
An FPGA-based supercomputer for statistical
physics: the weird case of Janus

M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion,
A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano, F. Mantovani,
E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, D. Navarro,G. Parisi,
M. Pivanti, S. Perez-Gaviro, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano,
B. Seoane, A. Tarancon, P. Tellez, R. Tripiccione and D. Yllanes

M. Baity-Jesi
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: marcobaityjesi@fis.ucm.es

R. A. Baños
Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: raquel.alvarez@unizar.es

A. Cruz
Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: andres@unizar.es

L. A. Fernandez
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: laf@lattice.fis.ucm.es

J. M. Gil-Narvion
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: jmgil@bifi.es

A. Gordillo-Guerrero
Departamento de Ingenierı́a Eléctrica, Electrónica y Automática, Universidad de Extremadura,
10071 Cáceres, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: anto@unex.es

M. Guidetti
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: mguidetti@bifi.es

D. Iñiguez
Fundación ARAID, Diputación General de Aragón, Zaragoza, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: david.iniguez@bifi.es

A. Maiorano
Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: andrea.maiorano@roma1.infn.it

F. Mantovani

1

2 Janus Collaboration: M. Baity-Jesi et al.

Dipartimento di Fisica Università di Ferrara and INFN - Sezione di Ferrara, Ferrara, Italy,
e-mail: filimanto@fe.infn.it

E. Marinari
Dipartimento di Fisica, IPCF-CNR and INFN, La Sapienza Università di Roma, 00185 Roma, Italy
e-mail: enzo.marinari@uniroma1.it

V. Martin-Mayor
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: victor@lattice.fis.ucm.es

J. Monforte-Garcia
Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: jmonforte@bifi.es

A. Muñoz Sudupe
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain,
e-mail: sudupe@fis.ucm.es

D. Navarro
Departamento de Ingenierı́a, Electrónica y Comunicaciones and Instituto de Investigación en In-
genierı́a de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain,
e-mail: denis@unizar.es

G. Parisi
Dipartimento di Fisica, IPCF-CNR, UOS Roma Kerberos and INFN, La Sapienza Università di
Roma, 00185 Rome, Italy,
e-mail: giorgio.parisi@roma1.infn.it

M. Pivanti
Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy,
e-mail: pivanti@fe.infn.it

S. Perez-Gaviro
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: spgaviro@unizar.es

F. Ricci-Tersenghi
Dipartimento di Fisica, IPCF-CNR, UOS Roma Kerberos and INFN, La Sapienza Università di
Roma, 00185 Rome, Italy,
e-mail: federico.ricci@roma1.infn.it

J. J. Ruiz-Lorenzo
Departamento de Fı́sica, Universidad de Extremadura, 06071 Badajoz, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: ruiz@unex.es

S. F. Schifano
Dipartimento di Matematica e Informatica, Università di Ferrara and INFN - Sezione di Ferrara,
Ferrara, Italy,
e-mail: schifano@fe.infn.it

B. Seoane
Departamento de Fı́sica Teórica I, Universidad Complutense, 28008 Madrid, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: seoane@lattice.fis.ucm.es

A. Tarancon

Janus: an FPGA-based supercomputer 3

Abstract In this chapter we describe the Janus supercomputer, a massively parallel
FPGA-based system optimized for the simulation of spin-glasses, theoretical mod-
els that describe the behavior of glassy materials.
The custom architecture of Janus has been developed to meet the computational
requirements of these models. Spin-glass simulations are performed using Monte
Carlo methods that lead to algorithms characterized by i) intrinsic parallelism al-
lowing us to implement many Monte Carlo update engines within a single FPGA;
ii) rather small data base (2 MByte) that can be stored on-chip, significantly boost-
ing bandwidth and reducing latency. iii) need to generate a large number of good-
quality long (≥ 32 bit) random numbers; iv) mostly integer arithmetic and bitwise
logic operations.
Careful tailoring of the architecture to the specific features of these algorithms has
allowed us to embed up to 1024 special purpose cores within just one FPGA, so that
simulations of systems that would take centuries on conventional architectures can
be performed in just a few months.

1 Overview

This chapter describes Janus, an application-driven parallel and reconfigurable com-
puter system, strongly tailored to the computing requirements of spin glass simula-
tions.

A major challenge in condensed-matter physics is the understanding of glassy
behavior [1]. Glasses are materials that do not reach thermal equilibrium in human
lifetimes; they are conceptually important in physics and they have a strong in-
dustrial relevance (aviation, pharmaceuticals, automotive, etc.). Important material
properties, such as the compliance modulus or the specific heat, significantly depend
on time even if the material is kept for months (or years) at constant experimental
conditions [2]. This sluggish dynamics, a major problem for the experimental and

Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: tarancon@unizar.es

P. Tellez
Departamento de Fı́sica Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain,
e-mail: ptellez@unizar.es

R. Tripiccione
Dipartimento di Fisica and CMCS, Università di Ferrara and INFN - Sezione di Ferrara, Ferrara,
Italy,
e-mail: tripiccione@fe.infn.it

D. Yllanes
Dipartimento di Fisica, La Sapienza Università di Roma, 00185 Roma, Italy
Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Zaragoza, Spain,
e-mail: yllanesd@roma1.infn.it

4 Janus Collaboration: M. Baity-Jesi et al.

theoretical investigation of glassy behavior, places numerical simulations at the cen-
ter of the stage.

Spin glasses are the prototypical glassy systems most widely studied theoreti-
cally [3, 4]. Simulating spin glasses is a computing grand challenge, as their de-
ceivingly simple dynamical equations are at the basis of complex dynamics, whose
numerical study requires large computing resources. In a typical spin-glass model,
the dynamical variables, one calls them spins, are discrete and sit at the nodes of
discrete D-dimensional lattices. In order to make contact with experiments, we need
to follow the evolution of a large enough lattice, say a 3D system with 803 sites, for
time periods of the order of 1 second. One Monte Carlo step – the update of all the
803 spins in the lattice – roughly corresponds to 10−12 seconds, so we need some
1012 such steps, that is∼ 1018 spin-updates. One typically wants to collect statistics
on several (∼ 102) copies of the system, adding up to ∼ 1020 Monte Carlo spin up-
dates. Therefore, performing this simulation program in an acceptable time frame
(say, less than one year) requires a computer system able to update on average one
spin per picosecond or less.

This analysis shows that accurate simulations of spin glasses have been a major
computational challenge; the problem has been attacked in different ways, and the
development of application-specific computers has been one of the options consid-
ered over the years. This chapter describes the Janus project, which has lead to the
development of the Janus reconfigurable computer, optimized for spin-glass simu-
lations. Janus has played a major role in making the simulations described above
possible on a reasonable time scale (order of months); it has provided the Janus
collaboration with a major competitive advantage, which has resulted in ground-
breaking work in the field of spin glasses as will be described later.

There are several reasons that make traditional computer architectures a poor so-
lution for spin-glass simulations and at the same time suggests that a reconfigurable
approach may pay very large dividends:

• the dynamical variables describing these systems only take a small number of
discrete values (just two in the simplest case); sequences of bitwise logical oper-
ations are appropriate to compute most (not all) quantities involved in the simu-
lation;

• a large amount of parallelism is easily identified; a large number of lattice loca-
tions can be processed independently, so they can be handled in parallel.

• the structure of the critical computational kernels is extremely regular, based on
ordered loops that perform the same sequence of operations on data values stored
at regularly stridden memory locations; the control structure of the program can
therefore be easily cast in the form of simple state-machines. The control se-
quence is the same for all lattice locations, so a Single Instruction Multiple Data
(SIMD) approach is appropriate and the control structure can be shared by many
computational threads.

