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One of the most actively debated issues in the study of the glass
transition is whether a mean-field description is a reasonable starting
point for understanding experimental glass formers. Although the
mean-field theory of the glass transition—like that of other statistical
systems—is exact when the spatial dimension d — o, the evolution
of systems properties with d may not be smooth. Finite-dimensional
effects could dramatically change what happens in physical dimen-
sions, d =2,3. For standard phase transitions finite-dimensional
effects are typically captured by renormalization group methods,
but for glasses the corrections are much more subtle and only par-
tially understood. Here, we investigate hopping between localized
cages formed by neighboring particles in a model that allows to
cleanly isolate that effect. By bringing together results from rep-
lica theory, cavity reconstruction, void percolation, and molecular
dynamics, we obtain insights into how hopping induces a break-
down of the Stokes-Einstein relation and modifies the mean-field
scenario in experimental systems. Although hopping is found to su-
persede the dynamical glass transition, it nonetheless leaves a sizable
part of the critical regime untouched. By providing a constructive
framework for identifying and quantifying the role of hopping,
we thus take an important step toward describing dynamic facilita-
tion in the framework of the mean-field theory of glasses.

activated processes | random first-order transition | cavity method

lasses are amorphous materials whose rigidity emerges from

the mutual caging of their constituent particles—be they
atoms, molecules, colloids, grains, or cells. Although glasses are
ubiquitous, the microscopic description of their formation, rhe-
ology, and other dynamical features is still far from satisfying.
Developing a more complete theoretical framework would not
only resolve epistemological wrangles (1), but also improve our
material control and design capabilities. However, such a research
program remains fraught with challenges. Conventional paradigms
based on perturbative expansions around the low-density, ideal gas
limit (for moderately dense gases and liquids) or on harmonic
expansions around an ideal lattice (for crystals) fail badly. Because
dense amorphous materials interact strongly, low-density expan-
sions are unreliable, whereas harmonic expansions lack reference
equilibrium particle positions. These fundamental difficulties must
somehow be surmounted to describe the dynamical processes at
play in glass formation.

A celebrated strategy for studying phase transitions is to con-
sider first their mean-field description, which becomes exact when
the spatial dimension d of the system goes to infinity (2), before
including corrections to this description. In that spirit, we open
with the d — oo “ideal” random first-order transition (iRFOT)
scenario, which, based on the analysis of simple models, brings
together static- (3-5) and dynamics-based (mode-coupling) (6)
results for glass formation (reviews in refs. 7 and 8) (8-11). In
iRFOT, an infinitely slowly cooled simple liquid (or compressed
hard sphere fluid) becomes infinitely viscous, i.e., forms a glass in
which particles are completely caged, at the (critical) dynamical
transition temperature T4 (or packing fraction ¢4). Upon ap-
proaching this transition, caging makes the diffusivity D vanish as
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a power-law D ~ (T — T4)”, and the viscosity diverges as n~ (T —
Tq4)™". Hence, in the critical regime one expects the Stokes—Einstein
relation (SER) between transport coefficients, D ~ 77!, to hold. In
short, the d — oo scenario is characterized by (i) a sharp dynamical
glass transition associated with perfect caging, (ii) a power-law
divergence of 7, and (iii) the SER being obeyed.

As observed in ref. 12, the phenomenology of finite-dimensional
systems is, however, quite different from the iRFOT scenario. In
particular, it does not recapitulate elementary experimental
observations, such as Vogel-Tammann-Fulcher (VTF) viscosity
scaling in fragile glasses,  ~e5vr*/(I=T0) (Byyg and T, are phe-
nomenological constants), and breakdown of the SER, D ~ 5!+
(phenomenologically w > 0) (13-16). As a result, the relevance of
the iRFOT picture for experimental systems remains the object
of lively debates.

Part of the difficulty of clarifying the situation in finite d, where
the iRFOT description is only approximate and the dynamical
transition is but a crossover, lies in the shear number of different
contributions one has to take into account. From a purely field-
theoretic point of view, one has to include finite-dimensional
corrections to critical fluctuations. A Ginzburg criterion gives
d, =8 as the upper critical dimension for the dynamical transi-
tion (17-20), and hence for d < d,, critical fluctuations renormalize
the power-law scaling exponents. In principle, these corrections
could be captured by a perturbative d, —d expansion, and phe-
nomenological arguments along this direction indicate that they
could also induce a SER breakdown (17). A number of non-
perturbative processes in 1/d must additionally be considered:
(i) In the iRFOT picture, caging is perfect, and hence in the glass
phase each particle is forever confined to a finite region of space
delimited by its neighbors (6). However, it has been theoretically
proved (21) and experimentally observed (22) that in low-
dimensional systems the diffusivity is never strictly zero. Single
particles can indeed hop between neighboring cages (23-26),
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and the free space they leave behind can facilitate the hopping
of neighboring particles. Facilitation can thus result in cooperative
hopping and avalanche formation (27-29). (ii) For some glass
formers, activated crystal nucleation cannot be neglected and
interferes with the dynamical arrest, leading to a glass composed
of microscopic geometrically frustrated crystal domains (30). (iii)
In the iRFOT scenario, the dynamical arrest is related to the
emergence of a huge number of distinct metastable glass states whose
lifetime is infinite. In finite dimensions, however, a complex glass—
glass nucleation process gives a finite lifetime to these metastable
states (5, 12, 31). The dynamics of glass-forming liquids are then
profoundly affected. Including glass—glass nucleation into iRFOT
leads to the complete RFOT scenario (12), in which the mean-
field dynamical glass transition becomes but a crossover (12), and
both the VTF scaling and facilitation can be recovered (32, 33).

Because the treatment of these different processes has thus far
been mostly qualitative, their relative importance cannot be easily
evaluated. A controlled first-principle, quantitative treatment is
for the moment limited to the exact solution for d - o (10, 11,
34, 35). Its approximate extension to finite d (6, 8, 36) com-
pletely ignores the nonperturbative effects mentioned above.
This approach therefore cannot, on its own, cleanly disentangle
the various corrections. Systematic studies of glass formation as
a function of d have encouragingly shown that these corrections
are limited, even down to d =3 (15, 16, 37-40), provided length
and timescales are not too large, as is typical of numerical sim-
ulations and experiments with colloids and grains. In particular,
with increasing d the distribution of particle displacements (the
self-van Hove function) loses its second peak associated with
hopping (16), the critical power-law regimes lengthen (41), and
the SER breakdown weakens (15, 16, 40), which motivates in-
vestigating corrections to iRFOT in a controlled way.

Here we develop a way to isolate the simplest of these correc-
tions, i.e., hopping, by studying a finite-dimensional mean-field
model. Through the use of the cavity reconstruction methodol-
ogy developed in the context of spin glass and information theory
(42), we carefully describe caging, using self-consistent equations
that can be solved numerically. We can thus compute the cage
width distribution and isolate hopping processes. Our results
provide an unprecedentedly clear view of the impact of hopping
on the dynamical transition and on the SER breakdown in simple
glass formers.

MK Model

We consider the infinite-range variant of the hard sphere(s) (HS)-
based model proposed by Mari and Kurchan (MK) for simple
structural glass formers (43-45) (details in SI Text, section LA).
The key feature of the MK model is that, even though each sphere
has the same diameter o, pairs of spheres interact via an additional
constant shift that is randomly selected over the full system vol-
ume. This explicit quenched disorder eliminates the possibility of a
crystal state, suppresses coherent activated barrier crossing that
leads to glass—glass nucleation (44), and diminishes the possibility
of facilitated hopping (as we discuss below). However, at finite
densities the number of neighbors that interact with a given par-
ticle is finite and therefore finite-dimensional corrections related
to hopping remain, in principle, possible.

MK liquids have a trivial structure. Even in the dense,
strongly interacting regime, the pair correlation in the liquid phase
is simply g2(r) =0(r — o) [where 0(x) is the Heaviside step func-
tion], because particles are randomly displaced in space. In addi-
tion, even if both particles i and k are nearby particle j, they need
not be close neighbors, and hence all higher-order structural
correlations are perfectly factorizable. Because only two-body
correlations contribute, the virial series can be truncated at the
second virial coefficient (44), and hence the equation of state for
pressure is trivially fP/p =1+ B,p, where B, =V,;(1)6%/2 is the
second-virial coefficient for d-dimensional hard spheres, V;(R) is
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the volume of a d-dimensional ball of radius R, p is the number density
[the packing fraction ¢ = pV/;(o/2)], and the inverse temperature /3 is
set to unity (43-45) (SI Text, section L.A). Note that these structural
features hold for the liquid phase of the MK model in all d and for
standard HS liquids in the limit d - oo (8, 46). The MK model
therefore coincides with standard HS in that limit. For a given finite d,
however, MK liquids are structurally more similar to their d — oo
counterparts than HS liquids are. One thus sidesteps having to take
into account the nontrivial structure of g,(r), which muddles the
description of standard finite-dimensional HS (8).

For the MK model, one can easily construct equilibrated liquid
configurations at all ¢, even for ¢ > ¢,4. [For standard HS, by
contrast, prohibitively long molecular dynamics (MD) simu-
lations are necessary in this regime.] This dramatic speedup is
accomplished by adapting the planting technique developed in
the context of information theory (47) (SI Text, section 1.B). It
is thus possible to study MK liquids arbitrarily close to, both
above and below, the dynamical glass transition at ¢4. A system-
atic study of caging beyond ¢ is also possible due to the cavity
reconstruction formalism (SI Text, section II.LA), a method
adapted from the statistical physics of random networks (42).

Caging

The MK model dynamics are studied by event-driven MD sim-
ulations of planted initial configurations with N =4,000 particles
(details in ST Text, section 1.B) (37, 38). The mean square dis-
placement (MSD) A(t) = (Zfil [r;(r) —=r;(0))*)/N is determined
from time evolution of the particle positions r;(¢). At short times,
before any collision occurs, ballistic motion gives A(t) =dt?; at
long times, diffusive motion gives A(¢) ~ 2dDt. From ¢, onward,
the ballistic and the diffusive regimes are separated by an inter-
mediate caging regime where A(f) ~ A is approximately constant,
first appearing as an inflection point and then as a full-fledged
plateau (definition in SI Text, section I.C). Simply put, after a few
collisions with its neighbors, a particle becomes confined to a
small region of space of linear size V/A, from which it can escape,
and henceforward diffuse, only after a very large number of
collisions.

