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We consider off-equilibrium dynamics at the critical temperature in a class of glassy systems. The off-
equilibrium correlation and response functions obey a precise scaling form in the aging regime. The structure of
the equilibrium replicated Gibbs free energy fixes the corresponding off-equilibrium scaling functions implicitly
through two functional equations. The details of the model enter these equations only through the ratio w2/w1

of the cubic coefficients (proper vertexes) of the replicated Gibbs free energy. Therefore the off-equilibrium
dynamical exponents are controlled by the very same parameter exponent λ = w2/w1 that determines equilibrium
dynamics. We find approximate solutions to the equations and validate the theory by means of analytical
computations and numerical simulations.
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I. INTRODUCTION

The key property of glassy systems is the slowing down of
the dynamics upon lowering the temperature. This property
makes their study so challenging both in experiments and
numerical simulations. Indeed equilibrium dynamics becomes
increasingly slow approaching the critical temperature in
such a way that the relaxation time exceeds the laboratory
time scale and the systems fall off-equilibrium. This effect
has its counterpart in numerical simulations where the dra-
matic increase of the equilibration time at low temperature
strongly constrains the maximal system’s size that can be
equilibrated resulting in huge finite-size effects. Therefore
a satisfactory theory of glassy systems must be able to
characterize their off-equilibrium dynamics. On the other
hand, many believe that the important theoretical advances
made in the context of the statics and equilibrium dynamics
of these systems are useful if not essential to understanding
their off-equilibrium dynamics. In particular, deep connections
between off-equilibrium dynamics and statics have been
obtained in the study of aging [1–3]. These studies focus on
a nontrivial time-reparametrization invariance of the problem
that naturally leads to a parametric (i.e., without the time)
representation of two-time quantities. In this framework, the
problem of the approach to equilibrium of one-time quantities,
say the energy, remains open.

It would be natural to expect that, unlike the
reparametrization-invariant quantities, the corresponding
dynamical exponents cannot be expressed solely in terms of
the quantities obtained from the statics. We will show that it is
possible to obtain precise results for the dynamical exponents,
extending some results obtained recently in the context of
critical equilibrium dynamics [4,5]. In this paper we address
the computation of the dynamical exponents for a class of
glassy systems at the critical temperature in a mean-field
theory framework.

The order parameter in glassy systems is typically a two-
point function. In mean-field spin glasses (SG) one considers
the spin-spin correlation defined as

C(t,s) = 1

N

N∑
i=1

〈si(t)si(s)〉, (1)

where N is the total number of spins in the system, the angle
brackets mean the thermal averages, and the overline means
the average with respect to the quenched disorder [6]. At the
critical temperature the equilibrium spin-spin correlation in
zero external field exhibits a power-law decay in time, i.e.,

C(τ ) ∝ 1

τ ν
(2)

for large values of τ = |t − s| [7].
In Refs. [4,5] it has been argued that this behavior follows

from the fact that the replicated Gibbs free energy admits the
following expansion near the critical temperature T ≈ Tc:

G(Q) = aT

T − Tc

2

∑
a,b

Q2
ab − w1

6
TrQ3 − w2

6

∑
a,b

Q3
ab, (3)

where aT is some model-dependent constant and Qab is a repli-
cated version of the two-point order parameter. Furthermore
it has been shown that the so-called parameter exponent λ,
which determines ν through the following relationship:

�2(1 − ν)

�(1 − 2ν)
= λ, (4)

is equal to the ratio between the effective coupling constants
w2 and w1

λ = w2

w1
. (5)

The fact that the equilibrium dynamics follows from the static
replicated Gibbs free energy makes it rather universal. Indeed,
in the Landau sense, one can argue that the structure of
the Gibbs free energy near the transition depends solely on
the symmetries of the problem and therefore could be the same
for quite different models. Notable examples of models whose
replicated Gibbs free energy admits the expansion (3) near
the critical temperature are the Sherrington-Kirkpatrick (SK)
model in zero field, various spherical p-spin fully connected
models in zero field, the Potts SG with p = 3 (both fully
connected and on the Bethe lattice), and instances of the so-
called M-p models [8] for appropriate values of the parameters
M and p. We also expect that the structure of the mean-field
free energy remains the same when the above models are
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defined on finite-dimensional lattices above the upper critical
dimension D = 6. The corresponding transition has been also
encountered in the study of schematic mode-coupling-theory
(MCT) models for supercooled liquids. In the original MCT
literature it was called a type A transition while in the modern
terminology is called a degenerate A2 singularity (see [9],
p. 228). We recall that in the context of MCT the exponent ν

is usually called a. In the SG literature the corresponding tran-
sition is called a continuous transition in a zero external field.
It has to be contrasted with the continuous transition in a field
and with the discontinuous transition whose replicated Gibbs
free energy contain additional terms with respect to Eq. (3) [4].

In this paper we will consider the correlation and response
functions C(t,s) and R(t,s) defined as

R(t,s) ≡
∑

i

δ〈si(t)〉/δhi(s), (6)

where the hi(s)’s are small auxiliary time-dependent external
fields that enter in the Hamiltonian as

∑
i sihi(s) and are set to

zero after taking the derivative. We will discuss the behavior
of C(t,s) and R(t,s) at the critical point upon dynamical
evolution, starting from random initial configurations at time
t = 0. This is equivalent to an instantaneous quench from
T = ∞ to the critical temperature T = Tc. We will focus on
the so-called aging regime in which both t and s are large.

We will first describe the spherical p-spin model with
p = 2, which admits a full analytical solution. Interestingly
enough, a dynamical computation for the SK model (reported
in Appendix A) shows that the off-equilibrium dynamical
exponents of these two models are the same. Guided by
these findings, we will argue that for all models that have a
replicated Gibbs free energy with the above structure [Eq. (3)]
the correlation and response functions in the aging regime
are described by appropriate scaling functions from which
various dynamical exponents can be extracted. Remarkably
the scaling functions depend on the details of the model only
through the very same parameter exponent λ = w2/w1 that
controls critical equilibrium dynamics.

Technically speaking, the above-replicated action describes
continuous SG transitions characterized by the simultane-
ous vanishing of the replicon, longitudinal, and anomalous
eigenvalues. The case in which only the replicon eigenvalue
vanishes requires some nontrivial modifications and is left for
future work. More physically, we note that action (3) is a
special case of a more general action that should contain at the
quadratic level also terms of the form m2

∑
abc QacQab and

m3
∑

abcd QabQcd [4]. The coefficients of these terms vanish if
the Hamiltonian of the model displays additional symmetries
(besides replica symmetry), for instance, time reversal for Ising
spins or the Potts symmetry for spins with p states. Therefore
an important case which cannot be described by the present
theory is the SK model in a field.

The theory yields equations from which, in principle,
the scaling functions can be computed for any value of the
parameter exponent λ. At present we have no analytical
solution of the equations for the general values of λ, but we
have devised an approximation scheme that yields consistent
estimates of the scaling functions and exponents for not too
large values of λ.

Novel predictions for the approach to equilibrium of one-
time quantities can also be obtained, notably the energy and
magnetization decay that are the typical quantities measured in
numerical simulations. It is found that the energy approaches
its equilibrium value at infinite time according to

E(t) − E∞ ∝ 1

t2ν
, (7)

meaning that the dynamical exponent of the off-equilibrium
decay of the energy is two times the exponent of the equilib-
rium correlation ν. The decay of the remanent magnetization
or equivalently the decay to zero of the correlation between the
initial random configuration and the configuration at a large
time t is given by

mR(t) ∝ C(0,t) ∝ 1

t δ
. (8)

According to the theory, the exponent δ obeys the following
relationship:

δ = α + ν, (9)

where α is a novel exponent associated to the behavior at a
small argument of the scaling functions for the correlation and
response. Specializing to the SK model in zero external field
the theory yields ν = 1/2 and α = 3/4 leading to a 1/t decay
of the energy and to an exponent δ = 5/4 consistently with a
previous direct analysis and numerical simulations [10].

