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ABSTRACT: We consider the theory of the glass phase and jamming of hard spheres /P
in the large space dimension limit. Building upon the exact expression for the free- ®
energy functional obtained previously, we find that the random first order transition
(RFOT) scenario is realized here with two thermodynamic transitions: the usual \
Kauzmann point associated with entropy crisis and a further transition at higher eshou 5 .
pressures in which a glassy structure of microstates is developed within each amor-
phous state. This kind of glass—glass transition into a phase dominating the higher
densities was described years ago by Elisabeth Gardner, and may well be a generic
feature of RFOT. Microstates that are small excitations of an amorphous matrix—
separated by low entropic or energetic barriers—thus emerge naturally, and modify the
high pressure (or low temperature) limit of the thermodynamic functions.

I. INTRODUCTION

The random first order transition (RFOT) scenario for glasses
introduced by Kirkpatrick, Thirumalai, and Wolynes'™* proposes
that the glass transition is represented—at least at the mean-field
level—by a freezing transition similar to the one of the random
energy model,” described mathematically by a one-step replica
symmetry breaking (1RSB) ansatz.® Although this scenario was first
based on an analogy with spin glasses,"” it was quickly realized in a
pioneering work by Kirkpatrick and Wolynes’ that the glass
transition of d-dimensional hard spheres in the limit d = co could
be described within the same framework. Much later,*” similar
results were obtained using the replica method, which also allowed
for a detailed description of the glass phase and in particular of the
jamming point where the pressure of the glass becomes infinite,
corresponding to its close packing—which was therefore called
glass close packing (GCP) and is closely related to the random
close packing concept introduced by Bernal much earlier."’

The main advantage of the replica method is that it allows for
a unified treatment of both the glass and the jamming transi-
tions, within a simple static RFOT scenario, and it also allows
for a partial understanding of dynamical aspects. Moreover, there is
hope that the replica method can provide an exact result in the limit
d — 0. A first step in this direction was performed in the first
paper of this series,'' where we have shown that the
thermodynamics of hard spheres in the limit of high dimensions
may be exactly obtained from the knowledge of the distribution of
the two-point correlation function between states, encoded in the
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Parisi parameter. In the same paper, it was shown that, once a 1RSB
ansatz is made, one recovers exactly the Gaussian replica free energy
that was used in refs 8 and 9 to derive estimates of the various
transitions that characterize the RFOT scenario at the 1RSB level.

In this paper, we take a second important step, by inves-
tigating the stability of the IRSB solution toward further levels
of replica symmetry breaking. We find that for higher pressures,
well above the RFOT one, there is a second transition (a so-
called Gardner transition'”) leading to a somewhat different
physics in that limit, and in particular around the jamming point.
We believe that this physics is intimately connected with the
peculiar mechanical properties of jammed states of hard spheres,
that have been recently characterized in much detail.">'**

The rest of the paper is organized as follows. We start our
presentation by a general discussion of the RFOT scenario, of
its connection with the physics of jamming, and of the main
new features that are due to the presence of the Gardner transi-
tion. This discussion is reported in section II, and it is for the
moment mostly speculative, although some parts of it have
been previously studied in spin glass models. Next, we present
our new results, which constitute a first important step to
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substantiate this picture for hard spheres in the d — oo limit. In
section III, we provide a proof of the correctness of the
Gaussian ansatz for a generic form of the overlap matrix,
extending the main result of ref 11; in section IV, we recall a
few important results of refs 9 and 11 that are directly needed
here; in section V, we present our main results for the Hessian
matrix of the 1RSB solution and in particular its so-called
replicon eigenvalue, that is responsible for the instability of this
solution (i.e., the Gardner transition); in section VI, we discuss
the cubic terms in the expansion around the 1RSB solution and
from them we extract the dynamical exponents that characterize
the glass transition; in section VII, we present an approximate
calculation to obtain an order of magnitude for the Gardner
transition pressure in finite d; in section VIII, we summarize
and draw our conclusions.

Il. A GENERAL RFOT SCENARIO FOR THE GLASS AND
JAMMING TRANSITIONS

A. The Generic Phase Diagram of RFOT Models. As is
by now well-known, Kirkpatrick, Thirumalai, and Wolynes’
scenario for the liquid—glass transition involves a first point
at which the equilibrium state fractures into an exponential
number of ergodic components: this is the dynamical
temperature T, (or pressure Py see Figure 1), also called the
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Figure 1. A sketch of the phase diagram.

mode-coupling temperature because in low dimensions it can
be computed using mode-coupling theory. The ergodic com-
ponents are only truly dynamically separated in the mean-
field limit, while in a realistic short-range finite-dimensional
situation the system is still ergodic, although the dynamics
slows down. As the temperature is lowered, or the pressure
increased, the number of metastable states contributing to
equilibrium diminishes, until a point is reached where the
equilibrium system is left with only the deepest amorphous
states: this is the Kauzmann point, beyond which the
thermodynamics stays dominated by (or “frozen in”) those
states. From a purely equilibrium point of view, one may
picture the situation at P > Py (or T < Tg) as in the sketch of
Figure 2, with widely separated states of “size” g, defined, for
example, as

dEA
-
P(q) V()
m 1-m)
0 qEA 0 qEA

Figure 2. A sketch for equilibrium T < T < T} or P > P > Py. Top:
a cartoon of the free energy and its minima of width gg,. Bottom: the
Parisi order parameter P(q) and the effective potential V(q).
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with a and b being two copies (replicas) of the system and k a
vector of length comparable to the inverse of the interparticle
distance (alternative definitions of g are possible; see ref 15 for
a review). A more precise way of statin% the same thing is
to introduce the effective potential V(q), ¢ which counts the
logarithm of the number of configurations having correlation
exactly q with a “reference” equilibrium configuration. One ob-
tains a picture as in Figure 2, where one sees that configurations
are either close, with overlap q = qg, (with probability 1 — m),
or very far away—in other states, with overlap g = 0—with
probability m, corresponding to the two minima in the effective
potential and to the two peaks in the Parisi order parameter
P(gq). Note that P(q) may in general only be nonzero where
V(q) takes the minimal value, and that gg, plays the role of the
Edwards—Anderson order parameter.

This construction concerns equilibrium configurations but
may be generalized to describe metastable states'”'® by choos-
ing the “reference” configuration, rather than from equilibrium,
from a system perturbed by a small “pinning field”, itself ther-
malized at a higher temperature T" = T/m. Technically speak-
ing, following Monasson,'® this amounts to the following
calculation: one considers m weakly coupled replicas at temper-
ature T, takes an equilibrium configuration of one of the
replicas as the reference configuration, and couples to it an
additional replica that is forced to stay at distance q from it.
Then, one computes the free energy of the additional replica,
and averages it over the other m. This amounts to fixing the
Parisi parameter m, rather than choosing the value that
maximizes the free energy. In this way, one obtains a bistable
form for the effective potential, up to a threshold value Ty, =
T/my, at which the minimum close to gg, disappears (Figure 3),
and at precisely the threshold level, the stability matrix cor-
responding to the minimum at gg, develops zero modes,
signaling the fact that the states close to the threshold level are
marginal. This shows up within the replica scenario as the
vanishing of the “replicon” eigenvalue,19 and within the Thouless—
Anderson—Palmer approach” as the free-energy Hessian develop-
ing zero eigenvalues. A crucial result of ref 20 is that the out-of-
equilibrium aging dynamics happens exactly at this threshold
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Figure 3. Effective potential associated with higher metastable states.
Metastability disappears at the threshold level.

level, and it exploits the marginality of the threshold states to
explore phase space.

