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The one-dimensional Ising model in a random field and with power-law decaying ferromagnetic bonds is
studied at zero temperature. Comparing the scaling of the energy contributions of the ferromagnetic domain
wall flip and of the random field à la Imry-Ma, a threshold value for the power ρ of the long-range interaction
can be determined, beyond which no critical behavior occurs. The critical threshold value is ρc = 3/2, at a
difference with the zero field model in which ρc = 2. This prediction is analyzed by numerical computation
of the ground states below, at, and above this threshold value. The analogy between the critical behavior of
long-range one-dimensional systems and in short-range D-dimensional systems is investigated. At the critical
threshold value of ρ, corresponding to the lower critical dimension, numerical evidence is found for a zero
temperature transition at a finite critical field. Possible finite size crossover effects are discussed in this case.
Some implications for the critical behavior of spin glasses in a field are conjectured.
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I. INTRODUCTION

According to the well-known Imry-Ma argument,1–3 the
random field Ising model (RFIM) with nearest-neighbor
interaction does not display any spontaneous magnetization
in D � 2. Spontaneous magnetization is, instead, present in
D = 3 where a rigorous result has shown the occurrence
of a finite dimensional phase transition,4,5 and numerical
simulations6–10 confirm this result. Further analysis by nu-
merical simulations,11,12 rigorous approach,13 perturbation
theory,14 and RG transformations15,16 have shown that D = 2
is, actually, the lower critical dimension, and no phase transi-
tion takes place in dimension two,17,18 both for T > 0 and at
T = 0. In the latter case the relevant variable is the strength of
the random magnetic field, i.e., the square root of its variance,
normalized to the ferromagnetic coupling. Renormalization
group arguments show that the finite temperature transition is
dominated by the zero temperature fixed point.

In the present paper we report on our investigation of the
zero temperature critical behavior in a one-dimensional RFIM
with long-range (LR) power-law decaying interaction. Given
any two sites i and j at distance rij their interaction decays
like

Jij ∼ r
−ρ

ij .

Our aim is twofold: (i) to characterize the behavior of the
system at threshold value of the power ρ = ρc above which
the system does not undergo any phase transition; (ii) to gain
insight about the correspondence between LR models with a
certain power of the interaction decay and short-range (SR)
models in a given dimension D in the presence of a field. We
will extend to bond diluted systems the rigorous prediction19

that the critical threshold value for the power corresponding to
a lower critical dimension is ρc = 1.5 in the 1D RFIM. This
is ρc = 2 in the 1D ferromagnetic model in the absence of a
field, modeling the well-known Kondo problem.20–22 Such a
difference has direct consequences on the determination of the
lower critical dimension in the presence of a field by means

of the analogy between long-range (LR) and short-range (SR)
systems.

A. SR↔LR connection with no field

We recall that a quantitative relationship can be established
between the power-law ρ of the LR interaction decay in a 1D
lattice and the dimension D of a SR system displaying the
same critical behavior. The requirement that the renormalized
coupling constant has the same scaling dimension leads to

ρ − 1 = 2

D
. (1)

Below the upper critical dimension (UCD), though, i.e., for
ρ > ρmf,23 such a relationship is not exact anymore. Moreover,
it grossly fails at the lower critical dimension (LCD), D = 1
for the purely ferromagnetic model, predicting a ρc = 3 > 2
in a 1D LR chain. We can improve Eq. (1) by looking at
the behavior of the renormalized space correlation function
at criticality in the SR model: C(r) ∼ r−D+2−ηsr(D). Requiring
that at the LCD the correlation function does not display any
power-law critical decay, i.e., D = 2 − ηsr(D) and imposing
the correct ρc = 2, Eq. (1) is modified as

ρ − 1 = 2 − ηsr(D)

D
. (2)

By construction it is exact at the LCD. The same relation
holds for Heisenberg ferromagnets, where at the LCD (D =
2), ηsr(D) = 0. Equation (2) has been first obtained, in the
framework of spin glasses, by comparing the singular part of
the free energy per spin in a LR system of N = Ld spins and
in a D-dimensional SR system with the same number of spins,
N = LD . The magnetic scaling exponents turn out to follow
the relationship y lr

h = ysr
h (D)/D, being 2yh = D + 2 − η.24,25

Since in LR models, both with and without quenched disorder,
the two point vertex function is not renormalized and ηlr =
3 − ρ26–28 also in the infrared divergence regime, Eq. (2) is
recovered.24,25,29,30
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Equation (2) states that the critical behavior of the two
models, i.e., the D-dim. SR and the 1D LR models, should
be similar for all (ρ,D) couples between (ρmf,UCD) and
(ρc,LCD) for ρ < ρmf = 3/2 the system is in the mean-field
regime.

