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We present strong numerical evidence for the existence of a localization-delocalization transition in the
eigenstates of the 1D Anderson model with long-range hierarchical hopping. Hierarchical models are important
because of the well-known mapping between their phases and those of models with short-range hopping in higher
dimensions, and also because the renormalization group can be applied exactly without the approximations that
generally are required in other models. In the hierarchical Anderson model, we find a finite critical disorder
strength Wc where the average inverse participation ratio goes to zero; at small disorder, W < Wc, the model
lies in a delocalized phase. This result is based on numerical calculation of the inverse participation ratio in
the infinite volume limit using an exact renormalization group approach facilitated by the model’s hierarchical
structure. Our results are consistent with the presence of an Anderson transition in short-range models with
D > 2 dimensions, which was predicted using renormalization group arguments. Our finding should stimulate
interest in the hierarchical Anderson model as a simplified and tractable model of the Anderson localization
transition, which occurs in finite-dimensional systems with short-range hopping.
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I. INTRODUCTION

After more than fifty years, the Anderson transition1

between localized and extended wave functions of a single
quantum particle moving in a disordered medium remains
the focus of considerable interest.2,3 Crucial contributions to
this field have been made by exactly solvable tight-binding
models, such as 1D models with nearest-neighbour hopping2,4

and models on the Bethe lattice.5,6 Here, we consider another
interesting class of tight-binding models with long-range hop-
ping arranged in a hierarchical block structure and decaying
according to a power law with exponent α. Hierarchical models
have a long history in statistical physics starting with Dyson,7

and (as we will explain later) they provide an indirect route to
understanding phases and critical behavior in D-dimensional
systems.8

We study the hierarchical Anderson model (HAM) in-
troduced by Bovier, which combines on-site disorder with
hierarchically structured long-range hopping.9 In the absence
of disorder, the spectrum is an infinite set of highly degenerate
flat bands that accumulate at the upper spectral edge. The
degeneracies are arranged in a geometric series: one-half
of the pure HAM’s states lie in the lowest energy band,
one quarter in the next highest energy, etc. Hierarchical
models preserve their structure under renormalization group
transformations,9–11 which has allowed proof of several rigor-
ous results about the site disordered HAM’s spectrum,8,12–15

and may promise exact extensions of the successful scaling
theory of localization.16 In particular, the absolutely continu-
ous part of the spectrum vanishes and the model presents only
spectral localization, provided that the hopping decays suffi-
ciently quickly with distance, i.e., the hopping decay exponent
α > 3/2.12,13

Unfortunately, much less is known about the size of the
HAM’s eigenvectors. The degeneracies of the pure model
permit different choices of mutually orthogonal sets of

eigenvectors. The most extended set consists of infinitely
extended plane waves, while the least extended set has sizes
that are strongly band dependent, with very localized states in
the lowest band and infinitely extended states in the highest
band. In the presence of on-site disorder, it recently has
been argued that all states are always localized,17 based on
an analogy with the criticality results for random-matrix
models, such as ensembles of ultrametric18,19 and power-law
random banded matrices.20 Both models, characterized by
an exponent α controlling the power-law decaying random
hoppings, exhibit an extended phase for α < 1 and a localized
phase for α > 1. This would rule out the possibility of a
transition in the HAM, which has a well-defined macroscopic
limit only for α > 1. However, models with random hopping
are relatively simple: the scattering length vanishes and
only the localization length is important. The HAM belongs
instead to the class of models with deterministic hopping,
which are much richer because they have nontrivial physics at
both length scales. In particular, the 1D Anderson model with
on-site disorder and deterministic power-law hopping exhibits
a localization transition at its upper spectral edge.21–25

In this work, we show that the HAM exhibits a localization-
delocalization transition near its upper spectral edge. We
perform a thorough numerical study of the inverse participation
ratio, which is the inverse of the eigenstate volume. Thanks
to the HAM’s invariance under block renormalization group
(RG) transformations, we obtain recurrence equations for
calculating the resolvent matrix. This recursive method allows
us to calculate the IPR in systems large enough to precisely
determine their infinite size behavior. Our results also suggest
that there is a critical value of α above which all states
are localized, in analogy with the lower critical dimension
D = 2 below which finite-dimensional short-range systems
are always localized and above which an Anderson transition
was predicted using RG arguments.16
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FIG. 1. Schematic representation of the hierarchical Anderson
model, cf. Eq. (1), with L = 23 sites. Lines denote hopping energies
tp between sites in distinct blocks of size 2p−1.

