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We discuss the slow relaxation phenomenon in glassy systems by means of replicas by construct-
ing a static field theory approach to the problem. At the mean field level we study how criticality
in the four point correlation functions arises because of the presence of soft modes and we derive
an effective replica field theory for these critical fluctuations. By using this at the Gaussian level
we obtain many physical quantities: the correlation length, the exponent parameter that controls the
mode-coupling dynamical exponents for the two-point correlation functions, and the prefactor of
the critical part of the four point correlation functions. Moreover, we perform a one-loop compu-
tation in order to identify the region in which the mean field Gaussian approximation is valid. The
result is a Ginzburg criterion for the glass transition. We define and compute in this way a proper
Ginzburg number. Finally, we present numerical values of all these quantities obtained from the hy-
pernetted chain approximation for the replicated liquid theory. © 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4776213]

. INTRODUCTION

Much progress in the recent understanding of glassy re-
laxation of supercooled liquids has come from the study of
dynamical heterogeneities.! Space-time fluctuations of the
density field result in a distribution of regions of different mo-
bility with typical size that grows upon decreasing the tem-
perature, and that persist for time scales of the order of the
relaxation time. Remarkably, the present theories of glassy
relaxation are able to predict the qualitative features of this
effect. Many progresses have been achieved neglecting ac-
tivated processes. Both theories based on dynamics (mode-
coupling theory?) and on constrained equilibrium (e.g., the
molecular liquid theory?) agree in a critical instability of the
liquid phase at a finite transition temperature. As far as univer-
sal aspects are concerned, a first theoretical insight originally
came from spin glass theory, that suggested to look at the crit-
ical behavior of four point density correlation functions.*> In
the context of p-spin models where both the equilibrium and
the dynamic approach can be pursued exactly, it was possible
to predict the qualitative features of dynamical correlations
growth and associated dynamic criticality observed in numer-
ical simulations® to well defined features of static correlations
in constrained equilibrium. Beyond these schematic models a
direct connection between equilibrium and dynamics is more
difficult to make. However the static hallmarks of dynami-
cal criticality are generically present whenever one has a one
step replica symmetry breaking transition (or mean-field ran-
dom first order transition’-®), as it is found, e. g., for liquids in
the hypernetted chain (HNC) approximation.” At the level of
dynamical liquid theory, the growth of correlations has been
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found with generality within mode-coupling theory'® through
a one-loop diagrammatic expansion. Despite these important
results, in order to progress further it is necessary to build
a field theoretical description of dynamical fluctuations ca-
pable in principle to go systematically beyond the zero-loop
Gaussian level. Unfortunately, the dynamic approach is rather
problematic in this respect for several reasons. The MCT is
not a self-consistent theory as it requires the input of the static
structure factor. Moreover, the equation for the dynamic cor-
relator does not follow from a variational principle. Clearly
this is not the ideal starting point to build up a perturbative
computation. In addition, an expansion around mean field in
dynamics is prohibitively difficult even in the simplest cases.

A static formulation would be therefore very useful to
make additional progresses. The connection between statics
and dynamics is based on the idea that the emergence of slow
dynamics is due to the appearance of long lived metastable
states.!:!2 Within mode-coupling theory and similar dynam-
ical theories of glass formation, one can distinguish two sep-
arate dynamical regimes: the so-called B regime, that corre-
sponds to the long time dynamics inside a metastable state,
and the « regime, that corresponds to transitions between dif-
ferent metastable states. A general theory of fluctuations in
the B regime based on the replica method was proposed in
Ref. 13 on the basis of general symmetry considerations. It
was found that the dynamical transition is in the universal-
ity class of a cubic random field Ising model. Moreover, in
Ref. 14 it has been shown at the level of schematic mod-
els that the same theory can be used to evaluate the mode-
coupling dynamical exponents and that they are related to the

© 2013 American Institute of Physics
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amplitude ratio between correlation functions that are in prin-
ciple measurable. At the Gaussian level, we can consider this
phenomenological theory as the static Landau theory of the
glass transition (see Ref. 15 for a discussion of a dynamical
Landau theory of the glass transition). In summary, the ad-
vantage of the approach discussed in Ref. 13 is that one can
compute the long time behavior of the dynamical correlations
in the B regime starting from a completely static replicated
(and constrained) Boltzmann measure.'®!® The first conse-
quence of this is that all the calculations simplify drastically.
Moreover, one can look at the dynamical transition through a
static measure and one can see systematically where the mean
field prediction is valid and where it fails.

The aim of this paper is to construct a framework to
study the glass transition in the B regime by following as
closely as possible the standard treatment of critical phenom-
ena using field theoretical tools. Furthermore, we want to ob-
tain the replica field theory of critical fluctuations starting di-
rectly from the microscopic grand-canonical expression for
the replicated partition function for the liquid, in such a way
that the couplings appearing in the field theory can be com-
puted starting from the microscopic potential. This program
can be achieved through an analysis of the soft modes that ap-
pear at the dynamical transition and that are responsible for
the criticality. By computing these soft modes we can focus
on fluctuations that are along them: in this way we construct
a gradient expansion for the field theory of the critical fluctu-
ations and we compute in full details the Gaussian correlation
functions, thus obtaining the critical part of the long time limit
of the dynamical four point functions in the 8 regime. Then
we look at the corrections to the Gaussian theory and we in-
troduce a Ginzburg criterion in order to see where the Gaus-
sian theory is valid. The Ginzburg criterion can be used in two
ways. On the one hand, it gives the upper critical dimension
for the model, on the other hand it provides a measure of how
much one has to be close to the transition line in order to see
the non-Gaussian fluctuations that cannot be treated by the
mean field approach.

A short account of our findings appeared in Ref. 19. This
paper is organized as follows. In Sec. II we review all the line
of reasoning we just discussed for the standard Ising model.
Then, in Sec. III we discuss how to obtain a replica descrip-
tion for the dynamical correlation functions in the B regime.
In this way we rephrase the problem from a dynamical one
to a standard static computation. In Sec. IV we discuss the
expansion of the free energy around the glassy solution. By
studying the Hessian matrix we identify the soft modes that
appear at the dynamical transition and we compute the ex-
pression for the exponent parameter A that can be related to
the dynamical mode-coupling exponents a and b that describe
the critical slowing down of the two point correlation func-
tions at the dynamical transition. Then, in Sec. V we show
how we can perform a gradient expansion of the replica field
theory in order to study the long distance physics and in
Sec. VI we use this effective theory to compute where the
Gaussian level computation fails by introducing a Ginzburg
criterion for the dynamical transition. Up to that point we will
remain completely general. The only assumption that we will
make is that the replicated system has a glassy phenomenol-
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ogy, namely, that the replica structure of the two point den-
sity function is non-trivial below a certain dynamical transi-
tion point. In Sec. VII we report concrete calculations in the
framework of the replicated HNC approximation by giving
explicit expressions for all the couplings and masses of the
effective replica field theory starting from the microscopic po-
tential and we show the numerical results for several physical
systems.

Il. AN ILLUSTRATION OF THE MAIN RESULTS OF
THIS PAPER IN THE SIMPLER CASE OF A STANDARD
FERROMAGNETIC TRANSITION

The aim of this paper is to build a theory of the glass tran-
sition by following closely the first steps of the standard field
theory formulation of critical phenomena. Namely, we want
to start from a Landau theory (including microscopic parame-
ters) and deduce from it a set of mean field critical exponents.
This is done first by studying the behavior of the uniform or-
der parameter in the mean field theory, and then considering
a gradient expansion for slowly varying order parameter to
compute the correlation length. Finally, taking into account
the interaction terms lead to a perturbative loop expansion that
allow to establish the region of validity of mean field theory
(hence the upper critical dimension) through a Ginzburg cri-
terion. The aim of this paper is to repeat all of these steps in
the more complex case of a system undergoing a glass tran-
sition. The final step would be of course to set up an epsilon
expansion around the upper critical dimension using renor-
malization group methods. We will not make any attempt in
this direction in this paper. For pedagogical reasons, we find
useful to briefly describe how these steps are carried out in a
simple ferromagnetic system before turning to the glass case.
The reader should keep in mind that this section is just a short
reminder of the main steps, for a reader already accustomed
with the modern theory of critical phenomena.

A. Landau theory

Suppose we consider a microscopic system undergoing
a ferromagnetic transition. In the following we will consider
the ferromagnetic Ising model with nearest neighbor interac-
tions on a D-dimensional cubic lattice and a properly scaled
coupling constant,

1
Hlo] = —E;a,-aj. (1)
iJ

Starting from the microscopic Hamiltonian, we can construct
the free energy as a functional of the order parameter, the
magnetization ¢; = (o;), as follows. The free energy (here
we will ignore some factors of temperature by rescaling some
variables) in presence of an external magnetic field is

Wih] =log Z[h] =log Y e PHloltLibor ()
{o;==%1}

Taking a Legendre transform,?” we define

Llgl =Y higi — WIh*], 3)
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or in other words

eI = 3 PHIY Ko, (4)
{oi=+1)

where h* is the solution of % = ¢;. The function I'[¢] is
the free energy of the system as a function of the magnetiza-
tion field.

In order to detect the phase transition, we want to inves-
tigate the small ¢ behavior of I'[¢]. Let us make a crucial
assumption, that U'[¢] is an analytic function of ¢ around
¢ = 0. This assumption is plain wrong in finite dimensional
systems at the critical point and below. However, let us for
the moment forget about this problem and proceed with our
discussion. We can consider a uniform magnetization profile
¢ and expand I'[¢] at small ¢. From the symmetries of the
problem, we know that

r[¢]:v{%mg¢2+§¢4+...}, (5)
which is the celebrated Landau free energy (here V is the vol-
ume of the system). A very practical way to compute the co-
efficients m% and g is to perform a systematic high tempera-
ture expansion.”! For example, at the leading order, for the D-
dimensional Ising model with coupling constant J = 1/(2D)
we obtain m} = 1 — B. Adding more terms leads to an ex-
pansion of m% in powers of B. For the Ising model (1), the
true expansion parameter is actually 8J, i.e., the temperature
in units of the coupling constant. Because the latter has to be
chosen equal to J = 1/(2D) to obtain a good limit D — oo,
the expansion parameter is /(2D). In other words, the high
temperature expansion is also a large dimension expansion
around the D = co mean field limit.

The equilibrium value of ¢, called ¢, is obtained by min-
imizing I'[¢]. From the high temperature expansion we ob-
tain that m} vanishes linearly at a given temperature 7, in
such a way thatm o« T/ T, — 1 = €. Note that for instance in
D = 3 it is enough to consider the cubic term in the small g8
expansion to obtain a fairly accurate estimate of 7,. When m}
becomes negative, the magnetization becomes non-zero with
¢ ~ Im3|'/? ~ €1/2 which gives one of the critical exponents.
The other critical exponents are obtained in a similar way.

B. Gradient expansion

The subsequent step is to compute the correlation length.
This is done by considering a gradient expansion for a slowly
varying magnetization profile, again under the assumption
that the expansion is regular at small ¢. One can perform a
continuum limit to simplify the notations: we denote by ¢(x)
the continuum limit of the spin field o;, while ¢(x) = (p(x))
is the local average magnetization. The Landau free energy
becomes at the quadratic order:

1
rigl = 5 / dr (o) — V2 +md)pr).  (6)

The correlation function of the magnetization is given by

32T !
} . @)

G(x —y) = {px)e(y) = [m
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Hence at this order the correlation function is

1 _p_
GoP)=——5. Go)=(px)P(0)) ~rroo x 2 €™,
p-t+mg

®)

which is often called the bare propagator. The calculation
is performed by using 1/(p? + m}) = [, dt e~ (P Hmi and
changing variable to y = #/x*. Then

o0
Go(x) x x> P / dy e™ "5 D2 = (27D £ ).
0

©)
When x > 1/my, a saddle point calculation shows that f(z)
~ 7P =32¢=2_ from which Eq. (8) follows. This expression
shows that the correlation length is & = 1/my ~ ¢~ and the
magnetic susceptibility is x oc Go(p = 0) ~ e~ 1.

C. From the microscopic Hamiltonian to a field
theoretical formulation

The above analysis relies on the assumption that I'[¢]
can be expanded as an analytic function around ¢ = 0. Al-
though this is certainly true at the mean field level (where the
Landau theory provides the exact result), this is not the case
in finite dimensional systems, because critical fluctuations in-
duce a singular behavior of I'[¢] at small ¢. Hence we now
want to assess the limits of validity of the Landau theory by
studying the effect of critical fluctuations.

The problem is that the definition of I given in Eq. (4) is
not very convenient to perform a systematic expansion in the
fluctuations around the mean field theory, although the com-
putation could be done in principle. It would be much more
convenient to write the effective action as a functional integral
over a continuous spin field ¢(x):

o Tlel — / Dy ¢S] Lh(lp()-¢0] (10)

with the following requirements:

1. The mean field approximation should correspond to a
saddle point evaluation of the above integral, in such a
way that at the mean field level I'[¢] = S[¢]. For consis-
tency, S[¢] must therefore have a Landau form,

1
Slel = 3 f dx p(x)( = V? + m)p(x)

8
+5 / dxg*(x), (11)

in such a way that at the mean field level we recover
Egs. (5) and (6). In this way we can include fluctuations
around mean field by performing a systematic loop ex-
pansion of the functional integral.