Let us now consider higher pressures, or lower temperatures.
In most systems, there is a second transition discovered by
Gardner'”*"** years ago, at which each state itself breaks
into smaller substates. The sketch one usually makes is as in
Figure 4. To be more precise, we consider what happens with

" (1—m)

0 " gEA 0 " qra

Figure 4. A sketch below the Gardner transition at equilibrium, T <
Tg or P > Pg. Top: a cartoon of the free energy. Bottom: effective
potential V(q) and Parisi distribution P(q) beyond the Gardner point.
The parameter m is related to the probability of being in some state
with g% < g < ggs, which is given by 1 — m.

the effective potential and P(q) for an equilibrium configura-
tion beyond the Gardner point. The situation is depicted in
Figure 4: there are many configurations at all distances between
q* and ggy,: the state of size q* has fractured into many sub-
components of smaller sizes. However, going away from a
configuration, up to correlations smaller than g*, one finds big
barriers and no states, up until completely different states,
having minimal overlap are reached. The Parisi parameter m is
now related to the probability of being in some state closer than
q*, ie., within the “metabasin”:** this probability is given by
1 — m. This fracturing of a state into many smaller ones also
happens at the level of metastable states:*"** there is a line in
the phase diagram where all states undergo a Gardner transition
(Figure 1). Metastable states may be found as above,”' by con-
sidering m as a free parameter. However, in the more complex
regime beyond the Gardner transition, it is not clear how to
compute the threshold level that will dominate the dynamics.*"**

12981

It is possible that the threshold level could be identified by
looking at the stability properties of the fluctuations at the level of
q*, but this needs to be clarified. See ref 25 for some initial steps
in this direction.

B. Vibrational Modes and Dynamics Close to Jamming.
A system of hard spheres when compressed suddenly ends up
in a configuration that is blocked, with the exception of a small
percentage of “rattlers” that are free to move within a “cage”
made by their neighbors. A mechanically stable system of hard
constituents such as this may be hypostatic, hyperstatic, or
isostatic, depending on whether the number of contacts is less,
more, or precisely just what it takes to guarantee mechanical
stability. Because the system is prepared with a rapid com-
pression, it seems unlikely that it will be hyperstatic, because if
at some time during the compression it reaches stability, it is
unable to move on to create further, redundant contacts. The
hypothesis that is usually made is that, forgetting the rattlers,
the rest of the system is precisely isostatic, the assumption
being that there are no “rattling clusters” other than isolated
rattling particles. For a detailed discussion of the fundamental
role of isostaticity in jammed packings, see refs 13 and 14. An
additional assumption that seems to be justified in practice is
that isostaticity is “irreducible”, in the sense that there is no
subset of particles that is separately isostatic: if in such a system
a contact is broken, then by definition all the particles in the
system eventually become mobile. Clearly, this is a critical
situation. Indeed, it has been proposed in refs 13, 26, and 27
that these packings are marginally stable from a mechanical
point of view, and from this, most of the anomalous scalings
that are found numerically have been derived analytically. In
particular, the criticality manifests itself in the spectrum of
vibrations D(@) at densities just below jamming,***” which has
a general shape as in Figure S, where one has to distinguish two
features:

D(w)

w* w

Figure S. A schematic picture of the spectrum close to jamming.

e There is a branch of higher frequency modes, whose
lowest frequency is w*. The frequency w™* goes to zero
as the pressure goes to infinity.

e Within the gap 0 < @ < w*, there are the acoustic modes,
which exist even at finite pressures. Moreover, in refs 26
and 28-32, it was shown that the softer modes do not
look like plane waves; therefore, acoustic modes are
mixed with other kinds of soft modes.

In the rest of this section, we will argue that the Gardner
transition provides a natural explanation for the presence of soft
modes at @ < @*. These modes should appear at all pressures

dx.doi.org/10.1021/jp402235d | J. Phys. Chem. B 2013, 117, 1297912994



The Journal of Physical Chemistry B

beyond the Gardner transition. However, the connection
between the soft modes observed in refs 26 and 28—32 and
the ones associated with the Gardner transition is not clear for
the moment.

Consider the squared displacements Al ) = () —
x;(t')I?, where i labels the N particles of system, and its average
over particles E(t, t)=N1YN, Zi(t, t'). In the following, we
will assume that the system has been prepared by some rapid
compression at the initial time ¢ = 0, in such a way that, if t > ¢’
> 0 and t' is large enough, the system is stuck into a glass state.
The mean square displacement is given by the average of the
squared displacement over the dynamical process

N
At ) = Bl 1) = = X (Is(0) = ()

)

and the variance of the squared displacement defines the so-
called four-point susceptibility

2,(t, t') = N[(A(t, ¢')*) — (A(t, '))]

- % 2}: [ () = ()Pl (t) — x(¢)P)

— (6 = ORI = 5] (3

These definitions can be made more precise to take into
account the presence of rattlers; we refer the reader to ref 33
for a detailed discussion. The “cage size” is the limit

AN(0) = lim lim A(t, t)

t—t'— o0 t' >0 (4)
where “c0” stands for times ¢ and t" as large as the lifetime of
the state. At pressure P, the natural scale of the displacements is
1/P; therefore, it is convenient to introduce a scaled cage size as

D(w)

w* (%)
and the last relation is derived in refs 27 and 33. For d > 2, this
quantity is finite for finite P, because D(@w) ~ @*" in the low

frequency acoustic branch; however, it diverges as P — oo
because w* goes to zero and the integral is dominated by

fozda)(D(a))/a)z) ~ (D(w*)/w*) (while the integral in 0 < @
< @* does not contribute to the divergence). The fluctuations

of the cage size yield the four-point susceptibility (or “spin glass
susceptibility”)**

A, = PA(o0) o / do
0

® D
2,(00) = lim lim y, (¢, t') ~ f dw (Z))
t—t' =00 t' =00 0 w

(6)

On the one hand, from the theory of the Gardner transition, we
expect y4(c0) to diverge there, and to stay infinite up to infinite
pressure. In fact, one may convince oneself that this is so just by
considering the curvature of the effective potential above and
below the Gardner transition, where d*V(q)/dq* = 0. On the
other hand, we may look at this from the point of view of
normal modes: we split eq 6 into a contribution above and one
below w*:

®*  D(w) D(w*)
2,(00) = f do— = + B
0 @ (@) (7)
It has already been remarked in ref 33 that in three dimensions

even the acoustic modes will make the integral in 0 < @ < w*
diverge for finite P. However, the effect of acoustic modes

shows up in y,(t, t') only at very long time differences t — ¢’ >
1/@*, so that in ref 33 it was shown that the regime of t — t' ~
1/w* gives a good definition of the four-point susceptibility. In
our large-dimensional case (actually, for all d > 4), the density
of acoustic modes is negligible, but we still expect that the
first term in eq 7 diverges below the Gardner transition. The
conclusion seems to be that there are other soft modes (below
®*) that do not contribute to the linear susceptibilities or to
the short-time ¢t — ¢’ value of y,(t, t') but dominate the limit of
lim,_y_ o x4(t, t'). Although it is tempting to identify these
modes with the ones observed in refs 26 and 28—32, more
work is needed to clarify the connection.

C. Out-of-Equilibrium Dynamics in the Gardner Phase.
The out-of-equilibrium dynamics of this system has not been
solved, but from the structure of states, one may already guess
its main features. Below the Gardner transition line, the slow
compaction (aging) dynamics should proceed close to the
threshold level, defined as described above as the one where the
stability at the level of g* is marginal. The relaxation process
can be seen as a dynamical exploration of phase space starting
from a completely correlated state (9 = 1) down to a com-
pletely decorrelated state (q = 0). The relaxation should be fast
from correlation q = 1 down to gg,, and then proceed—in a
progressively slower way as the system ages—down to g*, and
from there to zero. The fluctuation—dissipation properties may
be studied by considering a system with hard spheres in a
thermal bath of temperature unity, subjected to a pressure
P generated by either a piston or by coupling to the radii of all
spheres. The response and correlation functions are as
described in refs 34 and 3S: the response is computed from
the staggered displacement R(t, t') = Y, £5(x;) induced sub-
jecting particles to random unit fields &; with an energy term
Egaq = hY.; £, per unit of h. The conjugate correlation may
be taken to be the quadratic displacement A(t, t') defined
above. Response and correlations may be put together in a plot,
which should look as in Figure 6 for long times t/, the time

R(t,t)

Mth

Aga A* Aft,t)

Figure 6. A sketch of an FDT plot for an aging system below the
Gardner transition. The plot is composed of two straight segments and
a curved segment.

t > t' being used to produce a parametric plot of R versus A.
Here, A* and Ag, are the values corresponding to the cor-
relations q* and ggs. At every time, the first barriers en-
countered are the small ones close to gg,: beyond the Gardner
transition, small states are separated by relatively small
excitations because there are states at all distances g with g*
< q < qga. This might help explain the paradox that the path
between these small states is mainly along the flattest vibra-
tional modes—as found in ref 27—while this is not what one
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expects for the large-scale relaxation within a supercooled
liquid, at least within the RFOT scenario.

