutions at J < 0, where they exist.
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For J > 0 the paramagnetic ({Ci = 0}) solutions are, for
small |J |, in close agreement with the exact result. Amongst
new methods all but the doubly constrained approximation
(Bethe with (10) and (12)) remain locally stable well beyond
the true ferromagnetic transition point. The large J para-
magnetic solutions do have some problems: the correlation
estimate E[σiσj ] becomes poor compared to the standard
implementations that undergo symmetry breaking transitions;
negative entropy can be found (when Cij > 0.652); and finally
the iterative method struggles to converge without strong
damping. The doubly contrained method on the other hand
has a Hessian that becomes singular (for the paramagnetic
solution) at J = 0.16, in advance of even the standard NMF
instability J = 1/6; with simple iterative methods we are
unable to construct a magnetized solution.

For J < 0, the frustrated regime, performance of the new
methods is a clear improvement over standard implementa-
tions. We find a similar pattern of results with respect to other
components of χ (longer range correlations), and in testing
lattices of finite size. An instability towards symmetry breaking
on the tripartite sublattices causes the termination of the line
Bethe (10) for J < 0; a similar instability affects the standard
NMF implementation.

III. CONCLUSION

The fundamental objects of the cluster variational methods
are the beliefs, which are determined by maximum entropy.
One would expect that these beliefs would be reproducible by
linear response up to some small error, but for the standard
method this is not true. The discrepancy provides information
on global graph structure that we have exploited in the new
approximation where max entropy and LR are made consistent.
In this article we have required consistency with the quadratic
order LR relations, which we expect are of greater importance
than those of higher order. The inclusion of the on-diagonal
constraint (10) is a feature of this paper not considered in [1].

As part of our method we recover the Sessak-Monasson
equation for pair correlations [17]. Furthermore, for the case
of spins and working from the NMF framework we derive
the adaptive-TAP equations [2]. The arguments by which
these well known equations were originally derived is very
different from our own, offering a point of comparison. In our
derivation we note that we arrive at these results using simple
region selection rules in the cluster variational framework,
without assuming weak correlations; in the case of adaptive
TAP and Sessak-Monasson we can improve performance by
moving to higher order region approximations [1]. Another
point of comparison is the recent publication [14] where the
on-diagonal constraint (10) was independently proposed and
analysed with a message passing procedure – the approach is
again validated in model applications with good performance,
and the connection to adaptive-TAP outlined. In a forthcoming
publication we will present a message passing framework for
inference, one also inclusive of the off-diagonal correlation
constraints.

Our framework is also very flexible with respect to the
nature of the Hamiltonian; the result is easily generalized to
other pairwise models, or with small modifications to multi-
body interactions. We can also hope that some of the powerful

expansion and algorithmic methods mentioned in the intro-
duction will be made compatible. Application to the Inverse
problem are also promising, and relatively simple compared to
standard implementations of the CVM method [1], [21].
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