2. The bare coefficients m(z, and g entering in S[¢] must
be reasonable approximations to the microscopic co-
efficients as deduced from the Hamiltonian, in such
a way that the mean field approximation is already a
good approximation, and that loop corrections improve
systematically over it. In this way we can guarantee
that the criterion of validity of mean field theory has a
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quantitative meaning for the original microscopic
Hamiltonian H[o ].

So we want to give an appropriate definition of the con-
tinuum spin field ¢(x) and the corresponding action S[¢(x)] in
such a way that the requirements above are satisfied.

There are many recipes for such a construction. Proba-
bly the best one is given by the non-perturbative renormaliza-
tion group construction,”? in which one defines a functional
['¢[¢(x)] by integrating the small-scale spin fluctuations on
length scales smaller than ¢, see, e.g., Ref. 22, Eq. (28). If
one chooses a “coarse-graining” length £ that is quite bigger
than the lattice spacing, but still quite small with respect to
the correlation length (which diverges at the critical point),
the function I'¢[¢(x)] is an analytic function of ¢ at small
@, because the singularity is only developed at the critical
point for £ — 00.2> Then, Eq. (10) is basically exact with
S replaced by I'y,. One can then expand I'y, at small ¢ and
use this as the bare action S in Eq. (10). Although this strat-
egy can be generalized to the physics of liquids,?>?* calcu-
lations are quite involved so we need to consider something
simpler.

An alternative and very convenient prescription is the fol-
lowing. Let us call I'; the truncation at a finite order g* of
the high temperature expansion of I', as given in Ref. 21. We
know that I'i[¢] is an analytic function of ¢ for any finite &,
hence I';[¢] cannot be a good approximation of I'[¢] at the
critical point, because we know that I'[¢] is not analytic: in
fact the high temperature expansion is divergent at the criti-
cal point. However, we can assume that I";[¢] gives a good
approximation for S[¢]. Note that our two requirements are
satisfied by the prescription that S[¢] = I'x[¢]. In fact, for
the first requirement, at the saddle point level we obtain I'[¢]
= S[¢] = T't[¢], and we already know that for k = 1 this is
the correct mean field result, while for k > 1 we will obtain
an “improved” mean field result. For the second requirement,
we have already mentioned that the coefficients of I'[¢] give,
for large enough &, a good estimate of the microscopic proper-
ties of the model (e.g., the critical temperature). Furthermore,
we can argue that the high temperature expansion, at a given
order k, is only sensitive to local physics up to a scale £(k)
that grows with k. Hence, truncating the high temperature ex-
pansion at a finite order in k should be morally equivalent
to perform an integration over the microscopic fluctuations
on a scale smaller than £(k). We will see that this procedure
is easily generalized to the case of liquids where the high
temperature expansion is replaced by the low-density virial
expansion.

We will then use the prescription S[¢] = ['i[¢], expand
S[e] in the form of Eq. (11), and use it in the functional in-
tegral Eq. (10) to compute I'[¢] in a loop expansion around
mean field. Loop corrections give some non-singular contri-
butions to I', which were already in part taken into account
in the bare action S[¢] = I'i[¢] because it was obtained from
the high temperature expansion: hence we might have some
“double counting” of non-singular contributions related to the
short range physics. This double counting problem is dis-
cussed in more details in the Appendix. Still, our aim here
is to find a Ginzburg criterion that identifies the region where
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these singular loop corrections are small, and the mean field
approximations remains correct: we find that if the Ginzburg
criterion is formulated in terms of physical quantities, then
double countings are irrelevant. This is shown in Sec. II D
and in the Appendix.

D. Ginzburg criterion

We can use the above construction to perform a loop ex-
pansion in the coupling and check whether fluctuations are
small such that they do not spoil the main assumptions we
made above on the behavior of I' at small ¢, hence they do
not change the critical behavior of the system. We will follow
closely the derivation of Ref. 25. Our bare action is

1 g
Slel = 3 f dx p(x)(— V* +mg)e(x) + 2 / dxe*(x).
(12)
Here we will need to consider explicitly the presence of an
ultraviolet cutoff (which will be of the order of the scale £y(k)
mentioned above). The bare propagator is

G =—, 13
)= (13)
and the one loop correction to the propagator is*
A
8 2 dq
G =G - =G G . 14
(1) = Golp) ~ $Guw)” [ S5O (14)
We can consider the inverse propagator and write
A dq
Gl (p)=Go(p) ' + 2 / Golg), (15
(p)=Golp)™ + 5 Gm)D o(q) 5)

which can be seen either as a Dyson resummation of the “tad-
pole” diagrams, or as an inversion of the perturbation expan-
sion to obtain directly the second derivative of the Legendre
transform of the generating functional. Physically, G~!(p = 0)
is the “renormalized mass” or inverse magnetic susceptibility:

g A dg 1
2 2m)P g% + m}
2, 8

A dg 1
_m0+2 (2n)Dq2+m%’
where the last equality of course holds at first order in g. The
replacement of mg by mpg is needed, because the perturbation
theory must be done at fixed my, i.e., at fixed distance from
the true critical point, otherwise corrections cannot be small.2®
The critical point is defined by the condition that m% = 0,
or in other words the susceptibility is divergent, hence at the

critical point
A
d 1
m2=—% / 7__. (17
2 Q2m)P g2
We see that the shift of the critical temperature is divergent
in the ultraviolet (UV divergent) for D > 2: indeed, this is a
non-universal quantity and depends on the details of the UV
regularization. Now if we define the distance from the critical
point as

my =G (p=0)=mj+

(16)

A
2, 8 dg 1
t = e —, 18
’"°+2/ @m)P g2 (1%
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we can write Eq. (16) as

A
g dg 1
t=m%|1-2 . (19
R( 2 (2n)Dq2(q2+m§)>

This is the crucial relation that relates the inverse susceptibil-
ity to the distance from the critical point. The Ginzburg crite-
rion is obtained by imposing that the one loop corrections do
not change the mean field behavior t = m%.

We can now distinguish two cases:

e For D < 4, the correction is UV convergent and in-
frared (IR) divergent. In this case, we can safely send
the cutoff to infinity because the renormalized theory
exists. We obtain

o] D
- __g‘/‘ d”g 1
2)  @m)P g2 (g +m%)

Q o 1
:m%e—gmg’2 D / dx xP ' ————
2 Q)P Jy x2(x2+1)

(20)

and the integral over x is finite. We clearly see that be-
cause D < 4, the second term will be dominant over
the first close enough to the critical point. By imposing
that the first term dominates, we obtain the criterion in
the form

1> gmi™*Cp = g&c*PCp =Gig* P, (1)

where we used that in the mean field region the cor-
relation length & = 1/mg. Hence the Ginzburg num-
ber Gi = gCp is a universal constant in this case. This
shows that loop corrections will always be relevant
close enough to the critical point and gives a precise
value of the correlation length at which they will be-
come relevant, £ ~ 1/(Gi)"/¢4=D),

¢ Instead, for D > 4, the correction is UV divergent and
IR convergent. In this case the Ginzburg criterion is
non-universal and strongly dependent on the details of
the regularization. For a fixed cutoff A, the integral is
finite at m% = 0 and the mean field behavior is always

correct:
A
2 8 dg 1
r= -2 = . 22
mR( 2] @mp q4> 22

However, one loop corrections provide a strong renor-
malization of the coefficient relating ¢ to m%. Imposing
that these conditions are small we obtain

A gD
) i L

2] @oP (g +m)
This provides a condition on mg for a given UV cut-
off A. When the condition is satisfied the mean field
calculation is not only qualitatively, but also quantita-
tively correct. Note that the integral is upper-bounded
by its value in mg = 0. Then, if 1 > gCAP 4, the
Ginzburg criterion is always satisfied and one loop cor-
rections are small even at the critical point. Instead, if
gCAP ~*is of order 1 of bigger, then we obtain a non-

(23)
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trivial condition on mg and one loop corrections are
large close enough to the critical point.

lll. DYNAMICAL HETEROGENEITIES AND REPLICAS:
DEFINITIONS

The aim of this paper is to repeat the steps outlined in
Sec. II in the case of a glass transition. As we will see, the
calculation is in this case complicated by several problems:

1. We will need to introduce replicas to define a proper
static order parameter.

2. The order parameter is in general not a real number (e.g.,
the magnetization) but a function g(x — y) that encodes
the replica-replica correlations. Hence we will have to
introduce a smoothing function to define a scalar order
parameter g ~ [ f(x)g(x). We will then have to show
that the choice of the function f{x) is irrelevant.

3. The glass transition is discontinuous in the order pa-
rameter, which jumps to a finite value at the transition.
Hence the transition is not an instability of the high tem-
perature solution, but rather a spinodal point where the
low temperature solution first appear. Because of that,
we need to control the effective free energy at values of
the order parameter that are very far away from the high
temperature solution. Keeping only a few terms in the
high temperature expansion is not enough, and we will
have to resume an infinite number of terms to obtain a
good starting point for the mean field theory.

4. Because the glass transition is akin to a spinodal point,
the resulting effective action is a cubic theory. Hence the
theory is not really defined (spinodals do not exist in fi-
nite dimension). This will not be a problem for the mean
field and loop calculations, but we expect it to be a se-
rious problem if one wants to go beyond mean field and
construct a systematic epsilon expansion (which we do
not attempt here).

In this section we will better explain the first two points:
we will give some important basic definitions on criticality
at the glass transition (as encoded by the so-called dynami-
cal heterogeneities) and we will show how the problem can
be tackled using replicas. In Sec. III A we introduce the ba-
sic dynamical order parameter of the glass transition, and in
Sec. III B its correlation function. In Sec. III C we show how
both quantities can be written as static correlations in a repli-
cated theory. In Sec. III D we set up the general form of this
replicated theory and give some useful definitions.

Throughout this paper we consider a system of N parti-
cles in a volume V interacting through a pairwise potential
v(r) in a D dimensional space. The basic field is the local
density at point x and time t:

N
plx, 1) =y 8(x — xi(1)). (24)

i=1

We will consider a generic dynamics that can be either New-
tonian or stochastic, e.g., of Langevin type. In both cases,
we will consider equilibrium dynamics, that starts from an
equilibrated configuration of the system. It will be convenient
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to separate the dynamical average in two contributions.'> A
dynamical history of the system will be specified by the ini-
tial configuration of the particles {x;(0)}, and by a dynamical
noise. For Newtonian dynamics, this noise comes from the
initial values of the velocities, extracted by a Maxwell dis-
tribution; for stochastic dynamics, it comes from the random
forces that appear in the dynamical equations. We will denote
by (e) the average over the dynamical noise for a fixed initial
condition; and by E[e] the average over the initial condition.
Hence, for instance, the equilibrium average of the density
will be p = E[{p(x, 1))].

A. Two-point functions: The dynamical
order parameter

The dynamical glass transition is characterized by an (ap-
parent) divergence of the relaxation time of density fluctu-
ations, that become frozen in the glass phase. The transition
can be conveniently characterized using correlation functions.
Consider the density profiles at time zero and at time ¢, re-
spectively, given by p(x, 0) and p(x, t). We can define a local
similarity measure of these configurations as

C'(r,t):/dxf(x)p(r—i—z ) (r—;,O)

; 0
—Z ( M) FOat) — x,(0). (25)

Here f(x) is an arbitrary “smoothing” function of the density
field with some short range a, which is normalized in such a
way that f dxf(x) = 1. As an illustration, let us choose f(x)
= 0(a — |x|)/ V4(a), where V,(a) is the volume of a sphere
of radius a, and suppose that a is much smaller than the inter-
particle distance and that ¢ is short enough. In this situation,
fxi(t) — x;(0)) vanishes unless i = j, and we get

1 1 0
Clr, 1) ~ Za( M) Foa(0) = x:(0). (26)

Therefore, ¢ (r, t) counts how many particles that are around
point r have moved less then « in time ¢ and is often called
“mobility” field. Alternatively, Eq. (26) can be taken as the
definition of a self two-point correlation function. Different
choices of f(x) lead to other correlations that have been used
in different studies. We will show later that the choice of the
function f(x) is irrelevant as far as the critical properties are
concerned.
Let us call
City=v"! /drE[(C‘(r, N — p% (27)
the spatially and thermally averaged connected correlation
function. Typically, on approaching the dynamical glass tran-
sition Ty, C(¢) displays a two-steps relaxation, with a fast “S-
relaxation” occurring on shorter times down to a “plateau,”
and a much slower “a-relaxation” from the plateau to zero.
Close to the plateau at C(f) = Cq, one has C(t) ~ Cq + At™¢
in the B-regime. The departure from the plateau (beginning
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of a-relaxation) is described by C(t) ~ C4 — Bt”. One can
define the «-relaxation time by C(t,) = C(0)/e. It displays
an apparent power-law divergence at the transition, t, ~ |T
— T4|77. All these behaviors are predicted by MCT,?> which
in particular relates all these exponents to a single parameter
A through the formulae

I —a TA+b?
I'(l—2a) TA4+2b)

(28)
1 1

Vzg‘i‘%,

and gives a microscopic expression of A in terms of liquid
correlation functions.? In low dimensions, a rapid crossover to
a different regime dominated by activation is observed and the
divergence at Ty is avoided; however, the power-law regime is
the more robust the higher the dimension®’-?® or the longer the
range of the interaction.?’