In the SR Ising model this corresponds to D > DUCD =
4. As D < DUCD infrared divergences occur in the vertex
functions and a nonzero anomalous exponent. In D = 3, a
good numerical estimate is η = 0.031(5),31 corresponding to
ρ = 1.656(2). In D = 2, Onsager solution yields ηsr = 1/4
and the system is “critically equivalent” to the ρ = 15/8 LR
model.

By direct inspection, it is known that no transition is present
at ρ > ρc = 2. Exactly at ρ = 2, though, a phase transition
does occur. This is the Kondo transition in 1D magnetic
chains.22 On the contrary, the SR 1D Ising chain does not
display any critical point. This discrepancy is, actually, not
unusual and it is due to a direct long interaction of interfaces
in LR models. The critical behavior of the LR model at ρc

and of the SR model exactly at the LCD is often different:
In some instances no transition is present in the SR model,
while a transition may be present in the corresponding LR
model. Rigorous results for the LR RFIM, though, predict no
zero temperature transition at ρ = ρc = 1.5.17,18 We anticipate
that, in the present work we actually find numerical evidence
compatible with a T = 0 fixed point with logarithmic scaling
in the LR model at ρ = 1.5. We will discuss the issue in
Sec. III.

Equation (2) appears to hold also for systems with quenched
bond disorder, the so-called spin glasses,25 in which a rigorous
result confirms ρc = 2.32,33 Only the mean-field threshold
value of ρ is modified, because the relevant interaction term at
criticality, and, thus, the UCD is different: ρ

sg
mf = 4/3.27,28

B. SR↔LR connection in a field

As an external field is switched on a new critical fixed point
arises that is different from the zero-field fixed point. This is
true both for systems with and without quenched bond disorder.
Lower and upper critical dimensions appear not to decrease in
all known cases. In particular, the critical dimensions of the
RFIM increase to become DUCD = 6 and DLCD = 2.

The extension of Eq. (2) to the random magnetic case
requires some care. Different definitions of the exponent ηsr

are indeed possible since connected and disconnected corre-
lation functions decay differently and hyperscaling does not
hold.6,15,34–36 One defines an exponent η̄sr by the condition that
the Fourier transform of spin-spin disconnected correlation
behaves in momentum space as k−4+η̄sr , or equivalently in
position space Cdisc

sr (r) ∼ r−D+4−η̄sr(D), where the Schwartz-
Soffer inequality holds: η̄sr � 2ηsr.35 The difference between
2η and η̄ decreases with the dimension,9,10 eventually tending
to zero at the LCD.

We now present our study of the 1D LR RFIM. First, we
describe an Imry-Ma-like argument predicting ρc = 1.5. A
rigorous proof of this threshold value for the fully connected
version of the model can be found in Refs. 17 and 18 in the
case of a continuous distribution of random fields. Further, we
analyze the critical behavior of the model at ρ ∼ ρc by means
of numerical computations of the ground state properties at

T = 0 as a function of the strength of the ferromagnetic
interaction J .

II. THE LONG-RANGE RFIM AND
THE IMRY-MA ARGUMENT

The Hamiltonian of the LR 1D RFIM is

H = −
∑
〈ij〉

Jij sisj −
∑

i

hisi, (3)

where si = ±1, Jij = J |i − j |−ρ , and hi is a random field
with a Gaussian distribution of zero mean and variance h2.