In the d - o0 iRFOT scenario, a sharp dynamical transition
occurs at ¢4 (6, 8, 10), beyond which complete caging results in
an infinitely long plateau and in the disappearance of the diffusive
regime. In finite-dimensional systems, one can use an approximate
theory based on a Gaussian assumption for the cage shape, to
obtain a prediction for ¢4 and A (8, 45) (SI Text, section IL.A).
One can also estimate ¢4 from the simulation results by fitting the
diffusivity, using the mean-field critical form D ~ (¢ —¢4)", and
A=lim,_,A(f) beyond @4 (Fig. 14). As expected from the
suppression of various finite d corrections, the critical power-law
regime is much longer for the MK model than for standard finite-
dimensional HS (Fig. 1B) (44). Marked qualitative discrepancies
from the iRFOT predictions are nonetheless observed: (i) Nu-
merical estimates for ¢4 systematically deviate from the approx-
imate Gaussian result for ¢, (Fig. 1C), even though the two
quantities grow closer with dimension. (i) The diffusion time
7p=6%/D and the structural relaxation time 7, < (definitions
and a discussion of this point in SI Text, section 1.C) follow the
SER, 7p x 74, from @y t0 @spr < @g, but then the SER breaks
down, 7p T;“” with @ ~0.22, in all d (Fig. 1D). With increasing d,
however, the timescale for this crossover, zp(@gggr ), also increases
(Fig. 1D), and thus @gpg grows closer to ¢4 and ¢4 (Fig. 1C). (iii)
Even above ¢4, a steady drift of the MSD plateau can be
detected (Fig. 14), but the magnitude of this effect diminishes
with increasing d.

To clarify the physical origin of the above discrepancies, we
first determine whether the mismatch between @4 and ¢ is due
to the hypothesis made in computing the latter, i.e., that all of
the cages have a Gaussian shape of a fixed diameter A, by using
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Fig. 1. (A) MSD of the MK model in d =3 for ¢ = 0.40, 1.00, 1.40, 1.65, 1.72,
1.78, 1.84, 1.93, 2.00, 2.20, and 2.50, from top to bottom. The onset of caging
Ponset (red), the theoretical dynamical transition ¢4 (blue), and its dynamical
estimate ¢4 (magenta) are highlighted. Note that at ¢4 and beyond a steady
drift of the MSD plateau can be detected. (B) Power-law scaling in d = 3 of
the characteristic time zp determined by fitting ¢4 =1.93 and 7 =4.95 and by
using the idealized mean-field result ¢4 =1.78 and by fitting y = 3.27. (Inset)
Dimensional evolution of y and 7. The dashed line indicates the d = « result,
y = 2.33786 (34). Solid lines are guides for the eye. (C) The dimensional
scaling of @q4, ¢4, and gger cOnverges as d increases, whereas the onset of
caging at @oneet remains clearly distinct. The dashed line is the replica result
{pd=448d2_d (8, 10). Solid lines are guides for the eye. (D) Dimensional re-
scaling of the SER (black) and SER breakdown (red) regimes for the MK
model with @ = 0.22. (Inset) The ratio zsgr/70 grows exponentially with
d (solid line), where 7sgr =7p(¢psegr) and 7o is the microscopic time, i.e., the
characteristic time for the decay of the velocity autocorrelation function (48)
(details in S/ Text, section 1.C.2).

the cavity reconstruction formalism to relax both assumptions
(42). Above @4, we can build the equilibrated neighborhood of
particle i to self-consistently determine the overall cage size and/or
shape distribution Py(A) (details in ST Text, section I1.A). The
process involves placing Poisson-distributed neighbors j that are
randomly assigned a cage size A; from a prior guess of Pr(A),
with a fixed function shape f;(r) (a Gaussian or a ball function,
for instance). Averaging over the vibrational relaxation of each
neighboring particle gives the cavity field w(r) felt by particle i,
which is the probability density of the particle being at position r
(Fig. 24). The existence of a cage centered around i is guaranteed
by the cavity reconstruction procedure. The variance (6r?) =
(r?) — (r)* associated with the evolution of particle i within this
cage, which can be computed through simple Monte Carlo sam-
pling, provides the posterior caging radius A,. Sufficient repeats of
this determination provide a new estimate of P(A), and iterating
the overall procedure eventually converges to a fixed-point dis-
tribution Pr(A). We find that both Gaussian and ball caging
functions give the same size distribution Py(A) (Fig. 2B) and that
P(A) is reasonably well approximated by a gamma distribution
for all ¢ > ¢y (Fig. 2C). The average cage size A also quantita-
tively agrees with the analytical prediction of refs. 8 and 45 (Fig.
2D), including its characteristic square-root singularity upon
approaching ¢y; i.e., A(pq) — A(p) ~ /¢ —¢q. We thus conclude
that the theoretical prediction of A and ¢y is fairly insensitive to
both the caging form and the second (or higher) moments of the
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cage size distribution, as well as to the theoretical method chosen
(8I Text, section I1.A).

It follows that deviations from the d — oo scenario ought to be
ascribed to an imperfect caging above ¢, in finite-dimensional
systems. Microscopically, these imperfections correspond to par-
ticles trapped for a finite time before escaping to another cage
through a narrow passage (Fig. 34). Because the above calcu-
lations solely consider single-cage forms, a fixed-point distribu-
tion Py(A) can only be reached by removing these “hopping”
segments of the particle trajectories (details in SI Text, section IL.A).
Not only does @4 then appear at higher densities, but as long as
the network of connected cages percolates, dynamical arrest is
also formally impossible. In that context, it is interesting to note
that for a prior Pr(A)=5(A), the first iteration of the cavity re-
construction formalism is analogous to the void (Swiss-cheese)
percolation setup for a Poisson process (49). In addition, for a
nontrivial distribution of cage sizes, thresholding volume exclu-
sion maps cavity reconstruction onto void percolation for poly-
disperse spheres (50) (SI Text, section II.C). This equivalence
between cavity reconstruction and void percolation sheds light
on the single-cage assumption. In the iRFOT description, the
MSD of each particle should remain finite when ¢ > ¢4, but by
construction the MSD can be truly bounded only if (minimally)
@ > ¢, the void percolation transition.

From MD simulations of the MK model, we detect the first
hopping event of each particle (details in SI Text, section IIL.A).
Around ¢y, mode-coupling and hopping processes mix, but hop-
ping quickly dominates the dynamics upon increasing ¢. Although
the hopping of a particle does not leave an empty void in the
MK model, it can nonetheless unblock a channel for a neigh-
boring particle to leave its cage and hence facilitate its hop-
ping. Facilitation is thus present, but weaker than in standard
finite-dimensional HS, especially at high densities. Weakened
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Fig. 2. (A) lllustration of a cavity reconstruction in d = 2 for a perfectly caged
particle at the center. Neighboring particles at their equilibrium positions
(circles) provide an effective field y(r) that cages the trajectory of the central
particle (red line). (B) Examples of P¢(A) in d = 3 from the cavity recon-
struction formalism for Gaussian (straight lines) and ball (dashed lines) cage
shapes compared with MD results (symbols). (C) Rescaled P¢(A) superimposed
with a log-normal distribution (dashed line). (D) Density evolution of A mea-
sured from MD simulations (symbols) superimposed on the theoretical pre-
dictions of refs. 8 and 45 (lines).
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Fig. 3. (A) lllustration of a cavity reconstruction in d=2 for a hopping
particle. In this case the neighboring particles allow the central particle
to hop to other cages (red line). (B) Cumulative time probability distribution
of hopping events Gy, (t) for d =3 systems at densities (from top to bottom)
¢=1.78, 1.84, 1.90, 1.97, and 2.10, along with the power-law scaling form
(dashed line). (Inset) Single-particle hopping from the cavity reconstruction
(circles) overlays with the MD simulations at short times (¢ =1.90). (C and D)
Phenomenological scaling parameters u (C) and 7, (D) for the probability
distribution of hopping events. Solid lines are a guide for the eye for y and
exponential fits for z;,.

facilitation is notably signaled by the fact that the distribution of
hopping times computed from a regular MD simulation largely
coincides with the distribution obtained in the cavity procedure,
where a single particle hops in an environment where neigh-
boring particles are forbidden to do so (Fig. 3B, Inset). We
find the cumulative distribution of hopping times over the ac-
cessible dynamlcal range to be well described by a power law
Gh( (t/rh) ~# (Fig. 3B), with the characteristic hopping time
7, increasing roughly exponentially with ¢ > ¢, and markedly
increasing with d (Fig. 3D). This Arrhenius-like scaling form is
consistent with a gradual and uncorrelated narrowing of the
hopping channels with ¢. Note that similar phenomenological
power-law distributions have recently been reported for other
glass-forming systems, such as the bead-spring model for poly-
mer chains (51). We get back to this point in Conclusions.

Finite-Dimensional Phase Diagram

A clear scenario for hopping in the MK model follows from
this analysis (Fig. 4). Dynamically, the system becomes in-
creasingly sluggish upon increasing ¢ above @, Initially,
cages are not well formed and the slowdown exhibits a power-
law scaling, according to the iRFOT critical predictions. Hop-
ping cannot be defined because cages are too loose. Upon
approaching ¢4, however, cages become much longer lived. In
this regime, iRFOT predictions give a rapidly growing zp, but
hopping processes allow particles to escape their cages and dif-
fuse, hence providing a cutoff to the critical divergence of zp. The
critical-like behavior of the diffusivity is also pushed to denser
systems, and fitting to a power law gives @4> 4. When 7p is
comparable to 7,, a mixed regime emerges, characterized by
a SER breakdown, as we discuss below. Even beyond ¢4, how-
ever, the dynamics are not fully arrested. Hopping remains pos-
sible, which shows that ¢4 has no fundamental meaning and is just
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a fitting parameter associated to an effective power-law di-
vergence of 7p. In fact, the MK dynamical data are better fitted by
a VTF form than by the critical power law (Fig. 44), although the
fitting parameter ¢, has no direct static interpretation because it is
intermediate between ¢4 and g;,.

The dynamics can also be understood from the organization of
cages. The critical density ¢4 of iRFOT corresponds to the
emergence of a connected network of cages. Typical networks
for pg<@<g, span the system volume. When ¢ > ¢, they
become finite and the mean network volume Ve (sum of cage
volumes in the network) follows a critical scaling from standard
percolation (Fig. 4B). Based on this analysis, in the absence of
facilitation the dynamical arrest should take place at ¢, (53).
Note that although above ¢, the single-particle MSD is bounded,
a particle can still explore a finite number of cages. Perfect single-
cage trapping can be found at ¢ — oo only in finite d. Hopping is
then infinitely suppressed because both the width and the number
of hopping channels between cages vanish. However, even if
hopping interferes with caging, well above ¢, vibrational re-
laxation within the cage is sufficiently quick to numerically
distinguish it from hopping. This large separation of time-
scales enables the facile detection of hopping in MD simulations
and cavity reconstruction. However, upon approaching ¢4 the
task becomes acutely sensitive to the arbitrary thresholding in-
herent to any hopping detection algorithm (22, 54) (details in SI
Text, section II1.A).