B. Four point functions: The correlations
of the order parameter

It is now well established, both theoretically and ex-
perimentally, that the dynamical slowing is accompanied by
growing heterogeneity of the local relaxation, in the sense
that the local correlations C(r, r) display increasingly corre-
lated fluctuations when T is approached.'->3%3! This can be
quantified by introducing the correlation function of C(r, 1),
i.e. a four-point dynamical correlation

E[(C(r,n)C(0, 1)1 — E[{C(r, ) IE[(C(O, 1)].
(29)

G4(r7 t) =

This function describes the total fluctuations of the two-point
correlations, and it decays as Gu(r, 1) ~ exp ( — r/&(r)) with
a “dynamical correlation length” that grows at the end of the
B-regime and has a maximum & = &(¢ ~ t,) that also (appar-
ently) diverges as a power-law when T} is approached. MCT?
and its extensions'%3273¢ give precise predictions for the crit-
ical exponents.

For later convenience, we can also consider a modified
four-point correlation:

Gu(r,t) = E[(C(r,nNC(0, 1)) — (C(r, N)(C(0,1))]. (30)

This function describes the isoconfigurational fluctuations of
the two-point correlations, i.e., the fluctuations due to the
noise of the dynamical process at fixed initial condition. It
describes the in-state susceptibility: indeed, the initial condi-
tion selects a typical glass state, which is then explored by the
dynamics. A final average over initial conditions is taken to
ensure that the initial condition is a typical one.
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For each of these correlations, we can define the corre-
sponding susceptibility

X4(l)=/ drGyu(r, 1)

¢ o s

() = / drGun(r. 1)
] ) 2 A
=E (V/drC(r, t)) —<V/drC(h t)> .

C. Connection between replicas and dynamics

The dynamical glass transition can be also described,
at the mean field level, in a static framework. This has the
advantage that calculations are simplified so that the the-
ory can be pushed much forward, in particular by con-
structing a reduced field theory and setting up a system-
atic loop expansion that allows to obtain detailed predictions
for the upper critical dimension and the critical exponents.'3
Moreover, very accurate approximations for the static free en-
ergy of liquids have been constructed,*” and one can make use
of them to obtain quantitative predictions for the physical ob-
servables.

In the mean field scenario, the dynamical transition of
MCT is related to the emergence of a large number of
metastable states in which the system remains trapped for an
infinite time. At long times in the glass phase, the system is
able to decorrelate within one metastable state. The 8 regime
is identified with the dynamics “inside a metastable state,”
while the o regime is identified with “transitions between
different states.” Hence we can write (introducing two new
averages):

s = farofp ) -,
E[(C(r t — 00))] :/dxf(x)<,6 (r n %))m <,5 (r — g»m

In fact, if one performs a dynamical average at fixed initial
condition, the system is trapped in a single metastable that can
be explored, and at long times the dynamical average can be
replaced by the average (e),, in the metastable state selected
by the initial condition. The average over the initial condition
then induces an average over the metastable states with equi-
librium weights, that we denoted by an overline.
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For the four-point functions we obtain

Galr, 1= 00) = f dxdy £ (),

Lo —x/2)p(=y/D)m(p(r+x/2)p(y/2))m]

—E[(C(r,t — 00))IE[(C(0, 1 — 00))],
(33)

G, 1= 00) = f dxdy £ (),

X [pr—=x/2)p(=y/2)m(p(r+x/2)p(y/2))m]

- / drdy £()f ()

X [P —=x/2D)m(P(=y /D) (D (r+x/2)p(y/2))m]

The reason for the particular structure of the second term of
Gy, 1s that the densities at time O come from the same initial
condition and are therefore correlated, but they then evolve
separately and therefore the two densities at time ¢ are uncor-
related.

The above structure suggests that the dynamical tran-
sition can be described in a static framework by introduc-
ing a replicated version of the system.”'®!” In fact, the
replica method allows exactly to compute averages of the
form (e),, (e),,, that enter in Eq. (32), in a static framework
without the need of solving the dynamics. For every parti-
cle we introduce m — 1 additional particles identical to the
first one. In this way we obtain m copies of the original sys-
tem, labeled by a = 1, ..., m. The interaction potential be-
tween two particles belonging to replicas a, b is v, (r). We
set vy, (r) = v(r), the original potential, and we fix v,(r) for
a # b to be an attractive potential that constrains the replicas
to be in the same metastable state.

Let us now define our basic fields that describe the one
and two point density functions

N
Pa(X) :Z x —xi

= Pa(X)Pp(y) = Pa(x)8apd(x — y).

(34)
ﬁéb)(x’ y)

To detect the dynamical transition one has to study the two
point correlation functions when v,,(r) — 0 for a # b, and
in the limit m — 1 which reproduces the original model.” !’
We denote by (e), the equilibrium average for the replicated
system under the conditions stated above. The crucial obser-
vation is that in the limit v,,(r) — 0, all replicas fall in the
same state but are otherwise uncorrelated inside the state. This
leads to the following rule to compute the average (e),: one
should

* replace (o), = (o),

e factorize the averages (o),
replicas, and

¢ remove the replica indexes.

when they involve different



12A540-8 Franz et al.

For instance, for any spatial argument, and for a # b, we
have that following the prescription above:

{Pafb)e = (BaPb)m = (Padm (Po)m = (Pl (P)m»  (35)

which is exactly the kind of average we want to compute. Sim-
ilarly, assuming that different letters denote different values of
the indexes:

(ﬁaﬁaﬁb)r = (laa:aa/sb m — <:5a)6a>m (ﬁb)m = (ﬁﬁ)m (ﬁ)ms

)
(ﬁaﬁbﬁc}r = (ﬁaﬁbﬁc)m = <16a>m (ﬁb)m (ﬁc>m
= (D) (D) (O)mn- (36)
Let us introduce a space-dependent order parameter
aur) = [[ax F00 630~ /20 +x/2). @D
and the two-replica correlation function
Cap(r) = (ap(r)); = o
= / dxf OBy, (r —=x/2.7 + /)

—{Pa(r = x/D)e(Pp(r + x/2)):], (38)

where f(x) is once again an arbitrary short ranged function.
We are interested in these functions for a # b. Using the pre-
scriptions above we obtain

Cartr) = [ @ £ A = X2 o+ /D) = 47

(39)
At this point the replica indexes can be dropped because the
one-replica average in a metastable state is the same for all
replicas, and we get

Caplr) = / dx ()[BT =X /DI mlBG F 5/ Dm — 0°

=E[(C(r, t — o0))] — p2, (40)

which provides the crucial identification between replicas and
the long time limit of dynamics in a metastable state.

Similar mappings can be obtained for four-point correla-
tions. We define the correlation matrix of the order parameter
as (for a # b and ¢ # d):

G () = (Gap(M)dea(0)); = (@up(); (Gea(O)); . (41)

where the superscript f is useful to keep in mind that we per-
formed a smoothing through the function f{x). Performing
similar manipulations as for the two-point functions, we have

A / dxdy £(r)f(3)

X [{Da(r —x/2)pp(r +x/2)pe (=Y /2)pa(y/2)) ]
—E[(C(r,t > coNE[(C(0, 1 — 00))]  (42)

and in the first term the average (e);, can be factorized over
different indexes. Comparing this with Eq. (33) we obtain

Galr.t — 00) = G) (1),
(43)

Gulr,t — 00) = G, (r) — G (r).

J. Chem. Phys. 138, 12A540 (2013)

D. The replicated free energy

We now discuss how replica correlation functions can be
computed. We introduce some standard notations of liquid
theory?” and we adapt them to the replicated system.

Let us start with the grand canonical partition function
for a D-dimensional fluid with pairwise additive potential v,
chemical potential u, and under an external field W. The log-
arithm of the partition function reads

Wlv, w]=InZ[v, w]

X
o
>
e}
N

1
3 / drdyp®(x, yyw(x, )+ dxv(x)ﬁ(x)>
(44)

where we have used the following definitions for the fields:

N
p) = 8 —xi),
i=l

(45)
N

pD(x,y) = Z ZS(x —x)8(y — x;)

i=1 j#i
= p)P(y) — p(x)8(x — y)
and the microscopic details of the system are encoded in
v(x) = Bu — Y (x),
w(x, y) = —Bo(x, y).

(46)

To study the glassy phase we will follow the method in-
troduced in Refs. 9 and 17. We replicate the system introduc-
ing other m — 1 copies of this original fluid, with interaction
between copy a and copy b denoted by w,, = —Bv,p, S0 that
the logarithm of the replicated partition function is given by

W[{va}7 {wab}] =1In Z[{Ua}, {wah}]

o] 1 m N ,
I szo T (nndx; )>

a=1i=1

1,m
1< ,
X exp (5 > / dxdy Ly (x, y)wap(x, ¥)
a,b

+3 [am, (x)@(x)) , "
a=1

where the definition of the fields must be modified in order to
take into account different replicas

N
Pa(x) = ) 8(x —x;,),
; (48)

P (x, ¥) = Pa()Pp(¥) = Pa(X)8apS(x — V).

In the following, to lighten the notations, we will sometimes
(when this leads to no ambiguity):
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1. use shorthand notations for the spatial positions, e.g.,
A = flxn), AL, 2) — flxr, x2);

2. similarly, use [dx; — [i;

3. drop the replica and space indexes and simply denote
p = 18D}, B2 — (5 (1, 2));

and similarly for similar or more complex quantities.

To study the glassy phase we need to know the correlation
functions of the two fields p and p®. Let us underline that in
this scheme, the details of the (attractive) interaction between
different replicas is not important because in the end we will
send it to zero. In fact if there is a glassy phase below at a
certain dynamical temperature 7, this infinitesimal attractive
potential is enough to let all the m replicas fall down in the
same state. Hence, it is very convenient to perform a double
Legendre transform and write the free energy as a function of
the averages of p and p®, which we denote p and p®.20:38:39
In this way, we can take directly the limit where there is no
interaction between different replicas and look for a solution
where the replicas remain correlated in this limit. We obtain’

rip. /1= Y [ vz

1 )
*3 Xb:/lz oo (1, 2w, (1,2) = Wv*, w*],

(49)
where v* and w* are the solution of the two equations

SW(v, w]
va(1)

SWlv, w]

=p,(1)and W1
pa(Dyand o=

V¥ w*

1
(2)
= 2Pip(1.2).

V¥, w*
(50)

Morita and Hiroike®® showed that this double Legendre trans-
form can be written as

Tlo, p®1 = Tialp, 021+ Cinglo, 021+ Tapilp, p?1,

(51)
where
Tialp, 0]
PR
! @ p(1,2)
+5 1,2)In [ =222~
> /1-2 [p“”’( - (pa(l)mz)
~p501. 2+ (D).
(52)
1—‘ring (o, ,0(2)]
1 (_])n
- EZ n Z /; pal(l)ha]az(l’ 2. Pa, (n)hanal(n,l)
n>3 ap,..., a b n

and we have introduced

p(1,2)

hoyp(1,2) = —— —
D= D@

(53)
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The term I',py is the sum of all two-particle irreducible dia-
grams that are defined precisely in Refs. 20, 38, and 39. We
do not give more details because this term will be mostly ne-
glected when we will perform concrete numerical computa-
tions. However, the formalism we develop below holds in full
generality so one could include 2PI diagrams in future works.
For instance, this can be done through a systematic expansion
in powers of the off-diagonal term of p®. The price to pay
is that the result depends on many-body correlations of the
non-replicated liquid.*’

It will be useful in the following to define the direct cor-
relation function c,;(1, 2) through a replicated version of the
Ornstein-Zernike equation:

hap(1,2) = cap(1,2) + Z/hac(laS)pc(3)Cch(3’2)a 54
— J3

whose solution can be written through a series expansion in
the following way:

cap(1,2) =) (=1 >

n#l az,...,ap—1

x3,4)- - pg, ,(n — Dhgy, p(n—1,2). (55)

haal (] ’ 3)pa1 (3)ha1az
1

The free-energy is computed by evaluating the functional T’
at the physical correlator p,,(1, 2) which solves the following
equation:>%-38:3

1
= 5Wap(1,2). (56)

8T'[p, p@]
Spap(1,2)

Pab

The density field can be determined by a similar equations as
a function of the chemical potential, however here we are in-
terested in a solution with p,(1) = p, hence we can directly
fix the density in this way. Moreover, we are interested in a so-
lution for the two point function which has eventually (below
the dynamical temperature 7,;) a IRSB structure

0@ (1,2) = 8app’g(1,2) + (1 — 8,)0°8(1,2).  (57)

In particular in the high temperature phase we expect that the
off-diagonal part of this solution, namely g, is trivial (it corre-
sponds to uncorrelated replicas, hence it is identically equal
to 1) while below the dynamical temperature 7, we have
a non-trivial solution. Note that the glass transition can be
crossed either by lowering temperature or by increasing den-
sity, the second strategy being the only possible one for hard
spheres like systems. In the following general discussion we
will typically refer to lowering temperature: but all of our re-
sults apply to any other path in the phase diagram that crosses
the glass transition line. We will indeed present concrete nu-
merical calculations both in temperature and density.