The predictions of the theory have been validated in two
ways. We considered the 2 + 3 class of spherical SG models
where the parameter λ can be tuned between 0 and 1 and solved
the exact off-equilibrium dynamical equations by means of a
power series expansion at small times. The method allows to
control precisely the region of moderately small values of λ

where the decay exponents are not too small. In this region
we have found a very good agreement with the results coming
from the numerical solution of the universal equations.1 We
have also performed a numerical simulation on the fully
connected three-states Potts SG at the critical temperature. In
this case λ = 1/2 and we have again found a very satisfying
agreement with the predictions of the theory for the decay of
the energy and for the various dynamical exponents obtained
from the numerical solutions of the universal equations.

The paper is organized as follows. In Sec. II we will present
the general scenario for the off-equilibrium critical behavior
of the class of systems considered. In Sec. III we will give
a detailed treatment of the off-equilibrium dynamics of the
spherical two-spin model showing explicitly that it follows
the general scenario. In Sec. IV we will study off-equilibrium
dynamics in the quasistatic limit and argue that the above
scenario applies to all systems whose replicated Gibbs free
energy admits the expansion (3) following the procedure of [4].
In Sec. V we will present a method to solve numerically the
universal equations describing the correlation and response
function and give the result of this analysis. In Sec. VI we will
validate the theory presenting results from an off-equilibrium
numerical simulation on the three-states Potts SG and on the

1One could have also studied the same equations using the adaptive
algorithms as in Refs. [11–13].
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solutions of the exact dynamical equations for the spherical
models. In Sec. VII we will give our conclusions. Various
computations and results will be presented in the Appendixes.

II. GENERAL SCENARIO

We consider a general scenario in which off-equilibrium
critical dynamics can be characterized by the following three
regimes depending on the value of t and of τ ≡ t − s.

(1) The equilibrium regime corresponding to t � 1 while
|t − s| 	 t . In this regime the two functions become equal to
their equilibrium limit

C(t,s) ≈ Ceq(t − s),

R(t,s) ≈ Req(t − s), for (10)

t � 1, |t − s| 	 t,

the precise form of the function Ceq(τ ) at small time differences
τ depends on the microscopic details of the model and of the
type of dynamics. However, as we said before the exponent ν

of the long time power-law decay at criticality depends only
on the parameter λ = w2/w1 through Eq. (4).

(2) The aging regime in which t � 1 and τ is also large such
that s/t = a remains finite while t tends to infinity. Recall that
in the present paper we are considering the aging regime at the
critical temperature while for a study of the aging dynamics
below the critical temperature we refer the reader to [1,2,14].
In this regime we have

C(t,a t) = c

tν
C(a) + o(t−ν), (11)

R(t,a t) = c

tν+1
R(a) + o(t−ν−1), (12)

where the exponent ν is the same of the equilibrium regime
and c is a model-dependent constant prefactor.

The two scaling functions C(a) and R(a) are determined
by two quadratic equations that depend solely on λ. To write
the equations it is convenient to define

Ceq(a) ≡ 1

ν(1 − a)ν
, (13)

Req(a) ≡ 1

(1 − a)ν+1
. (14)

The behavior of the two functions C(a) and R(a) in the limit
a → 1 matches the equilibrium behavior and we have

C(a) −−→
a→1

Ceq(a), (15)

R(a) −−→
a→1

Req(a). (16)

The equations for C(a) and R(a) read

∫ a

0
a−νR(b)C

(
b

a

)
db +

∫ a

0

[
C(b)a−ν−1R

(
b

a

)

− C(a)a−ν−1Req

(
b

a

)]
db − C(a)a−νCeq(0) − C(a)Ceq(a)

+
∫ 1

a

[
R(b)b−νC

(
a

b

)
− Req(b)C(a)

]
db + λC2(a) = 0,

and∫ 1

a

{
R(b)b−ν−1R

(
a

b

)
− R(a)

[
Req(b) + Req

(
a

b

)]}
db

− 2R(a)Ceq(a) + 2λR(a)C(a) = 0.

In the case of λ = 0 the solution of the above equations is

C(a) = 4a3/4

(1 + a)(1 − a)1/2
, (17)

R(a) = a−1/4

(1 − a)3/2
. (18)

The above solution corresponds to the spherical model with
p = 2, in this case C(t,at) and R(t,at) can be computed
explicitly and the constant c turns out to be equal to 1/(2π1/2).
For the general values of λ we cannot exhibit explicitly the
solution of the above equations. However, we expect that the
two solutions at small values of a have a power-law behavior
controlled by a single exponent α according to

C(a) ∝ aα, a ≈ 0, (19)

R(a) ∝ aα−1, a ≈ 0. (20)

(3) The regime in which t � 1 while s is finite. In this case
we have

C(t,s) � 1

t δ
c(s), (21)

R(t,s) � 1

t δ
r(s). (22)

Similarly to the equilibrium case, the precise form of the two
functions c(s) and r(s) at finite s depends on the details of
the model. However, by means of matching arguments, their
large-s behavior and the value of the exponent δ can be inferred
from the small a behavior of the functions C(a) and R(a) of
the aging regime and therefore are fixed by the parameter λ.
More precisely we expect that

c(s) ∝ sα, s � 1, (23)

r(s) ∝ sα−1, s � 1, (24)

and

δ = α + ν. (25)

The exponent δ is the same of the long time power-law
decay of the remanent magnetization

m
(tw)
R (t) =

∫ tw

0
R(t,s) ds (26)

for finite waiting times tw. In fact it is straightforward that for
t � 1 and tw/t 	 1

mR(t) ∝ R(t,0). (27)

Since our interest will be in the asymptotics and, in particular,
in the exponent δ, we will make no distinction between the two
quantities and we will simply refer to R(t,0) as the “remanent
magnetization” throughout the paper.

We will also obtain a general prediction on the off-
equilibrium behavior of the energy. The form of the replicated
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Gibbs free energy (3) tells us that deviations of the energy
from its equilibrium value are controlled in replica space by
the quantity

∑
a,b Q2

ab, from this one can argue that in off-
equilibrium dynamics the energy approaches its equilibrium
value in the following way:

E(t) = E∞ + aE(ν)

t2ν
, (28)

meaning that the energy has a power-law relaxation to
equilibrium with an exponent two times ν. The coefficient aE

can be expressed in terms of the model-dependent constants
aT and c and by means of the functions C(a) and R(a) as

aE(ν) = aT c2

[ ∫ 1

0
[C(a)R(a) − Ceq(a)Req(a)] − 1

ν2

]
. (29)

The most interesting feature of the present scenario is that
many of the dynamical off-equilibrium critical exponents are
determined by the very same exponent parameter λ controlling
the equilibrium dynamics. In particular, the exponents α and
δ (through δ = α + ν) are both determined by the universal
aging-regime equations for C(a) and R(a). This type of
equation is not well studied in the literature and it is not clear
to us if it is possible to find an explicit analytical solution
when λ �= 0. Due to the singular nature of the solutions it
is also not simple to solve them numerically, nevertheless
in Sec. V we will present a variational scheme that appears
to give consistent results. The method uses appropriate trial
functions for C(a) and R(a) which are fixed minimizing the
square of the deviations of the exact equations on a set of
points between zero and one. The procedure requires that
the integral equations are recast to render the singularities
in the numerical integrals harmless. Once this is achieved
integrating by parts, a standard Gauss-Newton minimization
scheme appears to converge rather fast. In this respect we
believe that the problem at the numerical level is essentially
solved: Having more precise results than those we will present
is only a matter of computational time and numerical precision.