In an ordinary ferromagnet the cost to flip a domain of spins
of length L grows like L2−ρ . As the random field is switched
on this will compete with the energy of the orientation along
the field going like L1/2. According to the argument developed
by Imry and Ma for SR D-dimensional systems,1 as ρ > 1.5
there will always be a size large enough for the field to destroy
any ferromagnetic domain, and no long-range order can be
established. The exponent value ρ = 1.5 should, therefore,
be the analog of the LCD in nearest-neighbor interacting D-
dimensional RFIM, i.e., D = 2.1–5,9,10,17,18

A. Lévy lattice

In order to validate this analytic prediction we performed
numerical estimates of the ground state properties at T = 0
for the 1D RFIM on a Lévy lattice, that is a finite connectivity
random graph equivalent to a fully connected LR model.37 In
this dilute graph two sites i and j are connected (i.e., Jij �= 0)
with a probability

P (Jij = J ) = |i − j |−ρ∑
r r−ρ

, (4)

where the sum runs over all possible distances realizable on
the 1D chain of length L and such that the total number of
bonds is independent from ρ and equal to zL, where z is
the average spin connectivity. For ρ large enough one has a
nearest-neighbor chain, whereas for ρ = 0 the distribution of
the connectivities is Poissonian and the system corresponds to
an Erdös-Rényi graph.

III. NUMERICAL RESULTS

Using the Minimum Cut algorithm (see, e.g., Refs. 9,38,
and 39) of the Lemon Graph Library40 we have computed
thermodynamic observables on T = 0 ground states of Lévy
graphs of different length, averaging over different realizations
of random fields. The computation has been performed varying
the ferromagnetic coupling magnitude J . The random-field
mean square displacement is kept constant, h = 1.

First, we present the numerical results at ρ = ρc = 1.5
where we used sizes ranging from L = 250 to L = 256 000.
The number of samples of disorder are 10 000 for L � 64 000,
5000 at L = 128 000 and 2000 at L = 256 000. For each
sample we compute the ground state for 41 values of the J

coupling in the interval [0.2 : 0.4].
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FIG. 1. (Color online) Finite size Binder cumulants versus the
strength of the random field in J units at ρ = 1.5. The critical value
estimate by FSS analysis is (h/J )c = 2.31(5).

To understand whether a critical behavior is there we study
the finite size behavior of the Binder cumulant

g = 1

2

(
3 − 〈s〉4

〈s〉2
2

)
. (5)

If, in the thermodynamic limit, a phase transition occurs at a
given critical field hc, the Binder cumulant will be one (long-
range order) for h < hc and zero for h > hc. As L increases,
we observe that the various Binder curves tend to a limiting
curve, cf. Fig. 1, with a behavior that we will show compatible
with a logarithmic scaling decay.

To estimate the critical point we look at the values of h/J

that, for different sizes, yield the same g value. Specifically, in
Fig. 2 we show the behavior of the limiting inverse critical
field value (J/h)c as computed at every size for different
fixed values of the Binder cumulant (g = 0.3,0.4,0.5,0.6,0.7)
versus (log L)−1. In the L → ∞ limit all curves are compatible
with a multiple linear fit in 1/ ln L yielding the estimate
(J/h)c = 0.433(9), or (h/J )c = 2.31(5).
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FIG. 2. (Color online) Multilinear interpolation for the J/h

value at which finite size Binder cumulants significantly change value
(g = 0.3,0.4,0.5,0.6, and 0.7) with JL(ln L|g) = Jc + bg/ ln L.
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FIG. 3. (Color online) Rescaled Binder cumulant versus h/J at
ρ = 1.5.

In Fig. 3 we plot the curves in the rescaled variable
and observe a very good collapse in the critical region. To
further characterize the transition we look at the behavior of
magnetization momenta at the critical point. In Fig. 4 we thus
present the behavior of the squared magnetization around the
estimated critical value compatible with a logarithmic finite
size scaling (FSS).

As a complementary analysis we perform a scaling analysis
for the correlation length ξ of the two point disconnected
correlation function m2 = 〈s〉〈s〉. The infinite size limit of the
zero temperature correlation length ξJ at a given J/h value
is estimated from the length parameter ratio ξJ /ξ ′

J , yielding
the best data collapse of the curves m2(L/ξJ ) and m2(L/ξ ′

J ),
shown in Fig. 5 for J = 0.32, . . . ,0.40. The reference value
ξJ = 1 is taken in the large field limit, far from the transition
point. Operatively, we take J/h = 0.32 as large field reference
in the present case. In the inset of Fig. 5 we show that, for the
simulated system sizes, ξJ scales in J/h with an exponential
law

ξ (J ) ∝ exp
A

J/h − (J/h)c
. (6)
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FIG. 4. (Color online) Rescaled m2 = 〈s〉2 curves versus h/J at
ρ = 1.5.
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FIG. 5. (Color online) Disconnected correlation function scaling
versus J/h at ρ = 1.5. Inset: exponential divergence for correlation
length vs J/h at Jc = 0.449(26).