IV. LANDAU EXPANSION OF THE FREE ENERGY
AROUND THE GLASSY SOLUTION

In this section, we will show how one can construct a
Landau expansion of the free energy. There are two main dif-
ferences with respect to the simple ferromagnetic example of
Sec. II. First of all, even for a homogeneous system, the order
parameter is g(x; — x,) and it keeps a non trivial dependence
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on space. Second, at the mean field level the glass transition
is a random first order transition: even if it is a second or-
der transition from a thermodynamic point of view, the order
parameter has a finite jump at the critical (dynamical) tem-
perature T,. This implies that we cannot approach smoothly
the glass phase from the liquid one. In the following, we will
assume that we are in the glass phase at T < T,, where g is
non-trivial, and study how the limit of e =T, — T — 0 is
approached from positive €.

In Sec. IV A we introduce an appropriate scalar order pa-
rameter and perform a Landau expansion of the free energy
for small deviations of the order parameter around the critical
point. In Sec. IV B we show how this expansion can be used
to compute the MCT exponents, in particular the exponent A,
following Ref. 14. In Sec. IV C we perform a more detailed
study of the mass matrix, i.e., the quadratic term of the expan-
sion. In Sec. IV D we use this to show that the value of the
MCT critical exponents do not depend on the details of the
definition of the scalar order parameter; as a side product we
obtain a much simpler expression for these exponents.

A. Free energy for a uniform field

We want to define the free energy as a function of the or-
der parameter C,;(7), defined in Eq. (38), in the case in which
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it is uniform, i.e. independent of . The way we can produce
this quantity is just by maximizing the free energy with re-
spect to p® under the constraint that C,,, is given by its def-
inition, which is enforced through a Lagrange multiplier € :

[[Cap]= max |Tlp, p®1= Y ea
p(Z), Eab ab

x (Vcab— /1 i F(1,2)005(1,2) —pa(l)pb@)])} :

(58)

We now that in absence of the constraint, €, = 0, the
free energy I'[p, p¥] is maximum for p® = p@, Eq. (57),
which corresponds to some value C,; of the order parame-
ter. We want to expand around this reference solution. We
call Ap® = p®@ — m and AC,, = C,p — Cup the devia-
tions from this reference solution.

We use from now on a lighter notation in which a global
index is used instead of replica and space indices, A = {a, b,
1,2},B=/{c,d, 3, 4}; moreover we use the Einstein’s conven-
tion where repeated indices are implicitly summed. Expand-
ing I'[p, p®] around the reference solution we obtain (recall
that p = p,(1) = pp(2) is a fixed constant)

18T [p, p?] 1 8T[p. p?]
AT[ACyp] = max —WAP?AP? + —mﬁpf)ﬁpg)Ap(CD
2o@ea | 2 8p% 80} 6 50\ 8p% 80
- ew (VAcab - / £, 28051, 2)) : (59)
o 1,2

where all the derivatives must be computed in the reference
solution. Defining

82Tp, p@]
Myp = . @ °
8p, 8pg
(60)
8Tlp, p@]

Lapc = T e DO )
8,0; )8,0% )S,O(C)

and 4 = e4f(1, 2) (where we define &,, = 0), the derivative
with respect to Ap® leads to the following equation:

1
0= MasApy' + > Lasc Aoy Ao +ea, (61)
which can be inverted perturbatively and gives

- | - -
Ap‘(Az):—MAbl,SB — EMA[I;’LBCDMCCI‘/&‘C’MDID/(QD’ + 0(83).
(62)

Plugging this in the free energy we obtain

| 1 R
AT[AC,p] = max [ — ESAMA;SB — ELABCMA,;,MB},
ab

X MZhenepec —V ZaabACab}. (63)
a#b

At this point it is convenient to recall that g4 = euf
(1, 2). Using the shorthand notation (M~ 'M~'M~'L) s
= M;/;,Mgllg,Mc_é,LA/B/cr and introducing

FA My (1,2,3,4)f(3,4),
(64)

-1
VMab,cd = f

1,2,3,4
VLapeds = f FOLDFG 4 (.6)
1,6

X (MT"M "M ™" L) caer(1,2:3,4:5, 6)



12A540-11  Franz et al.

we can rewrite Eq. (63) as

1
AT[AC,;] = V max [ — Esab/\/l;}}m&.d

Eab

1
- _Eab,cd,efgabscdgef - Z SabACabi|~ (65)

6 a#b

We now take the derivative with respect to €,, and we obtain

_ 1
Acab = _Mabl’cdgcd - Eﬁab,cd,efscdeef’ (66)

which is inverted as

Eab = _Mab,chCCd

1
- 5Mab,c'dcc'd,ef,ghMef,e/f’Ace’f’Mgh,g’h’ACg’h’v

(67)

and plugging this in Eq. (65) we finally obtain the desired
third order Landau expansion of the free energy, which is the
analog of Eq. (5) for the glass transition,

1
AF[Acab] =V {EAcabMah,chCcd

1
+ EWuh,cd,efACabACchCef + - } ,

(68)
Wab,cd,ef = Mab,a’b’Mcd,c’d’Mef,e’f’£a’b’,c’d’,e’f’~

B. Computation of

At this point we are equipped with all the ingredients to
give an explicit expression for the parameter exponent A of
MCT. It has been shown in Ref. 14 that in mean field dis-
ordered systems this parameter can be computed in a purely
static framework. The argument is the following: the dy-
namics of such systems can be studied in great detail using
the Martin-Siggia-Rose*' formalism; in particular, by going
to the supersymmetric representation for the action of the
Langevin process describing such dynamics,** one can obtain
a dynamical Gibbs free energy which has exactly the same
form (apart from a kinetic term containing the derivatives with
respect to time which can be neglected if we want to study the
long-time behavior) of the one in (68) where replica indices
are replaced by supertimes. From the dynamical action it is
straightforward to see that the exponent parameter X is given
by the ratio between two of the cubic terms of the dynamical
Gibbs free energy. But now the key point is that this two co-
efficients are related to six-points dynamical correlation func-
tions whose long time behavior can be studied using replicas
following the same analysis of Sec. III C. In particular it can
be shown that for times such that the two point correlation
function is very close to its plateau value, the values of these
dynamical six-points correlation functions can be computed
in a static framework just by using the replicated Gibbs free
energy of the form (68). This implies directly that the expo-
nent parameter can be computed from the statics. This argu-
ment has been discussed in full detail in Ref. 43.
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The cubic coefficients of the replicated Gibbs free energy
which are relevant for the computation of the A are the follow-
ing ones:

w1 3 wr 3
— = TH(AC) = == Y AC,. (69)
a#b
and the exponent parameter is given by

w2

A= (70)

wi

In computing the derivatives in (60) one has to use the explicit
form for the order parameter E that maximizes the free en-
ergy, given in Eq. (57), which is replica symmetric (corre-
sponding in our formalism to a 1RSB solution). Exploiting
this symmetry, in Ref. 44 it has been shown that for a replica
symmetric saddle point the two coefficients w; and w, can be
written in the following form:

w; =W —3Ws 4+ 3W; — W,
(71)

1 3
wy = §W2 —3W; + §W4 4+ 3Ws + 2Wes — 6WV; + 20,

where
Wi = Wb pe,cas
Wa = Wap.ab,abs
W3 = Wb ab.ac
Wa = Wab.ab,cd
(72)
WS = Wab,ac,bdv
We = Wab.ac,ad»
Wi = Wac.bede
W = Wb cd,ef -

Therefore, the final expression for A is

W I =3Ws+3 Wy + 3Ws + 2Ws — 6W; + 204

wq Wi —3Ws + 3W; — Wi

(73)
Note that this expression contains implicitly a dependence on
the function f(x) that we have chosen to define the order pa-
rameter in Eq. (38). Moreover, note that the usefulness of this
relation is very hard to prove at this stage because to compute
the cubic coefficients VV we have to perform a complex opera-
tor inversion to obtain the M, see Eq. (64), followed by a con-
volution with the £, see Eq. (68). This would be an extremely
hard numerical calculation. In fact, all these problems can be
solved noting that the mass matrix of the free energy develops
a zero mode at the dynamical transition, and the presence of
this zero mode simplifies a lot the computation of A, as we
show next.

C. The mass matrix and the zero mode

Recall that here we are looking to a homogeneous sys-
tem. Hence, in Eq. (57) we have g(x;,x) = g(x; — x2).
Keeping this in mind, in the following we will use equiva-
lently the notations g(x;, x2), £(1, 2), and g(x). As we already
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explained, at the mean field level the solution of the saddle
point Eq. (57) is g(x) = 1 in the liquid phase while g(x) is
a non-trivial function in the glass phase. The appearance of
an off-diagonal solution below the dynamical transition point
is discontinuous and can be regarded as a bifurcation-like
phenomenon at some critical value of the control parameters
(temperature or density). Because the transition is discontin-
uous, the bifurcation does not happen around the liquid so-
lution g(x) = 1, but around a non trivial value of g(x) corre-
sponding to the solution at the critical point. Therefore, if we
approach the transition point from the liquid phase and look
at the behavior of the free energy around the liquid solution,
nothing special will happen. For this reason we are forced to
take the control parameter such that we are in the glass phase

d 8Tlp, p?]

J. Chem. Phys. 138, 12A540 (2013)

(for example, we put T < T,) and approach the transition from
this phase. Let us call € = T; — T the distance from the critical
point. Then for € — 0%

2(1,2;€) = 2(1,2;0) + 2 e k ko(1,2) + O(e).

Here, the function ko is normalized by V' [, ko(1,2)?
= [ dxko(x)* = 1, which defines implicitly the constant «.
Therefore,

dp(1,2) 0>

e (1-6 ko(1,2) + O(1).

e ﬁ( ab) K ko(1,2) + O(1)

We consider the saddle point condition (56) with a # b and
Wy = 0. Then

(74)

(75)

T de 5 (1, b)) PO

Z/ 8’T'lp, p?] dp.q3,4)
3.4 8p0(1,2)808) 3, 4| de
34 8p0(1, 2)5p£3>(3,4) - de <2)(1 2se |

Recall the definition of the “mass operator” in Eq. (60)

8Tlp, p®1

Mab;Cd(l7 2’ 3a 4) (2)(1 2)8[0(2)(3’ 4) ﬁ

(77)

for a # b and ¢ # d. Then we can write Eq. (76) as

O_Z/ Mapea(1,2:3, 4)w +K1,2), (78)
c#d

where /C(1, 2) is finite at the critical point and does not depend
on a # b because of the symmetry of the saddle point. Recall-
ing from Eq. (75) that the derivative of the saddle point solu-
tion is divergent when we approach the dynamical point from
below, we conclude that the mass operator should develop a
zero mode at the transition, in such a way that the divergent
part of Eq. (78) is cancelled. In other words, we should have
that

3 f Mapea(1. 2:3, ko3, 4) = ui/eko(1,2).  (79)
c#d

Because of the replica symmetry of the saddle point solution,
the most general form for this mass matrix is*

8acSbd + 8aadbe
Map:ea(1,2;3,4) = My(1,2;3,4) <M)

2

Sue 4 8ad + Spe + 8
+M2(1,2;3,4)( ac ad: be + bd)

+ M5(1,2:3, 4). (80)

Because such matrices make a closed algebra, the inverse of
the mass operator must have the same replica structure:

8acd 80dObe
Gapea(1,2:3,4) = G1(1,2;3, 4) (%)

Sac + 84 Spe + 6
+G2(1,2;3,4)< 1 Oad & O0e F ””’)

4
+G5(1,2;3,4). 1)
The equation for G is
Zf Maea(1, 23, 9G oger (3, 4:5,6)
oz V34
_ BaeBpr + Bapdpe 8(1,5)8(2, 6) +8(1, 6)5(2, 5) 82)

2 2

and, in the replica limit m — 1, the solution of this equation
is given by (we denote with ® the convolution in the space
variables a ® b = f3‘4a(1, 2,;3,4b@3, 4,5, 6)):

G, = M,
G, = —2[2M, — Mr]"' @ M, @ M ", (83)
Gy =M@ {My®2M, — My]™' ® My — M3} @ M.