II. THE HIERARCHICAL ANDERSON MODEL.

The HAM is a 1D tight-binding model with L = 2N

equally spaced sites and independently distributed random
site potentials εi , i = 1, . . . ,L, with zero mean and standard
deviation W . The Hamiltonian reads

HN =
2N∑
i=1

εi |i〉〈i|

+
N∑

p=1

Vp

2N−p∑
r=1

1,2p∑
i �=j

|(r − 1)2p + i〉〈(r − 1)2p + j |, (1)

where |i〉 is the canonical site basis. The second line is the
hierarchical hopping matrix introduced by Dyson.7 It is the
heart of the hierarchical Anderson model, and is organized
in a tree as illustrated in Fig. 1. The highest level of the tree
has index p = N and the lowest level has index p = 1. At
each level, the system is divided into 2N−p separate blocks,
each of which contains 2p sites. The hopping between any
two sites within a single block has energy Vp. As seen in
Fig. 1, the hopping between sites in two different blocks is
determined by levels higher in the hierarchy and has energy
tp = ∑N

n=p Vn. We study the deterministic HAM, which has
hopping energies Vp = 2−α(p−1). This exponential decay in
the level index p ensures that in large N � 1 systems the
hopping energy between sites separated by a distance O(L)
decays according to a power law tp ∝ O(L−α), the same as
1-D Anderson models with power-law hopping.21–25

We study the infinite volume limit of the average density of
states (DOS) ρ(E) and of the inverse participation ratio P (E).
The former is defined as

ρ(E) = lim
L→∞

〈
1

L

L∑
μ=1

δ(E − Eμ)

〉
, (2)

where 〈· · · 〉 is the average with respect to the disorder potential
εi and Eμ are the HAM’s eigenvalues. The DOS measures the
averaged spectrum, but does not contain any signal of the
eigenstates’ localization or delocalization. We therefore study
the average inverse participation ratio (IPR) of the normalized
eigenstates |ψμ〉:26–28

P (E) = lim
L→∞

1

Lρ(E)

〈
L∑

μ=1

IL
μ δ(E − Eμ)

〉
, (3)

where IL
μ = ∑L

i=1(〈i|ψμ〉)4 is the IPR of an individual
eigenstate. Its inverse measures the eigenstate’s volume. The

IPR is restricted to the interval 0 � P (E) � 1. States that
are perfectly localized on a single site satisfy P (E) = 1,
and states that are equally distributed across all sites satisfy
P (E) = 1/L → 0.

In the pure ordered HAM (W = 0), the DOS is a series of
flat bands ρpure(E) = ∑∞

p=1 2−pδ(E − E
pure
p−1). Each flat band

is related to a level in the HAM’s hierarchy. The bands’
degeneracy decreases repeatedly by factors of two as one
moves to higher energy, thus yielding the factor 2−p. The
difference between consecutive energetic levels falls off as
E

pure
p+1 − E

pure
p ∝ 2−(α−1)p and, hence, these accumulate at the

upper spectral edge E
pure
∞ . Near E

pure
∞ the integrated density

of states N (Epure
p ) = ∑p

�=1 2−� follows a power law similar
to that of short-range finite-dimensional systems: N (Epure

p ) =
1 − C(Epure

∞ − E
pure
p )ds/2.8,12,14,15 Here, ds = 2/(α − 1) is the

spectral dimension which controls both diffusion and the
long-distance physics of second-order phase transitions such as
the Anderson transition. For W > 0, the integrated DOS of the
HAM exhibits a Lifshitz tail at the upper spectral edge, with a
Lifshitz exponent given by the spectral dimension.15 This is the
same behavior as observed in short-range finite-dimensional
systems with on-site disorder, where the integrated DOS ex-
hibits a Lifshitz tail controlled by the Euclidean dimension.29