These points suggest an ideal architecture for a spin-glass engine, based on a very
large number of computational cores; cores are extremely slim processors, able to
perform only the required mix of logical manipulations and a limited set of arith-

Janus: an FPGA-based supercomputer 5

metic operations; many cores work concurrently, running the same thread under just
one control structure; they process data fetched from memory by just one memory
control engine. Seen from a different point of view, one may think of a stream-
ing processor, working on a steady flow of data extracted from and flowing back to
memory. As discussed in details later on, the logical complexity of one such compu-
tational core is in the order of just a few thousand logical gates, so one can assemble
them by the thousands in just one integrated circuit. This promises significant ben-
efits, provided that the huge amount of data needed to keep all these processors
busy can be supplied by the memory system; this is a serious problem that can be
handled in this case as the size of the simulation data-base is small enough to be
accommodated on chip.

The requirements described above are slightly at variance with traditional ar-
chitectures. On one hand standard CPUs offer features not really exploited by our
regular programming paradigm (out of order execution, branch prediction, cache
hierarchy); on the other hand they are very limited in the extraction of the available
parallelism. Indeed, at the time the Janus project started (early 2006), state-of-the-art
simulation programs running on state-of-the-art computer architectures were only
able to exploit a tiny fraction of the available parallelism, and had an average update
time of one spin every∼ 1 ns, meaning that the simulation campaign outlined above
would proceed for centuries.

Curiously enough, the time frame that has seen the development of the Janus
project coincides with that in which computer architectures have strongly evolved
towards wider and more explicit parallelization: many-core processors with O(10)
cores are now widely available and Graphics Processing Units (GPUs) now have
hundreds of what can be regarded as “slim” cores. Today, one might see an ideal
spin-glass simulation engine as an application-specific GPU, in which i) data paths
are carefully tailored to the specific mix of required logical (as opposed to arithmetic
and/or floating-point) operations; ii) the control structure is shared by a much larger
number of cores than typical in state-of-the-art GPUs; iii) data allocation goes to on-
chip memory structures and iv) the memory controller is optimized for the access
patterns typical of the algorithm.

Architectures available in 2011-2012 have indeed improved performance for spin
glass simulations by about one order of magnitude with respect to what was avail-
able when the Janus project started (slightly better than one would predict according
to Moore’s law, see later for a detailed analysis), but standard commercial computers
are even today not a satisfactory option for large-scale spin-glass studies.

We already remarked that, over the years, this state of affairs has motivated the
development of several generations of application-driven, spin-glass-optimized sys-
tems; this approach has been often taken by computational physicists in several
areas, such as Lattice QCD [5, 6, 7] or the simulation of gravitationally coupled
systems [8]; early attempts for spin systems were performed more than 20 years
ago [9], and – more recently – an approach based on reconfigurable computing was
pioneered [10].

6 Janus Collaboration: M. Baity-Jesi et al.

The Janus1 project has continued along this line, developing a large reconfig-
urable system, based on field programmable gate-arrays (FPGAs). FPGAs are slow
with respect to standard processors. This is more than offset by large speedup fac-
tors, allowed by architectural flexibility. A more radically application-driven ap-
proach would be to consider an ASIC (application-specific integrated circuit), a
custom-built integrated circuit, promising still larger performance gains, at the price
of much larger development time and cost, and much less flexibility in the design.

The remainder of this chapter is organized as follows: in section 2 we describe
the physics systems that we want to simulate, elaborating on their relevance both in
physics and engineering; section 3 provides details on the Monte Carlo simulation
approach used in our work; section 4 describes the Janus architecture and its imple-
mentation, after which section 5 gives a concrete example. Section 6 summarizes
the main physics results obtained after more than three years of continuous opera-
tion of the machine. Section 7 assesses the performance of Janus on our spin-glass
simulations, using several metrics, and compares with more standard solutions. We
consider both those technologies that were available when Janus was developed and
commissioned and those that have been developed since the beginning of the project
(≈ 2006). We also briefly discuss the performance improvements that may be ex-
pected if one re-engineers Janus on the basis of the technology available today. Our
conclusions and outlook are in section 8.

2 Spin glasses

What makes a spin glass (SG) such a complex physical system is frustration and
randomness (see Fig. 1). One typical example is a metal in which we replace some
of its metallic atoms with magnetic ones. Qualitatively, its dynamical behavior is as
follows: the dynamical variables, the spins, represent atomic magnetic moments, in-
teracting via electrons in the conduction band of the metal and inducing an effective
interaction which changes in sign (the RKKY interaction) depending on the spatial
location. In some materials, it is easy for the magnetic moments to lie in only one
direction (and not in the original three-dimensional space) so we can consider that
they only take values belonging to a finite set. Finally we can assume that spins sit
at the nodes of a crystal lattice.2

At some sites (i and j) in the lattice, neighbor spins (σi and σ j) may lower their
energy if they have the same value: their coupling constant Ji j, a number assigned
to the lattice link between i and j, is positive. However elsewhere in the lattice, with
roughly the same probability, two neighboring spins may prefer to have different
values (in this case, Ji j < 0). A lattice link is satisfied if the two corresponding spins
are in the energetically favored configuration. In spin glasses, positive and negative
coupling constants occur with the same frequency, as the spatial distribution of pos-

1 From the name of the ancient Roman god of doors and gates.
2 A typical example of an Ising spin glass is Fe0.5Mn0.5TiO3.

Janus: an FPGA-based supercomputer 7

itive or negative Ji j is random; this causes frustration. Frustration means that it is
impossible to find an assignment for the σi, that satisfies all links (the concept is
sketched in Fig. 1, and explained in the caption).

Fig. 1 Four neighboring points of a regular Ising spin lattice (for clarity we show a 2D system).
Spins (σi =±1) sit at the edges of the lattice; each link joining two edges has a coupling constant
Ji j =±1. If Ji j > 0 a link is satisfied if σi = σ j , while Ji j < 0 requires that σi 6= σ j . One can easily
check that, for the Ji j values in the picture, no assignment of the σis exists that satisfies all links
(in general, this happens if an odd number of Ji j along the circuit has the same sign). This is called
frustation.

Models that describe this behavior are defined in term of the following energy
function:

H =−∑
〈i, j〉

Ji jδ (σi,σ j); (1)

σi is the spin at lattice site i; it takes discrete values belonging to a finite set of
q elements, δ is the Kronecker delta function and Ji j are the coupling constants
between the two spins; angle brackets mean that the sum is restricted to pairs of
nearest neighbors in the lattice

Models described by (1) are usually referred to as Potts spin glasses. One typi-
cally considers values of q ranging from just two to eight or ten. The simplest case
(q = 2) has been especially considered since it was first proposed more than thirty
years ago; it is known as the Edwards-Anderson spin glass [11]. One usually writes
its energy function in a slightly different form:

H =−∑
〈i j〉

σiJi jσ j; (2)

Here, the symbols have the same meaning as in Eq. 1 but in this case σ = ±1; Eq.
(2) goes over to (1) – apart from a constant term that does not affect the dynamics –
if one appropriately rescales the values of the Ji j.

The coupling constants Ji j are fixed and chosen randomly to be ±1 with 50%
probability. A given assignment of the {Ji j} is called a sample. Some of the physi-

8 Janus Collaboration: M. Baity-Jesi et al.

cal properties (such as internal energy density, magnetic susceptibility, etc.) do not
depend on the particular choice for {Ji j} in the limit of large lattices (self-averaging
property). However, in the relatively small systems that one is able to simulate, it is
useful to average results over several samples.

Frustration makes it hard to answer even the simplest questions about the model.
For instance, finding the spin configuration that minimizes the energy for a given set
of {Ji j} is an NP-hard problem [12]. In fact, our theoretical understanding of spin-
glass behavior is still largely restricted to the limit of high spatial dimensions, where
a rich picture emerges, with a wealth of surprising connections to very different
fields [13].