We know from Eq. (75) that the zero mode is independent
of the off-diagonal replica indexes. This implies for a matrix
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of the type (80) that in the replica limit m — 1

m—1

im Y [ M1, 23, 4)ka(3, 4
+£d 3.4

= lim
m—1 J3 4

+(m — DM>(1, 253, 9)]ko(3, 4)

[m(m — 1)M3(1,2;3,4) + Mi(1,2;3, 4)

= Mi(1,2;3, ko3, 4). (84)

3.4
This implies that for m = 1 among all the components of the
mass operator, kg is a zero mode (with eigenvalue proportional
to /€) only for the operator defined by the kernel M (1, 2; 3,
4), while M, and M3 do not need to have any zero mode at the

G2=02®M171

Gy=M;'® 0 M,

J. Chem. Phys. 138, 12A540 (2013)

transition. In formulae, from Eq. (79),

Mi(1,2;3, Hko(3, 4) = uv/eko(1, 2), (85)
3.4

or equivalently (recall that f 12 ko(1,2)?> = V):

Ml_l(l, 2;3,4) = #ﬁko(l, Dko(3,4)+ O(1).  (86)
This observation is very important because it shows that the
operators defined by the kernels G| and G, have a single pole
(a divergent eigenvalue) while the operator G3 has a double
pole. This is a very straightforward generalization of results
obtained in Ref. 13 to the case in which the system has a non
trivial spatial structure. Let us now rewrite Eq. (83) as

with Oy = —2[2M; — M>]"! @ M,

87)

with O3 = [My ® [2M) — Ms]™' © My — M3],

and use this to conclude that the most divergent contributions to these kernel operators are given by

Gi(1,2:3,4) = =ko(1, 2ko(3,4) + O(1),

Ga2(1,2;3,4) = -=ka(1, Dko(3,4) + O(1)

with ky(1,2) = [;, 0a(1, 23, 4)ko(3, 4), (88)

G(1,2:3,4) = pko(1, 20ko(3, 4) + O(J2 ) with ks = & [, 5 3 ko1, 205(1, 2:3, 4k (3. 4)

V ule

Note that in G3 a term proportional to 1/./€ appears and it depends on the excited states of the kernel operator M;. However,
we will see that the contribution of the zero mode is enough for the computation of A.

D. Analysis of the cubic terms and computation of A

At this point we are equipped to extract the divergent part of the cumulants w; and w, and obtain a simple and universal
expression of A. Let us start with the generic expression (68) for the cubic coefficients of the free energy as a function of the a

uniform order parameter. Using Eq. (64) we have

1
Wab,cd,ef = Mub;a’b’ML'd;c’d’Mef;e’f/V/
1

..... 6l,...,6

FADMeyy e (1,2:1,2)

X FGuM Y343 A (5, OM, b 15,65, 6) Laryrcoarer (1, 233, 435, 6)

= = Aab;a”b”(l/’ 2/)Acd;c”d”(3/s 4/)Aef;e”,f”(5/’ 6/)La”b”;c”d”;e”f”(1/9 2/; 3/, 4/; 5/9 6/)9 (89)

where we introduced the quantity

Aapar(1,2) = Mapaiy / AL 2DMph i (1,2517,2)
1,2

a.a"0b.b" + 84,17 Op a7
2

3
=A(1,2)

+ Ax(1',2)

8a,a” + 6b,a” + (Sa,b” + 8b,b”
4

+ As(1',2). (90)

Clearly, the replica structure of the matrix M. is inherited from the structure of the mass matrix My, .4(1, 2; 3, 4) and its

inverse. From Eq. (64) we have

_ 8acOba + 8addpe 84c + 8aq + Ope + 6
M£M=%<—li—ii>+%< T M>+%

2

4
2y

SacOpd + 8addpe Sac + 84a + Spe + 6,
Map,ca = My <M) +M2< 4 bd) + Ms,

2

4
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where we have defined the following f~dependent quantities:

1
Gi = —f F(1,2)Gi(1,2:3,4) f(3,4), 92)
V Ji234
and where using the same algebraic structure of the replica sector
1
M= —,
T g
2G,
My = —5— 7,
*T 76,06 -6 ©3)
2
M3 g2 g3

T G226 -Gy &

Next we have to analyze the matrix A that appears in Eq. (89); performing the matrix multiplications we obtain

1
A(1,2)= f*x =Gy,
g

2(G1G, — G15)
Ay(1,2)) = fo ——— o, 4
’ e O
. G3G1 +2G1(G1G3 — G3G1) + G2(G3G1 — Gi1(G2 + G3))
G126 — G) ’
where we used the shorthand notation (f* G;)(1,2') = [ 2f(1, 2)G,(1, 2; 1", 2"). Now we can use the critical behaviour of G; in
Eq. (88). We see that divergent terms of the same order will appear at the numerator and denominator of the above expressions,
so we can extract the finite part of A; in the limit € — 0F. Thanks to some non-trivial cancellations the result is, defining

Frko=V" [, F(1,2Dko(1,2) = [ dxf(x)ko(x):

Ay(1,2) = f

ko(1,2
a(1,2) = 22
f xko
Ax(1,2) =0, ©3)
A3(1,2) =0,
and plugging this in Eq. (89) the final expression for the cubic coeffcients is given by
1 1
Wab;cd;e = T T / kO(l’ 2)k0(3, 4)]{0(59 6)Lab;cd;e (17 2; 3s 4; 5a 6) (96)
T (fxko® V Jiasase !
Using Eq. (71) we obtain the two relevant coefficients for the computation of A as
1 1 1 3
Wy = (f*—ko)3v ./1,2;3,4;5,6 ko(l, 2)k0(3a 4)k0(sa 6)<§Lab,ab,ab - 3Lab,ah,ac + iLab.ah,cd + 3Lah,ac,bd + 2Lab,ac,ad
- 6Lac,bc,de + 2Lab,cd,ef)(lv 2; 3» 4; 57 6)7
CD)
1 1 /
Wy =737, ko(l, 2)](0(3, 4)k0(5’ 6)(Lab,bc,ca - 3Lub,ac,bd + 3Lac,bc,de - Lab,cd,e )(1’ 2; 37 4’; 5’ 6)
(f ko) V Ji2345.6 !

Note that because 2 is the ratio between w, and wy, the depen- V. GRADIENT EXPANSION

dence on f disappears and we get a consistent f~independent

expression for the exponent parameter. Moreover, the expres- We want now to study the critical behavior of Gy, (r) and
sion above are much simpler to compute because they simply G4(r). These quantities are related by Eq. (43) to the inverse
require a convolution of the functions L with the zero mode of the mass operator G, .4(1, 2; 3, 4), Egs. (80) and (81). In
ko, without any need for operator inversion. principle we should invert the mass operator M, c4(1, 2; 3, 4)
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and perform a convolution with the smoothing function f(x) to
obtain the replica correlation Gi/;?c 4(7) that enters in Eq. (43).
Although certainly well defined, this procedure would be nu-
merically quite heavy even in the simplest approximation for
the mass matrix (e.g., the HNC approximation we discuss
below).

In this section we want to show that, if we are only in-
terested in the long distance behaviour of fo;?cd(r), we can
take advantage from the existence of the zero mode discussed
in Sec. IV C to obtain a universal critical form of G;QC (7).
In particular we will show that the function f{x) only enters
in the prefactor, while the correlation length is independent of
f(x). For this we need to set up a gradient expansion where
we consider a field A,o(z) (1, 2) which is almost uniform. Re-
call that in the uniform case Apab)(xl, X)) = Apéb)(xl — Xx7).
Here we consider a non-uniform field, that depends also on
the variable (x; + x,)/2, but we consider that the dependence
on this variable is weak.

AL =

/ dp dp dg dk
(27.[)4D

where

Map.ca(p, P3q, k) :/ PSR X+ P
' 1,2,3,4

AP (Dy Y Mapiea(—p, —

J. Chem. Phys. 138, 12A540 (2013)

A. Fourier transform

It is convenient to separate the dependence on the transla-
tionally invariant variable x; — x, from the slow dependence
on space (x; + x,)/2 by introducing a Fourier transform

A (p.q) = / drydry (5 )+”’(X‘_x2)Ap(2)(x1,xz),

(98)

dp dg —ZP(YIHZ)—W(X]—XZ)

P Pa (P, ).

ApD(x1, x7) =

Here p is the momentum coupled to the slow spatial varia-
tion, while ¢ is the momentum coupled to local displacement.
Hence we will be interested in the limit of small p. Plugging
this in the quadratic part of the expansion of the free energy
around the saddle point solution, we obtain

/ AP (1, 2 Mapea(1, 2,3, 4)Ap5 (3. 4)
1,2,3,4

—q, =) ApD (p, k), (99)

xX3+xgq

k=) pp (1, 2:3, 4). (100)

Because of the translational invariance of the saddle point solution, the mass matrix is also translational invariant, so that we
can make a change of variable to X = (x; + x, + x3 + x4)/4 and u; = x; — X, with Z?:l u; = 0, and then M(1, 2; 3, 4) does not
depend on X. Calling Du = dulduzdugdu48(i Z?zl u;) we get

R . X L uptup i BT k(g
Mab;cd(p, P,q,k) — /dXDM gz(P+17)X+zP(412—2)+HI(u1 u2)+i p( 2 )Fik(us M4)Mab;cd(“la Uy U3, M4)

D (02)
= 2m)°8(p + PIMea(q. ),
(101)
LUyt uz+tu, . .
M (q.k) = /DM PO I KD Ny s us, ug).
We want to study the correlation function
uy+u uz+u
Gy;)cd(q k) = /D” PO R gl ik u4)(AP(2)(M1 , uz)AﬁE?(us, M4)>r
= / Du /P2 =T T G, o us, ), (102)

when the two points u;, u, are far away from u3, us. This implies that as already announced we need to study the limit p — 0

and we have to develop the mass matrix around this limit. The correlation function above, at the Gaussian level, is given by the

inverse of the mass matrix, i.e., by transforming Eq. (82) to Fourier space we get

8acdpf + 8afOpe 8g—qgH+4é !
bf‘; 7% (50)D (q q)er @+4)

dk
Z/ (2m)P Mhdd k)Gi‘Z?ef(_k, q) = .
c#d



12A540-16  Franz et al.

Therefore, it has the form, akin to Eq. (83),

2

8[1(,‘8hd + (Sadshc
G alq k) = (—) G(q. k) + (

G(P) [M(P)] ,

8ac + Sad + ‘Shc + (de

J. Chem. Phys. 138, 12A540 (2013)

1 ) GP(q, k) + GV, k),

(104)
-1 -1
G(zp) — —2[2pr) _ Mé”)] ® Mép) ® [M](p)] ,
G(P) [M(P)] ® {Mép) ® [2M;p) _ Méﬂ)]_l ® M;P) _ M;l))} ® [pr)]_l
The convolution and inversion operations appearing in Eq. (104) are defined by
A® Blg,q) = AP(q, k)BP (—k, q"),
[A® Blg.q) f(zn),) (g, HBP(—k, )
8( N+ +4q) (o
[A® 4. q) = P L2,
Let us now consider the four point function Gf;{;?c 4(r —r’) defined in Eq. (41), which we can write as
Gopear — 1) = /dxdy FO ) Gapea (1 + % r— %;r/ + % r— %) . (106)

We have

2 2 2 2

@050 + PG () = [ arare™ 7 [ axay £6050) Gunea (r 4 5or = Sir 4 2o = )

2 2 2 2

dg dk N
- / B el f(=q) f(—k) / drdr'dxdy ePr ety G o g (r + f, r— f;r/ + X, r— X)

(27T )2D

dg dk
- q)wf( 0 f (=)

dg dk
= @n)°8(p + P) / S5 DG . b

Hence we finally obtain

dq dk
Goea(P) = / (;T)wf(—q)f(—k)Gfl’;);cd(q,k). (108)

Using Eq. (43) we find that
dg
Gatp) = [ 5 o )wf( D f (=)
x [6hua. 0 = Ghucta. )]

dq dk

= | G /O R

1 1
X [§G§P>(q,k)+ZG§”>(q,k)] (109)

o (xHn) | s x3+x4 . B . _
etp( )+p( )thq(xl Xx2)+ik(x3—x4) Gab;cd(l, 2; 37 4)
1,2,3,4

(107)

We can now perform some formal manipulations on
the operator, dropping the indexes for convenience. Using
Eq. (104)

G G _ 1, PN I
2 4 T oM, | My —2M, P 2M,
_ 1. ' u ! (My—2M))
M, | My—2M, T Ma—2M, Y1 2m,
1 1 1
= | — oM | —
M, | M, —2m, 2M,
1 1
- 110
v, oL — o, (10

so that the critical behavior is driven by the dominant diver-
gent contribution to the kernel operator M :

wn . (p)
i = [ S reafco[MP] G p.

