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We show in numerical simulations that a system of two coupled replicas of a binary mixture of hard spheres
undergoes a phase transition in equilibrium at a density slightly smaller than the glass transition density for an
unreplicated system. This result is in agreement with the theories that predict that such a transition is a precursor
of the standard ideal glass transition. The critical properties are compatible with those of an Ising system. The
relations of this approach to the conventional approach based on configurational entropy are briefly discussed.

PACS numbers:

Glass forming materials display a rapid growth of the vis-
cosity upon cooling [1]. Dynamics is dramatically slowed
down, but this fact is not accompanied by any obvious struc-
tural or thermodynamic change [2]. As a consequence, be-
low certain temperature, the liquid gets trapped in a solid like
amorphous configuration for a very long time. From the ex-
perimental point of view, these systems live permanently out
of equilibrium: it is natural to ask whether this phenomenon is
a consequence of a thermodynamic transition or, in contrast,
whether it is just a pure dynamical arrest process [3]. Differ-
ent mean field approaches, from the Adam-Gibbs theory [4],
to the mode coupling theory [5] or the spin-glass theory [6]
agree on the existence of an “ideal structural glass transition”
in the infinite time limit, but the validity of this claim for re-
alistic systems is still under debate; other interpretations of
the phenomenon where no transition is present have been pro-
posed [7].

Under the mean field approximations, supercooled liquids
undergo a random first order transition (RFOT) [8, 9], which
corresponds to “one-step replica symmetry breaking” [6]. In
this scheme, below certain temperature Tc, the ergodicity is
lost due to the appearance of an exponentially large number
of metastable states. The system gets trapped in one of them
(not necessarily the thermodynamic) and the large relaxation
times are thus related to the escape times. The Kauzmann-like
entropy crisis may take place at TK(< Tc), the point where the
ideal glass phase becomes the thermodynamic one.

The properties of this transition can be studied (at fixed
density ρ) by considering the replica potential W (q) (i.e., the
free energy) as a function of the degree of similarity between
all the possible amorphous configurations [10]. In analogy
with spin glasses, the chosen order parameter is the “over-
lap” (q) between the configurations of two equilibrium sys-
tems (“replicas”). A key prediction of the theory is that one
can observe a precursor of the phase transition in the shape of
this potential still deep in the liquid phase. Indeed, the glass
transition is characterized by a sharp decrease of the number
of available states, which should be detected by the appear-
ance of second minima in W (q) at large q. In contrast to ordi-
nary first order transitions, these two minima are not related to
different phases but to similar and completely different config-
urations. In the RFOT approach this transition should survive
in the limit of zero coupling: in other approaches this transi-

tion may exist at non-zero coupling, but it would disappear at
zero coupling as stressed by [11].

Since TK is well below Tc, detecting directly the two-well
structure in W (q) in a numerical simulation is very difficult
in practice. However, the situation improves if one adds an
external field ε conjugate to q that couples the two replicas,

Htot(R1,R2) = H(R1)+H(R2)− ε q(R1,R2), (1)

Rα being the shorthand for the whole set of particle positions
in replica α , Htot the total Hamiltonian, and H the internal
interaction at each replica. The free energy density f (ε) ≡
F(ε)/N is given by

f (ε) = min
q

W (q)− εq . (2)

In the presence of this external field, the glass transition point
becomes a coexistence line ε(T ) separating the low and high
q regions, that extends to higher temperatures, terminating in
a critical point (exactly as in the more mundane gas-liquid
transition). Strong evidences for the existence of such a co-
existence line beyond mean field have been presented re-
cently [12, 13].

We are interested here in studying this critical point where
the first order line appears in a system of hard spheres. In this
case, the density (not the temperature) will play the role of
control parameter. At least in mean field, where the replica
potential W (q) is an analytic function of q and of the other
parameters (such as density or temperature), the critical point
is fixed by the condition

W ′′(q∗) = 0, (3)
W ′′′(q∗) = 0 , (4)

which is equivalent to

W (q) = W (q∗)+W ′(q∗)(q−q∗)+
g
4
(q−q∗)4

+O
(
(q−q∗)5

)
. (5)

At first sight the physics looks very similar to a gas liquid
transition and thus, should be in the same universality class
of the Ising ferromagnetic phase transition. However a more
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careful analysis shows that the situation is more subtle and
crucially depends on the details. As shown in [14] we can
introduce two slightly different potentials: the quenched po-
tential, where the field ε acts only on one of the replicas and
the annealed potential, where the field ε acts on both replicas.
It can be shown that the first case is in the universality class of
the ferromagnetic Ising model with a random quenched ran-
dom magnetic field (see also [15, 16]), while the second case
corresponds to a pure Ising case. We expect that the second
case should be much easier to simulate since the random fer-
romagnetic Ising model approaches equilibrium very slowly.
In this paper we consider this second case (the annealed one),
which is not common in numerical studies (in particular is
different to the one considered in [12]), but has been recently
studied in [13].