III. SPHERICAL TWO-SPIN MODEL

The off-equilibrium dynamics of the fully connected spher-
ical two-spin model [15,16] has been solved exactly below the
critical temperature in Ref. [17] through a projection on the
eigenvalues of the (random) interaction matrix.

In this section we study the off-equilibrium dynamics at
the critical temperature starting from a random configuration at
time zero and, in particular, the asymptotic long time behavior.
We will basically follow the approach and the notation of
[18]. Here we give the main results, while the details of the
computation can be found in Appendix B.

The Hamiltonian of the model is given by

H = −1

2

∑
i �=j

Jij sisj , (30)

where the spins are continuous variables satisfying a global
spherical constraint

N∑
i=1

s2
i = N, (31)

and the couplings are independent random variables following
a Gaussian distribution with zero mean

P (Jij ) = 1√
2πJ 2

exp

(
−N

J 2
ij

2J 2

)
. (32)

It can be shown [18] that the eigenvalue density distribution of
the random interaction matrix follows the well know Wigner
semicircle law in the thermodynamic limit and is sample
independent at leading order, namely

ρ(μ) = 1

2πJ 2

√
4J 2 − μ2, |μ| � 2J. (33)

The critical temperature of the model is given by [18]

1

Tc

=
∫ 2J

−2J

dμ ρ(μ)
1

2J − μ
. (34)

As already pointed out, the projected Langevin equation
corresponding to this system can be solved exactly and the
correlation and the response functions can be expressed in
terms of a function γ (t) in the following way

C(t,s) =
∫ 2J

−2J

dμ ρ(μ)

[
s2
μ(0)e−(2J−μ)(t+s)γ (t)γ (s)

+ 2T

∫ min(t,s)

0
dt ′ e−(2J−μ)(t+s−2t ′) γ (t)γ (s)

γ 2(t ′)

]
, (35)

R(t,s) =
∫ 2J

−2J

dμ ρ(μ) e−(2J−μ)(t−s) γ (t)

γ (s)
, (36)

where γ (t) satisfies the integral equation (B6) given in
Appendix B, considering the definition (B5).

Through an asymptotic analysis of the integral equation
(see Appendix B) it can be seen that, at the critical temperature
T = Tc = 1, the leading behavior of γ for large times is

γ (t) � 23/4π1/4t1/4. (37)

It has been shown in Ref. [19] that in the low temperature phase
(T < Tc) and for large waiting times s (or tw), three different
time scales can be identified: Two time scales are more evident
and were already discussed in Ref. [17] while the third one is
more subtle.

The first regime is the equilibrium one where s → ∞,
τ/s ≡ (t − s)/s 	 1, in which the fluctuation-dissipation
theorem (FDT) holds. The second regime is the aging one,
where s → ∞ and τ ∝ s and the scaling variable becomes the
ratio t/s.

The third time scale is intermediate and corresponds (below
Tc) to the plateau preceding the aging part. This time scale is a
function of the waiting time and, more precisely, it corresponds
to τ ∼ s4/5 	 s (see [19] for details).

As we will see, this third time scale is absent at the
critical temperature, basically because there is no plateau in
the correlation.

We consider now the system at criticality (T = Tc) and we
introduce two scaling functions in the regime where t,s →
∞ with s/t = a (aging regime). From Eqs. (35) and (36),
considering the asymptotic behavior of γ (t) we obtain

C(t,at) � 2a3/4

π1/2(1 + a)(1 − a)1/2t1/2
, (38)

R(t,at) � a−1/4

2π1/2(1 − a)3/2t3/2
. (39)
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From Eq. (38) it is clear that this regime describes the
correlation near its equilibrium value which is 0, in fact there
is a prefactor t−1/2 ensuring that C is small given any t large.
This is due to the fact that at the critical temperature there
is no plateau and no aging, in contrast to the case below Tc

where the correlation function stays close to the plateau in a
regime τ ∼ tp(s) which is intermediate between equilibrium
and aging.

In the large time equilibrium regime we consider C(s +
τ,s) with s → ∞, τ � 1, and τ/s → 0. This means that we
have to take first the s → ∞ limit and then take τ very large.
Discarding the corrections of the prefactor in τ/s, the leading
order gives

C(τ ) � 1

π1/2τ 1/2
, (40)

R(τ ) � 1

2π1/2τ 3/2
= dC

dt
, (41)

which is consistent with the fact that in this regime FDT must
hold.

Finally, we consider a different situation, namely t → ∞
and s ∼ 1, and using again the long-time behavior of the
function γ (t) we easily find

C(t,s) � c(s)t−5/4, (42)

R(t,s) � r(s)t−5/4, (43)

with

c(s) ≡ γ (s)

[
1

(2π )1/4
+

(
8

π

)1/4 ∫ s

0

1

γ 2(t ′)
dt ′

]
,

(44)

r(s) ≡ 1

(2π )1/4γ (s)
.

Note that at finite s, the correlation and the response exhibit
the same power-law behavior for large t with different
nonuniversal prefactors, c(s) and r(s), respectively, depending
on s in a nontrivial way. Fixing s = 0 we have instead that the
two prefactors become exactly the same, as it should be since
the two functions C(t,0) and R(t,0) are indeed identical, as
can be seen from Eqs. (35) and (36):

C(t,0) = R(t,0) =
∫ 2J

−2J

dμ ρ(μ)e−(2J−μ)t γ (t). (45)

So far we have computed separately the asymptotic behav-
ior of the correlation and response in three different regimes,
starting from their closed analytic form. On the other hand,
supposing that we knew only the scaling in the aging regime
given in Eqs. (38) and (39), the scaling in the other regimes
could have been derived through matching arguments.

The long waiting time behavior of Eqs. (42) and (43) must
match the behavior of Eqs. (38) and (39) close to a = 0, in fact

c(s) � 2

π1/2
s3/4, r(s) � 1

2π1/2
s−1/4, (46)

which could have been obtained from Eqs. (38) and (39) taking
the leading order for small a and then substituting a = s/t .

Moreover the asymptotic behavior of Eqs. (40) and (41)
must match Eqs. (38) and (39) close to a = 1. Again, one can

derive it taking the leading order in a ≈ 1 and substituting
t(1 − a) = τ .

We found it convenient to use this parameter a ∈ [0,1],
but the same results can be obtained considering the more
common b = t/tw with b ∈ [1,∞). In this case the scaling
functions read

C (btw,tw) � 2b1/4

π1/2(b + 1)(b − 1)1/2t
1/2
w

, (47)

R (btw,tw) � b1/4

2π1/2(b − 1)3/2t
3/2
w

, (48)

and the matching with the finite-waiting-time regime is
achieved for b → ∞.

The case of the spherical two-spin model is particularly
simple and the dynamics can be solved analytically in all
details, while this is not true in general for models displaying
a continuous transition. In the next section we generalize
these results using an effective field-theory approach. In
particular, we show that, for a generic continuous model,
the exponents of the relaxation of one-time quantities (e.g.,
energy and remanent magnetization) are ruled by the exponent
parameter λ.

IV. GENERAL SYSTEMS

In this section we argue that the scenario for the off-
equlibrium dynamics described in Sec. II holds for any model
whose replicated Gibbs free energy admits an expansion of
the form (3) near the critical temperature. We will basically
apply the same arguments used in Refs. [4,5] in an equilibrium
context.