B. Spectrum of the mass matrix

Let us now study the kernel operator M, in more detail.
We have seen in Secs. IV A-IV D that it develops a zero mode
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when approaching the transition from below. Moreover, we
know that the zero mode is translationally invariant. Let us
now look at the spectrum of this operator. The crucial ob-
servation is that because of translational invariance, the mass
matrix is proportional to §(p + p), so we can diagonalize the

kernel M fp )(q, k) at fixed external momentum p. We can thus
write a spectral decomposition

MP(q, k) = ro(pu (@w (k)

+ Y M PWP (@Y K),

a>1

(112)

where we put the lowest mode in evidence for future conve-
nience and

dk
/ W M. PP (k) = 2 (PP ().
(113)

/ P VP RYD (k) = Saa.

In what follows we will suppose that there is a persistent mass
gap between the zeroth eigenvalue and the first excited ones,
even at the transition. This means that even if the zeroth order
eigenvalue goes to zero at the transition, we are assuming that
all the excited ones remain finite. Let us now consider again
Eq. (85) for the zero mode

Mi(x1, x2, X3, Xa)ko(x3 — X4)
3.4

= (uv€ + O(e)ko(x) — x2); (114)
in Fourier space it is given by
dk  (p=0)
3D M"=7(q, —kko(k) = (/€ + O(€))ko(q).
(115)
Therefore,
v" () = ko(@).  Mo(p = 0) = p/e + O,  (116)
Let us now define (fori =1, 2, 3)
mi= | Gt CoM ™ g k(—k), (1)

in such a way that

ho(p?) =mi +ap® + 0(p*) = uv/e +ap® + O(e, p*).
(118)
Hence Ao(pz) is small close to the transition and for small
momentum p 2~ 0, so that the leading term in M !'is the zero
mode,

[MP] (g, k) = P (@ k)

)»(2)

+2 5 e Z)I/fs,”(q)w;'”(k)

a>1

v P @y (k).

A ( 5 (119)
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We now need to compute the coefficients u and o. The first
one is given by the definition

li dm1

= lim ——

= e—0 dﬁ
- d qudek( YMP=0(q, k)ko(—k), (120)
_€_>(] d\/_ (2 )2D ol—¢q 1 q, 0 s

and the other one can be evaluated using perturbation theory.
In fact, let us develop the operator M, around p = 0. We have
that

d
— M (g, k)

(p)
M ,k
1 (g, k) ap

+ 0(p")

p=0
(121)
and we know that k((q) is the fundamental state of the unper-
turbed operator M {” =0 (g, k). Now let us treat the second term
as a small perturbation because we are near p = 0. The shift
of the eigenvalue of the ground state is given by

= M"(q. k) + p’

dg dk
2 _ 20
ro(p?) —mi =p 313(1)/ Wko(—éﬂ

ko(—k),
p=0

9 (p)
X 8_])2M1 (g, k) (122)

so that

o = lim (‘zquz’; ko(—4) 5 M(”(q k)‘ ko).
(123)
We conclude from this analysis, and in particular from
Egs. (118) and (119), that close to the transition and for
small p,
ZEE

ko(q)ko(k) (124)

f +o
Inserting this in Eq. (111) we get, with the same definition of
the » product as before

(f * ko)
pA€ +op?

Goe~'/2
L+

smg( )
(125)

d
Foko = / s F @),

In this way it is clear that the correlation length is given by

S:\/gel/4 (126)
and
2
Gy = @ . (127)

This completes the analysis of the quadratic part of the action.

VI. GINZBURG CRITERION

In the previous section we have investigated the quadratic
and cubic terms in an expansion of the free energy around the
critical value of the order parameter. This corresponds to the
Landau expansion described in Secs. II A and II B. We now
follow the discussion of Sec. II C: we assume that the free
energy " has been obtained by truncating in some way the
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high temperature expansion (we will come back on this point
in Sec. VII), and we use this mean field free energy as a bare
action to perform a loop computation and obtain a Ginzburg
criterion.

The quadratic part of the free energy provides the Gaus-
sian part of the bare action. What can be expected from the
discussion of Sec. II D is that the Gaussian approximation is
valid (at least qualitatively) everywhere in the (7, p) plane
if the dimension is greater than the upper critical dimen-
sions; otherwise the Gaussian approximation is valid only
up to a certain distance from the critical line in the (7, p)
plane. As discussed in Sec. II D, this statement can be made
more precise by performing a one loop expansion for the
correlation function of the order parameter and then look at
which temperature or density the first loop correction is of
the same order of the Gaussian approximation for that corre-
lation. The Gaussian bare propagator is Gfli);cd(q, k) given in
Eq. (104). To compute the loop corrections to this propagator,
one should start a very difficult computation because the dia-
grammatic arising from the replica field theory is complicated
by the presence of the replica indices as well as the “internal”
wavevectors g, k.

A. Projection on the zero mode

The calculation can be greatly simplified if we focus only
on the critical behavior of the correlation functions. In partic-
ular, in Sec. V B we have shown that the critical part of the
propagator Gé’;);c 4(q, k) is entirely dominated by the presence
of the zero mode of the kernel operator M fp )(q, k). For ex-
ample, according to Egs. (111) and (124), the singular part of
the thermal correlation function G,(p) is given by the inverse
of the zero mode of this operator. Clearly, the full thermal
correlation function contains also the non critical contribution
coming from the excited states but here we are not interested
in this contributions. Instead, we would like to focus on the
critical part of the observables. To do this we can suppose
that the eigenvalues corresponding to excited states are set to
infinity so that we have no fluctuations along the directions
orthogonal to the zero mode. This amounts to consider an ef-
fective low-energy theory where only the fluctuations along
the zero mode are allowed, which means that we choose

Gar(P)ko(q)- (128)

By doing this we obtain a simplified theory that gives us only
the critical part of the correlation we want to compute. The re-
sulting effective theory is obtained as follows. The quadratic
part is obtained by inserting Eq. (128) in Eq. (99). The rele-
vant cubic terms according to Refs. 13 and 44 can be obtained
by inserting Eq. (128) in the cubic part of the expansion and
using similar considerations as in Sec. IV B. The result is

ApD(p,q) =

1 dp

r [d)ab] (2 )D

D e+ op)u(p)l’
a#b

+m22

+m;3 Zm(p)
a#b
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d
Z /(Zp )ZPD ¢ab(p)¢bc(p/)¢ca(_p _ p/)
a#b#c#a

wr dpdp’ / |
6 ;/ W‘f’ab(l’)%b(p Ybar(—p — P,

(129)

and the coefficients that enters in the above formula are ex-
actly the ones that were computed in the previous sections:
see Egs. (117), (120), and (123) for the quadratic part and
Eq. (97) (without the factor fxko in the denominator) for the
cubic part. This result is at the basis of our next computation.
Let us note that by projecting on the zero mode, the momen-
tum structure of the theory has been simplified drastically.

B. ¢° theory in random field

To get the result at the dynamical transition, one should
take the m — 1 limit. In Ref. 13 it has been shown that the
perturbative expansion of the replica field theory of the form
(129) can be mapped to the study of a scalar field which sat-
isfies a particular cubic stochastic field equation. This map-
ping has been done using a transformation for the fields which
is quite close to the Cardy’s treatment of the branched poly-
mer problem.* However using the field theory techniques de-
veloped by Parisi and Sourlas,*® it can be shown straightfor-
wardly that the stochastic equation describes also the leading
critical behavior of a theory for a scalar field in a cubic poten-
tial and interacting with a random Gaussian magnetic field.
The action of this spinodal field theory in a random field—
which we now use as a bare action following the discussion
of Sec. Il C—is given by

1
S) = 5 / ar o)~ V2 + md)o(o) + & / drg*(x)

+ / dx(ho(x) + 8h(g, A))e(x), (130)

where h(x) is a Gaussian random field with variance given by

ho(xX)ho(y) =

and the coupling and masses are given in terms of the coupling
and masses that appear in the replica field theory (129) by

m(Z) = /;L\/E/O',
g = (w —wy)/o™?, (132)
A = —(my + m3)/o.

AS(x — ), (131)

In the action (130) we added a counterterm 84, that will be
used to avoid that one loop corrections shift the position of
the critical point. The counterterm §# can be seen also as a
redefinition of the mean value for the random field Ay. The
bare propagator of the theory is, as usual, given by Go(p)
= (p* + m})~". To compute loop corrections, it is quite use-
ful to write down the generating functional for the connected
diagrams

WIJ] =InZ[J], (133)



12A540-19 Franz et al.

where the external current J(x) is given by

J(x) = ho(x) + 8h(g, A). (134)

Moreover, let us introduce the diagrammatic notation that will
be convenient later
o = e + e, (135)

H/’[J]?vLc o+cTo+cmo+c?o+c\Ko+....
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J(z)=o ho(z) = o O0h(g,A) = e. (136)

The expansion for W[J] is given (up to second order in g) by
the following diagrams:

Let us look first to the corrections to the average of (¢(x)). By
taking the average over the random field and by marking with
a blue dot a doubled propagator, these corrections are given

by
(p(x)) = T + ? + <Pa (138)

where we have made the hypothesis (to be checked in a self
consistent way) that the counterterm &4 is proportional to g

137)

so that we have retained only the diagrams up to second order
in g. We want that the critical point is not shifted so we want

(¢p(x)) = 0. Therefore at this order in perturbation theory we

must have

from which we see that 67 o« g. Now we look to the correction
to the propagator. We have

{p(@)p(y)) = Golz —y) + T +9+§>+ N LN +...

=Go(z —y)+ f.\ + LN\ +...

where we have used the relation (139). Because we are inter-
ested in the most (infrared) divergent diagrams we can neglect
the second one. However, note that the second diagram is rel-
evant in the ultraviolet regime because it diverges sooner as
the number of dimensions is increased (actually it is conver-
gent in D < 4). Now, let us neglect the second diagram and
compute the dotted diagram. We have at zero momentum

L _ople (" dg
G(p=0)=Go(p=0)+Golp = 00—~ | =55

Go(q)’.
(140)

)

From now on we follow closely the procedure of Sec. II D.
We invert the above equation to obtain

B Ag2 A dg 1
2 1 2
mp (p ) mg 2 (27T)D (q2 +m%)3
2 A
:mg—A—g qu ! . (141)
2 2n) (q2 +mi)

As in the ¢* theory, the mass correction is UV divergent for
d > 6 and leads to a non-universal shift of the critical point,
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which corresponds to

Ag* (M dg 1

2
= — —. 142
T ) anr g (142
The distance from the critical point is
Ag* (A dg 1
2
t=my— —— —, 143
my 2 (27-[)D q6 ( )
and Eq. (141) becomes
Ag* (A dg 1 1
2
mth—T 3 D 23__6 . (144)
(27m) (qz + mR) q

As in Sec. II D we have to impose the condition that the one
loop correction is small in such a way that the mean field re-
sult m% = t is not altered. A simpler and completely equiva-
lent (apart from a numerical prefactor of order one) condition
is obtained by considering
dt Ag?

=1-3——
dm%e 2

A dg 1

Q)P (g% + mp)*
and of course we want the second term to be much smaller
than one. Written in terms of physical observables (m%e and
1), the one loop correction is UV convergent and IR divergent
when D < 8 and the renormalized theory exists in this case,
leading to a universal form of the Ginzburg criterion, which
clearly tells us that the upper critical dimension is 8. Sending
the cutoff to infinity, using the standard Schwinger represen-
tation for the propagator’®

1 oo
[
p>+m>

(145)

and taking derivatives with respect to m?, we obtain
dt Ag?
— =1 _—gD/ZF (4——>m28
dmy, 4(4m) 2
and the Ginzburg criterion amounts to the following condi-
tion:

(146)

g’A D\ s
1> 4(471)0/21“<4 Z)mR . (147)
On the other hand for D > 8, as before, the correction is UV
divergent (and IR convergent) and therefore the precise form
of the Ginzburg criterion depends on the regularization. Again
in the mean field region the correlation length is § = 1/mg, see
Eq. (126), hence we can write

Gie 82 (4 D
= —— —— ).
44D 2

1> Gigd P, (148)

Vil. EXPLICIT CALCULATIONS IN THE
HYPERNETTED CHAIN APPROXIMATION

The theory developed in Secs. V and VI allows to com-
pute several observables related to the critical behavior of the
system at the dynamical transition. The starting point of the
theory, that is needed in order to perform concrete micro-
scopic computations, is an explicit “mean-field” expression
for the free energy I'[p, p®]. As discussed in Sec. II C, there
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are several possibilities and many of them have been used in
liquid theory:*” most of them can be seen as resummation of
the high temperature or low density expansion. Once a mean-
field approximation to the free energy has been chosen, the
observables can be computed. Before proceeding, let us sum-
marize the main results of Secs. V and VL.

¢ First of all one has to identify the dynamical transition
point T, or py, at which the off diagonal part g of the
physical correlation defined in Eq. (57) jumps from the
trivial value g = 1 to a non-trivial value.