In three dimensions, we know experimentally [14] and from simulations [15] that
a spin-glass reaches an ordered phase below a critical temperature Tc. In the cold
phase (T < Tc) spins freeze in some disordered pattern, related to the configuration
of minimal free energy. For temperatures (not necessarily much) smaller than Tc
spin dynamics becomes exceedingly slow. In a typical experiment one quickly cools
a spin glass below Tc, then waits to observe the system evolution. As time goes on,
the size of the domains where the spins coherently order in the (unknown to us)
spin-glass pattern, grows.

Domain growth is sluggish, however: in typical spin-glass materials after eight
hours at low temperature (T = 0.73Tc), the domain size is only around 40 lattice
spacings [16]. The smallness of the spin-glass ordered domains precludes the ex-
perimental study of equilibrium properties, as equilibration would require a domain
size of the order of ' 108 lattice spacings. However, an opportunity window opens
for numerical simulations. In fact, in order to understand experimental systems we
only need to simulate lattices sufficiently larger than the typical domain. This cru-
cial requirement has been met for the first time in the simulations made possible by
Janus.

3 Monte Carlo simulations of spin glasses

Spin glasses have been heavily studied numerically with Monte Carlo techniques
and the Janus architecture has been designed with the main goal of exploiting every
performance handle available in this computational area. In this section we provide a
simple overview of the relevant algorithms, focusing on those features that will have
to be carefully optimized on our reconfigurable hardware. For simplicity, we only
treat the Edwards-Anderson model of Eq. (2), defined on a 3D lattice of linear size
L; the Monte Carlo algorithms that apply to more general Potts model are similar
and – most important in this context – they have essentially the same computational
and architectural requirements.

We focus on the Heat-Bath (HB) algorithm [17] that ensures that system config-
urations C are sampled according to the Boltzmann probability distribution

Janus: an FPGA-based supercomputer 9

P(C) ∝ exp
(
−H

T

)
, (3)

describing the equilibrium distribution of configurations of a system at constant
temperature T = β−1. This is one well known Monte Carlo method; see e.g. [18]
for a review of other approaches;

Let us focus on a spin at site k of a 3D lattice; its energy is

E(σk) =−σk ∑
m(k)

Jkmσm = −σkφk , (4)

where the sum runs over the six nearest neighbors, m(k), of site k; φk is usually
referred to as the local field at site k. In the HB algorithm, one assumes that at any
time any spin is in thermal equilibrium with its surrounding environment, meaning
that the probability for a spin to take the value +1 or−1 depends only on its nearest
neighbors. Following (3), the probability for the spin to be +1 is

P(σk =+1) =
e−E(σk=+1)/T

e−E(σk=+1)/T + e−E(σk=−1)/T
=

eφk/T

eφk/T + e−φk/T , (5)

The algorithm then is an iteration of just two steps:

1. Pick one site k at random, and compute the local field φk (Eq. 4).
2. Assign to σk the value +1 with probability P(σk = +1) as in Eq. 5. This can

be done by generating a random number r, uniformly distributed in [0,1], and
setting σk = 1 if r < P(σk = 1), and σk =−1 otherwise.

A full Monte Carlo Step (MCS) is the iteration of the above scheme for L3 times.
By iterating many MCS, the system evolves towards statistical equilibrium. Fig. 2
shows a snapshot of a large spin-glass lattice at a later stage of the Monte Carlo
evolution for a temperature lower than the critical one, showing the build up of an
ordered domain structure.

A further critically important tool for Monte Carlo simulations is Parallel Tem-
pering (PT) [19]. Dealing with frustration (as defined above) means handling rough
free-energy landscapes and facing problems such as the stall of the system in a
metastable state. PT helps to overcome these problems by simulating many copies
of the system in parallel (hence the name) at different (inverse) temperatures βi and
allowing copies, whose β (energy) difference is ∆β (∆E), to exchange their tem-
peratures with probability equal to min{1,exp(∆β∆E)}. Following PT dynamics,
configurations wander from the physically interesting low temperatures, where re-
laxation times can be long, to higher temperatures, where equilibration is fast and
barriers are quickly traversed; they explore the complex energy landscape more ef-
ficiently, with correct statistical weights. For an introduction to PT, see for instance
[20].

We now sketch the steps needed to implement a Monte Carlo simulation on a
computer. First, one maps physical spin variables onto bits by the following trans-
formation, σk → Sk = (1−σk)/2, allowing to turn most (not all) steps of the al-

10 Janus Collaboration: M. Baity-Jesi et al.

Fig. 2 Domain growth for an Edwards-Anderson spin glass of size L = 80 at T = 0.73Tc, after 236

Monte Carlo steps, corresponding to a time scale of ≈ 0.1 sec.

gorithm into logic (as opposed to arithmetic) operations. The following points are
relevant:

1. The kernel of the program is the computation of the local field φk, involving just
a few logic operations on discrete variable data.

2. The local field φk takes only the 7 even integer values in the range [−6,6], so
probabilities P(σk =+1) = f (φk) can be stored in a look-up table.

3. High-quality random numbers are necessary to avoid spurious spatial correla-
tions between lattice sites, as well as temporal correlations in the sequence of
spin configurations.

4. Under ergodicity and reversibility assumptions, the simulation retains the desired
properties even if each Monte Carlo step visits each lattice site exactly once, in
any deterministic order.

5. Several sets of couplings {Jkm} (i.e., different samples) are needed. An inde-
pendent simulation has to be performed for every sample, in order to generate
properly averaged results.

6. One usually studies the properties of a spin-glass system by comparing the so-
called overlaps of two or more statistically independent simulations of the same
sample, starting from uncorrelated initial spin configurations (copies of a sample
are usually referred to as replicas).

The last three points above identify the parallelism available in the computation;
farming easily takes advantage for 5 and 6, while for 4 we need a more accurate
analysis. In fact, if we label all sites of the lattice as black or white in a checkerboard

Janus: an FPGA-based supercomputer 11

scheme, all black sites have their neighbors in the white site set, and vice versa: in
principle, we can perform the steps of the algorithm on all white or black sites in
parallel.

We will see in the following that the Janus architecture allows us to exploit to a
very large degree the parallelism of point 4 above. If one tries the same approach
with a standard processor, mapping independent spins of one sample to the bits of
one machine word and applying bitwise logical operations, one quickly meets a
bottleneck in the number of required random numbers (this approach is known in
the trade as Synchronous Multi-Spin coding, SMSC). An alternate approach (known
as Asynchronous Multi-Spin coding, AMSC) maps the same spin of independent
samples to the bits of the machine word and uses the same random number to decide
on the evolution of all these spins (this introduces a tolerable amount of correlation).
This strategy does increase overall throughput but does not decrease the time needed
to perform a given number of MCS, which is a critical parameter.

4 Janus: the architecture

This section describes the Janus architecture, starting from its overall organization,
and then going into the details of its hardware structure, of its reconfigurable com-
ponents and of its supporting software environment. The idea to develop Janus was
born in the early years of this century. After some preliminary analysis helped esti-
mate the level of performance that one could expect, preliminary work really started
in late 2005. Early prototypes were available in late 2006, and a large-scale machine
was commissioned before the end of 2007. After acceptance tests were completed,
Janus become operational for physics in spring 2008. Since then, it has continu-
ously been up and running, and it still provides computer power for Monte Carlo
simulations.

4.1 Global structure

The Janus supercomputer is a modular system composed of several Janus modules.
Each module houses 17 FPGA-based subsystems: 16 so-called scientific proces-
sors (SPs) and one input/output processor (IOP). Janus modules are driven by a PC
(Janus host). For our application, the Janus module is the system partition that ex-
ploits the parallelism available in the simulation of one spin glass sample. Several
modules are then used to farm out the simulation of many spin glass samples, that
evolve independently.