We consider a superfield formulation of dynamics in which
one obtains a dynamical equation of state for the correlation
and response. In the so-called fast motion (FM) limit, the
microscopic dynamics is infinitely fast and the system reaches
equilibrium instantaneously. In this limit the correlation and
response are given by the equilibrium solution

Qeq,FM(1,2) = Ceq(0)δ(1,2), (49)

where 1,2 are superfield variables. Following the authors
of [4] we argue that in the large time limit off-equilibrium
dynamics can be described expanding the dynamical equation
of state around the FM solution. This corresponds to the
assumption that, on large time scales, we are essentially in
a quasi-equilibrium situation in which all one-time quantities
are near their equilibrium value. The same arguments of the
authors or [4] lead to the conclusion that, in this limit, the
dynamical equation of state reduces to the following equation
for δQ(1,2) ≡ Q(1,2) − Qeq,FM(1,2):

w1

∫
d2δQ(1,2)δQ(2,3) + w2δQ(1,3)2 = 0, (50)

where the coefficients w1 and w2 are the same as the static
replicated Gibbs free energy (3). Note that there are no
explicit time derivatives in the above equation as well as in
the equilibrium case. We have also set to zero the first order
terms assuming that we are at the critical temperature.
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Following the authors of [4], we can rewrite the above equation explicitly in terms of the response and correlation
function, we obtain the following two equations:2∫ t1

0
R(t1,t2)C(t2,t3)dt2 +

∫ t3

0
dt2R(t3,t2)C(t2,t1) − 2Ceq(0)C(t1,t3) + w2

w1
C(t1,t3)2 = 0, (51)∫ t1

t3

R(t1,t2)R(t2,t3)dt2 − 2Ceq(0)R(t1,t3) + 2
w2

w1
C(t1,t3)R(t1,t3) = 0. (52)

Similarly to what we did in the equilibrium treatment we want to get rid of the model-dependent constant Ceq(0), this can be done

using the fluctuation-dissipation theorem, e.g., Ceq(0) = ∫ t+1
−∞ Req(t1,t2)dt2. By means of some manipulations we can rewrite the

equations as∫ t3

0
R(t1,t2)C(t3,t2)dt2 +

∫ t3

0
[C(t1,t2) − C(t1,t3)]R(t3,t2)dt2 − C(t1,t3)Ceq(t3,0) + C(t1,t3)

[ ∫ t3

0
[R(t3,t2) − Req(t3,t2)]dt2

+C(t1,t3) − Ceq(t1,t3) +
∫ t1

t3

[R(t1,t2) − Req(t1,t2)]dt2

]
+

∫ t1

t3

R(t1,t2)[C(t2,t3) − C(t1,t3)]dt2 +
(

ω2

ω1
− 1

)
C2(t1,t3) = 0,

(53)∫ t1

t3

[R(t1,t2) − R(t1,t3)][R(t2,t3) − R(t1,t3)]dt2 + R(t1,t3)
∫ t1

t3

[R(t1,t2) − Req(t1,t2)]dt2 + R(t1,t3)
∫ t1

t3

[R(t2,t3) − Req(t2,t3)]dt2

− 2R(t1,t3)Ceq(t1,t3) − (t1 − t3)R(t1,t3)2 + 2
ω2

ω1
C(t1,t3)R(t1,t3) = 0. (54)

The above equations describe the correlation and response in
the region where both C(t1,t2) and R(t1,t2) are small. This
means, in particular, that times must be large but also well
separated. As we will see they were written in a form that
allows to take the large time limit inside the integrals keeping
the result finite. To proceed, we note that for t3 → t1 we expect
that C(t1,t3) and R(t1,t3) tend to their equilibrium value. In this
limit we expect that the above equations reduce to the critical
equilibrium dynamical equations considered in Ref. [4]. The
above equations were rearranged in such a way that the critical
equilibrium equations correspond to last line of Eq. (53) that
at criticality admits the solution

Ceq(t1,t3) = 1

ν|t1 − t3|ν , Req(t1,t3) = 1

|t1 − t3|ν+1
. (55)

Thus the fact that we are off-equilibrium is encoded by the
presence of the terms in the first two lines of Eq. (53). If we
plug the critical equilibrium solution (55) in Eq. (53) we find
that the second line gives trivially a vanishing contribution
while the first line yields a term 1/(t1t3)ν . This term can be
treated as a small correction to the last line which is of order
1/|t1 − t3|2ν as long as |t1 − t3| 	 t1 and this corresponds to
the equilibrium regime. The aging regime corresponds instead
to the case in which the two contributions are of the same order,
i.e., |t1 − t3| = O(t1) or equivalently to the limit in which we
send t1 to infinity while keeping a = t3/t1 finite. In this limit
both C(t1,t3) and R(t1,t3) go to zero and we are naturally led
to the following ansatz:

C(t,a t) = 1

tν
C(a), (56)

R(t,a t) = 1

tν+1
R(a). (57)

2Here and in the following we define the “response” R(t1,t2) as
T times the actual response so that the temperature does not appear
explicitly in the equations.

The scaling exponents 1/tν and 1/tν+1 are fixed by the
matching with the equilibrium behavior which is obtained for
a → 1. Plugging the above ansatz into Eqs. (53) and (54) we
obtain the two quadratic equations already presented in the
Introduction

∫ a

0
a−νR(b)C

(
b

a

)
db +

∫ a

0

[
C(b)a−ν−1R

(
b

a

)

− C(a)a−ν−1Req

(
b

a

)]
db − C(a)a−νCeq(0) − C(a)Ceq(a)

+
∫ 1

a

[
R(b)b−νC

(
a

b

)
− Req(b)C(a)

]
db + λC2(a) = 0,

(58)

and

∫ 1

a

{
R(b)b−ν−1R

(
a

b

)
− R(a)

[
Req(b) + Req

(
a

b

)]}
db

− 2R(a)Ceq(a) + 2λR(a)C(a) = 0. (59)

These equations generalize to the off-equilibrium case the
critical equilibrium equations that correspond to the last line of
Eq. (53). Therefore the universal scaling functions R(a) and
C(a) are determined (up to a model-dependent constant) solely
by the parameter λ = w2/w1. The model-dependent constant
cannot be determined in this framework and has to be fixed
through a matching with the equilibrium solution at small time
differences. For λ = 0 one can check that Eqs. (17) and (18)
provide a solution of the above equations. We note that the
above equations reduce in the limit a → 1 to the equilibrium
case in which the simple relationship between λ and ν can
be obtained. Unfortunately, it seems that such a simplification
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does not occur for the exponent α controlling the small a

behavior: Its determination requires the complete solution of
the universal equations. In the next section we will introduce
a numerical method to solve the equations. As discussed in
Sec. II the critical behavior of the energy is controlled at
leading order by the quadratic term in the action∫

δQ(1,2)2d1d2. (60)

Note that the double integration, however, makes this term
vanish,3 this corresponds to what happens in the replica method
due to the n → 0 limit because the above term evaluates to
n(n − 1)q2. To measure the energy at a given time t1 one
must consider a fluctuation of the temperature at that given
time, therefore breaking the time-translational invariance of
the Hamiltonian, from this it follows that

E(t1) ∝
∫

δQ(1,2)2d2

=
∫ t1

0
C(t1,s)R(t1,s)ds − C2

eq(0). (61)

The above expression can be simplified using C2
eq(0) =∫ t+1

−∞ Ceq(t1,t2)Req(t1,t2)dt2 and leads to the result quoted in
Sec. II

E(t) = E∞ + aE(ν)

t2ν
, (62)

where E∞ is the model-dependent equilibrium value of the
energy and the constant aE(ν) is given by

aE(ν) = aT c2

[∫ 1

0
[C(a)R(a) − Ceq(a)Req(a)] − 1

ν2

]
.

(63)

V. VARIATIONAL SOLUTION OF THE
UNIVERSAL EQUATIONS

We want to obtain the shape of the scaling functions
C(a) and R(a) and, in particular, their power-law behavior
in a � 0, which, through the matching arguments described
in Sec. IV, determines the decay exponent of the remanent
magnetization.

To solve the equations we use a variational method with an
objective function that is simply the sum of Eqs. (58) and (59)
squared computed in a set � of k points � = {a1, . . . ,ak}.