Overall, as E
pure
∞ is approached, the spectral properties of the

pure HAM become similar to short-range finite-dimensional
systems. This is, thus, the most promising region for studying
localization transitions. Much of the interest in hierarchical
models originates in their mapping to short-range models
whose Euclidean dimension is strictly related to the spectral
dimension (see, e.g., Ref. 30 and references therein).

III. RENORMALIZATION EQUATIONS
FOR THE RESOLVENT

We obtain the DOS and IPR from the diagonal elements
of the resolvent matrix G(N)(z) = (z − HN )−1, where z =
E − iη, and η is a small positive regularizer that smooths our
numerical results over an interval in the spectrum with width
proportional to η.31,32 We use the following formulas:26,27,33,34

ρ(E) = lim
η→0+

lim
L→∞

1

Lπ

L∑
i=1

〈
Im G

(N)
i (z)

〉
, (4)

P (E) = lim
η→0+

lim
L→∞

η

πLρ(E)

L∑
i=1

〈∣∣G(N)
i (z)

∣∣2〉
. (5)

The HAM’s hierarchical structure allowed us to develop a
block RG approach which recursively calculates the resolvent
for one instance of the disorder. Our calculation has two
phases: a sweep up the hierarchy, and then a sweep back
down. At each step � of the sweep up we remove the
basis states associated with one flat band, and calculate an
energy-dependent effective Hamiltonian, which acts in the
reduced basis but exhibits the same poles found in the original
full-basis Hamiltonian. This effective Hamiltonian retains the
hierarchical form but its hopping energies {V (�)

p } and disorder
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potentials {μ(�)
i } are renormalized according to

μ
(�)
i = 2μ

(�−1)
2i−1 μ

(�−1)
2i

μ
(�−1)
2i−1 + μ

(�−1)
2i

+ 2V
(�−1)

1 , i = 1, . . . ,2N−�, (6)

V (�)
p = 2V

(�−1)
p+1 , p = 1, . . . ,N − � . (7)

Hopping energies and disorder potentials at the beginning of
the sweep up, V (0)

p = Vp and μ
(0)
i = εi − z − ∑N

p=1 Vp, are
those of the original hierarchical Hamiltonian. After � = N

steps we reach the top of the hierarchy and obtain a single
site effective Hamiltonian with disorder potential μ

(N)
1 . The

resolvent of this Hamiltonian is simply G0
1(z) = −1/μ

(N)
1 .

We use this resolvent to begin the sweep back down in which
we progressively restore the original basis and recursively cal-
culate the resolvent’s diagonal elements in the restored basis:

G
(N−�+1)
2i−1 (z) = 2

[
μ

(�−1)
2i

γ
(�−1)
i

]2

G
(N−�)
i (z) − 1

γ
(�−1)
i

, (8)

G
(N−�+1)
2i (z) = 2

[
μ

(�−1)
2i−1

γ
(�−1)
i

]2

G
(N−�)
i (z) − 1

γ
(�−1)
i

, (9)

with γ
(�−1)
i = μ

(�−1)
2i−1 + μ

(�−1)
2i . This procedure yields the

diagonal elements of the resolvent in the original system, and
its memory consumption and computational time grow only
linearly with L.40 The derivation of Eqs. (6)–(9) is presented
in Appendix A.

IV. RESULTS

Figure 2 compares the DOS and IPR calculated with
our renormalization method (solid lines) and η = 0.005 to
standard numerical diagonalization (filled circles) in a system
of size L = 210. The potential εi is generated from a Gaus-
sian distribution with zero mean and standard deviation W .
Diagonalization results are averaged over Nε = 103 disorder
realizations and renormalization results over Nε = 2 × 104

realizations. Figure 2 shows excellent agreement between the
two methods.