As expected from the exactness of the iRFOT description in
d— oo, p4/pq — 1 with increasing d. Both 7 and y also appear to
converge to the d = co value (Fig. 1B) (34). Because ¢4 < ¢, for
all d, the suppression of hopping with increasing d (Fig. 1D,
Inset) ought to be ascribed either to the narrowing of the hopping
channels or to topological changes to the cage network. Because
the pressure at the dynamical transition increases only slowly with

15LO 1.5 2.5 3.0 Ny
10 T ~ . 1018
A ‘ P ‘
10" f 4 1012
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108 - ; 4 106
o / 1 10°
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0.0 :
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Fig. 4. (A and B) Dynamical (A) and static phase (B) diagrams for the MK
model in d=3. Early in the critical regime, the relaxation times scale like
a power law, but beyond @5z hopping causes large deviations from this
scaling. An effective ¢4 is numerically detected instead. A VTF scaling fits the
data even better. Statically, cages can be detected from ¢4 onward by re-
moving hopping. In reality, the fine intercage channels that allow hopping
result in a cage network. Beyond ¢, the typical network stops percolating
and the network volume scales critically, Vot ~ (0 —9,)"'® with ¢, =2, 40
(dashed blue line) (49, 52). The single-cage limit is reached when Vne( ~A%
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Fig. 5. (A) Dimensional rescaling of the SER (black) and SER breakdown regimes
for standard finite-dimensional HS. The early deviation exponent w is consistent
with hopping in the MK model with @ =0.22 (red line, Fig. 1D), but a growing de-
viation is observed as ¢ increases. (B) The dimensional scaling of HS results for ¢4,
¢4, and gger converges as d increases, whereas ¢ remains distinctly smaller
(compare with Fig. 1C). Note that in d=8, ¢4, ¢4, and @ are numerically
indistinguishable. (Inset) Dimensional evolution of y and 7, both of which are
consistent with the d = oo result (dashed line). Solid lines are guides for the eye.

dimension (pq ~d), the typical channel width is expected to stay
roughly constant. The topology of the cage network, however, has
a larger dimensional dependence. The cage network at percola-
tion, for instance, has a fractal dimension dy < d (52); e.g., df =4
for d >d, = 6. Although this result is valid only at ¢, proper, the
local network structure persists at smaller ¢ because the loss of
the cage network fractality takes place through the single-point
inclusion of nonpercolating clusters (52). The network topology is
therefore such that the hopping channels (even assuming that
their cross section remains constant) cover a vanishingly small
fraction of the cage surface as d increases. The limited number of
ways out of a local cage thus entropically suppresses hopping.

SER Breakdown

With hopping events clearly identified, it becomes possible to isolate
the pure critical iRFOT (or mode-coupling) regime. Within this
regime, we obtain a power-law scaling that is consistent with ¢4
(details in SI Text, section IL.B), and the SER is followed. Devi-
ations from the extrapolated critical scaling coincide with the SER
breakdown in all d. Although ¢, occurs at a roughly constant
distance from ¢, the SER breakdown occurs in systems that are
increasingly sluggish with d, ¢ger — @4, and thus properly con-
verges to the idealized mean-field behavior as d — . In the MK
model, the SER breakdown is thus clearly due to hopping.

By modifying the cavity reconstruction analysis, a self-consis-
tent caging determination of ¢4 and ¢, should also be possible
for standard finite-dimensional HS. We do not attempt such a
computation here, but instead use the insights gained from the
MK model to associate the SER breakdown in HS with hopping.
We fit the dynamical data from the regime over which the SER is
obeyed to extract ¢4 and y and the full dynamical regime to
extract ¢4 and 7 (38). As for the MK model, the two procedures
converge as d increases (Fig. 5), whereas ¢, clearly remains
distant, as is observed in many other glass formers (55, 56). In-
terestingly, for HS, ¢spr and ¢4 are relatively close to begin with.
The fairly structured pair correlation function in HS and the
much larger pressure at g4 lead to smaller interparticle gaps. Par-
ticles are thus caged more efficiently, which suppresses hopping.

Contrasting Figs. 1D and 54 suggests that near ¢ggpr the SER
breakdown exponent w is similar for HS and the MK model. In
this regime, HS hopping is consistent with MK-like hopping. In
HS, however, single-particle hopping leaves an actual structural
void that enhances the correlation (and hence the facilitation) of
hopping events (27-29). As HS become more sluggish, cooper-
ativity plays a growing role. As a result, a pronounced difference
between HS and MK hopping for ¢ > @ggr can be observed. The
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lack of a notable dimensional dependence of the master curve
suggests that if the SER breakdown is also affected by critical
fluctuations, as suggested in ref. 17, that effect may be hard to
detect. In contrast to ref. 16, we now understand the reduction of
the measured w as d increases to a delayed onset of hopping.

Conclusions

We have numerically and theoretically studied a model glass former in
which it is possible to isolate hopping from the critical mode-coupling
dynamical slowing down and in which no other dynamical effects are
present besides these two. The results illuminate the key role played
by hopping in suppressing the iRFOT dynamical transition in finite
d and in breaking the SER scaling. The MK model gives an ex-
ample where single-particle hopping is sufficient to cause the SER
breakdown, but in HS facilitation likely amplifies the effect, which
may explain the dependence of @ on density (Fig. 5) (57).

For standard finite-dimensional HS and other structural glass
formers, we expect the situation to be made more complex by the
other dynamical processes mentioned in the Introduction. One
might then conjecture the existence of at least three dynamical
regimes for glass formers, upon increasing density: (i) an iRFOT/
mode-coupling regime below ggeg; (i) a MK-like hopping re-
gime around @gggr, where hopping is the dominant correction to
the iRFOT description, the mode-coupling critical scaling holds,
but the apparent mode-coupling transition shifts to higher densi-
ties and the effective exponent y changes, and the SER breakdown
is incipient [in this regime the hopping timescale increases (ex-
ponentially) quickly with density (Fig. 3D); we expect this increase
to be similar for HS and MK liquids, because the probability of
finding a neighboring cage is roughly exp(—¢) for both models];
and (iii) at yet higher densities, hopping becomes too slow and
other dynamical effects likely become important. If glass—glass
nucleation barriers do not grow as quickly as the hopping bar-
riers, then these processes may eventually become the dominant
relaxation mechanism, following the RFOT prediction (5, 12, 31).
In this regime (and hence in deeply supercooled liquids much
below T4) the VTF law and the associated Adam-Gibbs relation
should be reasonably well obeyed. Note that other processes such
as cooperative hopping dressed by elasticity might also occur in
this regime (26). Note also that these different regimes are probably
not separated by sharp boundaries in realistic systems, and hence
all these relaxation processes might coexist, making their iden-
tification quite challenging.

We also stress, in line with previous studies, that VTF fits of the
structural relaxation time in regimes i and ii should not be used
to extract the putative Kauzmann transition point. In our opinion
it makes no sense to test the Adam—Gibbs relation in these dy-
namical regimes. In the MK model, although the VTF law can be
used to fit the dynamical data, there is no associated Adam—
Gibbs relation and thus ¢, has no thermodynamic meaning. In
particular, ¢, is not associated with a Kauzmann transition
[which in the MK model happens only at ¢ =00 (44)]. This
observation is particularly important for numerical simulations
and experiments on colloids and granular systems, which are
most often performed in the vicinity of ¢4 and ¢@gr and hence
are found within the first two regimes.

Finally, we note that the MK model could also serve as a test
bench for descriptions of hopping (24, 25, 58), as well as for re-
lating percolation and glassy physics more broadly (59). These
studies may further clarify other finite-dimensional effects,
such as the correlation observed between local structure and
dynamics (30).
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SI Text

1. Introduction

A. The Model. The infinite-range variant of the Mari—-Kurchan
(MK) model (1) is defined by adding to the distances between
pairs of particles an additional quenched random shift that spans
the whole system size (Fig. S14). The potential energy contri-
bution to the Hamiltonian for N hard spheres (HS) is thus

N
H= EU(|I‘,‘—1‘]‘+AQ‘D,

i<j

[51]

where U(r) for |r|=r is the HS potential (e #V") =0(r —5)), for
spheres of diameter o, and A; is a uniformly distributed vector
within the system volume V i.e., with a probability distribution
P(A;)=1/V. Note that the standard HS model corresponds
to A,'j =0.

Note that even if in principle all particles interact with all
others, in practice because U (r) is short ranged, a given particle
interacts directly only with a finite number of neighbors (the first
coordination shell), as in usual liquids. Hence, the model is akin
to a mean-field spin-glass model with finite connectivity with the
connectivity depending on the number of neighbors in the first
coordination shell and thus on both density and dimension.

MK liquids have a simple structure in all spatial dimensions d,
because random shifts eliminate higher-order correlations. For
example, consider two particles j and k both near particle I; i.e.,
[r; —xj+Aj|~ o and |r; —r; + Ay | = 6. Unlike in regular HS, in
the MK model particles j and k have a negligible probability of
being near each other (|rj —rx + Aj| > o), because their effective
distance is shifted by Ay, which is of the order of the system size.
This argument can also be generalized to interactions between
more particles. Particle i thus has hard-core interactions with its
neighbors, but with probability one in the thermodynamic limit
these neighbors can overlap with each other. The two-point
correlation function seen from one particle is simply

[S2]

T \A
0=y oley-) =o(r1-o),

i#j

where r; =1; —1; + Aj.

Let V4(6/2) be the volume of a d-dimensional ball of diameter
o, and V4 =V4(1). For the MK model, the virial expansion of the
equation of state (EOS) terminates at the second-order

p=14Byp=142%1yp,

SMK=1—-logpi’ - 2""'p+InN,

[S3]

where p =P /p is the reduced pressure with  the inverse temper-
ature and p=N/V the number density, ¢ = pV;(c/2) =pV,27% is
the packing fraction (we set o =1), S} ¥ is the liquid entropy per
particle, 4 is the thermal de Broglie wavelength, and B, =V, /2
is the HS second virial coefficient.