Clearly we cannot perform the minimization of the objec-
tive function in the entire space of functions C and R defined
on the interval [0,1] and we have to choose a trial form. A
quite natural choice is the following:

C(a) = 2aα

ν(1 + a)(1 − a)ν

[
1 +

O∑
i=1

Ci(a − 1)i
]
, (64)

R(a) = aα−1

(1 − a)ν+1

[
1 +

O∑
i=1

Ri(a − 1)i
]
, (65)

3This result is obvious at equilibrium, see [4], but remains true also
off-equilibrium because it is just a consequence of causality.

where we take the form of the scaling functions for λ = 0 and
multiply it by a polynomial correction of order O.

In the present case this minimization procedure will
determine the optimal value of α (that is the most relevant
quantity) and of the parameters {Ci} and {Ri}. We recall that
the value of the equilibrium exponent ν is known analytically
from static computations [4].

Two observations are in order at this point, based on the
asymptotic analysis given in Appendix C.

(1) For λ �= 0 the first subleading correction to the behavior
of the correlation and response in a = 0 must necessarily be
nonanalytic, in the sense that it is some noninteger positive
power of a that cannot be expressed as a power series. Despite
this, we expect (and verify) that with our choice of the trial
functions (64) and (65) we are able to determine accurately
the leading behavior of C and R for small a that is given by
the exponent α.

(2) With our choice of the trial functions the equations
have a singular behavior in a ∼ 0 and a ∼ 1. For this reason,
the equations must be properly reweighted in the objective
function to ensure that both the equations in all the points of
� have approximately the same relevance in the minimization
procedure.

If we call EC[α,{C},{R}] and ER[α,{C},{R}], respectively,
the left-hand side (l.h.s.) of Eqs. (58) and (59), we show in
Appendix C that they behave as

EC[α,{C},{R}] ∝ aα−ν, for a � 0,

ER[α,{C},{R}] ∝ aα−ν−1, (66)

and

EC[α,{C},{R}] ∝ (1 − a)−2ν, for a � 1.

ER[α,{C},{R}] ∝ (1 − a)−2ν−1, (67)

All these observations lead to the following form for the
objective function

F[α,{C},{R}] =
∑
a∈�

{(WC(a) EC[α,{C},{R}])2

+ (WR(a) ER[α,{C},{R}])2} (68)

with

WC(a) = aν−α(1 − a)2ν,

WR(a) = aν−α+1(1 − a)2ν+1. (69)

We have minimized the objective function by means of the
Gauss-Newton algorithm which is standard for least squares
functions. Note that the α in Eq. (68) should be the correct α

which we actually determine with the minimization of Eq. (68)
itself. This issue is solved starting with a trial value of α and
adjusting it self-consistently at each step of the Gauss-Newton
algorithm with the value at the immediately preceding step.

We applied the Gauss-Newton algorithm for values of λ

up to 0.55. For the trial function we choose O = 6 since,
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TABLE I. The exponent α determined through the Gauss-Newton
minimization procedure. The value for λ = 0 has zero error since it
is determined analytically. The other values reported in the table
are averages over different choices for the set of points � with the
associated error.

λ α Err

0 0.750 0
0.05 0.744 0.002
0.1 0.737 0.003
0.15 0.728 0.003
0.2 0.718 0.003
0.25 0.707 0.003
0.3 0.695 0.003
0.35 0.682 0.003
0.4 0.667 0.004
0.45 0.651 0.005
0.5 0.633 0.007
0.55 0.614 0.009

for polynomials of higher orders, the convergence of the
minimization algorithm becomes quite slow, especially for
large λ. In any case, we observe that for low enough values
of λ there is no significant difference in the determination
of the exponent α between the cases O = 6 and O = 8. The
choice of the set of points � is important for two different
reasons.

(1) The number of points must be grater than O, otherwise
the objective function will have flat directions and the Gauss-
Newton algorithm will not converge.

(2) Since the trial function is only approximate, the choice
of the set of points influences the final result. This dependence
on � becomes stronger for larger values of λ while it is almost
irrelevant for small λ.

Another technical point is that the computation of the
objective function requires the numerical evaluation of various
definite integrals with arguments that are singular at the
extrema of integration. Therefore to reduce the numerical
errors it is convenient to eliminate the singularities analytically
(through integration by parts) before performing the actual
numerical integration. We perform the minimization for
different �’s, then we take the average over the choices as
the correct result and the square root of the variance as our
error. The results are shown in Table I. In Fig 1 we reported
the exponent α for three representative choices of the set of
points, in particular

�1 = {0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95},
�2 = {0.01,0.05,0.15,0.25,0.35,0.45,0.55,0.65,

0.75,0.85,0.95}, (70)

�3 = {0.001,0.005,0.01,0.03,0.07,0.15,0.2,0.25,

0.35,0.45,0.60,0.75,0.85,0.95}.

In Figs. 2 and 3 we show the correlation and response scaling
functions for different values of the exponent parameter λ

and for the particular choice � = �1. The whole procedure

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0  0.1  0.2  0.3  0.4  0.5  0.6

α

λ

set 1
set 2
set 3

average

FIG. 1. (Color online) The exponent α for three representative
choices of �. The dashed line is the average over these three sets �1,
�2, and �3.

was implemented within MATHEMATICA using the routine
NINTEGRATE[] for numerical integrations.

VI. TESTS

In this section we present two validations of the theory
presented above: The first one is a Monte Carlo study of the
three-colors fully connected Potts model, while the second is
a power series solution of the dynamical equations for the
spherical (2 + 3)-spin model.

A. Monte Carlo study of the three-colors fully
connected Potts model

We consider the fully connected three-colors Potts Hamil-
tonian

H = −1

2

∑
i �=j

Jij (3 δσi ,σj
− 1), (71)

where the couplings are independent and identically dis-
tributed (i.i.d.) Gaussian random variables with zero mean
and variance 1/N .

This system undergoes a continuous transition at the critical
temperature Tc = 1 with λ = 1/2 [20,21], which gives an

 1

 10

 0.1  1

C

a

λ=0.05
λ=0.10
λ=0.15
λ=0.20
λ=0.25
λ=0.30
λ=0.35
λ=0.40
λ=0.45
λ=0.50
λ=0.55
λ=0.60

FIG. 2. (Color online) Correlation scaling function for different
values of the exponent parameter λ (growing from lower curve to
upper curve) and for the particular choice � = �1.
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 10

 0.01  0.1  1

R

a

λ=0.05
λ=0.10
λ=0.15
λ=0.20
λ=0.25
λ=0.30
λ=0.35
λ=0.40
λ=0.45
λ=0.50
λ=0.55
λ=0.60

FIG. 3. (Color online) Response scaling function for different
values of the exponent parameter λ (growing from lower curve to
upper curve) and for the particular choice � = �1.

equilibrium exponent

ν = 0.3953. (72)

We study the system by means of an off-equilibrium Monte
Carlo simulation starting from a random configuration and,
in particular, we consider the energy and the remanent
magnetization. We simulated fully connected systems of size
29,210,211,212 (1000 samples), and of size 216 (329 samples).

Due to finite-size effects e(t) and mR display a power-law
behavior only up to a certain time scale t∗(N ) that diverges
with the size as t∗(N ) � N1/3ν . Moreover, to have a collapse
of the curves for different sizes we have to take into account the
finite-size and finite-time effects, and use the rescaled variables

tN− 1
3ν , N2/3(eN − e∞), N

α+ν
3ν mN, (73)

where eN and mN are the energy and magnetization at finite
size N . With the rescaled variables we observe an excellent
collapse of the energy and magnetization decay, see Figs. 4
and 5.