The only important discrepancy is found in the IPR at
small disorder W = 0.6, where the DOS falls precipitously.
The observed discrepancy is explained by Fig. 2 inset,
which compares results with two values of the regularization
parameter: η = 0.01 and 0.005. The latter lies closer to the
diagonalization results, which indicates that when the disorder
is small the limit η → 0+ is reached only at η 	 0.005.

Figure 2 also gives an overview of the DOS and IPR across
the spectrum for a representative hopping decay exponent α =
7/4 and four different values of the disorder strength W =
0.6, 1.0, 1.4, 1.8. At small disorder W = 0.6, the average DOS
is separated into several bands whose positions coincide with
the pure system’s flat bands. The associated minima in P (E)
show that the eigenstates are bigger in the band centers and
smaller at the band edges. When the disorder is increased, the
bands progressively blur together and P (E) steadily increases
as the eigenstates become ever more localized. Figure 3 shows
the same behavior at α = 3/2 in systems of size L = 223.
Reaching such large sizes allows us to explore smaller η values
and obtain detailed results about many bands near the upper
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FIG. 2. (Color online) Comparison of the HAM’s average DOS
and IPR: numerical diagonalization (filled circles) vs RG method
(solid lines), with hopping decay exponent α = 7/4. The energies of
the pure model’s flat bands are marked with cyan vertical lines in
the upper pane. The inset shows that when the IPR is small the RG
method is sensitive to the spectral line width η; the dashed and solid
lines were obtained with η = 0.01 and 0.005, respectively.

spectral edge. Indeed, in order to obtain statistically significant
results, the spectral line width η must considerably exceed the
mean level spacing [Nρ(E)]−1.

In general, the IPR exhibits several local minima corre-
sponding to large states near the centers of the HAM’s bands,
and the global minimum lies near HAM’s upper spectral
edge. In order to verify the existence of extended states at
finite W we focus on the asymptotic value of the global
minimum of the IPR, Pmin(W ), in the L → ∞ limit and for
infinitesimal η → 0+. The main graph in Fig. 4 summarizes
our calculation of Pmin(W ) for a particular hopping decay
α = 3/2 and disorder strength W = 0.8, which lie close to the
delocalization transition. We display the IPR of a very large
L = 227 system at three different values of η. Statistical errors
at smaller η are larger because of η’s proximity to the level
spacing. Appendix B includes a detailed discussion of these
errors in the limit η → 0+. In particular, we have checked that
for L � 226 the IPR curves at fixed η do not change with L,
which signals that they accurately represent the infinite volume
limit.
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FIG. 3. (Color online) Average DOS and IPR near the upper
spectral edge in a large L = 223 system at several disorder strengths
and α = 3/2, η = 5 × 10−4, and Nε = 30.

The IPR depends on η, and as η → 0+ the global minimum
deepens and shifts toward higher energy. This effect is
not significant at larger disorder W > 1.0, but at smaller
disorder it forces us to use considerable care with the η → 0+
extrapolation. The inset in Fig. 4 displays our extrapolation to
the limit η → 0+ at four weak disorder strengths. At each
W , we find the energy Emin(W ) of the local minimum at
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FIG. 4. (Color online) The η → 0+ limit. The three curves show
the average IPR at three values of η and α = 3/2, W = 0.8, L = 227,
and Nε = 10. The global minimum decreases and shifts to higher
energy. The inset shows the IPR versus η at the energy of the global
minimum. Again α = 3/2, but now L = 228 andNε = 100. The solid
lines are linear fits to P (η) = Pmin + bη.
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FIG. 5. (Color online) Power law behavior of the minimum IPR
Pmin(W ) near the critical disorder strength Wc where it converges
to zero. Solid lines represent the power-law fit Pmin(W ) = A(W −
Wc)π2 , with parameters from Table I.

the lowest value of the spectral width parameter employed,
η = 10−5, and then graph the IPR at that energy as a function
of η. Concerning uncertainty in Emin(W ), we have checked
that it affects our results only slightly, and in any case can
only cause an unduly careful overestimate of the IPR. The
fitting curves in Fig. 4 show that the IPR depends linearly
on η via P (η) = Pmin + bη. This allows us to determine very
accurately the asymptotic global minimum of the IPR.