Compared with HS, the MK model has several unique features:
(¢) Although monodisperse HS easily crystallize in low dimensions,
the random shifts in the MK model impose a quenched disorder
that is incompatible with crystal symmetry and thus fully sup-
presses the crystal phase. (ii) Glass—glass nucleation (2, 3) is also
suppressed, because if a nucleus forms around a particle, the

Charbonneau et al. www.pnas.org/cgi/content/short/1417182111

particles inside this nucleus are actually randomly distributed in
real space and thus no surface can be formed (Fig. S1). The free
energy cost of forming a nucleus hence scales with the system size
and diverges in the thermodynamic limit. (iii) Particle hopping is
much less correlated. By contrast to HS, where the hopping of
a particle increases the chance that one of its neighbors also hops
due to the real-space void it leaves behind, facilitation is limited
to unblocking an escape channel in the MK model (Fig. S1B).
(iv) MK particles are distinguishable because the quenched shifts
{Aj} are fixed. Besides the lack of structure, the partition function
Z of the MK model is therefore different from that of HS by
a factor of N, i.e., Zyk/N!~Zys, and hence S}‘i’g{ ~S,’i{qS +InN.
As a result, the density of the Kauzmann transition in MK di-
verges in the thermodynamic limit (1).

Introducing a set of quenched random shifts brings two key
advantages from a methodological point of view. First, in com-
puter simulations, it is convenient to “plant” an equilibrated MK
configuration (SI Text, section 1.B.2). Planting avoids the (cir-
cular) difficulty encountered in most other glass-forming liquids
of equilibrating an initial liquid configuration before studying
its equilibrium relaxation dynamics. Second, one can map the
model onto a constraint satisfaction problem defined on a ran-
dom graph (Bethe lattice). It is therefore possible to study its
properties with the cavity method (S Text, section II.A.2), which
is, in principle, exactly solvable.

B. Simulation Details. 1. Molecular dynamics simulations. We adapt the
event-driven molecular dynamics (MD) algorithm of refs. 4-6 for
HS to simulate the MK model in dimensions d=2-6 with
N =4000 particles. Periodic boundary conditions with the
minimum image convention are implemented on the shifted
distances |r; —r; + A;j|. For each ¢, we perform eight indepen-
dent realizations, each corresponding to a different set {A;}
for a planted initial configuration (SI Text, section 1.B.2).
Simulations are run at constant unit g, for a time ¢ (given in
units of 1/pmo?, where the particle mass m is also set to unity)
sufficiently long to reach either the diffusive regime in the
liquid or the asymptotic plateau in the glass. As described in
refs. 6 and 7, HS data are obtained from simulations of N =8,000
identical particles in d =4 —8 and, to prevent the system from
crystallizing (8), from a HS binary mixture with diameter ratio
o2/61=121ind=3 (7).

2. Planting. Planting, which here consists of switching the order of
determining initial particle positions {r;} and constraints {A;}, is
an expedient technique for studying equilibrium ensembles in
random constraint satisfaction problems (9). In general, the
planted ensemble is different from the annealed ensemble, but
for the liquid phase it can be shown that both are equivalent, as
we detail below.

In the following, we are interested in physical observables F
that depend on some initial condition {r;} and on their time evo-
lution under deterministic MD dynamics, e.g., the mean square
displacement defined in Eq. S7. In the presence of disorder,
the average of physical observables should be measured by the
so-called “quenched” average

N N dr. Fe~PH
F)r = / [ [dAsP(A; JIlizydriFe ™ , S4
(F) 1 iP( 1)< fo\;ldl'ie‘/’H [S4]

where F and H depend on both {r;} and {A;}. In fact, because
the disorder is independent of time for a given sample, one
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should first perform the thermal ensemble average (F) for a
given realization of disorder and then repeat this operation
for many extractions of {A;} to average over the disorder. In
simulations, however, once {A;} is fixed, equilibrating indepen-
dent configurations at large ¢ is very time consuming, because one
should first anneal the system quasi-statically slowly up to the de-
sired density.
Let us define the so-called “annealed” average:

_ JTISanP (Ay) [ TIE driFe ™
f [ TEGAAGP (Ay) [ TT drie ™

ST dr [ TTdAGP (Ag)e "™ F

- 1) Ht]'\ildri S Hi}\ijdAijP (Aj)e ™ .

(F)

[S5]

This average corresponds to a very different situation, where
the averages over {r;} and {A;} are interchangeable. Physically,
this describes a situation where both variables and disorder fluc-
tuate together; their timescales are indistinguishable. Mathe-
matically, the last equality in Eq. S5 shows that the integration
measure can be obtained by first extracting a uniformly random
configuration {r;} and next extracting a configuration {A;} from
the distribution

e M= ﬁ [P(Ag)e_ﬁU(lri_rf"'At/ )] .

i<j

ﬁP(Aif)

i<j

P({Ag}[{ri}) =

[S6]

Because P({A;}/{r;}) is factorized, each A; must be extracted
independently, uniformly in the volume I with the constraint that
|r; —xj + Aj| > 0. In summary, we use the following procedure to
compute (F),:

Procedure—planting MK.

i) Generate N particle positions {r;} according to a Poisson
(ideal gas) process.

ii) For each pair of particles i and j, randomly and independently
draw a vector A, uniformly in the subregion of the whole
volume V that is compatible with r; and rj, |r; —xr; + Ajj| > 0.

iii) Starting from the state given by {r;}, and for the given {A;},
compute the time evolution {r;(¥)} from MD simulations.
From this trajectory compute F.

iv) Repeat steps i-iii to average over disorder and initial

configurations.

The key to the success of this approach is determining if, and
under what conditions, the quenched and the annealed aver-

ages over the disorder are the same, (F)* = (F),. Eqs. 4 and
$5 coincide if the equality logZA =logZA holds, where Z=
foi]drie‘/’H is the partition function for given {A;} (9-11).
This situation arises if the fluctuations of Z induced by the
fluctuations of quenched disorder {A;} are very weak in the
thermodynamic limit. This condition is satisfied in the liquid
phase, but is violated in the glass phase away from the equi-
librium liquid line (9-11).

According to the analysis of ref. 9, to check numerically that
the annealed and the quenched average coincide, one should
compute the vibrational (internal) entropy of the planted glass
state. This can be done, for example, using the procedure described
in ref. 12. If the internal entropy of the glass turns out to be
larger than the liquid entropy given by Eq. S3, then the annealing
average does not coincide with the quenched average (9). Fortu-
nately, in the MK model the liquid entropy per particle diverges
proportionally to log N (Eq. S3), whereas the glass entropy per
particle is finite, because particles cannot exchange (at least if
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one neglects hopping, as discussed below). Therefore, for N — o
the liquid entropy is always larger than the glass entropy, and the
annealed average is correct. In other words, because the Kauzmann
transition for the MK model is located at infinite density (1), the
procedure is valid.

Numerical simulations show that the annealed average done
using the planting procedure discussed above is in perfect agreement
with the liquid EOS, Eq. S3 (Fig. S2). This result is not a surprise,
because it can easily be shown that the annealed equation leads
to the same liquid EOS in Eq. S3, but it is a consistency test for
the numerical procedure. Note that the pressure remains stable
over time, as it should be if one initializes the MD simulation in
an equilibrium configuration.

C. Basic Phenomenology of Glassy Behavior and Definitions of Physical
Quantities. Before turning to a more detailed explanation of our
results, in this section we summarize the main physical observ-
ables that we investigate in this study, with a short account of their
definition and of the main results.

1. Mean square displacement and cage sizes. Despite its trivial liquid
phase, the MK model presents a complex glass-forming and glassy
behavior. Above the onset @ Of sluggish dynamics (definition
in SI Text, section 1.C.3), we can distinguish three main regimes
in the mean square displacement,

N
a0 = S (I -r(OF): (57)
i=1

(i) a ballistic regime with A(f) =df?; (ii) a caging regime with a
plateau A(f)~A, where A is the mean cage size; and (iii)
a diffusive regime with A(f) =2dDt, where D is the diffusivity.
According to mode-coupling theory (MCT), the plateau be-
comes asymptotically stable beyond the dynamical transition
@q (SI Text, section I1.B.1). We can then formally define the
mean cage size as the infinite time limit of the mean square dis-
placement (MSD),

A= lim A(r), [S8]

=0

and the individual cage size A; of each particle i,
A= }irglo<|ri(t) —r,»(())|2>. [S9]

From this definition and the equilibrium conditions (r;(0)) = (r;(¢))
and (|r;(0)[*) = (|r;(¢)|*), we obtain another expression for A;,

8= tim [ (60 ) =200 -1:0) + (Iu(0))|

[S10]
=21im [{ I = |{r:(1)) ).
The definition of A; in Eq. S9 can be directly used to measure
individual cage sizes in numerical simulations. Eq. S10 also suggests
that A, is twice the variance of the distribution of particle positions
within a cage. In theoretical calculations, a cage form ansatz
fa(r) is usually used for this distribution. Two commonly used
functions are the Gaussian

-(/24)
OE e(T;A) - [S11]
and the ball functions
by 0A-T)
=——2* S12
A(r) Vd(\/z) [ ]
20f14
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Below, we use the Gaussian ansatz in the replica method (SI Text,
section II.A.2) and both ansatzes in the cavity method (SI Text,
section II.A.2). The parameter A in these functions can be re-
lated to A;, using Eq. S10,

A;=2dA; [S13]
for the Gaussian function and
A= ﬂAi [S14]

d+2

for the ball function.