The study of W (q) has traditionally been inaccessible for
computer simulations. Indeed, in practice, the two separate
configurations decorrelate quickly, which leaves little time to
sample the high overlap region of the probability distribution
function p(q). However, in the last years, constrained Monte
Carlo (MC) methods have been proposed as a solution to com-
pute this W (q) [12, 13]. Here we propose a recent constrained
MC method, the tethered method [? ], originally proposed
for spin lattice systems [17–19] but recently applied to hard
spheres [20]. This method presents a major simplification of
standard umbrella sampling method [21–23] since the poten-
tial differences are very precisely computed from a thermody-
namic integration, thus avoiding the tedious multi histogram
reweightings.

We study the model introduced in [24]: a 50 : 50 binary
mixture of hard spheres (HSs) where the diameter of the larger
particle, dB, is 1.4 times the diameter dA of the smaller one.
This high dispersion between particles sizes prevents the crys-
tallization. We study systems of N = 62, 124, 250, and 500
particles. In addition, all the simulations reported here are
performed at constant volume, parametrized through the vol-
ume fractions φ = πN

(
d3

A +d3
B
)
/12V . The simulation box is

cubic, V = L3 with periodic boundary conditions.
As discussed before, we are interested in studying the de-

gree of similarity between different configurations as a func-
tion of φ . For this reason, in the following, we will consider
simultaneously two copies of the system labeled α = 1,2. The
distance between these two configurations can be measured
with the overlap q1,2. There are two possible definitions. The
first one, introduced in [14, 25], is

q1,2 =
1
N ∑

i
v
(
|r(1)

i −r
(2)
i |
)

, (6)

where r
(α)
i represents the position of the ith particle in the

replica α , and v is a function that is 1 at short distances and
goes very fast to 0 at distances greater than some fraction of
the interparticle distance.

Here, for practical reasons, we prefer to use a different but
very similar, definition of the overlap, that is the same used
in [12] [Ref. [13] uses the previous definition of the overlap,
following verbatim [26], i.e., v(r) = θ(r− a) using the same
value of a = 0.3]. We divide our simulation box into Nc small

cubic boxes. To each box i in the replica α , we assign an occu-
pation variable n(α)

i, T = 1 in the case where it contains a particle

of type T (= A,B), and n(α)
i, T = 0 if it does not. The linear size

of the cell, `, is chosen to guarantee that two different parti-
cles can never occupy the same cell. This condition is fulfilled
by taking the largest possible number of cells, Nc, compatible
with the constraint ` < dA/

√
3 (i.e. the largest diagonal of the

cube is smaller than dA) [? ]. Our overlap is then defined as

q1,2 =
1

Nc

Nc

∑
i=1

n(1)
i, A n(2)

i, A +n(1)
i, B n(2)

i, B. (7)

Within this definition, the overlap between two identical con-
figurations is q1,2 = 1, while for two completely uncorrelated
configurations it is q1,2 = q0 = N/2Nc [? ].

The free energy cost of maintaining the two thermalized
replicas of the system at a given q is

W (q) =− 1
N

log
∫ ∫

dR1dR2 H (R1)H (R2) δ (q−q1,2) ,

(8)
where H (Rα) = 0 if any pair of spheres in the replica i over-
laps, or 1 otherwise (Rα being the abbreviation for {r(α)

i }N
i=1,

the set of all the N particle positions in the replica α). We
propose a slight variation of this last definition. Instead, we
consider its convolution with a strongly peaked Gaussian cen-
tered on q with variance (kN)−1 [? ]:

Ŵ (q)=− 1
N

log
∫ ∫

dR1dR2 H (R1)H (R2)e−
kN
2 (q−q1,2)2

.