We perform a power-law fit on the curves for the largest
size (216) assuming for large times

e(t) − e∞ = ce

tϒ
, m(t) = cm

tδ
, (74)

 1

 10

 0.01  0.1  1

N
2/

3  (
e N

-e
∞

)

t / N1/(3ν)

N=65536
N=4096
N=2048
N=1024

N=512
f(x) = c/x2 ν

FIG. 4. (Color online) Energy decay towards its equilibrium value
for different system sizes. The rescaled curves display an excellent
collapse, and a nonlinear fit with x−ϒ gives an exponent ϒ = 0.777 ±
0.010.

 1

 10

 100

 1000

 0.01  0.1  1

N
(α

+
ν)

/3
ν  m

N

t/N1/(3ν)

N=65536
N=4096
N=2048
N=1024

N=512
f(x) = c/xν+α

FIG. 5. (Color online) Magnetization decay towards zero for
different system sizes. The rescaled curves display an excellent
collapse, and a nonlinear fit with x−δ gives an exponent δ = 1.025 ±
0.013.

and we obtain

ϒmc = 0.777 ± 0.010, δmc = 1.025 ± 0.013, (75)

where mc stands for Monte Carlo. Considering that we know
the exact value of the equilibrium exponent ν = 0.395, . . . , we
can compute the theoretical value of ϒ , that is, ϒth = 0.790,
if compared with the Monte Carlo estimate we can see that the
agreement is good (within 2σ ).

Now to give our Monte Carlo estimate of α we have two
options

α(1)
mc = δmc − ϒmc/2 = 0.633 ± 0.018, (76)

or

α(2)
mc = δmc − ν = 0.630 ± 0.013. (77)

In both the cases there is complete agreement, within the error,
with our theoretical estimate αth = 0.633 ± 0.007.

B. Power series solution of the exact equations for the spherical
(2 + 3)-spin model

We consider the Hamiltonian

H = −
∑

p

∑
i1<i2<···<ip

J
(p)
i1,...,ip

si1 , . . . , sip , (78)

where the si are continuous spins subject to a global spherical
constraint

N∑
i=1

s2
i = N (79)

and the couplings are uncorrelated Gaussian variables with
zero mean and variance

(J (p))2 = J 2
pp!

2Np−1
. (80)

If we define μp = J 2
p and the function

�(x) =
∑

p

μp xp, (81)
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the dynamical equations can be written in the following way

μ(t) = T + 1

2

∫ t

0
ds R(t,s)�′ [C(t,s)] + 1

2

∫ t

0
ds C(t,s)R(t,s)�′′ [C(t,s)] ,

∂R(t,t ′)
∂t

= −μ(t)R(t,t ′) + 1

2

∫ t

t ′
ds �′′ [C(t,s)] R(t,s)R(s,t ′), (82)

∂C(t,t ′)
∂t

= −μ(t)C(t,t ′) + 1

2

∫ t ′

0
ds �′ [C(t,s)] R(t ′,s) + 1

2

∫ t

0
ds �′′ [C(t,s)] R(t,s)C(s,t ′).

We are interested in the specific case of the spherical (2 + 3)-spin model where the equations become straightforwardly

μ(t) = T + 2μ2

∫ t

0
ds R(t,s)C(t,s) + 9

2
μ3

∫ t

0
ds R(t,s)C2(t,s),

∂R(t,t ′)
∂t

= −μ(t)R(t,t ′) + μ2

∫ t

t ′
ds R(t,s)R(s,t ′) + 3μ3

∫ t

t ′
ds C(t,s)R(t,s)R(s,t ′),

(83)
∂C(t,t ′)

∂t
= −μ(t)C(t,t ′) + μ2

∫ t ′

0
ds C(t,s)R(t ′,s) + 3

2
μ3

∫ t ′

0
ds C2(t,s)R(t ′,s)

+μ2

∫ t

0
ds R(t,s)C(s,t ′) + 3μ3

∫ t

0
ds C(t,s)R(t,s)C(s,t ′).

In this case, as well as in the case of the spherical two-spin
model, we can see that C(t,0) = R(t,0) since they satisfy the
very same equation, namely

∂R(t,0)

∂t
= −μ(t)R(t,0) + μ2

∫ t

0
ds R(t,s)R(s,0)

+ 3μ3

∫ t

0
ds R(t,s)2R(s,0), (84)

where we have already considered the equality of correlation
and response.

We are able to solve Eqs. (83) in a power series of the
two times t and t ′ starting at t0 = 0. The resulting (truncated)
asymptotic series can be resummed using Padé approximants.
It can be shown easily from static computations [22,23] that
the above model corresponds to our universal equations (58)
and (59) with

λ = 3μ3

2μ2
. (85)

In particular, we choose μ2 = 1 and μ3 = 1/6 yielding

λ = 1
4 . (86)

We computed the series to 163 orders and resummed it with
Padé approximants of order (80,80), the results are shown
in Figs. 6 and 7, respectively, for the energy and for the
remanent magnetization. In this case we are not actually able
to determine an error on the measure of the exponents since our
points are exact. The source of the error in the determination
of ν and α is only the fact that with the resummed series we
are not able to converge at very large times. For this reason we
may be quite far from the true asymptotic power-law regime.
Despite this fact, as we will see, the results are in reasonably
good agreement with our predictions.

Fitting the results with a power law for t ∈ [10,20] we get

ϒps = 0.914 ± 0.010, (87)

and

δps = 1.167 ± 0.010, (88)

where the error is roughly estimated considering that, choosing
different time intervals for the fit, we get slightly different
results. The exact value of the equilibrium exponent is ν =
0.455073 and the estimate from the power series solution is
νps = 0.457 ± 0.005.

As in the preceding case, to give our power series estimate
of α we have two options

α(1)
ps = δps − ϒps/2 = 0.710 ± 0.015, (89)

 0.01

 0.1

 1

 0.01  0.1  1  10

e ∞
-e

t

power series
c/t0.914

FIG. 6. Energy decay from the power series solution of the exact
equation for the spherical (2 + 3)-spin model. The nonlinear fit gives
an exponent ϒps = 0.914.
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FIG. 7. Magnetization decay from the power series solution of the
exact equation for the spherical (2 + 3)-spin model. The nonlinear fit
gives an exponent δps = 1.167.

or

α(2)
ps = δps − ν = 0.712 ± 0.010, (90)

we predict from our theoretical analysis αth = 0.707 ± 0.003.
As already said, these values are in good agreement with the
results from the series expansion despite the difficulty of the
measure.

In the Introduction we pointed out that action (3) and
all the results we derived from it can be applied provided
the Hamiltonian possess some additional symmetries, e.g.,
time reversal in magnetic systems. From this it follows that
in general a Hamiltonian like Eq. (78) with nonvanishing
odd-p terms cannot be mapped into action (3). In the present
section we could successfully apply the theory to the 2 + 3
case because the model is defined on a fully connected
lattice and the effect of breaking time reversal vanishes in
the thermodynamic limit. For the same reason it follows that
the present theory applies also to the same models with odd-p
interactions defined on random lattices, but not on lattices in a
finite dimension.

VII. CONCLUSION

We have formulated a general scenario for the off-
equilibrium critical behavior of a class of glassy systems
characterized by a specific structure of the replicated Gibbs
free energy.

The off-equilibrium correlation and response functions
obey a precise scaling form in the aging regime. The structure
of the equilibrium replicated Gibbs free energy fixes the
corresponding off-equilibrium scaling functions implicitly
through two functional equations. The details of the model
enter these equations only through the ratio w2/w1 of the
cubic coefficients (proper vertexes) of the replicated Gibbs
free energy. Therefore the scaling functions and exponents are
controlled by the very same parameter exponent λ = w2/w1

that determines the equilibrium dynamics according to [4].
The dynamical exponent ϒ describing the approach to

equilibrium of the energy turns out to be ϒ = 2ν where ν is the
dynamical exponent of the decay of the equilibrium correlation
at criticality that obeys the well-known relationship λ =
�2(1 − ν)/�(1 − 2ν). The dynamical exponent associated to

the decay of the remanent magnetization is determined by
δ = α + ν where α is the exponent associated to the behavior
of the scaling functions at small arguments.