The straight lines in Fig. 5’s log-log plot are the central
result of our work: strong numerical evidence that the
minimum IPR Pmin(W ) converges to zero according to a
power law Pmin(W ) = A(W − Wc)π2 , similar to the power law
observed in finite-dimensional short-range systems.26,35,36 At
smaller disorder W � Wc, the HAM exhibits a delocalized
phase. Table I reports the best fit parameters for two values of
the hopping decay exponent α = 3/2,7/4. In both cases, our
data exclude the possibility that Wc = 0.

V. CONCLUSIONS.

We have analyzed the DOS and the IPR of the hierarchical
Anderson model by means of a RG-based calculation of the
resolvent matrix, finding strong evidence for a localization-
delocalization transition at finite disorder at α = 3/2 and
7/4. Since it has been proven rigorously that the absolutely
continuous part of the spectrum vanishes for α > 3/2,12 our
results indicate that spectral localization may not imply the
existence of exponentially localized eigenvectors. A study of
the spatial decay of the resolvent elements should clarify this
point and we expect our work to stimulate further research in
this direction. Our results also indicate that the HAM differs

TABLE I. Values of the parameters and the χ 2 of the power law
fit to the IPR data shown in Fig. 5. Wc is the critical disorder where
the delocalization transition occurs and π2 is a critical exponent.

α Wc π2 A χ 2/ndf ndf

3/2 0.684(7) 2.68(7) 0.080(2) 0.96 6
7/4 0.016(5) 3.57(8) 0.105(3) 1.21 5
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from the 1D tight-binding model with power-law hopping,23,24

where all states are localized for α � 3/2.24 Since the HAM’s
spectral dimension can be mapped to the spatial dimension
of Anderson models with short-range hopping, we expect
that an Anderson transition exists in the regime 1 < α < 2,
with α 
 2 playing a role analogous to the lower critical
dimension. The presence of extended states in one dimension
is not exclusive to models with long-range hopping, but it has
been also observed in systems with short-range hopping and
correlated on-site disorder.37–39 Lastly, we mention that our RG
method can be used to compute off-diagonal elements of the
resolvent, allowing determination of other relevant quantities
such as the longest localization length.2,4
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APPENDIX A: DERIVATION OF THE
RENORMALIZATION EQUATIONS

We discuss here how to derive the RG equations (6)–(9) that
are used in the main text. This calculation can be performed
using only linear algebra, but we find it more convenient to
use Gaussian integrals. We first rewrite {G(N)

k (z)}k=1,...,L, the
diagonal elements of the resolvent G(N)(z) = (z − HN )−1, as
the Gaussian integrals

G
(N)
k (z) = ı

∫
dφ φ2

k exp[L(N)(φ1,...,2N )]∫
dφexp[L(N)(φ1,...,2N )]

,

(A1)

L(N)(φ1,...,2N ) = ı

2

2N∑
j=1

μjφ
2
j + W (N)(φ1,...,2N ; V1,...,N ),

where dφ = ∏2N

j=1 dφj and μj = εj − z − ∑N
p=1 Vp. The

function W (N) encodes the hierarchical hoppings:

W (N)(φ1,...,2N ; V1,...,N ) = ı

2

N∑
p=1

Vp

2N−p∑
r=1

⎡
⎣ 2p∑

j=1

φ(r−1)2p+j

⎤
⎦

2

.

We have introduced the simplified notation x1,...,A ≡
x1, . . . ,xA. The function L(N)(φ1,...,2N ) has the same form as
the HAM’s Hamiltonian and therefore preserves its formal
structure under a RG transformation: a local term incorporating
the random potential and a nonlocal hierarchical hopping term.