D. Low Temperature Excitations. A long-standing
problem in the physics of glassy and amorphous materials is
the low temperature behavior of their specific heat and thermal
conductivity, which turns out to be quite different from that
observed in crystals. These features are all the more intriguing
because they tend to be quite universal for all amorphous
materials. The usual explanation for this phenomenon is to
attribute it to localized quantum-mechanical two-level tunnel-
ing systems.>”*® These models assume that there are particles
or groups of particles that evolve and tunnel in random local
potentials. These potentials are usually proposed phenomeno-
logically, although they are of course generated by the same
interactions that produced the amorphous solid in the first
place. Furthermore, these simple localized clusters or particles
will be coupled, and their interactions might generate collectlve
effects. A proposal to take these features into account® is to
consider a system of strongly coupled localized deformations,
which one may assimilate as “spin”-like excitations, and to
assume that they have essentially random interactions—with
long range, partly because elasticity is long range and partly to
make the system solvable. One obtains in this way a “spin—
glass” of deformations, with elementary excitations which one
may calculate and which tend to be universal because of their
collective nature. Note that this way, phenomenology has been
pushed one step up, to the effective interaction of excitations.

Quite clearly, the mechanism that generates the coupling
between low-temperature excitations and the one responsible
for the amorphous matrix on which they live are one and the
same. One would thus expect the same theory to explain both
features. In the context of this paper, it is very tempting to
interpret the large valleys (metabasins) of size g* as being the
amorphous structure, and the excitations of all sizes between
q* and gg, as a “spin—glass” of small excitations within that
amorphous structure. Formally, this is clearly so, a fact that
was already recognized by Gardner in her original paper,
where she showed that the transition is essentially that of the
Sherrington—Kirkpatrick model within each large state. More
recently, the analogy between jammed packings and the
Sherrington—Kirkpatrick model has also been underlined,*’
and the idea that there is a deep connection between the
marginality of jammed packings and low-temperature anomalies
in glasses was also proposed by S. Nagel (e.g., in his talk at the
ACS meeting, Philadelphia, PA, August 2012). A possible
difference may be noted with respect to ref 39: here the spin—
glass transition need not (and in general will not) coincide with
the liquid—glass transition at which the amorphous matrix is
formed.

lll. REPLICATED ENTROPY OF
INFINITE-DIMENSIONAL HARD SPHERES

The above discussion provides several important motivations to
look for an instability of the 1RSB solution in particle systems,
akin to the Gardner transition of spin glasses.'> Additional ones
will be given by the more technical discussion that we now
start; see section IVB. We will show that a Gardner instability
indeed happens in hard sphere systems in the limit d — oo
(and probably also in finite dimensions within the mean-field
RFOT scenario).

We will consider a system of N hard d-dimensional spheres with
unit diameter, enclosed in a volume V, hence at density p = N/V.

The packing fraction is ¢ = 27V, with V; = 27/T'(1 + d/2) the

volume of a sphere of unit radius. In the first paper of this series,""
we derived an exact expression for the replicated entropy of this
system in the limit of large dimension d — oco. The result is
obtained by first writing the entropy in a manifestly rotationally
and translationally invariant form, and then performing a saddle
point evaluation in the limit d — co. Within replica theory, the
resulting entropy is a function of the density function p(g),
where the matrix § is a m X m symmetric matrix that encodes
the overlaps q,, between different replicas. The main result of
ref 11 was that a Gaussian assumption for p(§) gives the exact
result for the entropy, i.e., for all thermodynamic properties of
the system, exclusively in terms of g, (with Y, q,, = 0 for all
b, because of translational invariance). In other words, no
higher order parameters q,;,, upp - are necessary in the large
dimensional limit.

The proof of ref 11 was restricted to the 1RSB form of g, In
this section, we will extend the results of ref 11 to obtain the
replicated entropy as a function of the overlap matrix, without
making any assumption on the RSB structure. We will start by
deriving the Gaussian replicated entropy for a generic overlap
matrix, and then show that this form coincides with the exact
result. Obviously, in this section, we will often make reference
to ref 11, which we encourage the reader to consult before
looking to the rest of the section. Another option is to skip this
section and take the result—as expressed by eqs 15 and 16—
for granted. This will be the starting point to study the stability
of the 1RSB solution (and much more) in the following.

A. Gaussian Ansatz for a Generic Overlap Matrix. We
have to parametrize a generic Gaussian form of p(f}), or equiv-
alently p(u), where q,, = u,-u, and u, are the d-dimensional
vectors corresponding to replica displacements, with # = {u,, ...,
u,.}. We can choose a parametrization in terms of an m X m
symmetric matrix A such that Y™ A, = 0 for all b. Calling
A™" the (m — 1) X (m — 1) matrix obtained from A by re-
moving the last line and column, the most general Gaussian
form of p(u) is

-d

N\ _ pm —(I/Z)Zlam ! Ammu 1y

p(u) (2 )(m l)d/Zd t(Amm)d/z ! ot
(8)

which is normahzed according to p = f Dup(w) and Dy =
m&(Y, u,)du, ... du,,. The parameters A, are interpreted as

(uyuy) = 1 fﬂﬁp(ﬁ)ua-ub = dA,,

P ©)
for a, b € [1, m — 1], while (u,u,) = = 15" (u 1) = A,, and
<u um) - Zlm 1<uu'ub> = Amm'

The saddle point value of g, that dominates all the integrals
over p(§), is obtained as follows. We start from the normaliza-
tion condition (note that a complete derivation of J(§), that
was not reported in ref 11, is reported here in the Supporting
Information)

p= [ar@r@

& quH5(Zq ] (1/2)(d— m)logdetqmm—(l/l)ziéH YA );blqab
a=1 b=1
(10)

and maximizing the exponent for d - oo leads, for a, b €
(1, m — 1], to (g™ = (A™™=/d; hence, qh = dA,, con-
sistently with eq 9.
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To compute the replicated entropy using the general
Gaussian ansatz, we start from eq 45 of ref 11, which gives
the following expression for the replicated entropy:

_ d
2d 1 7:(_2/\513)
P\ (11)

where the function ¥ is given in eq 37 of ref 11. The ideal gas
term is

S[p(§)]/N =1 —log p(4%) —

1 —logp(§®) =1—logp + dlogm + @

(m - 1)d
+ — log(27)

d ~Am,m
+ — log det(A
 log et(A™) (12)

The interaction term is

_ d _ P N
2d 1(p¢( qsp) 2d lgﬂf(—ZA]
D* (13)

Therefore,

% =1-1logp +dlogm + log(27e)

(m —1)d
2

d ~Am,m d—1 d2 ~
+ —logdet(A™"") — 2" pF| 24
2 D (14)

In order to obtain a simple limit d — oo, it is convenient to
define a matrix & = (d*/D*)A and a reduced packing fraction
¢ = 24 @/d. With this choice, we have

S[a]

N (m—1)d
=2 ) logp + dlogm + "%
sla] ogp ogm 5

x log(27eD”/d*) + glog det(a™™) — g('p\f(Z&)

(18)
The matrix @ is a variational parameter and is therefore
determined by maximization of the entropy. Defining ¥ ,(9) =
dF (9)/dv,, the equation for & is

@y =207 ,,(24) (16)

Equations 15 and 16 provide the expression of the Gaussian
replicated entropy and will be the starting point of all our
calculations.

Note that the entropy of the equilibrium glass is obtained by
optimizing s[&]/m, given in eq 15, with respect to the matrix &
and of m. Let us call &* and m* the optimal values, with a*
being the solution of eq 16. The reduced pressure p = SP/p of
the equilibrium glass is given by

R R P PO
glass( ) 0(0 m*l:l + 2¢7:<2“ ):I (17)

This result shows that the pressure diverges whenever m* — 0
as p ~ 1/m*. Hence, the density at which m* — 0 defines the
jamming point.