We generically refer to SPs and the IOP as nodes. The 16 SPs are connected by
a 2D nearest-neighbor toroidal communication network, so an application can be
mapped onto the whole set of SPs (or on a subset thereof). A further point-to-point

12 Janus Collaboration: M. Baity-Jesi et al.

network links the IOP to each SP; it is used for initialization and control of the SPs
and for data transfer.

The Janus host PC plays a key role of master device: a set of purpose-made C
libraries are written using low levels of Linux operating system in order to access the
raw Gigabit Ethernet level (excluding protocols and other unhelpful layers adding
latencies to communications). Moreover two software environments are available:
an interactive shell written in Perl mostly used for testing and debugging or short
preliminary runs and a set of C libraries strongly oriented to the physics user, making
it relatively easy to set up simulation programs for Janus.

The FPGA panorama was various and the choice of a device for Janus was driven
by the simple idea that the only important feature is the availability of memory and
logic elements in order to store lattices as large as possible and to house the highest
number of update engines. Large on-chip memory size and many logic elements are
obviously conflicting requirements; each FPGA family offered different trade-offs
at the time of the development phase of Janus.

Our preliminary prototype was developed in 2005 using a PCI development kit
housing an Altera Stratix S60 FPGA providing∼ 57000 logic elements and∼ 5 MB
of embedded memory. The first two Janus prototype boards developed in 2006 had
Xilinx Virtex-4 LX160 FPGAs while the final implementation of the system was
based on Xilinx Virtex-4 LX200 FPGAs.

The choice between Altera or Xilinx FPGAs has not been fully trivial. While
both families had approximately the same amount of logic elements3, the amount of
on-chip memory was different: Altera Stratix-II FPGAs offered ∼ 8 Mb organized
in three degrees of granularity allowing us to efficiently exploit only ∼ 50% of it.
Conversely Xilinx Virtex-4 LX200 FPGAs provided ∼ 6 Mb of embedded mem-
ories made up of relatively small blocks that we could use very efficiently for our
design.

The main clock for Janus is 62.5 MHz; we set a rather conservative clock fre-
quency, trying to minimize time-closure problems when mapping the reconfigurable
portion of an application onto the FPGAs. Selected parts of the system use faster
clocks: for instance the Gigabit-ethernet interface within the IOP has a 125 MHz
clock (called I/O-clock), as needed by Gigabit protocol constraints. Perfect band-
width balance is achieved: the Gigabit protocol transfers 1 byte per I/O-clock cycle
(i.e., 8 bits every 8 ns) and a so called stream router forwards data to the Janus
world with a rate of 2 bytes per system-clock cycle (i.e., 16 bits every 16 ns). Fur-
thermore link connecting the IOP with the SPs is 8 bit wide and runs a double data
rate protocol so the bandwidth continues to be balanced.

The 17 FPGA-based nodes are housed on small daughter-cards plugged into a
mother-board (see Fig. 3a for a sketchy block diagram and Fig. 3b for a picture of
one Janus module). We used daughter-cards for all nodes to make hardware main-
tenance easier and also to allow an easier technology upgrade. The first large Janus
system, deployed in December 2007 at Zaragoza, has 16 modules and 8 Janus host

3 We consider the largest devices of both FPGA families available when we had to make a final
decision: Altera Stratix-II 180 and Xilinx Virtex-4 LX200.

Janus: an FPGA-based supercomputer 13

(a) (b)

Fig. 3 (a) Topology of a Janus board: each SP communicates with its nearest neighbors in the
plane of the board. (b) Janus board housed in a Janus module.

PCs assembled together in a standard 19" rack. More details on the Janus architec-
ture and its implementation are given in [21, 22, 23, 24].

4.2 Programming paradigm

The programming framework developed for Janus is intended to meet the require-
ments of the prevailing operating modes of Janus, i.e., supporting (re)configuration
of SPs, initialization of memories and data structures within the FPGA, monitoring
the system during runs, interfacing to memory;

Applications running on Janus can be thought of as split into two sub-applications,
one, called software application SA, written for example in C, and running on
the Janus host. The other, called firmware application FA, written for example in
VHDL, runs on the SP nodes of a Janus board. As shown in Fig. 4, the two entities,
SA and FA are connected together by a communication infrastructure CI, which is
a logical block including physically the IOP and which allows to exchange data and
to perform synchronization operations, directly and in a transparent way.

The CI abstracts the low-level communication between SA and FA applications,
implemented in hardware by the IOP and its interfaces. It includes, a C commu-
nication library linked by the SA, a communication firmware running on the IOP
processor, interfacing both the host PC and the SP processor and a VHDL library
linked by the FA.

Firmware running on the IOP communicates with the host PC via a dual Gigabit
channel, using the standard RAW-Ethernet communication protocol. To guarantee
reliability of the communication in the direction IOP to Janus host, we adopt the
Go-back-N protocol [25] allowing us to reach approximately the 90% of the full
Gigabit bandwidth, when transferring messages of the order of 1 MB, and using the

14 Janus Collaboration: M. Baity-Jesi et al.

Fig. 4 Framework of an application running on the Janus system.

maximum data payload per frame, 1500 bytes. This is enough and safe in a context
of spin-glass simulations.

Communications from IOP to host PC do not adopt any communication protocol
since the IOP interface, barring hardware errors, ensures that no packets are lost. In-
coming frames are protected by standard Ethernet CRC code, and errors are flagged
by the IOP processor.

Data coming from the SA application packed as burst of frames are routed to one
of the devices supported by the IOP firmware. These devices can be internal to the
IOP (e.g., memory interface, internal control registers) or external (e.g., SPs).

Developers of Janus-based applications have to provide their SA and FA relaying
on the CI communication infrastructure, to make the two applications collaborative.
A typical SA configures the SPs with the appropriate firmware, using functions
provided by the communication library, loads input data to the FA, starts and checks
the status of the SP logic and waits for incoming results.

4.3 IOP structure and functions

The guidelines for the architectural structure of the IOP come from the original
idea of the project that each Janus core is a “large” co-processor of a standard PC
running Linux, connected to the host with standard networking interfaces. Spin glass
simulations are characterized by long runs with limited interaction with the Janus-
host so that each system is loosely coupled with its host. This is different from
similar systems in which the FPGA is tightly coupled to a traditional PC and its
memory, like in the Maxwell machine [26] or more recently on Maxeler computers
[27].

Each simulation starts with the upload of an FA configuring the FPGA of the SPs,
followed by the initialization of all the FA data structures (i.e., upload via Gigabit
of lattice data, random numbers seeds and other physical parameters). After this

Janus: an FPGA-based supercomputer 15

step has completed, the SA starts the simulation and polls the status of each Janus
module. The SA detects the end of the FA task and initiates the download of the
results (e.g., the final physical configurations) and in some cases runs data analysis.
All these operations involve the CI and in particular the firmware of IOP under the
control of the Janus-host.

In some cases (e.g., when running the parallel tempering) the SA requires data
exchange across different SPs during the run: in this case the IOP performs the
additional task of gathering data from all SPs, performing a small set of operations
on them and re-scattering data to SPs.

From this simplified operation scheme it is clear that the IOP plays a key role
between the Janus operating system (JOS) running on the Janus-host and the FA
running on each SP.

The IOP, like the SPs, is based on a Virtex 4 XC4LX200 FPGA but, unlike the
SPs, has 8 MB static memory, a PROM programming device for FPGA boot and
some I/O interfaces: a dual Gigabit channel, a USB channel and a slow serial link
for debug.

The current IOP firmware is not a general purpose programmable processor: its
role is to allow data streaming from the Janus-host to the appropriate destination
(and back), under complete control of the JOS.

Fig. 5 Block diagram of the IOP architecture.

As shown in figure 5, the IOP structure is naturally split in 2 functional areas
called IOlink and MultiDev blocks.