We make a change of integration variables

ψ±
j = 1√

2
(φ2j−1 ± φ2j ), j = 1, . . . ,2N−1 ,

which transforms the hierarchical term as follows:

W (N)(φ1,...,2N ; V1,...,N ) = ıV1

2N−1∑
j=1

(ψ+
j )2

+W (N−1)(ψ+
1,...,2N−1 ; V ′

1,...,N−1),

where V ′
p = 2Vp. This transformation allows us to explicitly

calculate the integrals over {ψ−
j }j=1,...,2N−1 in Eq. (A1), halving

the number of degrees of freedom. After performing the
transformation and integration we obtain an equation which
relates {G(N)

i (z)}i=1,...,L for the original model with L sites
to {G(N−1)

i (z)}i=1,...,L/2 for a model with L/2 sites, but with
renormalized parameters.

Partitioning {G(N)
i (z)}i=1,...,2N into two sectors (one for

the even sites and another for the odd sites), we obtain the
following expressions:

G
(N)
2k−1(z) = ı

2

∫
dψ+dψ−(ψ+

k + ψ−
k )2eH (N−1)(ψ±)∫

dψ+dψ−eH (N−1)(ψ±)
, (A2)

G
(N)
2k (z) = ı

2

∫
dψ+dψ−(ψ+

k − ψ−
k )2eH (N−1)(ψ±)∫

dψ+dψ−eH (N−1)(ψ±)
. (A3)

In the above expressions, we have changed integration vari-
ables to dψ± = ∏2N−1

j=1 dψ±
j and we have defined

H (N−1)(ψ±)

= ı

2

2N−1∑
j=1

σj (ψ+
j )2 + ı

2

2N−1∑
j=1

�j (ψ−
j )2

+ ı

2N−1∑
j=1

Cjψ
+
j ψ−

j + W (N−1)(ψ+
1,..,2N−1 ; V ′

1,..,N−1),

where the following quantities are complex valued:

σj = 1
2 (μ2j−1 + μ2j ) + 2V1,

�j = 1
2 (μ2j−1 + μ2j ),

Cj = 1
2 (μ2j−1 − μ2j ) .

Since Eqs. (A2) and (A3) involve only simple Gaussian
integrals with respect to ψ−

1,...,2N−1 , these variables can be
integrated out one by one. We map the resulting expression
to Eq. (A1) for a system with 2N−1 sites, renormalized
disorder μ′

1,...,2N−1 , which obeys Eq. (8) in the main text, and
renormalized hopping potential V ′

1,...,N−1. We obtain Eqs. (6)–
(9) at the first RG step � = 1 of the original model. Performing
these steps recursively leads to the recurrence equations (6) and
(7) shown in the main text:

G
(N−�+1)
2i−1 (z) = 2

[
μ

(�−1)
2i

γ
(�−1)
i

]2

G
(N−�)
i (z) − 1

γ
(�−1)
i

,

G
(N−�+1)
2i (z) = 2

[
μ

(�−1)
2i−1

γ
(�−1)
i

]2

G
(N−�)
i (z) − 1

γ
(�−1)
i

,

where γ
(�)
i = μ

(�)
2i−1 + μ

(�)
2i .
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FIG. 6. (Color online) Size effects on the IPR at α = 1.5, W =
0.9, η = 10−4, and Nε = 10.