(9)
These two definitions are equivalent in the thermodynamic
limit, but this latter is better from a MC simulation point of
view. To explain why, let us take the derivative of Eq. (9) with
respect to q:

Ŵ ′(q) =
∫ ∫

dR1dR2 k [q−q1,2]ωN(R1,R2,V ;q)∫ ∫
dR1dR2 ωN(R1,R2,V ;q)

, (10)

with

ωN(R1,R2,φ ;q) = H (R1)H (R2)e−
kN
2 [q−q1,2(R1,R2)]2

.(11)

That means that the replica field can be understood as the MC
thermal average obtained with the tethered measure (11),

Ŵ ′(q) = 〈ε̂〉q , ε̂ = k (q−q1,2) . (12)

With this idea, we build a new ensemble, where not only the
volume and number of particles are fixed, but there is also an
additional soft constraint for the averaged overlap 〈q1,2〉q ≈ q.
Once the field is obtained as function of q, the replica potential
W (q) can be easily computed by a thermodynamic integra-
tion. It is interesting to point out that although the new weight
is formally equal to that of traditional umbrella sampling (and
so are the simulations), we skip the step of reconstructing the
unbiased probability distribution function of q and its tedious
multi histogram reweightings (see [13] for an example of this
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procedure in a similar problem). Indeed, in the umbrella sam-
pling approach, one needs to compute p(q) to obtain the over-
lap potential [W (q) =− 1

N logP(q)], which is much costlier in
time and less precise than only recording the central point of
the distribution and performing a line integral with it.

We run simulations at 0.3 ≤ φ ≤ 0.57 at 21 values of q
evenly spaced between 0 and 1. In addition, we consider five
(100 for N = 500 and 50 for N = 250 for 0.54≤ φ ≤ 0.57) re-
alizations of each experiment, and results presented here are
averaged over all these samples. The set up is the follow-
ing. We start with a thermalization of each of the two replicas.
We consider thermalizations of τ0 elementary MC steps (EM-
CSs)[? ], defining EMCS as N attempts at ordinary individual
random particle moves. Only once the initial configurations
are thermalized, we run the tethered simulations at fixed q us-
ing the weight (11). In order to ensure the thermalization, we
consider two alternative experiments. On the one hand, we
move sequentially from q = 1 to 0 in steps of 0.05, and on
the other, we consider the reverse procedure. At each value of
q we remain τint = 0.1τ0 EMCS, and using the latter 0.05τ0
EMCS in the analysis. We completely avoid hysteresis ef-
fects for φ ≤ 0.57. We have systematically checked that both
cycles are compatible, but the results presented in this paper
correspond only to the q-descending cycle.

The generalization of this formalism to the presence of an
external field ε coupling the two replicas is straightforward.
Indeed, the probability distribution density for q at a given ε

is just the free one, multiplied by a constant exponential factor,
i.e., Pε(q) ∝ exp [−(NW (q)− εq)]. Furthermore [17],

log P̂ε(q2)− log P̂ε(q1) = N
∫ q2

q1

dq
[
〈ε̂〉q− ε

]
, (13)

with 〈ε̂〉q = Ŵ ′(q) given by (9). Thus, one just needs to sim-
ulate the ε = 0 case, and the results for ε > 0 are obtained
by displacing 〈ε̂〉q precisely by ε . We display in the main
panel of Fig. 1 the replica field W ′(q) obtained at different
values of φ . In the thermodynamically stable region Ŵ ′(q) is
monotonically growing from zero, and the equilibrium state
(the maximum of Pε ) is given by the single root Ŵ ′(q) = ε .
The situation is rather different when metastability begins.
In finite systems, the phase separation has the direct conse-
quence of the apparition of spinoidals in Ŵ ′(q) corresponding
to the low and high overlap regions. The coexistence condi-
tion Pεco(q low) = Pεco(qhigh), as can be directly obtained from
(13), is equivalent to a Maxwell construction. We show the
inset of Fig. 1 the phase diagram obtained with this process.