The off-equilibrium universal equations are a generalization
of the scale-invariant equations obtained at equilibrium. We
have exhibited the analytical solution for λ = 0, but no
analytical solution is known for the general values of λ.
Finding approximate solutions is not at all trivial because the
scaling functions are singular at the extrema. Nevertheless
we have devised an approximation scheme that appears to
yield consistent results at least for not too large values of
λ. The theory have been validated by means of (i) exact
analytical computation in the spherical SK model, (ii) large-
time analytical computation in the SK model, (iii) numerical
simulations in the three-states Potts glass, and (iv) small-time
power series solution of the full dynamical equations in
multi-p-spin spherical models that also correspond to some
schematic MCT models.

In summary, the main result of the present paper is that
the equilibrium replicated Gibbs free energy determines off-
equilibrium critical dynamics at large times both qualitatively
(through its structure) and quantitatively (through the actual
value of the cubic proper vertexes). We expect that similar
results hold for other types of transition as well. In particular,
it would be interesting to extend this analysis to the continuous
SG transition in a field and to the discontinuous SG transition
that corresponds within MCT to the standard liquid-glass
transition (generic A2 singularity).
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APPENDIX A: CRITICAL APPROACH TO EQUILIBRIUM
IN THE SK MODEL AT THE CRITICAL TEMPERATURE

The Hamiltonian reads

H [σ ] = −
∑
i,k

Ji,kσiσk, (A1)

with σi = ±1. To write down exact equations we avoid to
consider Monte Carlo dynamics or continuous time dynamics:
Exact dynamical equations can be written, but they are
not so simple. We consider a generalized model where the
Hamiltonian is given by

HP [σ,τ ] = −
∑
i,k

Ji,kσiτk. (A2)

It has been shown that (as far as the free energy is concerned)
this Hamiltonian has the same equilibrium properties of the
usual SK Hamiltonian, where τi = σi . A sequential update
of this Hamiltonian corresponds to two steps of the parallel
update in the SK model, where the σ are the spin at even time
and the τ are the spins at odd time.

The dynamics that we are considering is therefore the
parallel update of the spins for the SK model using a local
heath bath dynamics, i.e., the spins at time (t + 1) have a
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probability distribution given by

Pt+1[σ (t + 1)] ∝ exp

(
β

∑
i,k

Ji,kσi(t + 1)σk(t)

)
. (A3)

With this equation of motion, we can write exact recursion
equations. For example, for the magnetization we have

mi(t + 1) = tanh

(
β

∑
k

Ji,kσk(t)

)
. (A4)

To compute the time evolution we write

Pt [σ ] ∝ exp(−βHt [σ ]). (A5)

We have that

Ht [σ ] = H [σ ] + �Ht [σ ], (A6)

where for large time �Ht [σ ] must go to zero.
We suppose that for large times �Ht [σ ] has a simple

expression, i.e.,

�Ht [σ ] =
∑

i

hi(t)σi. (A7)

Two (and more) spins’ interactions are assumed to give higher
order corrections. The consistency of this approximation can
be checked by considering the perturbative effect of a possible
term in �Ht [σ ] proportional to

∑
i,k Ri,k(t)σiσk .

If we stay in the situation where there is no replica symmetry
breaking for the Hamiltonian Ht , we have that the computation
of the right-hand side of Eq. (A4) is easy and the computation is
the same of the one of the cavity approximation. We finally get

mi(t + 1) = tanh

(
β

∑
k

Ji,kmk(t) − β2(1 − q(t))mi(t)

)
,

(A8)

where

q(t) = 1/N
∑

i

mi(t)
2. (A9)

At large times, where mi(t + 1) has a smooth dependence
on the integer value time t , we can use for simplicity a
continuous time t and write

d mi(t)

dt
= tanh

{
β

∑
k

Ji,kmk(t) − β2[1 − q(t)]mi(t)

}

−mi(t). (A10)

We can now use the spectral properties of the matrix
following [10] with similar results.

We study the problem at the critical point where β = 1

d mλ(t)

dt
= −[λ + q(t)]mλ(t), (A11)

where mλ(t) is the projection of the magnetization on the eigen-
vector of J with eigenvalue 2 − λ (0 � λ � 4). Consequently
we have

mλ(t) ∝ rλ exp[−βλt + I (t)], (A12)

where I (t) = ∫ t

1 q(t).

Now if q(t) behaves as

q(t) = α/t + o(t−1) (A13)

we have I (t) ∝ tα . On the other hand,

q(t) =
∫

dμ(λ)mλ(t)2

∝
∫ 4

0
dλ

√
λt2α exp(−βλt) ∝ t−3/2+2α. (A14)

The only consistent solution is α = 1/4.
One finds that

mλ(t) ∝ rλt
1/4 exp(−βλt) . (A15)

Finally mr (t) ∝ t−5/4 and q(t) ∝ t−1.
Now we want to study the behavior of the energy and

we should be precise with the definitions. Two are possible
choices:

(a) H [σ (t)],
(b) HP [σ (t),σ (t)].
We consider here case (a). Here we have to compute

1/2〈σi(t)σk(t)Ji,k〉t . The computation should be done with
some care because there is a small correlation between the
two spins, which is given by βJi,k〈σ 2

i 〉ct 〈σ 2
k 〉ct , where 〈· · · 〉c is

the connected expectation value. We finally obtain

NE(t) = 1
2 〈σiσk〉t Ji,k − N 1

2β[1 − q(t)]2, (A16)

while the first term decays as 1/t2 the second term gives the
leading contribution to

E(t) = −1/2 + q(t) ≈ −1/2 + αt−1. (A17)

The same results are obtained considering definition (b).

APPENDIX B: SOLUTION OF THE SPHERICAL
TWO-SPIN MODEL

The Langevin equation for the spherical two-spin model
can be projected on the eigenvalues of the interaction and
reads [18]

δsμ(t)

δt
= [μ − z(t)]sμ(t) + ημ(t), (B1)

where μ ∈ [−2J,2J ] is an eigenvalue of the interaction
matrix, z(t) is the Lagrange multiplier enforcing the spherical
constraint, and η is a Gaussian noise with

〈ημ(t)〉 = 0, 〈ημ(t)ηε(t ′)〉 = 2T δμ,εδ(t − t ′). (B2)

Setting the initial time t0 = 0 and defining

γ (t) ≡ e2J t−∫ t

0 ds z(s), (B3)

the general solution is given by

sμ(t) = sμ(0)e−(2J−μ)t γ (t) +
∫ t

0
ds e−(2J−μ)(t−s)ημ(s)

γ (t)

γ (s)
.

(B4)

It can be shown that a random initial condition for the spins si

corresponds to a fixed uniform initial condition sμ(0) = 1 for
the projections.
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The spherical constraint with random initial conditions
becomes a closed equation for

D(t) ≡ 1

γ 2(t)
= e−4J t+2

∫ t

0 ds z(s) (B5)

and the equation is the following

D(t) =
∫ 2J

−2J

dμ ρ(μ)

[
e−2(2J−μ)t

+ 2T

∫ t

0
ds e−2(2J−μ)(t−s)D(s)

]
. (B6)

The correlation and the response can be expressed in terms of
γ (t) once the Lagrange multiplier z(t) is eliminated from the
equations.