2. Characteristic timescales. In this subsection, we define the char-
acteristic timescales, their physical interpretations, and how they
are numerically determined.

e 1), microscopic time: This natural timescale serves as a reference
to compare the evolution of other timescales with spatial di-
mension d. Its definition is such that the Velocity autocorrelation
function d(zy) =1/e, where d(t)= (l/dN)Zi (vi(t) -v;(0)) =
(1/2d)(A(r) /d?) (Fig. S3C) (13).

e 1p, diffusion time: The characteristic time for diffusion is de-
fined as tp =0?/D, such that A(f) vs. t/zp collapses in the
caging and diffusive regimes (Fig. S34), as predicted by MCT
(Eq. S34). Using this collapse, we can determine zp without
explicitly extracting D, which allows us to estimate zp close to
the dynamical transition, even when the fully diffusive regime
itself is beyond numerical reach.

e TggR, characteristic time at ggpg: i.€., TsER = 7p(@sER )-

e 7, structural relaxation time: In standard glass-forming liquids,
7, 1s typically extracted from the decay of the self-intermediate
scattering function

N
<Z )= (0 > [S15]
such that
. 1
Fi(k ,T,,):E, [S16]

where k* is the first particle peak of the structure factor

k)y=1+p / dre 7y (r). [S17]

For the MK model, however, this method cannot be directly
applied because the trivial structure of g>(r) [and hence of
S(k)] leaves k* ill defined. Here, we use a slightly different,
although consistent, approach to measuring z,. We first gen-
eralize the definition of the MSD to the typical displacement
of particles

N
Fiyp (t) Z Iri(t) =1 (0 >1/Zv

i=1

[S18]

which is the zeroth moment of the self van Hove function G;(r, ),
i.e., the displacement of the majority of particles at time ¢. In
practice, to determine ryy, (¢), we use z = 0.1, which is very close to
the limit z —» 0. By analogy to zp, we then determine the relaxa-
tion time 7, by ensuring that r2,_(¢) vs. t/z, collapses in the MSD
caging regime (Fig. S3B). Note that 7, is then defined only up to
an overall constant that is independent of density.
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For HS, this (re)definition of z, is consistent with the traditional
one, because the condition in Eq. S16 is equivalent to kriyp(z,) ~ 1.
The length scale 1/k* indeed corresponds to that of the maximum
density fluctuation, which should be of the order of the typical
cage diameter. The scaling riyp(z,) ~ 1/k* ~ ~ VA4 shows that Tiyp 1S
near the caging regime at 7, and hence should be independent
of density. Our estimate of z, is therefore consistent with the
proportionality relation for the viscosity 7, ~ 5 observed in very
sluggish fluids (7). Note that the above definitions of 7, and 7p
give additional weight to slower and faster particles, respectively.
In this context, the breakdown of the Stokes—Einstein relation
(SER) is consistent with a proportion of fast particles that is
larger than expected (14).

e 73, hopping time: The typical time for a caged particle to
escape (details in SI Text, section III).

3. Characteristic densities. In this subsection, we define the char-
acteristic densities (number density and volume fraction are used
interchangeably), their physical interpretations, and how they are
numerically and theoretically determined. Results for HS and the
MK model are reported in Table S1.

® (Ponset> ONset density of the glassy behavior: It corresponds to
the lower limit of the caging regime (15). Its choice is such
that for ¢ < @,ne; nO inflection point appears in the logarithmic-
scale MSD; for ¢ > (popeer» the MSD shows an inflection point,
i.e., a point where dIn A(¢)/(dIn t) =0. In this regime a non-
Fickian behavior is observed. Hence, ¢, also corresponds
to the density at which the minimum value of the non-Fickian
coefficient vy is unity (Fig. S3D), where vy, = min,(t) and
the non-Fickian coefficient v(f) =dInA(t)/dInt (16). Note,
however, that our estimate of ¢, likely underestimates the
onset calculated from the emergence of a finite configurational
entropy in static calculations (17).

® (spr, characteristic density for the breakdown of the SER:
Below ¢gpgr, hopping is irrelevant because, if present, it is
indistinguishable from the regular liquid dynamics, and the
MCT scaling relations are satisfied (SI Text, section I1.B.1);
above ggsiRr, hopping becomes faster than the characteristic
MCT time (4, <7p), and consequently both the MCT scal-
ing and the SER are violated.

e ¢4, dynamical glass transition threshold: In the MK model,
this density is theoretically calculated from the replica method
(ST Text, section I11.A.3) and numerically confirmed by testing
the MCT scaling zp ~ | — ¢4|™" (or equivalently, D ~ |p — @q4|")
in the density range over which hopping is negligible (e <
@ < @ser)- In the HS model, however, we lack reliable theoret-
ical predictions for ¢4 in low dimensions. We therefore deter-
mine ¢4 from fitting the simulation results for D in the regime
Ponset <@ < pser- Our results are consistent with those reported
in ref. 5, where ¢4 was extrapolated from slowly quenching the
fluid. Note that ¢4 is sharply defined only when hopping con-
tributions can be separated without ambiguity. Hence, ¢4 is
well defined only in the replica calculation, where hopping is
excluded by construction.

o {4, effective dynamical glass transition threshold: Empirically,
@4 is determined by fitting the diffusivity data, as is commonly
done in glass formers. In this study we show, however, that ¢4
is systematically shifted with respect to ¢q (@4 > ¢4). Note that
because @y is a fitting parameter, it also depends on the density
range one chooses (or that is available) for the power-law fit.

® (g, phenomenological parameter from the Vogel-Tammann-—
Fulcher (VTF) fit to zp ~eBv/(%0=9): In the MK model, ¢, is
clearly different from the thermodynamic Kauzmann transi-
tion point @g = 0. Recall, however, that the MK model lacks
the glass—glass nucleation processes assumed by the Adam—Gibbs
(AG) and the random first-order transition (RFOT) theories, to

30of 14


www.pnas.org/cgi/content/short/1417182111

L T

/

1\

=y

associate the divergence of the relaxation timescale with the
thermodynamic singularity at ¢g.

* ¢,, percolation threshold for the cage network: Below ¢, a
particle can diffuse by successive hops on the percolating net-
work of cages. Because the infinite time limit of the MSD is truly
bounded only above this threshold, ¢, also provides an upper
bound for ¢g; i.e., ¢, > @q.

e ¢, Kauzmann transition: density at which the complexity =
(or configurational entropy) vanishes: As discussed above,
because Zyk ~ Zys + In N, the density of the Kauzmann tran-
sition diverges (px = o) in the thermodynamic limit.

Il. Caging

A. Thermodynamics: The Caging Order Parameter and the Dynamic
Transition Density. The mean caging order parameter can be
obtained equivalently from the replica method, following refs.
18 and 19, or from the cavity method, following ref. 20. Here
we briefly describe how these approaches are adapted to the
MK model.

1. Calculation of the mean caging order parameter: the replica method.
References 18 and 19 used the replica approach to obtain HS
results, and it is straightforward to check that these derivations
rely on the pair correlation function only in the liquid phase;
terms corresponding to third- and higher-order structural cor-
relations are neglected. The treatment of ref. 18 can therefore be
directly applied to the MK model, for which these assumptions
are exact. The results from ref. 19 have also been obtained using
the approximation g(r) =yje (¢)0(r — o) (ref. 19, equation 21)
(the soft-sphere temperature is set to zero to study hard-core
systems). Comparing this result with Eq. S2, we see that for the
MK model yj*(¢) = 1. All of the results of refs. 18 and 19 can
thus be straightforwardly extended to the MK model by setting
Yie (@) =1. (Note that the discussion of ref. 19 was restricted to
d =3, but a general discussion for all d can be found in ref. 18).
The replicated entropy thus has the form

S(m,A;T, ) =S (m,A) + SYX () +29- G (m, A),

Sn(m,A) =£—2i (m=1)In(2zA) +§ (m—-1+Inm),

[S19]

°°d u (d-1)/2 g=((r=u)* /44)
_/ ”(?) VarA

« | p=tu/24) | T m
[6’ T I(d’z)/2(2A> )

where £ (r) is the d-dimensional Gaussian cage given in Eq. S11
and 7, (x) is the modified Bessel function. The last expression for
qa(r) is obtained using bipolar coordinates to compute the con-
volution (18). Remarkably, in odd dimensions the integral over u
can be computed analytically, which facilitates the numerical
evaluation of the replicated entropy.

From Eq. S19, we can derive the equation for 4 from the con-
dition 0S/04 =0, which reads

[S20]
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The cage radius in the liquid can be obtained by solving this equa-
tion in the limit m — 1, and A =2dA. From Eq. S20, one sees that
the dynamical transition ¢, corresponds to the point where
(2%p/d)maxF(1,A4) =1. Note that for ¢ > ¢4 Eq. S20 admits
two solutions, but only the smaller of the two is a stable physical
solution (18).

2. Calculation of the cage size distribution: the cavity method. More
information on the distribution of individual cage shapes and sizes
can be obtained from the cavity method (10, 21). Its application to
the MK model has been developed in ref. 20, where the cavity
equations are derived and discussed. Here, we present only the
main steps.

a. Cavity fields and replica symmetric cavity equations. In the cavity
approach, the system is described by a set of cavity fields y(r).
Each cavity field describes the probability of finding a particle at
position r, when it is added to a system of N — 1 particles. The
replica symmetric cavity equations provide a recurrence equation
for determining these cavity fields,

No

1
wo(ro) = % H
j=1

z0= /droﬁ{/dl’jllfj(rj))((ro_rj'FAOj)]-

In this recurrence, the new particle interacts with the Ny other
particles, each described by its own cavity field q/j(r]-). The inter-
action is given by the hard-core constraint y(r) =e?U") =0(r — o).
In this equation the quenched random variables Ag; are the random
shifts that appear in the Hamiltonian, but they should be indepen-
dently extracted at each cavity iteration. They are independently
distributed in the whole volume V" with a uniform distribution
P(Agj)=1/V. Note that in ref. 20, the cavity equations were
obtained for a model defined on a random graph that is locally
tree-like, corresponding to a situation where Ny remains finite
as N — o0. The method, however, is also applicable to the MK
model, where Ny =N — 1, corresponding to the fully connected
graph (10). A convenient way to obtain the fully connected
graph is to first take the limit N — oo and then Ny — co0. One
can show that this procedure is indeed equivalent to consid-
ering No=N —1 (10).

b. Translational invariance and irrelevance of the random shifts. To
describe the liquid and the glassy states of the MK model, we are
interested in solutions of the cavity equation that have statistical
translational invariance. To be more precise, the liquid phase is
described by uniform fields y(r)=1/V for all particles. Physi-
cally, this situation corresponds to particles diffusing everywhere
within the system volume, which mathematically reproduces the
virial expansion (20). In the glass phase, each individual cavity
field has the form y(r) =f4(r — R), where f4(r) is a cage function
localized around r=0. The cavity field is thus localized around
point R, but the localization centers R themselves must be uni-
formly distributed in the whole volume because the glass is glob-
ally translationally invariant. Hence, in Eq. S21, when neighbors
are picked at random, they are localized around uniformly distri-
buted random positions in space, which makes the random shifts
redundant. In the following, we can thus neglect the random shifts
and write the replica symmetric cavity equations as

)

/ dry; (1)1 (ro — 1+ Agy)
[S21]

1 No
ot = 11| [ dowsw)evo-n)].

= [S22]