APPENDIX B: PERFORMING THE η → 0+

LIMIT NUMERICALLY

The regularization parameter η in the resolvent gives
each eigenvalue a line width proportional to η. This can be
understood by analyzing our equation for the DOS:

ρ(E) = lim
η→0+

lim
L→∞

1

Lπ

L∑
i=1

〈
Im G

(N)
i (z)

〉
. (B1)

The right-hand side of this equation is the limit η → 0+ of a
sum of Lorentzian functions with width η and centered at E.
The Lorentzians quantify the distances of HN ’s eigenvalues
from the energy E. As η approaches the mean level spacing
from above, our observables will display larger and larger
fluctuations, since our averages will include smaller and
smaller numbers of eigenstates. If η is smaller than the level
spacing then one obtains results that have no physical meaning.
Accurate results for very small η are obtained only if the system
size L and the number of samplesNε are large enough. Figure 6
shows how this issue influences the IPR. We fix the number
of samples Nε and spectral line width η and vary the system
size. Convergence is obtained at L � 226.

If we define ρL,N ,η(E) as the average DOS of a finite though
very large system, we can estimate the mean level spacing
�L,N ,η(E) around E as

�L,N ,η(E) ∼ 1

LNερL,N ,η(E)
.
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FIG. 7. (Color online) η dependence of the ratios η/�L,N ,η(E)
(open circles) and σL,N ,η(E)/ρL,N ,η(E) (filled circles). �L,N ,η(E)
is the approximate mean level spacing and σL,N ,η(E) is the standard
deviation around ρL,N ,η(E). Results were obtained using Eqs. (6)–(9)
in the main text with N = 28 and Nε = 100. We set (W = 0.8,E =
5.405) for α = 3/2 and (W = 0.2,E = 3.532) for α = 7/4. These
values were used to produce the left-most (smallest disorder) data
point in Fig. 5 of the main text.

We estimate the error at small η by calculating
σL,N ,η(E)/ρL,N ,η(E) and η/�L,N ,η, where σL,N ,η(E) is
the standard deviation of ρL,N ,η(E). Typical results are
displayed in Fig. 7. When we decrease η → 0+ we find
monotonic growth in σL,N ,η(E)/ρL,N ,η(E) and monotonic
decay in η/�L,N ,η. For small enough η, we reach a regime
where σL,N ,η(E)/ρL,N ,η(E) = O(1), η/�L,N ,η = O(1), and
ρL,N ,η(E) exhibits large fluctuations. We conclude that the
limit η → 0+ is achieved, for practical purposes, when
�L,N ,η 	 η 	 1, i.e., in very large systems. Therefore
we establish a sensible lower cutoff on η by imposing
a maximum value of the average DOS’s relative error
σL,N ,η(E)/ρL,N ,η(E).

The results for the minimum IPR displayed in Fig. 5 of
the main text were obtained by choosing η = 10−5 as the
lower cutoff when α = 3/2 and η ∈ [10−7,10−5] when α =
7/4. This ensures that the relative error σL,N ,η(E)/ρL,N ,η(E)
is restricted to the interval [10−2,10−1], as can be seen in
Fig. 7.

1P. W. Anderson, Phys. Rev. 109, 1492 (1958).
2B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
3F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
4E. N. Economou, Green’s Functions in Quantum Physics (Springer,
Heidelberg, 2006).

5R. Abou-Chacra, P. W. Anderson, and D. J. Thouless, J. Phys. C:
Solid State Phys. 6, 1734 (1973).

6R. Abou-Chacra and D. J. Thouless, J. Phys. C: Solid State Phys.
7, 65 (1974).

7F. J. Dyson, Commun. Math. Phys. 12, 91 (1969).
8S. Molchanov, in Proceedings of the Sixth Eugene Lucaks Sympo-
sium, edited by A. K. Gupta and V. L. Girko (VSP, Utrecht, The
Netherlands, 1996), pp. 179–194.

9A. Bovier, J. Stat. Phys. 59, 745 (1990).
10G. Baker, Phys. Rev. B 5, 2622 (1972).
11Y. Meurice, J. Phys. A: Math. Theor. 40, R39 (2007).
12E. Kritchevski, Proc. Am. Math. Soc. 135, 1431 (2007).
13E. Kritchevski, in CRM Proceedings and Lectures Notes, Vol. 42

(American Mathematical Society, Providence, USA, 2007).
14E. Kritchevski, Ann. Henri Poincare 9, 685 (2008).
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