The IOlink block handles the I/O interfaces between IOP and the Janus-host
(Gigabit channels, serial and USB ports). It supports the lower layers of the Gigabit
Ethernet protocol and performs CRC checks to ensure data integrity.

The MultiDev block contains a logic device associated to each hardware sub-
system that may be reached for control and/or data transfer: a memory interface
for the staging memory, a programming interface to configure the SPs, an SP inter-
face to handle communication with the SPs (after they are configured) and several
service/debug interfaces are present. Each interface receives a data stream, strips
header words and forwards the stream to the target hardware component (memory,
SPs, etc.) as encoded in the header.

In order to route the input stream coming from IOlink we implemented a module
called Stream Router that scans the data stream and recognizes the masks associated
to each device within the MultiDev.

16 Janus Collaboration: M. Baity-Jesi et al.

The current IOP implementation uses ∼ 4% of the total logic resources and ∼
18% of the total memory resources of the FPGA; this means that from the point
of view of the Janus developers a future expansion of the IOP functionalities is
possible and easy to implement simply adding devices to the MultiDev entity. For
instance one might add floating point units in order to perform floating point arith-
metic directly “on module” or include a MicroBlazeTM microprocessor opening the
possibility to use the Janus core as a standalone computer.

From the point of view of the Janus user, the IOP, together with a software layer
running on the host PC, is meant to be part of the CI and therefore a stable structure
in the Janus system. What is not fixed on the other hand are the functionalities im-
plemented on the SPs, that can perform in principle arbitrary algorithms (of course
taking into account the hardware design/limitations).

In the following sections we will describe the details of the software layer inter-
facing the SA of a user to the IOP and SPs and later an example of just one specific
SP firmware used for spin-glass simulations along the lines described in previous
sections.

4.4 Software layer

As part of the CI we developed a software environment running on each Janus host
able to cope with any SP-based FA, as long as the latter adheres to a model in
which Janus is a memory based coprocessing engine of the host computer; user
programs can therefore use load/store instructions to move their data onto the FA
storage devices (e.g., FPGA embedded memories) and activate, stop and control
Janus processes mapped in the FA.

This model is supported by a host-resident run-time environment that we call
Janus operating system (JOS). It runs on any Linux-based PC and builds on a low-
level C library, based on standard Unix raw network sockets. It implements the
protocol needed to communicate with the IOP firmware on the Gbit Ethernet link.

For the application user, JOS consists of:

• a multi-user environment for Janus resource abstraction and concurrent jobs man-
agement (josd);

• a set of libraries with primitives in order to interact with the CI level (e.g., IOP
devices), written both in Perl and C (JOSlib);

• a set of FA modules for scientific applications and the corresponding C libraries
needed to control them via the josd environment (jlib).

josd is a background job running on the Janus host, providing hardware abstraction
and a stable interface to user applications. It hides all details of the underlying struc-
ture of Janus, mapping it to the user as a simple grid of SPs. It interfaces via Unix
socket APIs, so high-level applications may be written in virtually any programming
language. Whenever a new FA module is developed, new primitives controlling that
module are added to JOSlib. User programs, written in high-level languages, use

Janus: an FPGA-based supercomputer 17

these primitives in order to schedule and control Janus-enabled runs. For debugging
and test, an interactive shell (JOSH), written in Perl and also based on JOSlib, offers
complete (and potentially dangerous) access to all Janus resources for expert users.
It provides direct access to the CI, allowing to communicate with the IOP and drive
all its internal devices.

5 SP Firmware: an application example

SPs are fully configurable devices, so they can be tailored to perform any compu-
tational task compatible with the available resources and complying with the com-
munication and control protocols of the CI. In this section we discuss one example,
taken from a set of several applications that we developed for spin glass simulations.

Tailoring our FAs for Janus has been a lengthy and complex procedure, justified
by the foreseen long lifetime of each application and by an expectation of huge per-
formance gains. Obviously, a high-level programming framework that would (more
or less) automatically split an application between standard and reconfigurable pro-
cessors and generate the corresponding codes would be welcome. Unfortunately the
tools available at the time of the development of the machine do not deliver the
needed level of optimization and for Janus this work was done manually using a
hardware description language (VHDL).

Our implementation of model and algorithm tries to exploit all internal resources
in the FPGA in a consistent way (see [21] for a detailed description). Our VHDL
code is parametric in several key variables, such as the lattice size and the number of
parallel updates. In the following description we consider, for definiteness, a lattice
of 803 sites corresponding to the typical simulation described in the introduction.

As described in section 3 these algorithms do not allow us to update at the same
time spins sitting next to each others in the lattice. On the other hand we can organize
the spin update process in two steps such that we process in parallel up to half
of the spins at each step. We can in other words split our 3D lattice of spins in a
checkerboard scheme and update first all the white spins and then all the black ones
(see Fig. 6a).

Virtex 4 LX200 FPGAs come with many small embedded RAM blocks; they can
be combined and stacked to naturally reproduce a 3D array of bits representing the
3D spin lattice and making it possible to access data with almost zero latency. We
used this memory structure to store the lattice variables, carefully reordered and split
in black and white sets. A similar storage strategy applies to the read-only couplings.
After initialization, the machinery fetches all neighbor spins of a portion of a plane
of spins and feeds them to the update engines.

The flexibility given by the use of FPGAs allow us to implement a number of up-
date engines matching the number of spins processed in parallel. Each update engine
returns the processed (updated) spins to be stored at the same given address. For the
Edwards Anderson spin glass, we update from 800 to 1024 spins simultaneously;
the update logic is made up of a matching number of identical update engines. Each

18 Janus Collaboration: M. Baity-Jesi et al.

(a) (b)

Fig. 6 (a) Checkerboard model used for updating spins in parallel. (b) Logic diagram of the spin
update process performed in each SP.

engine receives the 6 nearest-neighbor spins, 6 couplings and one 32-bit random
number; it then computes the local field, which is an address to a probability look-
up table; the random number is then compared to the extracted probability value and
the updated spin is obtained (See Fig. 6b).

Look-up tables are small 32-bit wide memories instantiated as distributed RAM.
There is one such table for each update cell. Random number generators are imple-
mented as 32-bit Parisi-Rapuano generators [28], requiring one sum and one bitwise
XOR operation for each number. To sustain the update rate we need one fresh ran-
dom value for each update engine; our basic random number engine has 62 registers
of 32 bits for the seeds and produces 80 random numbers per clock cycle by combi-
natorial cascades; 8 to 13 of these random number generators are instantiated in the
FA.

The number of 800 · · ·1024 updates per clock cycle is a good trade-off between
the constraints of allowed RAM-block configurations and available logic resources
for the update machinery. Total resource occupation for the design is 75−80% of the
RAM blocks (the total available RAM is ' 672 KB for each FPGA) and 85−94%
of the logic resources. The system runs at a conservative clock frequency of 62.5
MHz. At this frequency, the power consumption for each SP is ' 35W .

Further optimization techniques are used to improve performances and reduce
resource usage: for example we can simulate at the same time two replicas of the
lattice (sharing the random numbers) to increase the statistic, at a small additional
cost in terms of memory consumption. Details on this and other tricks are available
elsewhere [21].

Janus: an FPGA-based supercomputer 19

6 An overview of physics results

In almost 4 years of continuous operation, Janus has provided the Janus collabora-
tion with a major competitive advantage, allowing us to consider lattice sizes and
simulation time scales that other researchers could only dream of. This has resulted
in ground-breaking work in the field of spin-glasses; major work has been done on
the Potts glass model (for several values of q) and on the Edwards-Anderson model
with Ising spins described in section 2. We refer the reader to the original papers for
a full account; here we provide only a very short and sketchy panorama of our main
results.