No

a= [ an ]| [ dnw(s)em-n)|.
=1
and take Ny — oo.
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c. The glass phase and the 1RSB cavity equations. In the glass phase,
as mentioned above, y(r) are random variables described by a
probability distribution Q[y]. In the regime that is here of inter-
est, the glass is described by the 1RSB cavity equations derived
in refs. 10 and 21. From these equations, we obtain that the
probability distribution Q|| satisfies the self-consistent equation

No

1
Ol =5 / [ a0l ofeas. 5221
[S23]

/HdQ vilze

which makes explicit that the Ny cavity fields describing the
neighborhood of the new particle are extracted independently
from Qly]. The new cavity field is constructed according to Eq.
S22 and weighted according to z{. Note that z is the free vol-
ume associated with the new particle, and therefore, by varying
the free parameter m, one can select glassy states according to
their free volume or, equivalently, their internal entropy.

d. Reconstruction equations. Beyond the dynamical transition,
ergodicity is broken in the liquid phase, which corresponds to the
liquid splitting into many distinct glassy states. It is well known,
however, that if configurations are sampled with the equilibrium
Gibbs-Boltzmann measure, then both entropy and pressure are
analytic around ¢4 and the equilibrium glass phase is the ana-
lytical continuation of the liquid phase. To weight glassy states
according to the equilibrium Gibbs-Boltzmann measure, one has
to weight them proportionally to their free volume, and hence
one must set 77 =1 (21). In the case m =1, the 1RSB equations
greatly simplify due to a mapping onto the reconstruction for-
malism (22). Reconstruction is then done by introducing new
fields Ri[w(r')]=w(r)Qw(r’')]. This change of variable ensures
that only the fields that are localized around point r contribute
to R.[y]. Using the global translational invariance R[w(r')]=
Ry[w(r' —r)], we conveniently get

e ] i
* o« y(rg)-— {/dl‘,y/]r] _rj>:|'

[S24]

Note that the reweighting term z{' has now disappeared from the
equations. Note also that only Ry[y| enters the equations and
therefore all cavity fields are localized around the origin. The r;
in Eq. S24 are random shifts of the cavity fields that are con-
strained to be outside a sphere of radius ¢ around the origin. The
neighbors j are thus localized outside that sphere, which guaran-
tees that around the origin there exists a void to accommodate
an additional particle.

e. Ansatz on the cage shape. As discussed in ref. 20, numerically
solving the cavity equations in Eq. S24 remains a formidable task.
Here, we make a simple ansatz on the cage shape to facilitate this
computation. We first assume that the cavity fields all have the
form y;(r) =f4,(r —R), where f'is a fixed (spherically symmetric)
cage shape. We then choose either a Gaussian (Eq. S11) or a ball
(Eq. S12) cage shape, with A; given by Eqs. S13 and S14, re-
spectively. We assume that the cage sizes are distributed ac-
cording to a function Py(4) whereas the centers R are uniformly
distributed within the volume, as discussed above. We therefore
obtain the ansatz
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R Sl (r)—f4 (xR,
[ apa

The above equations show that fields contributing to Ry[y] are
localized around a point R that is distributed according to f4(r),
and hence R is itself localized close to the origin. Plugging this
ansatz in Eq. S24, we obtain

drjy (x; dR;
y(ro)] /H{fdw ]/de(Af)#fA](Rf)
Xﬁ[w(ro)—zlo HqA,/z[ro—(erer)] :
i1

1= [ apyia)

Roly(r)] =y (0)Qly(r)] = R (R)olw (1)~ Fa(r—R)].

[S25]

[S26]

where

[S27]

0= [ drfuyir-r)

Note that the factor of 2 is introduced to follow the notational
convention of ref. 18.

f. Reconstruction procedure. The physical interpretation of the
reconstruction equation is quite straightforward. To construct a
new cavity around the origin, one should draw at random Ny — o
particles that are located at random positions r; outside a sphere
of radius ¢ around the origin. These particles are themselves
within a cage, whose size 4; is extracted from Py(A4). The point r;
is not the center of the cage, but a point that is typical of the dis-
tribution inside the cage. The cage center is therefore at r; + R;,
where the shift R; is extracted from the cage shape f4,(R;). Each
neighbor rattles around its cage center at r; + R;, producing an ef-
fective potential that convolutes the HS constraint with the cage

shape, ¢ (r0) =q,2[ro — (1j +R;)]. The new cavity field is then
given by the (normalized) exponential of the sum of all effective

potentials, y(ro) ]iqu,/2[ro — (rj +Ry)] = exp[~f > vl(ro)]. Fi-
nally, we note that although the number of neighbors Ny
should be sent to infinity, distant neighbors do not affect the
new cavity field because q,,»(r) tends to 1 when r— co. We
can therefore introduce an arbitrary spatial cutoff and consider
only the neighbors (whose number distribution is Poissonian)
that are within this cutoff and then increase the cutoff until the
results converge. This approach is expressed by the following
recursive procedure for self-consistently determining the distri-
bution Py(4), which is the only remaining unknown in the cavity
reconstruction. Note that once Py(4) has been calculated, one
can easily obtain the distribution of mean square displacements
in the cage, Py(A), according to Eq. S13 or Eq. S14. This ob-
servable is also easily measured in numerical simulations (and
experiments).
Procedure—reconstruction MK.

i) Consider a spherical shell 6 <r <o+ o¢y Of volume V) (the
upper bound o, should be sufficiently large for the results
to be independent of it). Consider a number of centers Ny
distributed according to a Poisson law with average Ny = pl%.
Uniformly draw these sphere centers r; within the shell.

ii) Independently draw Ny cage radii A; from Py(4) and Ny
displacements R; from fy, (R;).

iif) From these Ny random variables, derive a new cavity field
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_ Hjliolqu/Z (ro— (rj +Rj))
fdrénjjiolqA,/z (r6— (5 +Ry))

w(ro) [S28]

iv) Compute the mean square displacement in the new cavity as

(ro) = /dl‘o ro w(ro)

A [S29]
<5r3>=/dro(r0—<r0>)2l//(ro)= I;W~

The value Ay is the long-time mean square displacement
corresponding to Eq. S10. It allows one to determine the new
cage parameter A,y that enters into the new cage shape in
Eg. S11 (or Eq. S12), according to Eq. S13 (or Eq. S14).

v) Repeat steps i—iv to get N samples Apey to construct a new
distribution Pr(Apey)-

vi) Repeat step v until the distribution converges Pr(Anew) ~
Py(A) within the statistical error.

vii) From the convergent Py(A) compute the distribution of mean
square displacements, Pr(A), using Eq. S13 (or Eq. S14).

g. Numerical details. In principle, the above procedure provides a
theoretical way to compute Py(4), but practically it must be
implemented numerically, with two additional tricks.

First, we note that it is difficult to calculate the normalization of
the cavity field y(ry) in Eq. S28, because one has to integrate
over the whole space. It is more convenient to compute the
variance (6r2) in Eq. S29, using the Metropolis algorithm with-
out explicitly obtaining w(rp). We can then write Eq. S28 as

w(ro)
ry)) =, [S30]
w(ro) J droir(ro)
where the nonnormalized probability v (ry) is
No
w(ro) = [ olro - (5 +Ry)]. [S31]
=1

From this expression, it is clear that y(ry) is analogous to the
Boltzmann factor in the Gibbs measure with an effective po-
tential Hegr(ro), 7(rg) =e#Me(™) We can thus use the standard
Monte Carlo (MC) algorithm to sample any average quantity,
such as (6r2), with acceptance rate

aco(xgd — V) = min{ 1 "’(L’)} : [S32]

()

Interestingly, we actually derived from the cavity formalism a “lo-
cal” MC simulation. In this local MC sampling, the positions of
all of the particles, except for the caged particle at ry, are fixed
and their vibrational contribution to the motion of the caged
particle is integrated into the effective potential Hs(rp). In
our simulations, we perform 4x10° MC steps with step size
0.1VA4 to calculate each cage size.

Second, we have to remove hopping from the cavity procedure,
or otherwise the cavity solution does not properly converge (Fig.
S4). To achieve this task, during the calculation of Ay in the
local MC simulations, we record the spatial trajectory of ry. We
then check whether any hopping has occurred during this tra-
jectory, using the detection algorithm described in SI Text, sec-
tion IILLA. We include A, in the statistics of Pr(Apew) only if
no hopping is detected, as otherwise the particle is not truly
caged. Once hopping is removed, our results indicate that the
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cavity solution properly converges when ¢ > ¢4 (Fig. S4). We
represent the distribution Pf(A4) by a number N'=10* > N of
samples Ay, k=1N.

3. Comparing theoretical predictions with simulations. We first show
that the mean square displacement A predicted from both the
replica and the cavity methods is generally in good agreement
with the simulation data (Fig. S5). The simulation A is extracted
from the asymptotic time limit of the MSD data, according to the
MCT scaling (Eq. S39). Close to ¢, the replica theory predicts a
scaling (Fig. S5)

[A(p) = Ad| ~ |9 — pa]"%,

[S33]
where Agq=A(gg), which is consistent with the MCT prediction.
However, around ¢4 precisely determining A from either simu-
lations or cavity reconstruction requires a careful consideration
of hopping. The simulation and the cavity data therefore unsur-
prisingly deviate from Eq. S33 in that regime (Fig. S5).

Cavity reconstruction provides a theoretical prediction for the
distribution Pr(A) of individual mean square displacements. To
obtain individual cages from simulation, we use Eq. S10 at r=2,
which is sufficiently long for the cages to form, but not so long
that a large fraction of particles have hopped. Note that at
densities well above ¢y, hopping is so rare that this choice of
timescale is irrelevant. As discussed in the main text, our theo-
retical results agree well with simulations and are independent of
the Gaussian or of the ball ansatz for the shape functional. The
replica calculation for A using the Gaussian functions and Py(A) =
5(A — A) also agrees with the simulation results (Fig. S5).

In summary, we find a basic consistency between our MD
simulations and theoretical calculations, including (i) the replica
calculation with a Gaussian ansatz for the cage shape and a
é-function approximation for the cage size distribution function
Pr(A)~8(A—A) and (i) the cavity method with both Gaussian
and ball ansatzes. It has been shown that in the limit d - oo, the
theoretical result (of replica calculation) is independent of the
cage shape ansatzes (23), and we also expect it to be independent
of the method we use (replica/cavity). In finite dimensions,
a weak dependence is expected, but according to our results
presented here, it is insignificant compared with the numerical
accuracy of the resolution of the cavity equations.