B. Exact Computation. We now show that eqs 15 and 16
can be equivalently obtained by an exact evaluation of the
saddle point equations derived in eqs 64 and 65 of ref 11. In
fact, we can make use of eqs 65 and 39 of ref 11 to obtain a
closed self-consistent equation for §%¥, which as before is the
point where the argument of the integral

p= [a@@p@ =en'c,, [a]] 6[2 qab]

b=1

5 o(d/2)log det §""—dp F((d/D*)(§+4")) (18)

is maximum (subleading terms for d — oo have been neglected).
Taking the derivative with respect to § and computing the result
in g = g% leads to the equation

D* o imme d
= (ppimmy=l _ 2/\77/ (2_ Asp)
@) P |2 521 (19)

Clearly, defining & = d/D*j, this equation is equivalent
to eq 16.

Evaluation of eq 18 at the saddle point gives the equation
for A

Aspimm_ i~ 2 s
p= elmdc (d/Z)log det 4% dpF(2(d/D*)§") (20)

from which, using eq 78 of ref 11, we obtain

—A=—logp + dlogm + —(m - 1lo (2;1’6)

L d d
2 log det ™™ — dfp 4%
 log det g q)T( —4 ) 1)

Combining eqs 64 and 65 of ref 11, using eq 21, and recalling
the definition & = d/DfoP, we have

Sp@UN=1-1+ gw( d q)

=1—logp +dlogm+ —(m— 1) lo (2;[6)

d log det g ™™ — i(p?(DiZQSP)

=1—logp+d10gm+z(m—l)

2meD d
X 1 + — log det @™™ —
og( o ] 5 og de

gaﬂm)
(22)

which coincides with eq 15. This completes the proof of the
exactness of the Gaussian ansatz for the computation of the
entropy. Note that, as already observed in ref 11, this does
not imply that the Gaussian form (eq 8) can be used to
compute correlation functions (that encode structural
properties), because the equivalence is only correct at the
saddle point level for the entropy: this is consistent with
the numerical observation of a non-Gaussian cage shape
obtained in ref 41. A computation of the cage shape is in
progress and will be hopefully reported in future papers of
this series.

IV. 1RSB SOLUTION

A. Reminder of the 1RSB Solution. In refs 8, 9, and 11,
we studied the one-step replica symmetry breaking (1RSB)
ansatz, which amounts 1n this formalism to assuming that all
replicas are equivalent.'® For completeness, let us recall here
this result, which correponds to the simple choice

IR = x(a - l)
m (23)
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with A = (d*/D?)A. Within this ansatz, A is the “cage radius”, as
it is proportional to the long time limit of the mean square
displacement in the glass.” Note that we use a small hat for
matrices, while the wide hat just denotes reduced scalar
variables. Hence, A is a matrix while A is a scalar, and they
should not be confused.

Using the relation log det{[A (6,, — 1/m)]™"} = (m — 1)
log A - log m and the results of section VIIB of ref 11, it is
easy to check that eq 15 reduces to the result of ref 11 for the
1RSB entropy, which is

(6] = 1 — log p + glogm i (m—1)d n (m —2 1)d
,
X log( ZH;DZA) - g@[l - G, (A)]
m—1
o ® di —ap L . V22 -2
Gg,(A) =1 m[m 2ﬂ_e [2[1+e{\/§ ]]]

(24)

The equation for A is derived by optimizing the above results,
leading to

mo1l S96A) _ 1 A 6.d _, g
1 da 7 1-m dA
(28)

The function 7 ,,(A) introduced here should not be confused
with the function ¥ (@) introduced before. These are different
functions; the first acts on a scalar, while the second, on a
matrix.

The physical consequences of this expression for the
entropy have been derived in refs 8 and 9, where the
expressions of the dynamical transition density, the Kauzmann
transition density, and the GCP density have been derived,
with the scalings sketched in Figure 1. Furthermore, at the
level of the 1RSB solution, we know that A% ~ m*, so we

conclude that the cage radius vanishes as A* ~ 1/p. As a con-
sequence of this scaling, the scaled cage size A, introduced
in eq S is found to diverge as A, ~ pZA\* ~ p, as noted in
ref 33.

B. Inconsistencies of the 1RSB Solution. The 1RSB
predictions for physical quantities were carefully compared
with numerical results, around both the glass and the
jamming transitions.”*' ~** Despite the good overall
agreement with numerical data, one expects, as described
above, that a Gardner transition to a full replica symmetry
breaking scheme is generic. Furthermore, several incon-
sistencies have been found close to the jamming transition,
at very high pressure:

e The 1RSB solution predicts the existence of jammed
packings with density ¢; in the interval Zd(pj/ d=¢; €
[6.26, log d].” However, only the packings with @; ~ log
d are isostatic, with each particle in contact, on average,
with z = 2d other particles. Instead, the packings with @,
of order 1 are found to be hyperstatic with z > 2d, which
is, as mentioned above, unexpected and inconsistent with
numerical results.

e In the glass phase, the exact relation between the pres-
sure p and the contact value y(¢) of the pair correlation,
p=1+2""9y(p),* is violated. In particular, it is found

that, when ¢ — @, p ~ do;/ ((pj — @), consistently with
numerical results, while

d % 1
d—1 1-d
2 gm0 1-2Tdl, (26)

where the first term is the one that is consistent with the
scaling of the pressure. Hence, the correct relation
between p and y(¢) is recovered only if d21_d/q0j =2/9,
< 1 when d — o0, which again suggests that the 1RSB
solution is inconsistent when @ is of order 1 and might
be stable only when @ > 1.

e The scaling at large (reduced) pressure p of the cage
radius A (the long time limit of the mean square displace-
ment in the glass) predicted by the 1RSB solution is A ~
p~", while the marginal stability argument of refs 26 and
27 predicts that A ~ p‘3/ 2, which has been confirmed
numerically in several studies, e.g., refs 26, 27, and 33.
This exponent controls all the other exponents that
characterize criticality at the jamming transition® and is
directly related to the anomalous soft vibrational modes
that appear at jamming;'>'**”** hence, reconciling the
theoretical prediction with the numerical results is of
extreme importance.

o Other exponents that characterize the structure at
jamming, for instance, the famous (almost) square-root
singularity in the pair correlation function,***~* are not
reproduced by the 1RSB solution, at least at the Gaussian
level (a more detailed calculation of the structure func-
tions based on the non-Gaussian theory developed in this
series of papers is in progress and will hopefully be
reported in a future paper).

¥(p) =

All of these considerations suggest strongly that the 1RSB
solution is unstable, at least when the pressure is large enough
and @ is of order 1. They provide further motivations to study
the stability of the 1RSB solution,'* which is the subject of the
next section.

V. SECOND ORDER EXPANSION: THE HESSIAN
MATRIX

Here we obtain the expansion around the 1RSB solution
at the quadratic order. The quadratic expansion of the
entropy around the 1RSB solution provides a stability
matrix whose eigenvalues allow one to determine the
stability of the solution. We will find that, as it happens in
a Gardner transition,'**"** the 1RSB solution becomes
unstable when the pressure is large enough. In finite and
arbitrarily large dimensions, this happens for all ;. How-
ever, for d — oo, the so-called glass close packing (GCP)’
which is the densest amorphous packing and has § ~ log d
becomes stable again, suggesting that the 1RSB predict-
ions for jamming are still approximately useful as a starting
point but should be corrected to take into account its
instability.