As for all problems that are not really understood, spin glasses should be studied
with a large variety of tools. Indeed, we do not know where the essential clue will
come from, so being able to perform different types of simulations efficiently is very
important. FPGA reconfigurability is a major asset in this context.

From the experimental point of view, a major limitation is imposed by the slow
dynamics, which makes it impossible to study the equilibrium phase diagram. In
order to reproduce and understand experimental results, it is very important to per-
form simulations that match experimental conditions. Experimentalists work with
very large samples (containing some N ∼ 1023 spins), and follow the dynamical
evolution for time scales that span several orders of magnitude. They focus their
attention on self-averaging quantities. These magnitudes are such that, for large
enough samples, they take the same value irrespective of the particular configura-
tion of the couplings (technically, their sample variance scales as an inverse power of
the number of spins, N). Examples of self-averaging quantities include the internal
energy, the magnetic susceptibility (i.e., the derivative of the magnetization density
with respect to the applied field), or some correlation functions. Self-averaging is
a most important property: it makes it possible to compare data from different ex-
perimental teams, working with different spin-glass samples of nominally identical
chemical composition.

Hence, if our dynamic simulations are to imitate experiments, we need to follow
the dynamics of a single system for a time scale spanning several orders of mag-
nitude. The simulated system should be as large as possible, in order to minimize
the artifacts introduced by the finite size of the simulated samples. The only good
news come from the self-averaging nature of the quantities that one studies: if the
simulated systems are large enough, one may average the obtained results over a
moderate number of samples (most of the time experimentalists work with just one
or two samples!).

The reader may rightly question about how large is ‘large enough’. The point
is that, as time proceeds, glassy domains grow in the system, whose size defines
a time-dependent ‘coherence length’ ξ (tw). As long as ξ (tw) is much smaller than
the lattice size, the system behaves as if its size were infinite and reproduces the
experimental evolution. However, when the coherence length begins to approach
the lattice size, spurious finite-size effects appear. These systematic errors scale
as exp(−L/ξ (tw)); one should make sure that (relative) statistical errors are much
larger than this value. So, the precise meaning of “large enough” depends on time,

20 Janus Collaboration: M. Baity-Jesi et al.

temperature and accuracy. As a rule of thumb, one is on the safe side if the lattice
size is at least seven or eight times larger than ξ (tw) [29]. Since the coherence length
grows with the simulation time, a given lattice size may well be large enough for 105

Monte Carlo steps but not for 1010 Monte Carlo steps. Janus has proven an excellent
compromise in this respect. It has allowed us to follow the dynamics for some 1011

Monte Carlo steps, on hundreds of samples containing N = 803 ∼ 5× 105 spins.
Since a single lattice sweep corresponds roughly to a picosecond (i.e., 10−12 sec-
onds), this means that we have covered the range from the microscopic time scale
to one tenth of a second, which is already long enough to understand what happens
in the experimental regime [29, 30]

On the other hand, theoretical physicists prefer a different approach. They like to
think about a complex phase space, with many local minima, where the system may
get trapped for quite a long time. The natural framework for this way of thinking is
equilibrium thermodynamics. Hence, we need to reach thermal equilibrium, mean-
ing that the coherence length is as large as the system size. Under these conditions,
almost no magnitude is self-averaging. One needs to describe the physics in terms
of probability distributions with the disorder. In practice, one needs to reach thermal
equilibrium on several thousands of samples, obtain thermal mean values over each
of them, and afterwards study the disorder distributions (i.e., quantify how much the
same quantity can vary, if computed over different samples). An added difficulty is
that thermal equilibrium is terribly difficult to reach. Even worse, the larger the sys-
tem, the harder the equilibration. And, of course, the larger the system, the more
significant the reached results.

Fortunately, when one wants to reach equilibrium, it is no longer important that
the computational dynamics resemble, in any way, the physical dynamics. The only
important mathematical property is balance (see e.g., [17]). This allows an enor-
mous flexibility in the choice of the dynamic rules. In particular, the already dis-
cussed parallel tempering dynamics outperforms by orders of magnitude the simple
heat-bath algorithm used in the non-equilibrium simulations. Even then, one may
need as many as 1011 parallel tempering steps (each parallel tempering step is fol-
lowed by 10 heat-bath full lattice sweeps) in order to reach thermal equilibrium in
some samples containing only N = 323 spins [31].

In our simulations with Janus, we reached equilibrium on thousands of relatively
small samples (ranging from N = 163 to N = 323, smaller systems were simulated
on PCs). This simulation campaign was extremely long: all in all Janus performed
1021 spin updates. In the case of the worst samples we estimated that the necessary
wall clock time was well over six months. For these samples we have accelerated
the simulation by increasing the level of parallelism, by running the PT temperature-
assignment procedure on the IOP. This has allowed us to distribute the set of tem-
peratures along several FPGAs on a the same module, speeding up the simulation
accordingly. These simulations have opened a new window into the nature of the
equilibrium spin-glass phase [31, 32, 33]

Finally, we combined the results of both the non-equilibrium and the equilibrium
simulation to clarify, in a quantitative way, the relation between the dynamical evo-

Janus: an FPGA-based supercomputer 21

lution and the equilibrium spin-glass phase. We did this by means of a finite-time
scaling formalism, with interesting implications for experimental work [34].

Regarding the Potts glass, we studied its phase transition for q = 4,5,6, simulat-
ing lattices of up to N = 163 [35, 36]. We found that, in contrast to the mean-field
prediction, this transition remained of the second order for all the considered values
of q and that ferromagnetic effects were not relevant.

A further example of the benefits of the FPGA reconfigurability is the possibil-
ity of simulating the spin glass under an applied magnetic field. In fact, the fate of
the spin-glass phase when an external field is switched on is one of the major open
questions in the field. Janus is rather efficient in this context, both for the simpler dy-
namic simulations, or for the equilibrium simulations that need parallel tempering.
Our recent results on this problem have been reported in [37].

7 Janus performance

In this section we analyze both computing and energy performances of the Janus
system for some of the applications described in Sec. 6, and compare with that
of systems based on commodity CPUs and GPUs, available both when Janus was
developed as well as today. The tables in this section originally appeared in [40] and
are reproduced with kind permission of The European Physical Journal (EPJ).

Let us first estimate the effective computing power delivered by a full Janus sys-
tem, configured to run an Edwards-Anderson simulation. SPs run at clock frequency
of 62.5 MHz, and at each clock cycle conservatively update 800 spins. An equiva-
lent C program running on a commodity CPU architecture could require to perform
at least the following mathematical operations for each spin-update:

• 1 32-bit integer sum
• 2 32-bit xor
• 6 3-bit integer sum
• 6 3-bit xor
• 1 32-bit integer comparison

In the above count we have neglected operations to load data and instructions,
and to compute memory address, which are obviously necessary during the run.
Counting the 6 short xor and sum operations as one single 32-bit integer operation
each, we end up with 6 equivalent operations for each spin update. This translates
into a required processing power of 6× 800× 62.5× 106 operations per second,
corresponding to a sustained performance of 300.0 Giga-ops for a single SP, and
76.8 Tera-ops for a full Janus system running 256 SPs.

At the time the Janus project started, early 2006, state-of-the-art commodity sys-
tems where based on dual-core CPUs. Prior to actually building the system we made
an extensive analysis of the performance gain that we could expect from the new
machine (see for instance [21]). Table 1 contains a short summary of that analysis,

22 Janus Collaboration: M. Baity-Jesi et al.

listing the relative speed-up for the Ising and the Potts models of one Janus SP with
respect to standard processors available in 2006-2007 .

Model Algorithm Intel Core 2 Duo Intel i7
3D Ising EA Metropolis 45× 10×
3D Ising EA Heat Bath 60× -

q=4 3D glassy Potts Metropolis 1250× -

Table 1 Speed-up factors of one Janus SP with respect to state-of-the-art CPUs available at the
time the project was started.