B. Caging Dynamics: MCT and Beyond. In this section, we compare
the MD results with the dynamical caging behavior predicted by
MCT. The MCT scalings are found to be consistent with our data
only when ¢ < ¢gpr. Above @gpr, MCT predictions are violated,
which is well captured by the breakdown of SER and is a con-
sequence of entangling caging with hopping, as discussed in S/
Text, section III. It is important to note that we here refer to
MCT only as the general scaling laws predicted by the schematic
MCT equation (24), which can be also independently derived
from the static framework (25). The traditional MCT kernel
being incorrect for the MK model (1), the numerical MCT pre-
dictions are indeed unsuitable for comparison.

1. Testing the mode-coupling theory. We first compile the MCT
predictions tested in our study. The derivations of these predictions
as well as many important physical interpretations can be found in
ref. 24 and references therein. We denote e = (¢ — ¢4) /¢4 as the
distance from the dynamical transition and 7. as the character-
istic time for the f relaxation. Note that MCT does not predict
any breakdown of the SER, so we do not distinguish between the
a-relaxation time 7z, and the diffusion time zp in this analysis
(zp ~7q > 7). Below the dynamical transition ¢ <@y, MCT
predicts that the time evolution of the MSD has the form
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where B and C are density-independent constants, and the ex-
ponents a and b are related by the exponent parameter 4 as

A_(f)= [S34]

t> 7,

_[r-a)? _[r(L+b)

A= [(1-2a)  T(1+2b)°

[S35]

Eq. S34 shows that the relaxation process of A can be divided
into three regimes: (i) an early g-relaxation toward the plateau
Ag, Ag—A_(¢t)~t7%; (ii) a late § relaxation leaving from the
plateau, A_(¢) ~; and (jii) a diffusive process that is linear in
time, A_(t) ~¢. We stress that, as described in SI Text, section
I.C.1, before regime i, there is a ballistic regime characterized
by a microscopic time that is much smaller than z. and is not
included in Eq. S34.

One of the most important predictions made by MCT is that,
upon approaching ¢4, a power-law divergence should be ob-
served for

w~|p—gal” [S36]
and
A [S37]
where the exponents are related via
1 1
Beyond ¢4, MCT then predicts
2t
Ag—B - ) [ €
a=] P (r) i [539]

Aq, t> 1.

These scalings are tested by the following procedure.
Procedure—testing MCT.

i) Obtain ¢4 and A4 from the replica calculation.

ii) Fit zp according to Eq. S36 (Fig. 1 of main text) with the
theoretical ¢4, to obtain the exponent y. A consistent power-
law scaling is observed only below some density ¢gggr; above
@sgr»> 7p becomes smaller than the MCT predictions, imply-
ing that an additional relaxation process starts to interfere
with the dynamics. This observation suggests that when we
fit the diffusivity data, only the data below ¢ggr should be
used. If instead we treat ¢4 as a fitting parameter for the
entire density range, then we end up with shifted values ¢4
and 7,

-~ o —pa| . [S40]
From the analysis presented in the main text, it is clear that
MCT actually fails when ¢ > @ggr, and thus the apparent
power-law fitting of Eq. S40 is not reliable. Results for ¢y,

@4, 7> and 7 can be found in Table S1.
iii) Determine a and b (Table S1) from y, using Egs. S35 and S38.

iv) Test the dynamical behavior of A(¢) (Eq. S34) below ¢4 and
determine the constants B and C. Note that here we have
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fixed all of the other parameters, ¢4, A4,a, and b from pre-
vious steps. Fig. S6 A and B shows that when ¢ < ¢segr, Eq.
S34 is satisfied in the entire time regime; when ¢ < gggg, it is
satisfied only in the early f-relaxation regime.

v) Using the same constant B, check the MCT dynamics above
@q4, using Eq. S39. When ¢ is not too far away from ¢4, A(f)
does not strictly saturate to a plateau as predicted by MCT,
and the scaling behavior of the intermediate time regime is
modified.

2. Breakdown of the Stokes—Einstein relation. The above analysis
shows that the MCT scalings start to break down close to the
dynamical transition ¢4. To further investigate this property, we
look at the scaling relation between the diffusion time zp and the
relaxation time z,. If SER were obeyed, we should obtain zp ~ 7.
As shown in Fig. 1 in the main text, SER breaks down when

@ > QSR a8

[S41]

1-w
D NTa 5

where the exponent w=0.22 is invariant with d.

The breakdown of SER is beyond the MCT description. In-
terestingly, we observe that three phenomena happen at the same
density gggg: (i) violation of MCT scalings, (if) violation of SER,
and (iii) the hopping characteristic time 7, becoming comparable
with zp. Our interpretation of these observations is presented in
the main text.

C. Percolation of the Cage Network. Because cages can be connected
via hopping channels, it is natural to examine how the cages are
topologically connected. We find that the network of cages spans
the system below density ¢, (¢, > @4). Above ¢, only local cage
clusters are formed and particles become strictly confined. We
show that this phenomenon can be mapped onto a void per-
colation transition, which belongs to the same universality class
as regular percolation.

1. Mapping the glass transition to a void percolation transition. To do the
mapping, we first consider the simplest case, where we assume that
all of the neighbors of a given particle are frozen, Pr(4) =6(A4). We
want to know whether the caged particle can move to another
cage without overlapping with other particles. Equivalently, we
can rescale the size of neighbors as ¢ — 2¢ and look for a hopping
path for the point representing the caged particle in the leftover
void space (Fig. S74).

We next consider the situation where cage sizes are not zero. In
this case, particle j is rattling inside a cage with radius \/Z, whose
distribution is a density-dependent function Ps(A4). If a certain
channel were closed in the first case, there is now a possibility for
it to be open because the particles bounding that channel are now
thermally moving. Because we are interested in the upper bound
for percolation, i.e., the best-case scenario for hopping, we rescale
particle sizes as (Fig. S74)

0—»2(5—2\//T]-),

where A; is drawn from Py(4). If no path in void space is found
by this construction, then the particle is confined. Strictly speak-
ing, this procedure works only for cage shapes with sharp bound-
aries, like the ball function in Eq. S12. For a Gaussian cage in
Eq. S11, the confined particle always has a finite (but vanishingly
small) probability to hop, even if the cage is found to be closed in
the percolation mapping. In the following percolation analysis, to
avoid any possible confusion, we assume that all cages have ball
shapes, which corresponds to assuming that this probability tail is
negligible.

[S42]
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2. Methodology for determining the void percolation threshold.

Mapping the void space onto a network via the Voronoi tessellation.
For void percolation, unlike for lattice percolation, or for con-
tinuous percolation (which is the dual problem to void percola-
tion), the predefined network is not trivial to extract. It is has been
shown, however, that the void space between monodisperse spheres
can be represented by a network obtained by Voronoi tessellation
(26). This method can also be generalized to polydisperese systems
via radical Voronoi tessellation (27). In the network representation,
nodes are Voronoi vertices, and links are the edges of the Voronoi
polyhedra. If any link passes through one or more spheres, then it is
blocked and should be removed from the network. After this net-
work is constructed, we check whether there exists a percolated
path from the center of the network to the system boundary.

Algorithm for radical Voronoi tessellation of polydisperse spheres in
any d. Because our systems have a range of cage sizes, i.e., they
map onto spheres with polydisperse diameters, we develop a method
to produce the radical Voronoi tessellation for a given configuration.
The basic idea is to map the radical Voronoi tessellation in di-
mension d to a Voronoi tessellation in dimension d + 1 and then
use Qhull (28) to compute the Voronoi tessellation.

For the standard Voronoi tessellation, the Voronoi cell for
sphere i consists of space points r that satisfy the relation

[r—r;| <|r—rl, [S43]
for any j #i. The radical Voronoi tessellation is a generalization
of this definition for unequal-sized spheres,

r—n’ - R} <|r— ;] =R, [S44]
where R=0/2 is the particle radius.

To map the radical Voronoi tessellation to a Voronoi tessel-
lation, we denote Ry,.x the maximum radius and introduce a set

of points in dimension d+1, ;= (r}miz,...,rf,‘/Rmax—Riz),

where i=1, ... ,N. The first d coordinates of r; are the same as
r;, and the final coordinate is a function of the sphere radius.

We further introduce a set of dual points ;= (r-l r? r!

VR IR I Rt B}

—1/Rmax —Rl?) , as images of r; s with respect to the last coordi-

nates. For each pair {F;, T/}, we find the d-dimensional polygon P;
that is the common Voronoi boundary between these two points
(Fig. S7B). According to the definition in Eq. S43, it is clear that any
point T in P; can be written as r=(r,0), and r satisfies

IF— i < [F— ], [S45]

which is equivalent to

[S46]

- +R%, - R <|r—x’+R%, —R’.
Because this relation is exactly the definition of the radical Vor-
onoi cell in Eq. S44, we have proved that the d-dimensional
polygon P; is the radical Voronoi cell of sphere i in the original
configuration.

Determining the percolation threshold from the scaling theory. The
percolation threshold can be determined by finite-size scaling
(29). Note that in the void percolation analysis, the variable of
interest is the volume fraction of void space # and not directly
the volume fraction ¢ (27, 30). Because our planted config-
uration is essentially a Poisson process of overlapping spheres,
however, we have
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Let 7, =e™% be the percolation threshold in the infinite system-
size limit. For a system of finite linear size L ~ V14, the average
effective percolation threshold 7, (L) and its variance A, (L) are
linearly related (31),

[7p(L) = 1p| ~ Ay (L), [S48]
which allows one to numerically determine 7,,. Because the poly-
dispersity associated with the cage distribution Py(4) varies with
density ¢, we cannot, however, directly use this relation. At each
¢, we instead modify the rescaling rule of Eq. S42 by adding a
factor K(¢p,L),

o-2(0-2\/4)K(o,L), [S49]
and use a binary search to find the percolation threshold K, (¢, L)
for each configuration. We then calculate K (¢, L) and AK, (¢, L)
over 1,000 independent realizations and use a similar relation

|I?p ((/)7L) _KP ((/7)| ~ AKP(¢7L)7 [SSO]
to determine K;,(¢) (Fig. S7C). We finally compute ¢, such that
Ky (¢,) = 1. Our system is thus percolated at ¢,,, without the extra
rescaling factor K (¢) (Fig. S7C).