A. General Structure of the Hessian Matrix. Because the
matrix @ should have the sum of the elements of every
column and every row equal to zero, we can say that the
independent entries are the elements above the diagonal of
the matrix, provided that the matrix is symmetric and the
diagonal is fixed in such a way that the constraints on the sum
over the elements in a row or in a column is satisfied. Hence,
in the following, we denote as d/da,., the derivative taken
with respect of the element a,, with a < b which is assumed
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to be the only independent element (hence, its variation
induces a variation of a;, and of the diagonal elements a,,
and a,,). Taking into account all of this, we define the
Hessian matrix as

_2A° 8%[a]
Fhetd d 5aa<h5ac<d

6. +0,+06,,+96
ac ad be bd)+M3

2

0,0,,+ 0 0
— M{M)
&IRSB

1 a

(27)

where the replica structure is a consequence of the structure
of a'™P. Although the matrix M is defined by the above
equation only for a < b and ¢ < d, we will define it for
convenience also for a > b and ¢ > d, assuming that it is
symmetric (hence the notation M, ;). The prefactor 2A%/d
is chosen for later convenience and is positive; hence, it does
not affect the sign of the three different eigenvalues of the
mass matrix, which are

AR =M,
A =M, + (m — 1)(M, + mM,)

1
Ay =M + E(m - 2)M,

(28)
Defining the “entropic” and “interaction” terms
M 8*F0]
Ma#b;c#d
5Ua<b‘SUc<al H=24 RSB
52
E A~ ,m
Mi#)b;#d = 75 5 log det(@™™)
% < 10% <4 = RSB (29)
we have
~2 2
M, =AM - 492 MY (30)

We now compute these two terms separately.

B. The Entropic Term. To compute the entropic term, it is
convenient to introduce a shorthand notation f = @™™. Let us
also use indices i, j, k, ... for B to highlight that they run from 1

to m — 1. In the 1RSB solution, 5" = A(8; — 1/m) has the

same form of & but on the reduced (m — 1) X (m — 1) space.
Then, we have

3" = =6, + D -
Moreover, we have
Ny Sy + 848, — 5,(8, + 8)
oy, TR (32)
Using the standard formula
6 log det(f) _ 5!
5 ! (33)
we have
op. 3
6OZ<;, g det(ﬁ) B ZU: ﬁ""_léaaﬂib - Tr[ﬁ_léjib]
(34)

From the definition ﬂAﬂA ~! = I, where I is the identity matrix, we

have

2 i L=y Ly

5ac<d 5ac<d 5ac<d (35)

0=

It follows that

2

) ~
M e = = log det(§)

aa<b5(xc<d IRSB

B=p
=—Tr[/§‘1 o 51 o ]
p

5au<b 6ac<d A:/?msu

1
= _F[Z(ézzcébd + 6ad6bc) + (6ac + 5ud + 6bc + 5bd):|

(36)
from which it follows that
ME® = p® Aiz
M =0 (37)

C. The Interaction Term. We now consider the
interaction term. Hence, we need an expansion of the
function ¥ (9) around the 1RSB solution. Recall that D is an
m X m symmetric matrix such that the sum of the elements
in each row and in each column is zero. Starting from the
results of section V of ref 11, we can write explicitly the
function ¥ (¥), introducing m-dimensional vectors x, such

that x,-x, = v, as

710] d'e [1-m+|ﬂ
= R EXP ——min X
(2z)" 2 a
|
n.
o0 "z ety
1 w7 1 & nn
X exp| —— Z “ll* + — “bea-xb
a=1 " a,b n
n!
n—0 "1;--~:”mJZ: n=n np-..n,.
1 m " 1 1,m wn
a a'’b
X exp _Ez_vaa_i_z 2 ‘ab
a=1 " ab M (38)

1. 1RSB Value of ¥ . First let us compute ¥ on the 1RSB
solution where

~ 1
o =235, - 1)
m (39)

Let us call 6

that /, is the minimum among all the {4,}, or in other words

a function that is equal to 1 only if a is such

a,min

min, A, = 4,0, mi,- Then, we have
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z_ n!

ST i*ﬁ VoA minJ, - A
= exp| — - min -
ooy V2m P 2 a

4,

Il Il
3
\:;
3 1
Q-A
£
S~——
o
s
|
| =
ipgs
=~
+
)
g
B
I—I

m—1
(1/z>(zl+\/ﬁ)z[/°" di e—(l/z)ﬁ]
2

NGy
_ 00 d/{ (1/2)(Al+\/ﬁ)z|:®(_i):|m—l
" / V2 (40)
where
2 X
f(x) = — dy e™
erf(x) 7 /(; ly e
1.1 _ L [T
O(x) = S + S erf(x) N [x dye (41)
We also define for later convenience
— k —(1/2)y
O,(x) = ‘/ dy y'e (42)
Note that
By(x) = O(—x/2)
Oy(x) = VP 2z
0,(x) = x0,(x) + O(—x/2)
05(x) = 0,(x)(2 + «%)
0,(x) = 2(3 + +)0,(x) + 36,(x) ()

and so on. Equation 40 provides the derivation of the
interaction part of eq 24.”"'

2. Monomials of n. We now want to expand the quantity ¥
around the 1RSB solution. The part of the Hessian matrix
coming from the interaction term is

8SF .
M§I<)b c<d = 750 s [UIRSB]
a<b
=lm ) o e ) )
n—0 iy ;"”,;Z n=n 11

3
N

m
X exp| — Z

where the functions f are at most quadratic:

(44)

2
n n, n, o nn,
(n,n)=-—">+—- -1 — =
S, my 2n 2n 2m? 22 n? (45)

By introducing the following notation

n!

E ’ O exp| —
ny:..n

1. ,nm,z n,=n m

(0) = lim

n—0

X "—2
(46)

we have that the Hessian matrix is given by
1 1, nn, mn, mn
Mk = () + (20 4 (2] 4 (220))
4 n* n n n
1 L, Ny nbzn nbznd
Z< > < 3>+<n;>+<n3>
nn’ g .’ g
a'c o b bd
n n n
myn.ny nnm, ngnm,
-2 — (A o[ MR
< ><na><n3><n3>]
nuzndz N nn N n
nt nt nt
*nn nb?'n ny nnm,
-2 ) o
n n
< ninm, > n LNy >
—2 4
" (4#7)

Hence, we want to compute averages of monomials of the {n,},

-Jslr—‘

which can be written as follows:
Mo Mg ’ 1 Z n!
——. = lim — n_ ..n
no on n—0 ¥ | AT

!
s 2 = nlan,!
X exp[—A +A

p ]
_2
1 n
n A
=e lim [ ]

n—0

) xp[ mEe ]
Moty Dy Mg =1t

(ke / di, | _ym a2
=7 " ] — 4 a=1\%a

QA)" o 1:[ N
n! =
nl.n, '0/1 (3/1 [ 24 Z :|

- Z;Llufm]

M§

a

2
ae1(Za”/2)

!
nl.n,!

m
nl,.,.,nm;zu ng=n

]
(2A)? . 2x |\ 02,00,
X exp[—+24 min 1]

:4l / H (ML eZ;y‘:l(laz/z)iak
(2A)¥? ; 2z Lz

x e‘22"=1<‘a2/2)] [_ Z Ay + V2R 8, ]

k
- Alm R HNCRID AR YR CRe)
(24) (Mﬂl,..aiﬂk (48)

where the definition of the average has been changed to
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di, 1 ¢ IS 2
(0) = f[l:[ E]O expl—g E (A4 + V2A 8, in)
(49)

The factor in parentheses is a polynomial in {4,}; hence, we
now want to be able to write averages of monomials of A. Using
the replica symmetry of the average over {4,}, we need in
particular the following objects:

n,mn, 1
By = (—5bt) = —(-§, + A4
ab < nz > ( b b)

nmyn, 1
T;zbc = < 137 > = W«sbcﬂ‘a + 5ale + ézbﬂc - Aaj’bj’)

n

n,
Aabcd = < b4 d>
1 n
= ——=3(8404 + 88 + 8,00 — GufAs — S AA
(24)
- (Suc)‘b)‘d - (scd/?’a/lb - 5bd/1uj’c - 5adﬂ’bj’c + Auj’bj’c)ﬁ»

(50)

and the Hessian matrix is

1
M{§I<)b;c<d = —(B, + B, + B, + By,)

4
1
- Z(’l—;uc + TZzad + Ti)hc + Tbbd + ’I;zcc + Tszd
+ Thcc + Ti:dd - 2’1—;4:11 - Zl—izcd - 2’1—;105 - Znhd)
1
+ Z(Auucc + Armdd + Abbcc + Abbdd - 2Aaacd