® The next step is to identify the zero mode ko of the
mass operator, as discussed in Sec. IV C. This can be
done by a direct diagonalization of the mass operator,
defined in Egs. (77) and (80). Recall that according to
the analysis of Sec. IV C the zero mode is determined
only by the M| term of the mass operator, see Eq. (85).
However, a simpler route, which we will use in the fol-
lowing, is to determine the evolution of g close to the
critical point and extract the zero mode from Eq. (74).

® At this point we know the zero mode, the free energy
and therefore its second (M) and third (L) derivatives,
see Eq. (60). The first observable we can compute is
the exponent parameter A of mode-coupling theory.
We have A = w;/w; where the cubic coefficients w;
and w, are given by Eq. (97). Here the choice of the
smoothing function f that is used to define a proper
overlap (see the discussion in Sec. IIT A) is irrelevant,
because the ratio of w; and w, is independent of f.

® Next we can look at the gradient expansion for the fluc-
tuations along the zero mode. We compute the masses
my and m3 from Eq. (117). The critical part is once
again related to the zero mode of M, as expressed in
Eqgs. (118) and (119). We need the two coefficients
and o, given, respectively, by Eqs. (120) and (123).
From these coefficients we obtain the singular part of
the four-point correlations, Eq. (125), with the dynam-
ical correlation given in Eq. (126) and the f~-dependent
prefactor given in Eq. (127).

® At this point we have all the couplings that enter
in the effective action for the fluctuations along the
zero mode, Eq. (129). Remember that here we choose
f = ko, hence the f dependent denominators in w; and
ws, Bq. (97), are omitted. Mapping this theory on a ¢?
theory with the change of couplings in Eq. (132), we
obtain the Ginzburg criterion expressed by Eq. (148).

In order to present a concrete implementation of this pro-
gram, in this section we present explicit calculations using a
popular approximation for the free energy, the so-called HNC
approximation. It amounts to simply neglect the contribution
of 2PI diagrams from Eq. (51). This approximation is known
to give good qualitative results for the structure functions
around the dynamical transition.”*”-*8 However, the quanti-
tative agreement with numerical results is quite poor, in par-
ticular for the so-called non-ergodicity factor, which is related
to the Fourier transform of g. We will see that in fact the re-
sults for A are not very good. Yet we believe that the order of
magnitude for the Ginzburg number, which is the most inter-
esting result of the present analysis, is correct.
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Better approximations can be obtained by performing a
“small cage expansion”>*® or by expanding systematically
around the HNC equations.*’ Other approximation schemes
have been explored*>>° but they are not practical for the
present purposes. A preliminary calculation of A using the
small cage expansion’! gives very good agreement with
the numerical result. However, the aim of this section is only
to show that concrete calculations can be done easily: we
leave a detailed comparison with numerical results for future
work.

A. Derivatives of the free energy in HNC

Because we need the expansion of the free energy up to
the third order we start by computing its derivatives. To sim-
plify the notations, here we will first perform the calculation
without taking into account the symmetries of the replica and
spatial indices, and we will symmetrize the result at the end.
We also use the shorthand notation 8,,(1, 2) = 8,,8(x1 — x3).

J. Chem. Phys. 138, 12A540 (2013)

The first derivative is

STp, p@1 1 2(1,2)
— —_— «(2,1 hpa(2, D],
o [paa)pb(z) — [cha(2, 1) = hpa(2, 1)]
(149)

(2)(1 2) )
which can be easily proved from Eq. (52) by representing
Tiing as a sum of diagrams.’” Using the same diagrammatic
representation we find

Searl2) _ 15 (1.3) = pe(Brcac(l, 3]
Sh.q(3,4)
x [845(4,2) — pa(@)cap(4, 2)]
= pB3)pa@TP(1,3)r54,2)  (150)
having defined
roa,2) = pa(l)a,,b(l,z)—cabu,z). (151)

From this we can compute the second derivative of the HNC
free energy, namely, its mass matrix:

8Tp, p?] 1 Sac(l,3)8ap(4,2)  8aa(l, H)Bpc(2, 3)
505(1,2)805)(3,4) 2 p(1,2) pa(1)pp(2)
1
o (852, 3) — Pe(3)he(2, I[Baa(d, 1) — pa(@)caa(d, 1
2pc(3)pd(4)[ bc(2, 3) — pc(3)che(2, I[3aa(d, 1) — pa(F)caa(4, 1]
_1 8ac(1,3)0ap(4,2)  Baa(1, H)dpc(2,3) (2) 2.3 F(z) 4.1 152
2 [ p2(1,2) pa(1)pp(2) } (2 IMaa & D- (152)
Moreover, the cubic terms are given by
8Tlp, p?] 1
= ——8ae(1, 3)845(4, 2)840 (1, 5)8 11(6, 2) ———
002000, 6 2 el N b 0O DT
1 8caa(4, 1)
e 08,62, 3) — pe(B)cpe(2, 3) ]| R
2 @, eI~ PP 3G G
1 1 Scpe(2,3)
— Saa(d, 1) — pa(@)caa(®, 1
2 A @ P07 (6) Bhey 5,6 22e 4 D~ Pucas(4 1)
1
= —§3uc(1, 3)8ap(4, 2)84e(1, 5)8 11 (6, z)m
[r,ﬁ?(z I, 506, 1)+ T3 (2, HMF G, 60Ty @, D). (153)

2

Using these results, following Sec. IV A, we expand the
free energy around the 1RSB reference solution, Eq. (57).
We have Ap2(1,2)=031,2) — p@,,(1,2) and AT
=T'[p, p®] = I'[p, p@]. The derivatives of I" and in particu-
lar the functions I'® must be evaluated on the 1RSB solution

Eq. (57), hence

ry(1,2) = Saplc(1,2) —¢(1,2)] — (1, 2),

(154)

1
—8an(1,2) —
0
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and we have introduced for the matrix c,; (1, 2) the same no-
tation as in Eq. (57), where ¢(1, 2) and &(1, 2) are respectively
its diagonal and off-diagonal part. We obtain A" = A’T

+ AT with
AT = — 1| [Apyp(1, 2)]?
22] [g(l 5 }[ Pan(1,2)]
1
DI Il
astbodtd Y 1:2:34
X (2,3)Apea(3, HT (4, 1),
(155)
AT =

Apap(1,2)1
42/2[g(1 pyp APl 2]

1
= 2 / Apas(1, DT} (2. 3)Apea
1,2,3,4,5,6

a#b,c#d,e#f
X (3, HTG (4, 5)Aper (5, 6OI'7(6, 1).

Remember that the above Eqs. (152) and (153) are not sym-
metrized, but obviously when they are inserted in the free
energy to compute A" and A3T they are contracted with
symmetric functions so the result is correct. However, in
Sec. VII B we will have to symmetrize them explicitly in or-
der to insert them in the expressions for the coefficients of
the action, where the symmetry properties have been used
explicitly.

B. The HNC mass matrix

The mass matrix, due to the replica symmetry of Eq. (57),
can be put in the form (80) by a proper symmetrization of in-
dices in Eq. (152). The parameters entering in that expression
are given by

18(1,3)52.4) 1

M(1,2;3,4) = — —[8(1,4)Ac(2,3
i )= a2y B A2

+48(2,3)Ac(1,4)] + %Ac(l, 4 Ac(2,3),

M>(1,2;3,4) = —%5(1, 4) (%5(2, 3) — Ac(2, 3))

— l5(2, 3) (13(1, 4) — Ac(l, 4)) , (156)
2 p

1
M5(1,2;3,4) = 55(1, 4)é(2, 3),

where we have introduced the notation

Ac(1,2) = c(1,2) — &1, 2). (157)

Note that we did not symmetrize Eq. (152) over spatial in-
dices (i.e., over exchanges 1 <> 2 and 3 <> 4). This has not to
be done explicitly because in any case we are going to apply
these operators to symmetric functions only.

C. Expression of A in HNC

We now consider the cubic term. We want to plug
Eq. (153) into Eq. (97) to obtain w; and w,. Here we have
again to symmetrize Eq. (153) with respect to the exchanges
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a<b,c<d,e<f,ab< cd, ab < ef, cd <> ef because these
have been used explicitly to derive Eq. (97). Indeed, they have
been used in Egs. (71) and (72). Note that, once again, what
is important is to symmetrize the replica indices, because the
spatial indices are going to be contracted with a symmetric
function in Eq. (97) so there is no need to symmetrize them
explicitly.

Let us denote the two terms in Eq. (153) with names that
highlight the different topologies of their replica indices con-
nections:

L8, 0r(1,2:3,4:5,6)

= 8acll 3D0aslh, Dbael, M 7e6, Dy — 5
(158)

LiD e 1a(1,2:3,4;5,6) = T2, 34, 5r . 1).

Then the symmetrized derivative is (omitting the irrelevant
spatial indices)

1
o) Y] (1)
Lub,cd,ef - 8 (Lace bdf + Lacf,bde + Ladf,hce + Lade hcf)

(2)
- g(Lm bf,de + Lac be,df + Lad be,cf + Lad ,bf,ce

@) 2
+L e,be.df +Lae bd,cf +Lufbc de +Luf,bd,ce)'
(159)
From this the eight independent elements of Ly, .4, .r that enter

in Eq. (97) are easily computed and we get the following two
expressions for w; and wj:

1 1
e — ko(1, 2)ko(3, 4)ko(5, 6
wy 16/ xkoP' V ./1,2;3,4;5,6 o(1, 2)ko(3, 4)ko(5, 6)
1
x 8(1,3)8(2,4)(1,5)5(2, 6) <m> ,
(160)
1 1
e ko(1, 2)ko(3, H)ko(5, 6
i 8(f *ko)V /1,2,3,4,5.6 oll, 2003, Dho(5, 6)

x [[(2,3)['@&, 56, 1) — 316, 1)) + 32, 3)
—T@,3)r'@4, 51, D1,
where we have denoted I'(1, 2) and T'(1, 2), respectively, the

diagonal and off diagonal part of the matrix (151). It follows
that the exponent parameter is given by

ko(r)?
f dr oy P15

[ 225 ko(q)*[T(q) — T(g)P
L fdr ’jb(f)

()
. (161)
5/ (zj‘gp K@U = pAc(g)P?

NI*—‘

NI*—‘

D. Computation of 4 and ¢ in HNC

We will now compute the coefficients of the mass matrix
(., o, my, m3) in the HNC approximation. The contraction of
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the operator M l(p ) with the zero mode gives

dgdk
mp = | Sk M . Dkl

1 ko) 1 dg
=57 Y30 "2 ) @

<[ac(F+a)+ae(5-a)]
+l/(2dq)D k(@) Ac (12)+61) AC(g—q),

(162)
so the p coefficient defined in Eq. (120) is given by
. dmi(p=0)
= lim ———. 163
po=lim — NG (163)

In order to compute this derivative we recall that from
Eq. (74)

dg(r)

kko(r) = llmf
= &(r,€) = §(r, 0) + 2/exko(r) + O(e). (164)

Then we can use the replicated Ornstein-Zernike relation*® to
obtain

_ Ac(q)
— = — 165
8(q) — &(q) 1= pAc(g) (165)
from which
&g, €) = &g, 0) + Vecolg) + O(e),
li deq) 2ick, 1 A (166)
colq) = lmv = 2kcko(@)[1 — pAc(@)]*.

Using these expressions we arrive to the final form for the
coefficient u:

k3(r) dg
= ——/ 20 / o )Dko(q)[l — pAc().

(167)
In an analogous way we can obtain the expression for the co-
efficient o

(168)

p=0

To compute this expression let us use the following relation:

(|8 +d) = r@+ 5372
@ e @ 1@
+§|:Z 7 (6]')+Z " P (g )]
(169)

so that the final expression for o is given by

1 dg
- / k@A)~ 1

(3@~ 20 cog 1 20T

q
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__/ Baak@ (Ac @)’ cos? 0, (170)
where 6 is the angle between the D-dimensional vector g and
one of the coordinate axis. In D = 3 we get

1 o0
ZWfo qko(q){ [pAc(q) — 1]

x[*Ac'(g) + 29 A (@] - ¢* (Ac @)’} . (17D

From Eq. (117) we can compute also the parameters m, and
mj3. The expressions for these two quantities are

d 1
ma = — / #ké@f@ [; - Ac(q)] :

. d (172)
= > / #ké(qw%q»

E. Summary of the numerical results

Using the HNC approximation for the free-energy, i.e.,
neglecting 2PI diagrams in Eq. (51), leads to a self-consistent
equation for the order parameter pﬁ) via Eq. (56). With the
choice of a replica-symmetric structure Eq. (57), and setting
m = 1, we obtain a self-consistent equation for the diagonal
correlations that coincides with the liquid HNC equation, and
a self-consistent equation for the off-diagonal parts that takes
the diagonal ones as input (see Ref. 48 for details). Note that
although this calculation is possible in any D, here we restrict
to D = 3 for simplicity.