To check the universality of the percolation transition, we
examine the scaling of the mean cluster size Ve, where Vi is
the total volume of the cluster of cages connected to the
planted central cage. According to percolation theory, Vyet
diverges at the percolation threshold as a power law with ex-
ponent y,:

Vnee ~ [() =, |- [S51]
Fig. S7D shows that our results are in agreement with y,=1.8
(31) given by lattice percolation, in support of the two problems
sharing a same universality class. Based on the above discussion,
we summarize the procedure for determining ¢,

Procedure—e,, determination.

i) For a given density ¢, obtain the distribution Pr(4) from the
cavity method.

i) Plant a configuration with linear system size L such that the
central particle is compatible with all neighbors [this re-
quirement is the same as for the cavity method (SI Text,
section IL.A.2)].

iii) Rescale the particle sizes following Eq. S49.

iv) Find the percolation threshold K,(¢,L) for the configura-
tion, using a binary search. To determine if the void space is
percolated:

e Map the d-dimensional configuration of rescaled poly-
disperse spheres to a (d + 1)-dimensional configuration
of monodisperse spheres.

e Calculate the Voronoi tesselation of the (d+ 1)-dimen-
sional configuration.

e Map back the (d + 1)-dimensional Voronoi tesselation to
the d-dimensional radical Voronoi tesselation.

e From the radical Voronoi tesselation, construct a network.

e Determine whether the network percolates.

v) Repeat steps i-iv to get Ky(p,L) and AK(p,L).

vi) Vary L and repeat step v to get K, (¢, L) and AK,(p,L) at
different L, and use the finite scaling Eq. S50 to obtain K, (¢).

vii) Vary ¢ and repeat step vi to get K(¢) at different ¢, and
find ¢p such at Kj(¢,)=1.
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lll. Hopping

In this section, we detail how we detect hopping events in nu-
merical simulations and describe the hopping dynamics of the MK
model at a phenomenological level. Theoretical investigations are
left for future study.

A. Detecting Hopping. We follow the algorithm of refs. 32 and 33 to
detect hopping events in both the MD simulations and the nu-
merical evaluation of the cavity equations. Below we briefly sum-
marize the procedure.

Procedure—detection of hopping.

i) Run simulations and save particle trajectories.
ii) Determine the cage size A; of each particle as discussed in ST
Text, section I.C.1. (We relax the assumption of refs. 32 and
33 that all cages have the same size.)
iii) Split each single-particle trajectory X (0 <t <t ) in two sub-
sets X1(0<t <t*) and X,(f* <t <tior) and measure the
mean square distance between the two subtrajectories

1/2
o) =& | (@ne®), () | s

where d;(t;) is the distance between the point at time # and
the center of mass of the subset X; (j,k=1,2), and &(t.) =

VIt [tor (1 — 1% /tior) is @ normalization factor. Find the time

fmax Such that 5(¢; ) is maximum.

iv) For particle i, if &(f},,,) > A;, hopping is detected, and the
process is repeated recursively for each subtrajectory until
6i(thax) <A in each subtrajectory.
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Following this procedure, we save a sequence of hopping times.
Note that in this study we are interested only in the time of the
first hopping, which is equivalent to the time during which the
particle is trapped in a cage before escaping. Because facilitation
is reduced in the MK model, especially at high ¢, we do not
specifically distinguish between the first and the subsequent
hopping events. The algorithm generally works well at densities
@ > @q, as shown in Fig. S8. Close to ¢4, however, hopping is
mixed with other relaxation processes, and cages are not clearly
defined. Detecting hopping indeed then becomes more sensitive
to the specific cutoff thresholds.

B. Hopping Dynamics. Empirically, we find that the above detected
hopping time ¢ follows a power-law distribution (Fig. 3 of the
main text)

pu(t) ~t7#, [S53]

with exponent y<1. We can write its cumulative distribution

function as
Gu(t) =~ o
h - ™ 5

where 7;, is the characteristic hopping timescale, representing
the time needed for all particles to hop, Gy (zy) =1. As shown
in Fig. 3 of the main text, both x4 and 7, depend on ¢. In partic-
ular, 7j, is roughly an exponential function of ¢,

[S54]

T ~ e, [S55]
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Fig. S1. (A) lllustration of the MK model. (Left) Particles in the original space. (Right) Particles in the shifted space with respect to particle i (red). Although
neighbors cannot overlap with particle i, they are allowed to overlap with each other because of the random shifts. (B) Comparing hopping in the HS and the
MK models. (Left) In HS, removal (hopping) of a neighbor (blue) creates an open channel for the caged particle (red) to hop. (Right) In MK, removing
a neighbor is much less likely to open a channel because the other neighbors are allowed to overlap.
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Fig. S2. Comparison between the reduced pressure p of planted states (red circles) and the liquid EOS Eq. 3 (black solid line) in d=3. The regime above
@q =1.776 is numerically inaccessible from conventional slow quenching procedures [see, for example, the green line obtained from the Lubachevsky-Stillinger
algorithm with a growth rate 7 =3x 1075 (5)], because the system starts to deviate from the liquid EOS around ¢g. (Inset) Planting at ¢ = 1.78 gives the correct
equilibrium pressure (red line) from t=0.
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Fig. S3. (A and B) Rescaled plots of (A) the MSD and (B) the typical displacement rtzyp(t) in d=3. From right to left, ¢ =0.40, 0.60, 1.00, 1.30, 1.40, 1.50,
1.60, 1.65, 1.70, 1.72, 1.74, 1.76, 1.78, 1.80, 1.82, and 1.84, with z, normalized such that 7, ~7p at psz. Note that the rightmost line (red), at @onet, does
not exhibit any plateau regime. (C) Velocity autocorrelation function d(t) at gz in d =2-6. By definition, d(zo) = 1/e (dashed line). (D) Minimum value of the
non-Fickian coefficient v, in d=3. At high densities the v, decreases linearly with ¢ (solid line), and at low densities v, = 1 (dashed line). The crossover
occurs around @oneet = 0.40(5).
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Fig. S4. Evolution of mean square displacement A under iteration of the cavity reconstruction, at (solid lines, from bottom to top) ¢=2.50, 2.20, 1.95,
1.80, 1.75, 1.70, and 1.60 in d=3. The solution becomes completely unstable above Ay=0.267 (dotted black line), as predicted by the replica method. If
hopping is not removed, the solution diverges quickly when ¢ approaches ¢q4. See, for instance, the unfiltered results for ¢ =1.95 (pink dashed line).
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Fig. S5. (A) The d =3 mean square displacement A(p) obtained from the replica method (black line), cavity reconstruction (blue squares), and MD simulations
(red crosses). The replica result for ¢4 corresponds to the point where the theoretical replica line has a square-root singularity. (B) The theoretical results are

consistent with the scaling form in Eq. $S33, but deviations are observed in the MD data close to ¢4, due to the ambiguity in determining cage sizes when
hopping is significant.
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Fig. S6. Testing MCT scalings for the MK model in d =6. (A and B) Below ¢4, the MD data for ¢ =0.30, 0.35, 0.38, 0.40, 0.41, 0.42, 0.43, 0.435, and 0.44 are
fitted to Eq. S34 (red lines) for (A) the early s relaxation, and (B) the late j relaxation together with diffusion, using fitting parameters B=0.073 and C=1.3. (C)
Above ¢4, the MD data ¢=0.45, 0.455, 0.46, and 0.47 are compared with the early g-relaxation scaling in Eq. $39 with the same value of B. A good
agreement is found for the entire time regime when ¢ < ggeg (black solid lines). When ¢ > ¢z (green dashed lines), we observe a good agreement only for the
early p-relaxation regime, which suggests that at later times hopping mixes with the MCT dynamics.
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Fig. S7. Percolation analysis. (A) Mapping the glass transition problem to a void percolation transition according to the rescaling law ¢ — 26 (from Left to
Center) and according to 6 — 2(c — 2, /A;) (from Left to Right). In the latter case, additional hopping paths may be found. (B) Calculating the radical Voronoi cell
P; (blue triangle) of sphere i in dimension d (d=2 in this example). The problem is mapped onto a Voronoi tesselation in dimension d + 1, where the tet-
rahedron is the Voronoi cell of r; in the mapped d + 1 configuration. (C) Determining ¢, in d = 3. (Left) Estimation of the percolation threshold K(¢) from the
finite-size analysis of Eq. S50. (Right) Determining the percolation density ¢, =2.4 from K, (¢,) = 1. The black line is an exponential fit of the data points. (D)
Scaling of the mean cluster volume is consistent with Eq. S51, using the exponent y, = 1.8 given by standard lattice percolation.
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Fig. S8. An example of hopping detection in d =2 at ¢ =2.40. (A) The particle trajectory clearly reveals two well-formed cages. (B) The hopping between cages
is visualized in the time series, with the two detected hopping times (dotted lines) at t=3,948.0 and t=7,863.6.
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Table S1. Numerical values of characteristic densities and MCT exponents for the MK and the

HS models

d Ponset PSErR Pq @d ®o 14 7 a b A

MK
2 0.50(5) 2.0(1) 2.398 2.60(1) 3.2(1) 459(4) 5.77(4) 0.19 0.26 0.92
3 0.40(5) 1.60(5) 1.776 1.93(1) 2.15(5) 3.27(7) 4.95(4) 0.25 0.40 0.85
4 0.30(5) 1.10(5) 1.184 1.276(2) 1.40(2) 2.9(1) 450(7) 0.28 0.46 0.80
5 0.20(5) 0.70(2) 0.741 0.783(1) 0.865(5) 2.67(8) 4.04(6) 0.29 0.52 0.78
6 0.10(5) 0.42(1) 0.445 0.466(1) 0.510(5) 2.65(8) 3.75(4) 0.30 0.53 0.76

HS
3 0.46(2) 0.555(5) 0.5770(5) 0.5885(5) 0.603(1) 1.72(3) 2.8(1) 040 1.05 047
4 0.293(6) 0.389(6) 0.4036(2) 0.4069(1) 0.417(1) 1.92(3) 2.26(4) 0.37 0.86 0.57
5 0.19(2) 0.260(5) 0.2683(1) 0.2699(1) 0.277(1) 1.95(3) 2.23(6) 0.37 0.84 0.58
6 0.11(1) 0.168(4) 0.1723(1) 0.1731(1) 0.178(1) 2.003) 2.22(6) 0.36 0.80 0.60
7 0.065(5) 0.106(2) 0.1076(1) 0.1081(1) 0.112(1) 2.0(1) 2.23(7) 036 0.80 0.60
8 0.040(2) — 0.06585(5) 0.06585(5) 0.0685(5) 2.15(5) 2.15(5) 0.34 0.71 0.65

Data for the MK model in d =2-6 and for the HS model in d =3-8. Theoretical results are reported for ¢4 of
the MK model, but all of the other values are from simulations. In d =8 for the HS model, no SER violation is
detected in the dynamical regime that is computationally accessible.
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