A three parameter fit yields (J/h)c = 0.449(26) [(h/J )c =
2.23(13)] consistent with the previous estimate by scaling
analysis of the Binder cumulant.

A. Below and above ρc

We also present the behavior of the Binder cumulant for
values of the power ρ slightly below and above ρc. For ρ =
1.4 and ρ = 1.6 we compute the ground states of systems of
size between L = 250 and L = 128 000 averaging over 10 000
disordered field configurations on 51 J values.

At ρ = 1.4, cf. Fig. 6, Binder curves cross each other at
finite h/J and a FSS analysis of the crossing points yields
a critical value (h/J )c = 3.23(7). Using the scaling property
of the disconnected correlation function 〈s〉2 ∼ L3−η̄lr , with
η̄lr = 2(3 − ρ) (holding for ρ ∈ [1,3/2]), from the FSS of
the crossing points we further obtain the estimate (h/J )c =
3.266(2) and from the FSS of the derivatives of 〈s〉2 we
estimate 1/ν = 0.316(9), cf. inset of Fig. 6. For ρ = 1.6, on
the contrary, no crossing is observable and the nonzero Binder
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FIG. 6. (Color online) Finite size Binder cumulants at ρ = 1.4
for L = 250, . . . ,128 000. The critical field estimate is (h/J )c =
3.23(7). Inset: scale invariant m2L

0.2 = 〈s〉2Lη̄−3 vs h/J , η̄ =
6 − 2ρ.
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FIG. 7. (Color online) Finite size Binder cumulants at ρ = 1.6
for L = 250, . . . ,64 000.

values continuously run away towards smaller and smaller
fields, cf. Fig. 7, compatible with the claim of absence of
transition above ρ = 1.5.

IV. CONCLUSION AND DISCUSSION

Equation (2) for Ising systems appears to be a fairly good
approximation for what concerns the transition without field.
With no field, at ρ = 3/2, Eq. (2) would predict a mean-field
transition (corresponding to D = 4); non-mean-field transi-
tions would be expected at ρ = 1.6545 [corresponding to D =
3, with ηsr(3) = 0.0364(5)],41 and ρ = 1.875 [corresponding
to D = 2, ηsr(2) = 1/4];42 eventually, the “LCD”-equivalent
exponent value corresponding to D = 1 [ηsr(1) = 1] would
be ρc = 2. Such predictions have been recently numerically
investigated showing that the critical exponents at ρ = 1.6546
and 1.875 do not strictly correspond to, respectively, 2D and
3D critical exponents:43 If for 3D, nearer to the mean-field
threshold, numerical estimates are still consistent with each
other, in 2D they appear not compatible anymore. A similar
trend has been identified in LR versions of the ferromagnetic
XY model30 and of the Ising spin-glasses.25

When the random field is switched on and a new fixed point
for the RG flow arises the situation changes. The mean-field
threshold is now ρmf = 4/3 (UCD = 6). In the present work
we clearly see that the reference value of ρ for the critical
threshold is also different from those obtained in the absence
of a field: ρc = 1.5. We obtain such evidence by means of a
numerical study of the zero temperature ground states of the
RFIM on a Lévy lattice for system sizes ranging from 250
to 256 000 spins, confirming rigorous results obtained in fully
connected lattices with continuous probability distribution of
the fields.17–19

Contrarily to the prediction of Refs. 17 and 18 though,
exactly at ρ = 1.5 a T = 0 fixed point is still present even if
displaying a logarithmic scaling rather than a power-law one.
Aizenman and Wehr, under the hypothesis of a continuous field
distribution, indeed, predicted that the average magnetization
over the random-field distribution would go to zero for any
positive field at any temperature, including T = 0. In Refs. 17
and 18 the average magnetization was obtained from the
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average of the derivative of the difference in the free energy
between the + and the − boundary conditions.