The equations are solved numerically using a standard
Picard iteration scheme. We first focus on the diagonal part.
We start from a very low density p ~ 0.2 and gradually in-
crease the density while following the evolution of the so-
lution. At high enough density, if we solve the off-diagonal
equation starting from a suitable guess for the off-diagonal ¢,
we obtain a non-trivial solution. When a non-trivial ¢ has been
obtained for a given p, we gradually lower the density while
following the evolution of ¢, in order to get very close to the
critical point p,; where the solution disappears.

For the obtained values of p > pg4, we then numerically
compute the derivative of the order parameter g with respect
to density, both in Fourier and real space. Recalling that this
derivative is divergent at the transition, as shown in Eq. (74),
we determine the precise value of p; by imposing that for
k ~ 2m in Fourier space and » = 0 in real space, the derivative
of the correlation function scale as \/p — pg, using pg as a
fitting parameter. We used these particular values of r and £,
since we observed that they were the most sensitive to density
changes. The prefactor of this square-root behavior is by def-
inition the zero-mode kq in Eq. (74). We check the validity of
this scaling by computing & at two different densities slightly
above pg4, and by checking that ky does not depend on p close
enough to p,. Note that here we included the constant « in
ko. In fact it is easy to see that the overall normalization of kg
does not affect any of the physical observables. We show in
Figure 1 the typical shape of the zero-mode kg in Fourier and
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FIG. 1. Off-diagonal correlations and the zero mode, all computed at p, for hard spheres in D = 3.

real space, the off-diagonal pair correlation function g in real
space, and its Fourier transform, all computed at p,.

We applied this numerical scheme to several benchmark
models of monodisperse systems of three-dimensional spher-
ical particles that have pairwise interactions. The models we
used are:

e Hard spheres (HS):

_Joo ifr<ry
v(r) = {O ifr >ry’ a73)
® Harmonic spheres (HarmS):
e - r/ro)? ifr <rg
v(r) = {0 ifr >ry’ (174)

for various temperatures (note that for § — oo this
potential reduces to the hard-spheres potential),
e [ ennard-Jones (LJ):

ro\ 12 o\ ©
vr) = 4e [(7) -(7) ]
e Weeks-Chandler-Andersen (WCA):

u(r) = 4e [(rr—o)12 - (rr—o)6 + ﬂ 0(ro2"/° —r),
(176)

(175)

e Soft-spheres (SS):
o) = ¢ (rr—o) (177)

forn=26,9, 12.

The lengths are computed in units of the particle diameter ry,
and the temperatures in unit of the energy scale of the po-
tential & (except for HS, for which temperature is irrelevant).
Note that for SS temperature and density are not independent
variables, so we used the density as a control parameter.

Once ko, ¢, and ¢ have been determined at the critical
point, we can readily compute the different parameters in-
volved in the calculation of the exponent parameter, the pref-
actor of the correlation length, the prefactor of the Ginzburg
criterium, as well as the prefactor of the divergent part of the
four-point correlation function. Note, however, that the latter
depends on the function f that we choose in Eq. (38) to define
our order parameter. In the numerical computation we used a
box function

D
f&) =AP]o(A% - 7).

i=1

(178)

where 6(x) is the Heaviside step function. We choose
A = 0.1ry. For all systems, we give the four main results of
this paper in Tables I and II:

® The value of A given by Eq. (161).

e The prefactor & = /o /. of the correlation function &
= £ge ", see Eq. (126).

® The prefactor of the divergent part of the four-point
correlation function Gy, as given in Eq. (127).

e The prefactor of the Ginzburg criterion given by
Eqgs. (132) and (148).

Moreover, let us note that the values for the coefficients
w; and w, are not exactly the ones that can be obtained
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TABLE I. Numerical values of the coefficients of the effective action and the physical quantities from the HNC approximation. For each potential, lengths are
given in units of ro and energies in units of &, with kg = 1. Data at fixed temperature, using density as a control parameter with € = pq — p.

System T 04 —w —wy my m3 o 0 A &o Gy Gi
SS-6 1 6.691 3.88-107° 1.35-10°° —0.000925 0.000110  0.000195 0.000525 0.348 0.601 224 0.0267
SS-9 1 2912 0.0000772 0.0000272 —0.00539 0.000633 0.00163 0.00543 0.353 0.548 343 0.0125
SS-12 1 2.057 0.000275 0.0000973 —0.0116 0.00132 0.00378 0.0152 0.354 0.498 14.2 0.0118
L) 0.7 1.407 0.00106 0.000376 —0.0258 0.00290 0.00989 0.0414 0.355 0.489 6.00  0.00833
HarmS 1073 1.336 0.00129 0.000465 —0.0336 0.00343 0.00772 0.0779 0.359 0.315 2.82  0.0434
HarmS 10~ 1.196 0.00165 0.000622 —0.0403 0.00386 0.00819 0.109 0.378 0.274 1.69 0.0632
Harm$S 10—3 1.170 0.00174 0.000663 —0.0416 0.00395 0.00845 0.109 0.382 0.278 1.66  0.0635
HS 0 1.169 0.00174 0.000664 —0.0418 0.00397 0.00847 0.108 0.381 0.280 1.67 0.0639

from (97). In fact, in those expressions there is a depen-
dence on the smoothing function f. In our table we have
neglected the f dependent prefactor that is equivalent to as-
sume that the function f is the zero mode. However, the ex-
ponent parameter A is not affected by this choice because it
is given by the ratio between w, and w;. We found that, for
all these systems, the dependance of the results on the real
and Fourier space cut-offs that are needed for the numerical
calculation is significant, altering the results on our predic-
tions to within 1073, For the case of hard-spheres, we checked
that the results become increasingly stable when diminish-
ing both cut-offs simultaneously. The error that we make be-
cause of the finite cutoffs are, however, not very important
because numerical simulations and experiments cannot, for
the moment, provide results with a better accuracy, due to
the difficulty in accessing the critical region close to the glass
transition.

Our results for A ~ 0.35 are quite different from the
ones obtained from mode-coupling theory,>3%>3 which finds
A &~ 0.7 in very good agreement with numerical simula-
tions. This confirms earlier indications, that the replicated
HNC approximation is not a good scheme for quantitative
calculations.*® Note that the values reported in a preliminary
report on this work'® were missing a factor of 1/2 in the ex-
pression of w, in Eq. (160). This missing factor was found
thanks to an independent calculation of A from a completely
different method.* The factor affects both the value of A and
that of the Ginzburg number, and unfortunately, the correct
value of A =~ 0.35 from the replicated HNC approximation
turns out to be quite different from the one obtained in nu-
merical simulations A ~ 0.7. However, the latter was acciden-
tally coincident with the value reported in Ref. 19 because of
the missing factor of 1/2, which of course was not helpful in

finding the error. A calculation of A in the small cage expan-
sion gives a much better agreement with the mode-coupling
result.’! Concerning the other observables, unfortunately, not
many numerical data for the behavior of the thermal correla-
tion in the § regime are not available. We have checked that
our results are roughly consistent with the results of Ref. 55
but more precise simulations would be very useful to test our
predictions.

VIIl. CONCLUSIONS

A complete characterization of dynamical hetero-
geneities in the B regime has been obtained using a static
equilibrium approach in the framework of the replicated liq-
uid theory. The criticality of the four point density correlation
functions has been analyzed through the computation of the
stability operator of the replicated Gibbs free energy around
the glassy solution. This kernel operator has a soft mode that
is responsible for the growth of the various type of suscepti-
bilities at the dynamical transition. Having identified the soft
mode, we have produced a gradient expansion for the field
theory which describes the fluctuations of the two point den-
sity field that are along the zero mode itself. In this way we
can focus on the critical part of the quantities we are inter-
ested in. Then we have studied the theory at the Gaussian level
and we have performed a one loop analysis in order to see
where the mean field regime breaks. This results in a Ginzburg
criterion for the dynamical transition. Our approach is com-
pletely general and it relies only on the fact that the glassy
phenomenology can be captured by the one-step replica
symmetry breaking scheme. Moreover, to produce some
quantitative predictions we have computed in the HNC ap-
proximation all the observables we are interested in: the

TABLE II. Numerical values of the coefficients of the effective action and the physical quantities from the HNC approximation. For each potential, lengths
are given in units of ry and energies in units of ¢, with kg = 1. Data at fixed density, using temperature as a control parameter with e = Tg — T.

System P Ta —w —wy my m3 o % A &o Go Gi
LJ 1.2 0.336 0.00186 0.000663 —0.0361 0.00403 0.0147 0.0572 0.356 0.507 4.56 0.00730
L) 1.27 0.438 0.00153 0.000541 —0.0321 0.00370 0.0128 0.0447 0.353 0.536 5.74 0.00771
LJ 14 0.684 0.00108 0.000383 —0.0260 0.00293 0.0100 0.0292 0.355 0.586 8.52 0.00825
WCA 1.2 0.325 0.00195 0.000686 —0.0389 0.00426 0.0133 0.0607 0.351 0.467 4.37 0.0134
WCA 14 0.692 0.00111 0.000388 —0.0270 0.00301 0.00966 0.0291 0.350 0.576 8.67 0.0106
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correlation length, the thermal four points correlation func-
tion, the mode-coupling exponent parameter, and all the cou-
plings of the effective replica field theory.

Our calculations can be straightforwardly extended to
other more accurate approximation schemes and this is one
of the points that must be explored. The question about how
to attack systematically the problem in the o regime remains
open. One might think that replicas are useful mostly in the 8
regime where one is exploring the interior of one metastable
state, while the study of the barrier-crossing o regime requires
a full dynamical approach. However, recently it has been dis-
cussed how replicas can be used to obtain the full long time
reparametrization invariant dynamics.’® This is surprising at
first sight because it gives a recipe to obtain some results
for the dynamics directly from the statics; however the time
sector that it explores is the reparametrization invariant one
where quasi-equilibrium holds. It would be interesting to see
what is the insight that can be gained for dynamical hetero-
geneities in the o regime from the application of this line of
reasoning to the replicated liquid case.

Finally, a recent numerical investigation suggested the
presence of an upper critical dimension d, = 8 for glassy
dynamics.”” A more compete comparison between the the-
oretical predictions obtained here and the numerical results
would be very helpful to understand the nature of the correc-
tions to mean field that become important below d = 8.
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APPENDIX: DOUBLE COUNTING PROBLEM
ON THE ¢* THEORY

Let us consider the ¢* theory defined by the action in
Eq. (11). The generating functional is defined by Eq. (10). At
the mean field level we have I'yr[¢p] = S[¢]. Including one
loop corrections, we obtain the following expression:

1
I'il¢] = Pvrle] + ETrlog K, (AD)
where K is the following operator
K(x.y) =8 = y)my =V + 290, (A)

By isolating a free operator Ko(x, y) = d(x — y)(m% —-V?
and defining an operator (¢?)(x, y) = ¢*(x)8(x — y) we can
rewrite the K operator in the following way:

K=K0®[1+§KO“®¢2], (A3)
where ® is the operator (integral) product. Moreover,
3 dp ere—»
Ky'(x.y) = (Ad)

Q)P p? +m§’
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It follows that

Ll =Tmelo]+ %TI‘ log [1 +§K61 ® ¢2] + %TI‘ log K.

(AS)
The last term is ¢-independent which means that it can be ne-
glected for our purposes. In fact we want to see what happens
if we compute the two point function at order g using '} as
an action instead of using the bare action S. Because we want
the two point function at order g we need to perform a Tay-
lor expansion of the extra term Trlog[1 + (g/Z)KO_1 ® ¢2]
which is given by

Trlog [1 + %KO_I ® ¢2] —Tr [%KO_' ® ¢2] +0(g%

= %Dl(m%)/dxd)z(x) + O(gz),
(A6)

where
dp 1
D (m2) = / 1
1( 0) (27)P P2+ m%
We now use I'jp as the bare action, Si [¢] = I'1.[¢] and com-

pute the two point function. The diagrammatic rules are the
standard ones for the ¢* theory:?¢

(AT)

Gp)= — + —o— + O (A8)

where the second diagram is the one originated by the term in
Eq. (A6). Note that the second diagram has exactly the same
expression as the last one. This is the expression of the double
counting problem.

At this point we can compute the Ginzburg Criterion
starting by Sip[¢] = T'iL[¢]. The action at order g is then
given by

1
Sulel = 5 [ drpto) [~ 4+ + £ Dy oo

+% dre*(x).
It should be clear at this point that the only difference
with the bare action S[¢] is a change of the bare mass, mg
— m} + £ D (m}). However, we have seen in Sec. II D that
the final expression of the Ginzburg criterion is expressed
in terms of the renormalized mass only, and is therefore not
affected by a change of the bare mass. We conclude that what-
ever microscopic action we use—provided it can be devel-
oped in powers of @2 at small ¢, which is the crucial assump-
tion of mean field theory—will give the same results for the
Ginzburg criterion. In this sense the Ginzburg criterion can be
thought as a check a posteriori of this assumption.
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