Let us now make a comparison of energy efficiency between Janus and com-
modity computing systems based on PCs at the same point in time as above. Let
us consider the case of a simulation campaign of a EA model on a lattice size of
643 for 1012 Monte Carlo steps and 256 samples. In the comparison, we consider
both AMSC and SMCS strategies, and estimate the power consumption of one PC
at' 100 W. Table 2 shows the comparison performance of the PC cluster versus the
Janus system in terms of energy dissipated and wall-clock time needed to perform
the simulation.

Since the deployment of Janus, in Spring 2008, significant improvements have
been made in the architecture and performance of commodity architectures, and in
spite of that, Janus is still a very performing machine.

We have extensively compared [38, 39] Janus with several multi-core systems
based on the IBM Cell Broadband Engine, the multi-core Nehalem Intel CPU, and
the NVIDIA Tesla C1060 GP-GPU. We have made this exercise for the Ising model
(as opposed to the Potts model) as in the former case the relative speed-up is much
smaller, so we may expect traditional processors to catch up earlier. We consider
these results as state-of-the-art comparisons, assuming that within a factor 2 they
are still valid for even more recent multi-core architectures, like the Fermi GPUs.
This assumption is indeed verified by an explicit test made on the very recent 8-core
Intel Sandy Bridge processor.

As discussed in previous sections, for traditional processor architectures we ana-
lyzed both SMSC and AMSC strategies and also considered mixes of the two tricks
(e.g., simulating at the same time k spins belonging to k′ independent samples),
trying to find the best option from the point of view of performance.

A key advantage of Janus is indeed that there is no need to look for these com-
promises: an SP on Janus is simply an extreme case of SMSC parallelization: if
many samples are needed on physics ground, more SPs are used. Equally important,
if different samples need different numbers of Monte Carlo sweeps (e.g., to reach
thermalization), the length of each simulation can be individually tailored without
wasting computing resources on other samples, as would necessarily be the case in
an AMSC approach.

Performance results for Janus are simply stated: one SP updates ≈ 1000 spins
at each clock cycle (of period 16 ns), so the spin-update time is 16 ps/spin for any
lattice size that fits available memory. In the cases of L = 96 and L = 128 there is

Janus: an FPGA-based supercomputer 23

Janus AMSC SMSC
processor 1 SP 1 CPU 1 CPU
statistic 1 (16) 1 (128) 1 (4)
wall-clock time 50 days 770 years 25 years
energy 2,7 GJ 2,3 TJ 78,8 GJ
processor 256 SPs 2 CPUs 256 (64) CPUs
statistic 256 256 256
wall-clock time 50 days 770 years 25 years
energy 43 GJ 4,6 TJ 20 (5) TJ

Table 2 Energy comparison between Janus and commodity PCs. The upper part of the table com-
pares the performance of 1 SP versus a PC. The lower part compares the required time and energy
to run the simulation on 256 lattice replicas.

3D Ising spin-glass model, SMSC (ns/spin)
L Janus SP I-NH (8-Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060 I-SB (16 cores)
16 0.016 0.98 0.83 1.17 – –
32 0.016 0.26 0.40 0.26 1.24 0.37
48 0.016 0.34 0.48 0.25 1.10 0.23
64 0.016 0.20 0.29 0.15 0.72 0.12
80 0.016 0.34 0.82 1.03 0.88 0.17
96 – 0.20 0.42 0.41 0.86 0.09
128 – 0.20 0.24 0.12 0.64 0.09

Table 3 SMSC update time (in ns) for a 3D Ising spin-glass (binary) model of lattice size L, for
Janus and for several state-of-the-art processor architectures. I-NH (8-Cores) a dual-socket quad-
core Intel Nehalem board, CBE (16-SPE) a dual-socket IBM Cell board, and I-SB a dual-socket
eight-core Intel Sandy Bridge board.

3D Ising spin-glass model, AMSC (ns/spin)
L Janus I-NH (8-Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060 I-SB (16 cores)
16 0.001 (16) 0.031 (32) 0.052 (16) 0.073 (16) – –
32 0.001 (16) 0.032 (8) 0.050 (8) 0.032 (8) 0.31 (4) 0.048 (8)
48 0.001 (16) 0.021 (16) 0.030 (8) 0.016 (16) 0.27 (4) 0.015 (16)
64 0.001 (16) 0.025 (8) 0.072 (4) 0.037 (4) 0.18 (4) 0.015 (8)
80 0.001 (16) 0.021 (16) 0.051 (16) 0.064 (16) 0.22 (4) 0.011 (16)
96 – 0.025 (8) 0.052 (8) 0.051 (8) 0.21 (4) 0.012 (8)
128 – 0.025 (8) 0.120 (2) 0.060 (2) 0.16 (4) 0.011 (8)

Table 4 AMSC update time for the 3D Ising spin-glass (binary) model, for the same systems as in
the previous table. For Janus, we consider one core with 16 SPs. The number of systems simulated
in parallel in the multi-spin approach is shown in parentheses

not enough memory in the FPGA to store the lattice and we do not represent the
performance in the tables. For standard processors, we collect our main results for
the 3D Ising spin-glass in tables 3 and 4 for SMSC and AMSC respectively.

We see that performance (weakly) depends also on the size of the simulated
lattice: this is an effect of memory allocation issues and of cache performance. All
in all, recent many-core processors perform today much better that 5 years ago: the
performance advantage of Janus has declined by a factor of approximately 10 for
SMSC: today one Janus SP outperforms very latest generation processors by just a
factor 5×·· ·10×. It is interesting to remark that GP-GPUs are not the most efficient

24 Janus Collaboration: M. Baity-Jesi et al.

engine for the Monte Carlo simulation of the Ising model: this is so, because GP-
GPU strongly focus on floating-point performance which is not at all relevant for
this specific problem. There is one point where Janus starts to show performance
limits, it is associated to the largest system size that the machine is able to simulate:
no significant limit applies here for traditional processor.

All in all, for the specific applications we have presented in this chapter, Janus
– after 4 years of operation – still has an edge of approximately one order of mag-
nitude, which directly translates on the wall-clock time of a given simulation cam-
paign.

8 Conclusions

This chapter has described in detail the Janus computer architecture and how we
have configured the FPGA hardware to simulate spin-glass models on this architec-
ture. We have also briefly reviewed the main physics results that we have obtained
in approximately 4 years operating with this machine.

From the point of view of performance, Janus still has an edge on computing
systems based on state-of-the-art processors, in spite of the huge architectural de-
velopments since the project was started. It is certainly possible to reach very high
performances in terms of spin flips per second using multi-spin coding on CPUs or
GP-GPUs (or simply by spending money on more computers), thus concurrently up-
dating many samples and achieving very large statistics. In the Janus collaboration,
we have instead concentrated on a different performance goal: minimizing the wall-
clock for a very long simulation, by concentrating the updating power in a single
sample. This has allowed us to bridge the gap between simulations and experiments
for the non-equilibrium spin-glass dynamics or to thermalize large systems at low
temperatures, thus gaining access to brand new physics. In particular, one single SP
of Janus is able to simulate (two replicas of) an L = 80 three-dimensional lattice for
1011 MCS in about 25 days.

Janus provides one of the few examples of the development of a successful large
scale computing application fully running on a reconfigurable computing infras-
tructure. This success comes at the price of a large investment in mapping and op-
timizing the application programs onto the reconfigurable hardware. This has been
possible in this case as the Janus group has a full understanding of all facets of the
algorithms and every performance gain immediately brings very large dividends in
term of a broader physics program. Most potential FPGA-based applications do not
have equally favorable boundary conditions, so automatic mapping tools would be
most welcome; however further progress is needed in this area in order to support a
widespread use of configurable FPGA-based computing.