We have carefully analyzed our data, in particular the
behavior of the largest simulated sizes of the average squared
magnetization (that is also the integrated two point correlation
function), but we found no evidence for any decreasing with the
size for the largest simulated sizes. As an illustrative instance
we show in Fig. 8 the behavior of m2 for h below the estimated
hc and h above it. Even though for h > hc m2(L) appears to
decrease, for h < hc we were not able to detect any decreasing.
Not even a 1/ ln ln(L) decay. The difference is unlikely to
be due to a discrete distribution of the random fields, since
we use Gaussian normal random variables with a numerical
discretization of the order of 10−5. We can, then, hypothesize
a finite size crossover at sizes much larger than the largest
simulated size (L = 256 000) to regime where m2 decreases to
zero with the size and the correlation length does not increase
[like in Eq. (6)]. In the absence of an analytic upper bound for
the scaling to zero of the magnetization though, the estimate
of the crossover size appears unfeasible to us.

In the framework of the LR↔SR critical equivalence this
is also in contrast to what happens in the 2D RFIM model
where the zero temperature transition is at zero field. This
would not be a strong issue though, since a similar LR↔SR
mismatch takes place varying the temperature in the Ising
model without field: No finite T transition takes place in D = 1
in the SR model but a Kondo, Kosterlitz-Thouless-like, finite
temperature transition is there for the LR 1D chain at ρ =
ρc = 2.

In the presence of a random field we can reformulate the
“ρ-D” relationship Eq. (2) in terms of the anomalous exponent
η̄sr(D), rather than ηsr(D). That is, we consider the most
divergent correlation function at criticality in a SR system
in dimension D: the disconnected one. At the lower critical
dimension (D = 2), where D − 4 + η̄sr(D) = 0, the threshold
value of the power ρ has to be equal to the maximum one

compatible with the existence of a transition: ρc = 3/2. This
leads to

ρ − 1 = 2 − η̄sr(D)/2

D
(7)

yielding the value of ρ corresponding to a SR model in D

dimensions. As Eq. (2) in zero field, Eq. (7) is exact, at all
events, at D = UCD and LCD. Since in the latter case η̄sr �
2ηsr, we notice that in this particular case Eq. (7) coincides
with Eq. (2). For both Eqs. (2) and (7) the LCD equivalent
value of ρ is the correct one: ρc = 1.5.

It is important to stress that a given value of ρ corresponds
to completely different critical behaviors and to different
dimensions of short-range critically equivalent systems if
the field is present or absent. As an instance, ρ = 1.5 is
the mean-field threshold in the Ising ferromagnetic model,
corresponding to UCD D = 4, and it is the critical threshold
in the RFIM, corresponding to LCD D = 2.

Does this relationship hold also in the presence of random
bonds, besides random fields? The Imry-Ma argument is
specific for the RFIM and cannot be exported to spin glasses
because these more complicated systems lack any long-range
order in the frozen phase. Unless one takes for granted the
droplet ansatz of Fisher and Huse,44 in whose framework the
Imry-Ma argument can be straightforwardly implemented. It
implies the absence of a spin-glass ground state as soon as
an infinitesimal magnetic field is switched on. According to
this ansatz the critical value of the long-range exponent is,
thus, ρc = ρmf = 4/3. This implication, however, turns out
to be inconsistent with the outcome of numerical simulations
in long-range systems for ρ > ρmf.45 Therefore, an unbiased
quantitative estimate of the threshold value ρh

c corresponding
to the SR LCD is beyond the reach of the analysis presented
here.

In LR systems in a field, then, we believe that further
investigation should be devoted to the occurrence of a
spin-glass phase for values of ρ > ρh

c = 3/2 for which no
ferromagnetic transition is present in the absence of bond
disorder. Before drawing conclusions about short-range finite
dimensional spin-glass systems relying too heavily on the
SR↔LR relation Eq. (2) with ρc = 2, much caution should be
taken in numerical data interpretation in LR spin-glass systems
in the presence of a field, above all when ultrametricity46 or
lack of Almeida-Thouless transition47 are tested at ρ > 1.5.
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