= 28y — 28 = 28500 + 400)  (S1)

3. Monomials of 2. We therefore need to compute several
monomials of the {4,}, which are listed in the following.
Calculations follow eq 40, and it will be convienient to define
one more average over A as

(F(A) = f_: %e—(l/l)(l+\/§)zf(/l) )

Then, we have

(1) = F[5"™"] = (m@,(A)"™")
Ay = (A Q)™ + (m — 1)O(1)B,(1)" )

(Af23) = (A", (D)B(A)"* + 2'0,(2)8y(A)" 2
+ (m = 2)0,()0,()O,(A)" )

(A0 = (2F0,()8,(1)O, ()" + 2'0(1)8,(2)Oy(1)" >

+ 2"0L(1)8,(1)B,(1)"

+ (m — 3)0,(2)6,(2)8,(2)8,(1)" ™)
(234428 = (10(1)8,()8,(1)8,()"™* + 1'8,(2)6,(4)

0,(1)8y(2)" ™ + 1"0(1)8,(2)8,(1)8y(4)" "

+ 270,(1)6,(2)8,(2)8,(2)"~*

+ (m = 4)0(2)8,(2)8,(1)8,()8(2)" )

(83)
and so on.

4. The Structure of the Mass Matrix. Thanks to replica

symmetry, the Hessian matrix has only three independent
matrix elements. These are

1
M1(212 = E(Bu + Bp,) + (T, — Tyy)

1
+ Z(ZAIIII + 64112 — 841112)
1 1 1
M12;13 = Z(Bn + 3312) - E(Tm + Ty, — 2T123)
1
+ Z(AHH + 34, — 4A1,)

I
M1(2334 =B, - 2(T112 - 1123)
+ (A = 24555 + Ajyy,) (54)

It is however convenient to write the matrix in this form:

6.0,,+ 0.0
1) %Obd %%
My ey = M0 20T
+ Mél) G + 0y + 6, + Oy + M3(1)
4 (85)
where

1 I I I
Ml() = 2M1(2?12 - 4M1<2?13 + 2M1(2234 =240y — 405 + 28y,

MEI) = 4M1(213 - 4M1<;?34 =B, — By, — 2T}y, + 6Ty, — 4T + A
= Ay Dy + 88 55 — 44y
Mgl) = M1(7I.234 =By, = 2Ty + 2Tjps + Appyy = 281155 + Apyyy
(s6)
The above equation, together with eqs SO and 53, gives the
complete expression of the interaction part of the Hessian
matrix.
D. The Replicon. The stability of the 1RSB solution

depends crucially on the replicon eigenvalue, Az = M, = A ZMSE)
— 4pA M. Collecting all the above results and simplifying
some terms, we get

Ap = —4 - ZﬁAm(ﬁ)

A R) = (B()"3[0,(2) — 10,(2)By()][(2 — 247)0,(1)
+ (m = 4)0,(2) + (6 — m)AB,(1)O,(4)])

- (e e, .
_<@0(g) [(60(1)] 260(1)}[(2 242)

+(m— 4)(M] +(6- m)zel(”]>

6,(4) 6,(4)
(57)

We can compute this numerically on the 1RSB solution,
where A is the solution of eq 25, to find the point where
Az = 0 and the IRSB solution becomes unstable. The
instability curve in the (m, §) plane, which corresponds to
the line ¢ 5(m) on which the replicon vanishes, is reported
in Figure 7.

Asymptotically, we obtain & g(m) ~ m™"/* for m — 0. To explain
this, we must investigate the asymptotics of the function A, (A)
when both m and A are small. It is convenient to use eq 25 to
eliminate ¢ instead of A. Doing this, the equation for the instability
becomes

27,(A) = =A,,(A) (58)

dx.doi.org/10.1021/jp402235d | J. Phys. Chem. B 2013, 117, 1297912994



The Journal of Physical Chemistry B

which must be solved to obtain A g(m) and then @ g(m) using

eq 25. We want to show that A g(m) ~ m? and that this implies
Pglm) ~m™.

First of all, let us examine the asymptotics of the different
terms for large and positive 4. For 4 — oo, we have

—(1/2)4*

1 3 15
OA) ~ — 1 - =+ = - = 4 .
o4) Jm(l 2 16+)
oMY _e® 1. 6 50
0,(1) 0,(1) 2 a8
e, ®,(4) 6m—4 52— 50
2 — 227 — )| = 6 —mA—L2 - 2 2T —oom
( ) + (m )(60(/1)] + (6 —m) 0 e FE T ()
G
It will be convenient for the following to define Al(m) = 1 1_(m")1 + Ll(m)
_|(e@) _ 8@ Al = 2820
0 _l[(a—u)) ‘*wl o) =3y (&)

6,(1)
B(4)

6,(1)
B(4)

[2—2,12+(m—4)( ]+(6—m)/1

|

(60)

2m

1 - - 112
.E(/l)Nm—7+ 3m 4+56 m o

24 A8

Now we expand eq S8 at small A. Let us recall that
Gn(A) = 1 — m(©y(2)""). From this, we obtain

G,(A) = G(mNA + Gy(m)A + ..

G,(m) l\/f_l_ GZ(m)K+
1-m?2 1—-m

Gim) = =m [ POy (=)

F.(A) =

= _ A ep m—1792 _
Gim) = -m [ oGyt -y

and similarly (the fact that the horrible integral corresponding

to A,(A = 0) is exactly 0 can be proven by a series of
integrations by parts):

AR) = LmNA + Ly(m)A + ..

da
NpY

Lm) = = POy LG - 1)

L,(m) = 2O, L) (-AN2)

(62)
Hence, eq 58 becomes
0= \/fAl(m) +AA,(m) + .. =
\/K—G _ _ A (m)
A, (m) (63)
with

Asymptotically, for small m, the integrals in the above
expressions can have different behaviors, depending on the
behavior of the integrand for large A when m — 0. In fact, if the
integrand decays faster than 1/4, the integral is well-defined and
has a finite limit for m — 0. In the opposite case, the integral is
divergent and the divergence is dominated by the large A
behavior: in this case, one has to analyze the possibly divergent
part to determine the behavior of the integral at m — 0. In the
case of A;(m), thanks to a subtle cancellation, the large A
contribution to the integral is

Ay(m) ~ %e_’"m(ﬂﬂ“m(—zﬁ)
3]
LA (65)

The first two terms give contributions that are not diver-
gent when m — 0; hence, they are subleading with respect to

1RSB stable

Figure 7. Phase diagram of the 1RSB solution in the (m, ) plane (to
compare with Figure 1, recall that rougly speaking pressure is the
inverse of m), including its instability. The black line at m = 1
corresponds to the liquid phase. The blue line is the dynamical line
@ 4(m) at which a nontrivial IRSB solution appears. The red line is the
instability line § g(m) where the replicon vanishes. The red dashed
line is its asymptotic behavior for small m and large @.
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the 1/4* term that gives a finite contribution. We conclude that
A,(m) has a finite limit given by

50 = /%e—m@ou)—ll( o) lw)]

0y(4) 0,(4)
YO ) ~
[2 —24* = 4( ®o(/1)J + 64 @0(1)1(—/1\/5) ~ 1.6 (66)

Instead, the leading large 4 behavior of the integrand of A,(m)
is, changing variable to y = (m)'24,

da
22
= f dy eyt = -2
m 0

m

A, (m) ~ XD O = D=m + ..]

(67)

We conclude that (Ag)Y? ~ 0.8m. Finally, we can show
similarly that for small m

Gm) ~ = [ %e‘”z/%mm“%—iﬁ )

2 o 2
=\/_/ dy eyt~ |2
m Jo m (68)
hence

- 1 4m 4 1 -1/2
~N———~ | — = |- X 141m
% Gy(m) 1 /A‘G ﬂAG n 0.8m

1-m2

(69)

Both asymptotic results for A ¢ and @ are perfectly consistent
with the numerical data.