Focusing again on the spin glass arena, there is still room for substantial progress.
Nowadays, the theoretical analysis of temperature-cycling experiments is still in its
infancy. Janus has made possible an in depth investigation of isothermal aging (i.e.,
experiments where the working temperature is kept constant). However, isothermal

Janus: an FPGA-based supercomputer 25

aging reflects only a minor part of the experimental work, where different tempera-
ture variation protocols are used as a rich probe of the spin-glass phase.

Janus is not able to support these analyses, as its performance is not enough in
this case, and also because memory limits would quickly become a major problem,
as the coherence length grows very fast close to the critical temperature. If one wants
to work in this direction a new generation Janus system should be developed; this
can be done by leveraging on technology progress of FPGAs in the last 5 years and
introducing a few limited architectural changes in the memory structure of the SPs
and in the interconnection harness with the host system.

If this system is developed, we should be able to reach the same time scales
of 1011 lattice sweeps, which is roughly equivalent to a tenth of a second, on sys-
tems containing some 5×107 spins. In other words, we should be able to simulate
systems with lattice size up to L = 400, large enough to accommodate a coherence
length of up to 50 lattice spacings. After 40 years of investigations, a direct compari-
son between experiments and the Edwards-Anderson model will finally be possible.

Acknowledgments

We wish to thank several past members of the Janus Collaboration, F. Belletti, M.
Cotallo, G. Poli, D. Sciretti and J.L. Velasco, for their important contributions to the
project. Over the years, the Janus project has been supported by the EU (FEDER
funds, No. UNZA05-33-003, MEC-DGA, Spain), by the MICINN (Spain) (con-
tracts FIS2006-08533, FIS2009-12648, FIS2007-60977, FIS2010-16587, FPA2004-
02602, TEC2010-19207), by CAM(Spain), by the Junta de Extremadura (GR10158),
by UCM-Banco Santander (GR32/10-A/910383), by the Universidad de Extremadura
(ACCVII-08) and by the Microsoft Prize 2007. We thank ETHlab for their techni-
cal help. E.M. was supported by the DREAM SEED project and by the Computa-
tional Platform of IIT (Italy); M.B.-J. and B.S. were supported by the FPU program
(Ministerio de Educacion, Spain); R.A.B. and J.M.-G. were supported by the FPI
program (Diputacion de Aragon, Spain); nally J.M.G.-N. was supported by the FPI
program (Ministerio de Ciencia e Innovacion, Spain).

References

1. See, for instance: C. A. Angell, Science 267, (1995) 1924; P. G. Debenedetti, Metastable liquids
(Princeton University Press, Princeton 1997); P. G. Debenedetti and F. H. Stillinger, Nature 410,
(2001) 259.

2. L. C. E. Struick, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Hous-
ton, 1978).

3. J. A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London, 1993).
4. A. P. Young (editor), Spin Glasses and Random Fields, (World Scientific, Singapore, 1998).
5. P. A. Boyle et al., IBM J. of Research and Development 49, (2005) 351-365.
6. F. Belletti et al., Computing in Science & Engineering 8, (2006) 18-29.

26 Janus Collaboration: M. Baity-Jesi et al.

7. G. Goldrian et al., Computing in Science & Engineering 10, (2008) 46-54; H. Baier et al.,
Computer Science - Research and Development 25, (2010) 149-154.

8. J. Makino et al., A 1.349 Tflops Simulation of Black Holes in a Galactic Center on GRAPE-6,
Proceedings of the 2000 ACM/IEEE conference on Supercomputing (2000) Article n. 43.

9. A. D. Ogielski and D. A. Huse, Phys. Rev. Lett. 56, (1986) 1298-1301.
10. J. Pech et al., Comp. Phys. Comm. 106, (1997) 10-20; A. Cruz et al., Comp. Phys. Comm.

133, (2001) 165-176.
11. S. F. Edwards and P. W. Anderson, J. Phys. F: Metal Phys. 5, (1975) 965-974; ibid. 6,

(1976) 1927-1937.
12. J. Barahona., J. Phys. A: Math. Gen. 15, (1982) 3241-3253.
13. M. Mézard, G. Parisi and M. Virasoro, Spin-Glass Theory and Beyond, (World Scientific,

Singapore, 1987).
14. K. Gunnarsson et al., Phys. Rev. B 43, (1991) 8199-8203. See also P. Norblad and P. Svendlidh

Experiments on Spin-Glasses in [4].
15. H. G. Ballesteros et al., Phys. Rev. B 62, (2000) 14237-14245.
16. F. Bert et al., Phys. Rev. Lett. 92, (2004) 167203.
17. See for instance D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group

and Critical Phenomena, (World Scientific, Singapore, 3rd edition, 2005).
18. M. E. J. Newman and G. Barkema Monte Carlo Methods in Statistical Physics (Oxford Uni-

versity Press, 1999).
19. H. Hukushima, K. Nemoto, J. Phys. Soc. Japan 65, (1996) 1604; E. Marinari in Advances in

Computer Simulation, J. Kerstéz, I. Kondor (eds.) (Springer-Verlag, 1998).
20. H.G. Katzgraber, Introduction to Monte Carlo methods, lecture at Modern Computation Sci-

ence, (Oldenburg, 2009).
21. F. Belletti et al., Comp. Phys. Comm. 178, (2008) 208-216.
22. F. Belletti et al., IANUS: Scientific Computing on an FPGA-based Architecture, in Proceed-

ings of ParCo2007, Parallel Computing: Architectures, Algorithms and Applications (NIC Series
Vol. 38, 2007) 553-560.

23. F. Belletti et al., Computing in Science & Engineering 8, (2006) 41-49.
24. F. Belletti et al., Computing in Science & Engineering 11, (2009) 48-58.
25. S. Sumimoto et al., The design and evaluation of high performance communication using a

Gigabit Ethernet, proceedings of the 13th international conference on Supercomputing, (1999)
260-267.

26. R. Baxter et al, Maxwell - a 64 FPGA Supercomputer, Second NASA/ESA Conference on
Adaptive Hardware and Systems, (2007) 287-294.

27. M. Flynn et al., Finding Speedup in Parallel Processors, International Symposium on Parallel
and Distributed Computing ISPDC ’08, (2008) 3-7.

28. V. Parisi, cited in G. Parisi and F. Rapuano, Phys. Lett. B 157, (1985) 301-302.
29. F. Belletti et al., Phys. Rev. Lett. 101, (2008) 157201.
30. F. Belletti et al., J. Stat. Phys. 135, (2009) 1121-1158.
31. R. Alvarez Baños et al., J. Stat. Mech. (2010) P06026.
32. R. A. Baños et al., Phys. Rev. B 84, (2011) 174209.
33. A. Billoire et al., J. Stat. Mech (2011) P10019.
34. R. Alvarez Baños et al., Phys. Rev. Lett. 105, (2010) 177202.
35. A. Cruz et al. Phys. Rev. B 79, (2009) 184408.
36. R. Alvarez Baños et al., J. Stat. Mech. (2010) P05002.
37. R. A. Baños et al. Proc. Natl. Acad. Sci. USA (2012) 109, 6452-6456
38. M. Guidetti et al., Spin Glass Monte Carlo Simulations on the Cell Broadband Engine in Proc.

of PPAM09, (Lecture Notes on Computer Science (LNCS) 6067, Springer 2010) 467-476.
39. M. Guidetti et al., Monte Carlo Simulations of Spin Systems on Multi-core Processors (Lecture

Notes on Computer Science (LNCS) 7133 K. Jonasson (ed.), Springer, Heidelberg 2010) 220-
230.

40. M. Baity-Jesi et al. (Janus Collaboration), European Physical Journal - Special Topics (in
press) arXiv:1204.4134.