Their form is the following [cf. Eqs. (35) and (36)]

C(t,t ′) =
∫ 2J

−2J

dμ ρ(μ)

[
s2
μ(0)e−(2J−μ)(t+t ′)γ (t)γ (t ′)

+ 2T

∫ min(t,t ′)

0
ds e−(2J−μ)(t+t ′−2s) γ (t)γ (t ′)

γ 2(s)

]
,

R(t,t ′) =
∫ 2J

−2J

dμ ρ(μ) e−(2J−μ)(t−t ′) γ (t)

γ (t ′)
.

Given the above equations, it is clear that once γ (t) is
determined, the correlation and the response can be computed
straightforwardly through simple integrations.

Taking the Laplace transform Eq. (B6) for the spherical
constraint we obtain

D̃(u) =
∫ 2J

−2J

dμ ρ(μ)
1 + 2T D̃(u)

u + 2(2J − μ)
. (B7)

If we now define

D̃(u) = G(u)

1 − 2T G(u)
(B8)

we obtain G(u) in a closed form

G(u) =
∫ 2J

−2J

dμ ρ(μ)
1

u + 2(2J − μ)

= G(0) − u

2

∫ 2J

−2J

dμ ρ(μ)
1

(2J − μ)[u + 2(2J − μ)]
,

(B9)

where we added and subtracted

G(0) = 1

2Tc

= 1

2

∫ 2J

−2J

dμ

2πJ

√
4J 2 − μ2

1

2J − μ
. (B10)

We need the leading behavior of G(u) at small u since we are
interested in the long-time region of its Laplace antitransform

G(u) � 1

2

(
1

Tc

− cu1/2

)
, (B11)

where c = (2J 3)−1/2. As a consequence, we obtain

D̃(u) � 1

2

1 − cTcu
1/2

(Tc − T ) + cT Tcu1/2
. (B12)

The leading behavior of D̃(u) for small u is different if we are
at or below the critical temperature. In Refs. [17,18] a detailed
treatment of the T < Tc case can be found.

At T = Tc we find at leading order

D̃(u) � 1

(2J )3/2T 2
c

u−1/2. (B13)

Taking the inverse transform we obtain

D(t) � 1

(2J )3/2T 2
c π1/2

t−1/2, (B14)

which, setting without loss of generality J = 1 and, conse-
quently, Tc = 1 and using definition (B5), yields [cf. Eq. (37)]

γ (t) � 23/4π1/4t1/4.

APPENDIX C: ASYMPTOTIC ANALYSIS OF THE
UNIVERSAL EQUATIONS

We assume that the correlation and response scaling
functions C(a) and R(a) have a power-law behavior in a ≈ 0,
in particular

C(a) = aαC̃(a), R(a) = aβR̃(a), (C1)

where C̃(a) and R̃(a) are nonsingular in a = 0 and

C̃(a) −−→
a→1

Ceq(a), R̃(a) −−→
a→1

Req(a). (C2)

We can rephrase Eq. (58) in terms of the new tilded functions
obtaining

a−α−ν

∫ a

0
bα+βR̃(b)C̃

(
b

a

)
db + a−ν−β−1

∫ a

0
[bαC̃(b) − aαC̃(a)]bβR̃

(
b

a

)
db

+ aα−ν−1C̃(a)
∫ a

0

[
a−βbβR̃

(
b

a

)
− Req

(
b

a

)]
db + aαC̃(a)[aαC̃(a) − a−νCeq(0) − Ceq(a)]

+ aα C̃(a)
∫ 1

a

[
bβR̃(b) − Req(b)

]
db + aα

∫ 1

a

bβR̃(b)

[
b−α−ν C̃

(
a

b

)
− C̃(a)

]
db + a2α

(
ω2

ω1
− 1

)
C̃2(a) = 0. (C3)

We now extract the leading order from each of the terms of the l.h.s. of the above equation

(aβ−ν+1)R̃(0)
∫ 1

0
dy yα+β C̃(y) + o(aβ−ν+1) + (aα−ν)C̃(0)

∫ 1

0
dy (yα − 1)yβR̃(y) + o(aα−ν)

+ (aα−ν)C̃(0)
∫ 1

0
dy [yβR̃(y) − Req(y)] + o(aα−ν) − (aα−ν)C̃(0)Ceq(0) + o(aα−ν)

032134-13



CALTAGIRONE, PARISI, AND RIZZO PHYSICAL REVIEW E 87, 032134 (2013)

− (aα)C̃(0)Ceq(0) + o(aα) + (aα)C̃(0)
∫ 1

0
dy [yβR̃(y) − Req(y)] + o(aα)

+ (aβ−ν+1)R̃(0)
∫ 1

0
dy yα−β+ν−2C̃(y) + o(aβ−ν+1) + (a2α)

w2

w1
C̃(0)2 + o(a2α) = 0. (C4)

Generally speaking, the candidates to be the leading terms in the equation are the ones of order α − ν and the ones of order
β − ν + 1 depending on which one is the smallest.

For λ = 0 we know from the exact solution of the spherical two-spin model (see Sec. III) that β = α − 1 and, consequently,
the terms are of the same order. Therefore the tilded functions satisfy the following equation

R̃(0)
∫ 1

0
dy yα+β C̃(y) + C̃(0)

∫ 1

0
dy (yα − 1)yβR̃(y) + C̃(0)

∫ 1

0
dy [yβR̃(y) − Req(y)] + C̃(0)Ceq(0)

+ R̃(0)
∫ 1

0
dy yα−β+ν−2C̃(y) = 0. (C5)

The important point is that, if we separate the two terms, coming, respectively, from the order α − ν and β − ν + 1, and plug
into Eq. (C5) the exact solution for λ = 0 we find

E (1)
C ≡ C̃(0)

∫ 1

0
dy (yα − 1)yβR̃(y) + C̃(0)

∫ 1

0
dy [yβR̃(y) − Req(y)] + C̃(0)Ceq(0) �= 0, (C6)

and

E (2)
C ≡ R̃(0)

∫ 1

0
dy yα+β C̃(y) + R̃(0)

∫ 1

0
dy yα−β+ν−2C̃(y)

�= 0. (C7)

If we reasonably assume that C̃ and R̃ change continuously
from λ = 0 to λ �= 0, we know that in a certain neighborhood
of λ = 0 the true scaling functions would yield E (1)

C �= 0 and
E (2)

C �= 0 so that the two equations cannot be satisfied separately
and are necessarily of the same order. From this analysis
we conclude that, independently of the value of λ, the two
exponents satisfy

β = α − 1. (C8)

Given this first result, we can compute corrections to the
leading behavior.

If we suppose that C̃ and R̃ admit a regular power series
expansion around a = 0, namely

C̃(a) = C̃(0)

[
1 +

∞∑
k=1

C̃ka
k

]
,

(C9)

R̃(a) = R̃(0)

[
1 +

∞∑
k=1

R̃ka
k

]
,

then, with some effort, we can find that there are terms of order
2α coming from the fifth and sixth line of Eq. (C4) that are
equal in absolute value but opposite in sign, respectively,

∓ C̃(0)R̃(0)
∫ 1

0
dy yα−1, (C10)

yielding a cancellation. Therefore the equation at order 2α

would simply read
w2

w1
C̃(0)2 = 0 (C11)

that is satisfied only when λ = w2/w1 = 0, which is consistent
with the fact that we know that Eq. (C9) is true for λ = 0. On
the other hand, for any λ �= 0, Eq. (C11) is intrinsically not
satisfied, meaning that the hypothesis (C9) is not verified in the
general case. For this reason our ansatzs (64) and (65) are in
principle incorrect, but still give a quite accurate determination
of the leading behavior in a ≈ 0 that is encoded in the
exponent α.

For completeness we give Eq. (59) written in terms of the
tilded functions at leading order∫ 1

0
(y1−α − 1)yν+α−2R̃(y) dy

+
∫ 1

0
yν−1[yα−1R̃(y) − Req(y)] dy = 0. (C12)
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