As was discussed before, the first order transition line is
expected to extend within the liquid phase in the presence
of an external field but terminates in a critical point. This
point cannot be detected by the Maxwell construction so we
propose a different approach. Besides, the coexistence line
can be extended beyond the critical point by what is known
as the Widom line [27] that is characterized by W ′′′(q) = 0.
With this idea in mind, we look for the ε value that makes the
distribution Pε(q) balanced. In particular, we seek the ε that
causes the skewness to vanish. In the metastability region, the
ε(φ) line obtained with this method (see Fig. 3) is numerically
indistinguishable from the one computed using the Maxwell
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FIG. 1: (Color online) Derivative of the replica potential, Ŵ ′(q) ob-
tained as (9) at different packing fractions. Inset: Phase diagram
(ε,φ) extracted from the Maxwell construction for different system
sizes. The errors are computed using the jackknife method.

construction (as we would expect in the infinite volume limit).
Indeed, it finds the field at which the probability distribution
function has two peaks of equal probability. Once it is under-
stood that this line contains the second order transition point,
we can try to infer its location by seeking universal behav-
ior. At least in mean field, this point should belong to the
d = 3 Ising model universality class [14], which means that
its critical exponents are known [28], thus making easier the
computation of φc.

We start with the static susceptibility χ = N[
〈
q2
〉
−〈q〉2].

As usual in the vicinity of a second order transition, it should
scale as χ ∝ |φ −φc|−γ , in this case with γ = 1.2372. As can
be seen in Fig. 2 (top) we find a collapse of the data at dif-
ferent system sizes below φc using this scaling (at least for
N ≥ 124). We obtain φ N

c from an extrapolation to a second
order polynomial (see Table I for the fitting details). These
values agree with the area of φ where the kurtosis of the dis-
tribution,

κ =
〈m〉4

〈m2〉2
with m = q−〈q〉 , (14)

intersects for increasing N, as shown in Fig. 2 (bottom). In-
deed, the kurtosis is related to the Binder cumulant [29], by
B = 1−κ/3. Like this cumulant, the kurtosis is universal at
the critical point, and its value is known κ = 1.6043(10) [30].
Within the precision, we can say that the data are compatible
with both statements.

The quantity ε(φ) carries similar information as the con-
figurational entropy and should go to zero at the Kauzmann
transition (see [31] for a recent similar approach). Indeed, in
the quenched case, Scon ∝ q ε near the transition. The ap-
proach followed here has the advantage that it is ambiguity
free [32]. The extrapolation at φK should not present problems
in the quenched case (at least in the mean field limit). In the
present annealed case a more careful analysis should be done.
We can try to infer the location of φ N

K from a second order
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FIG. 2: (Color online) Top: static susceptibility at different N scaled
as χ−1/γ with γ = 1.2372. We include the extrapolations of φc. Bot-
tom: kurtosis at different N, the dotted line indicates the universal
value for the kurtosis κ = 1.6043(10) at the critical point [30].

polynomial regression (in analogy with mean field computa-
tions [14]), searching the point where ε(φ) = 0 (see Fig. 3 and
Table I). Of course, this approach leads to a very crude estima-
tion for φK (the simulated values of φ are still too far away to
obtain a precise limit). Nevertheless, our extrapolations seem
to suggest values quite smaller than the φK = 0.635(2) ob-
tained in [33] using divergence of correlation times.

We have studied the equilibrium liquid-glass transition in a
system of hard spheres using a tethered Monte Carlo simula-
tion. This constrained algorithm allows us to directly compute
the replica potential common in the mean field analytic com-
putations. Using the same formalism, we are able to present
clear evidences of the existence of a first order transition line
in the presence of an attractive coupling between the repli-
cas. In addition, we have investigated the critical point, show-

ing that it belongs to the Ising model universality class as

N φ N
c χ2/dof φ N

K χ2/dof
62 0.5766(3)(15) 2.5/6 0.626(2) 12/11
124 0.567(3)(4) 1.7/6 0.620(2) 19.5/11
250 0.5644(13)(16) 8.5/6 0.6209(12) 8.8/11
500 0.5633(6)(17) 8.5/6 0.6187(7) 5.7/11

TABLE I: Extrapolations for φc and φK obtained from the fits of χ

(displayed in Fig. 2) and ε(φ) (in Fig. 3). In both cases, data at each
N are obtained by fitting to a second order polynomial in φ . For the
fit of φc, we have only considered the interval φ ∈ [0.52,0.55], while
for obtaining φK, we used φ ∈ [0.5275,0.57]. The two errors in the
extrapolation of φc correspond to the negative and positive errors.
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FIG. 3: (Color online) Values of ε that guarantee a balanced distri-
bution of Pε (q), as function of φ . We also included the fits of these
curves to a second order polynomial in φ . The extrapolations of φK
using these fits are collected in Table I.

mean field calculations predicted. The emerging picture of
this study is that real glass formers seem to reproduce the same
schematic phase diagram as much simpler models.
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