E. The 2RSB Solution. When the 1RSB solution becomes
unstable, one must consider further RSB. We performed a 2RSB
calculation. Then, we can linearize the 2RSB solution close to the
1RSB one and obtain the line at which the 2RSB provides a better
maximization of the entropy, hence becoming stable. This provides
an independent calculation of the I1RSB instability, which we
verified to be coherent with the one reported above. A complete
characterization of the 2RSB solution (as well as the 3, 4, .., coRSB
ones) will be presented in future papers of this series.

VI. COMPUTATION OF THE DYNAMIC EXPONENTS
FROM THE CUBIC EXPANSION

The same strategy allows one to obtain the cubic terms in the expans-
ion. From these, following the procedure of refs 15 and 49, one can
compute the mean-field dynamical critical exponents at the dynamical
glass transition, which can be deduced from the so-called exponent
parameter of mode-coupling theory, Ay;cr. Although this calculation
is not the main scope of this paper, we report it in this section.
Let us define, following the same notation as for the second order
terms (hence for a # b, ¢ # d, e # f which we omit from now on),

Wit = _ oa]
5au<baac<d5ae<f (70)
Exploiting the replica symmetry, the two coefficients w, and w, can
be written in the following form

a a

w) = Wb,bc,ca - 3M/al1,ac,bd + 3M/;4c,hc,de - Wb,cd,ef

1 3
w, = Emfab,ub,ah = 3Wop abac T EWah,ab,cd + 3Wo e bd

+ zvvub,ac,ud - 6I/Vac,bc,de + zvvab,cd,zf

(71)
and we then have Aycr = (wy/w)).
Defining
w® S Fb]
ab,cd,ef S 5 S5
U, <00 <4 De<f =26 RSB
53 Am,m
Wéf,)cd‘zf = 57 50 G log det(@™™)
%, < 0% < 4 ae<f =GRS (72)
we have
Wy = WE - — 85w
ab,cd,ef ab,cd,ef P W ab,cd,ef (73)

Hence, we have a similar relation for w, and w,. We now
compute these two terms separately.

A. The Entropic Term. Following the same strategy as in
section VB, we obtain

1 OB a1 OB A1 Of
Wﬁf,)cd,ef = Trlﬂ 4 p P b P ]
/} ﬁf\lRSB

5aa<b 5a5<d 5ae<f

p

5aa<b 5ae <f 5ac< d

~  AIRSB

+ TrlﬂA—l
p=p

S8 A1 8f /);—1 5p ]

(74)

Using eq 71, the results of section VB, and performing the
traces, we obtain

® _ 2

w =3
A

E
wé ) =0 (75)
B. The Interaction Term. The interaction term is

5FH
W gy = —2 L = (F o 1) (o )0 1))
5%<b5l)u<d5“e<f 522 RSB

(76)
Using the expression of f, expanding the products, and
simplifying many monomials using the symmetries (e.g,
(nnn?) = (n’m’n.)), we obtain

6
n

22 2 3 22 +3 2 _
I n,n, n. n, m, nny n, myn.nn, nanbncndnznf
w,’ =
1

o < (1/2)71‘13111,3 - 3na3nhznc + Znasnhncnd + (9/2)naznb2ncnd - 6"a2”b"c"d"e + Z”a"b”c”d”e”f >
wy’ = 5
" (77)
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Now we convert the average over n into an average over A,
using eq 48. Performing the derivatives and exploiting similar
symmetries to simplify the result, we obtain

o _
TR >3
+ 222,057 —
+ 34 55,4

(=14 34" = 34,4, — 3424, + 64,°4, 4

3 AaAshy — 340,700,
= hAgAsdydsde)

Wi = 1 < —220,% = 3252, + 20,°,0.0,
wy (2A )3 2
+ 5,11%2%314 — 60 5 hs + 2/1112/13/1415%>

(78)
This result, together with eq 53, allows for the explicit com-
putation of these terms. After some simplifications, we obtain

W = ———(0,()"
<zA)
[0,(4)" + ©,(2)* — ©,(1)O,(1)T
{(m = 30%)0,(2)” + (m — 6)0,(2)°
+06 (/1)[6/1(9 (4) = (m = 3)0,()]})
W) = ———(0,(1)" 7 [20,(2)° — 30,(1)0,(1)©,(4)

(2 A’
+ 0,(1)*0,(1)1{22°0,(1)* + 2(m — 6)0,(1)*
+ 30,()0,(1)(420,(2) — (m — 4)0,(2))
+ 0,1 [-61(20,(2) + B,(1))
+ (m = 20,1}
(79)
which can be easily computed numerically.

C. Numerical Result. Collecting all the terms together, we
obtain the final result

—8pwi)

8w

w,

w

2/A

Aver =
(80)
When computed at the dynamical transition with m = 1, § =
$q=480677,and A = A4 = 0.57668 given by the solution of
eq 25, we obtain

Aver = 0.70698 (81)

which implies that the MCT exponents are a = 0.324016, b =
0.629148, and y = 2.33786. The result for y is roughly
consistent with the numerical estimate of ref 41.

VIl. PHENOMENOLOGICAL EXTENSION TO FINITE

DIMENSIONS

We can obtain quantitative results in finite d by a phenom-
enological extension of eq 15. First, we go back to nonrescaled
density and we rearrange it as

_ (m—1)d

s[a] —logp — 27+ d logm +

X log(ZﬂeDZ/dz) + g log det(@™™)

+ 27191 = F(24)] (82)

We now recognize that s, = 1 — log p — 2%1¢. Furthermore,
by comparison with the finite d results obtained in the small

12991

cage expansion,” we know that the interaction term is re-
normalized by the contact value of the liquid correlation y;q(¢).
We therefore can propose the following form for the entropy:

s[@] = sy (@) + dlogm + % log(27eD*/d”)

d Am,m - A
+ 3 log det(a™™) + 2 1(pyliq((p)[l - F(2a)]
(83)
In the 1RSB scheme, we obtain

A d - 1)d —1)d 22D*A
s[A] = siq(0) + logm+(m 2 My Y ) 108( ﬂdz )
+ zd‘lwyuq<w>gm<x>
d .
2oy, (9)
2y, (0)

g =—4— ZMAM(A\)

(84)

Although these equations are not obtained from a consistent
derivation, recalling that for small A we have G, (A) ~
(A)V2G,(m) and G,(m) = 2Qy(m), they reproduce the small
cage expansion of ref 9 at the leading order in A. Note that,

when expressed in terms of A and m, the equation for the
stability Az = 0 is exactly the same as in d — oo, eq 58. Hence,

the result for A ;(m) is independent of dimension.
We will check a posteriori that even in d = 3 the Gardner

transition happens at very large pressure; hence, m and A are
small. Thus, we can use the asymptotic expansions to obtain
quantitative estimates. The procedure is the following:

e Recall that at small m we have (A\G)l/z =~ 0.8m.
e Now we obtain @g(m) (or better mg(@)) by solving

= 7,) ~ G(’”) JA—G < o

d
2d
@3, (@)

d

~071vm > mo " | ——m——
<" o7 x 2oy, (@)

(85)
e We recall from the analysis of ref 9 that
* o~ pgep — @),
l th(fﬂ) 1-4d
p= Vg (@) —d—— + ——
al” Yig (@ ) @
P=Pscp
(86)

e The Gardner transition happens when the two lines
m*(¢) which

can be easily found numerically once an equation of

cross; hence, ¢ is the solution of mg(p) =

state for the liquid has been chosen. Here we use the
Carnahan—Starling equation already used in ref 9.
e Finally, we use the result’
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Table 1. Values of @gcp’ and of @ and pg for Several
Dimensions”

d [7Z¢ Paep Pc

3 0.683581 0.683657 26727
4 0.486755 0.486874 16374
S 0.330586 0.330718 12535
6 0.218074 0.218203 10119
7 0.140074 0.140189 8469
8 0.0876190 0.0877137 7407
9 0.0534490 0.0535198 6805
10 0.0318889 0.0319377 6550
11 0.0186760 0.0187075 6548
12 0.0107756 0.0107949 6724
13 0.00614419 0.00615559 7019

“Note that these values correspond to the equilibrium Gardner
transition. For out-of-equilibrium states (which are the ones produced
in all experiments and numerical simulations), we expect that the
Gardner instability will happen at lower, possibly much lower,
pressures and densities.

dg
o) ~ ——
-9

(87)

Pccp

to estimate the Gardner pressure pg = p(@g).

The numerical values of the Gardner pressure are reported
in Table 1. Note that the non-monotonicity of pg; at low
dimension could be an artifact of the approximations used
above. Note also that pg is always much larger than the pressure
at the glass transition (reported in refs 9 and 43). Still, the
reader should keep in mind that the value of pg corresponds
to the Gardner instability of the equilibrium (“ideal”) glass.
According to the phase diagram of Figure 1, we expect that the
Gardner instability for the metastable states that are reached
out of equilibrium will happen at lower pressures. Unfortu-
nately, quantifying this effect requires the use of “state fol-
lowing” techniques™ and goes far beyond the scope of this
article.

The limit d — oo is recovered as follows. Recall that @ gcp ~
log d.? Moreover, Yiq — 1. Hence, u ~ 2%71/d and the equation
for ¢ becomes

2 2

(DU 1
2 Pecr = %) = | 75 %) o7 x o,
2
1
~ [0.71 X log d) (88)

which shows that the distance between § g and @ g¢p shrinks as
(log d)7* and the Gardner pressure diverges as pg ~ d(log d)?,
as was sketched in Figure 1.

Finally, at this level of approximation, it can be easily shown
that Aycr does not depend on dimension. The small depen-
dence of Aycr reported in ref 41 should be explained by
corrections to this approximation, that have been neglected
here.

VIIl. CONCLUSIONS

In this paper, we were able to investigate the possibility of a
Gardner transition for hard spheres in large spatial dimensions.
Such a study has never been done before for particle systems,
and was possible thanks to the expression of the entropy in
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terms of the overlap matrix obtained in the first paper of this
series, and extended here to obtain eqs 15 and 16: because this
expression has been shown to be exact, any discrepancy or
instability is only attributable to the instability of the 1RSB
ansatz.

The 1RSB solution is unstable in the equilibrium glass phase
for (reduced) pressure higher than the Garner pressure pg,'* and
for metastable states in a large region of the phase diagram,
just as in p-spin glasses.”"”> We provided an estimate of the
equilibrium Gardner pressure in finite dimensions, finding that
it is quite high; moreover, we showed that pg diverges (slowly)
with increasing dimension. These pressures are directly accessible
to numerical simulations; hence, we expect that this transition
should be quite easy to detect numerically. Estimating ana-
lytically the transition pressure for metastable glasses would be
very useful to guide numerical simulations: this is however hard, as
it requires a state following computation.>® Although this is
possible, in principle, we leave it for future work. We expect that in
any case the instability will happen at lower pressure for metastable
glasses than for the ideal glass.

The physical consequences of this instability are very
intriguing, but for the moment, not all its implications have
been worked out. In fact, even for the simplest p-spin glasses,
the impact of the Gardner instability on the out-of-equilibrium
dynamics is not completely understood from a technical point
of view.”” The structure of the metastable states of the p-spin
glass model and its impact on the out-of-e%uilibrium dynamics
are being actively investigated,'”*"***>**™>3 and making pro-
gress on this simpler model will be crucial for understanding
the technically more involved hard sphere case. We expect
(hope) that the scenario we proposed in section II will be
confirmed by these studies.

Let us recall here some speculations on the possible impact
of the Gardner instability on the physics of jamming that we
discussed in this paper, leaving a more detailed investigation for
future works.

e It is reasonable to expect that, at the Gardner transition,
the 1RSB solution will transform continuously into a full
RSB solution, although we have not yet constructed this
explicitly. Such a solution describes a situation where
glassy states are arranged in a complex and correlated
pattern.® More importantly, they are marginally stable.>**
This means that the spectrum of vibrations around a
glassy state displays many soft modes. Hence, it is likely
that a full RSB description of the problem will allow one
to obtain information on the soft modes that are ob-
served at the jamming transition,'>'*> especially those
of frequency below the gap w*. Some steps in this direc-
tion have already been performed in ref 40, where the
analogy with the full RSB physics of the Sherrington—
Kirkpatrick model was noticed.

There should be several signatures of the Gardner transi-
tion. Suppose that the hard sphere system is prepared in a
glass state in the region where the 1RSB solution is
stable, and that pressure is slowly increased approaching
the instability. As mentioned in section II, the spin glass
susceptibility® (which in this context is a four-point static
susceptibility) diverges on approaching the instability.
Moreover, even if the system was already equilibrated in
the initial glass state, aging effects should appear below
the instability when the state breaks down into many
correlated substates.
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e The aging curves, and in particular the fluctuation—
dissipation plots, should give a good indication of the
transition: at pressures above the Gardner pressure, these
plots should crossover from two straight lines to two
straight lines joined by a curved segment (although
detecting the curved part might be numerically
challenging).

e There is probably a relation between the Gardner transi-
tion and the “dynamic criticality” defined in ref 33. As
noticed there, all the anomalous scalings at the jamming
transition are related to the scaling of the cage radius
with pressure, A ~ p~'%. Hopefully, this scaling, which is
not found in the 1RSB solution, could be a property
of the full RSB phase. In fact, it is well-known that in
the Sherrington—Kirkpatrick model the presence of a full
RSB phase changes the scaling of the overlap at low
temperatures.

e Brito and Wyart’”” have demonstrated that, close to
jamming, the dynamics is characterized by sudden
“cracks” at which the system leaves abruptly a locally
stable structure to find a new one. At these cracks, the
displacements of the particles are strongly correlated with
the lowest frequency eigenvectors of the stability matrix
of the structure that the system is leaving. As mentioned
in the Introduction, this is not what is expected in a
1RSB phase, where states are locally stable and one has
to cross a barrier to jump from one state to the other;
hence, the vibrations at the bottom of the well should
give no information on the shape of the barrier. How-
ever, in a full RSB phase, the dynamics is much different
and similar to the one found in ref 27. It would be very
nice to check whether the results of Brito and Wyart
really fit into a full RSB picture, for example, by cal-
culating the spatial distribution of the displacements
between two nearby states.

e Finally, the response of full RSB magnetic systems to an
external perturbation is very complex, being character-
ized by avalanches and intermittency; see, e.g, ref S6.
This is due to the existence of (relatively low) barriers
separating nearby states—all this within a large basin. By
analogy, we would expect the response of a hard sphere
system to a mechanical perturbation in the full RSB
phase to be similarly complex. Hence, the rheological
properties in this phase could be very interesting and
could explain some of the anomalous behavior found
around the jamming transition. Analytical computations
might be possible following the strategy introduced in
refs 57—59.

From the technical point of view, the next step to make
progress is to investigate the KRSB solutions, with K = 2, 3,
4, ..., eventually with K — oo that corresponds to full RSB.
Following Gardner’s example in the p-spin model, this can be
done just below the Gardner transition. This investigation is in
progress and will provide some answers to the above questions.
In parallel, numerical simulations should be performed to
detect the 1RSB instability. Also, an exact solution of the
dynamics, along the lines of ref 60, could provide very useful
complementary information.

To conclude, let us mention that in this paper, from the ex-
pansion of the cubic terms around the 1RSB solution (see
section VI), we obtained an estimate of the mean-field
dynamical critical exponents at the dynamical transition (the

so-called mode-coupling theory exponent parameter Aycr).*!
We found that, for d — 00, Aycr = 0.70698, which is consistent
with numerical simulations.*’ This is important because a
previously attempted calculation from the replicated HNC
equations'® gives results that are quantitatively bad. The fact
that in d — oo we can obtain a good result implies that
the negative result obtained in ref 15 has to be attributed to the
poor quantitative performances of the replicated HNC
approximation, which indeed were already known.” Unfortu-
nately, also the approach presented here gives poor quantitative
results for the dynamical glass transition in low dimensions.”
Obtaining an accurate theory of the dynamical glass transition
in low dimension by improving the replicated HNC is there-
fore very important; see ref 62 for a preliminary step in this
direction.
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