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We propose a simple yet very predictive form, based on a Poisson’s equation, for the functional
dependence of the cost from the density of points in the Euclidean bipartite matching problem.
This leads, for quadratic costs, to the analytic prediction of the large N limit of the average cost
in dimension d = 1, 2 and of the subleading correction in higher dimension. A non-trivial scaling
exponent, γd = d−2

d
, which differs from the monopartite’s one, is found for the subleading correction.

We argue that the same scaling holds true for a generic cost exponent in dimension d > 2.

I. INTRODUCTION AND MAIN RESULTS

The matching problem is a combinatorial optimization problem that has drawn the attention of both the computer
science [1–5] and the statistical physics [6–9] communities for many decades. Even in its most general formulation,
the problem belongs to the P computational complexity class, and many famous algorithms have been developed to
solve it efficiently [1, 2].
In this paper we focus on a restricted version of the problem, the complete bipartite matching problem, also known

as the assignment problem, that, by itself, has a long standing tradition among the scholars [3, 6, 10]: in this problem
we have two sets of the same cardinality N , let us call them R and B, and we want to find a one-to-one correspondence
between the elements of R and the elements of B in such a way that all the elements are paired and a certain global
function of this matching (called the cost function) is minimized. An instance of the assignment problem is a N ×N
matrix w: each element wij gives the partial cost of the assignment of the element i ∈ B to the element j ∈ R. From
a combinatorial point of view, an assignment is a permutation π ∈ SN , where SN is the set of permutations of N
elements. Its cost is defined by

EN [π;w] =
1

N

N
∑

i=1

wiπ(i). (1)

The optimization problem consists in finding the optimal assignment π∗, i.e., the assignment π∗ that satisfies the
property EN [π∗, w] = minπ∈SN

EN [π;w].
Some interesting questions arise when random instances of the problem are considered, that is, when the elements of

the cost matrix w are chosen accordingly to a certain probability law. We will discuss the properties of the system for
different choices of the disorder, i.e., of the distribution of w. Let us consider the average optimal cost EN = EN [π∗;w],
where • denotes the expectation over the instances w of the problem. If we choose the problem ensemble such that
the matrix elements wij are i.i.d. random variables, we obtain the so-called random assignment problem. This version
of the problem was largely investigated in a set of papers in which both the distribution of the optimal weights in
the large N limit [6, 11] and the finite sizes corrections [9] were derived using different approaches. In this context,
the celebrated replica approach, directly borrowed from the theory of spin glasses and disordered systems, proved to
be an excellent tool to investigate the properties of these random optimization problems, and led to the celebrated

formula limN→∞ EN = π2

6 under certain assumptions over the distribution of wij [6].
A much more difficult problem, from an analytical point of view, arises when the elements of the cost matrix w are

correlated. This is indeed the case of the Euclidean assignment problem, also known as Euclidean bipartite matching
problem (Ebmp). The Ebmp is an assignment problem in which a set of N “blue” points B = {bi}Ni=1 and a set of N
“red” points R = {ri}Ni=1 are given on the hypercube [0, 1]d. Each point is supposed to be generated independently
and uniformly at random in the hypercube. Periodic boundary conditions are imposed (in other words, to avoid
scaling corrections due to border effects, we consider the sets of points on the torus T

d ≡ R
d/Zd). The cost of

the matching between two points is then given by a function of their distance on the torus. We will generalize the
Euclidean flat distance on the torus to a family of functions characterized by a cost exponent p, assuming that

wij = ‖bi − rj‖p. (2)
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Due to the underlying Euclidean structure, the elements of w present very strong correlations. We shall denote with

E
(p)
N (d) the average cost of the optimal assignment between N red points and N blue points on T

d with cost exponent
p, that is

E
(p)
N (d) ≡ E

(p)
N [π∗; {ri,bi}], (3)

where the average is intended over the positions of the points and π∗ is the optimal permutation. In the following we
will sometimes drop the dependence on N and on d of the optimal cost, and write simply EN .
The scaling behaviour of the leading order of the optimal cost is well known for p > 1 and all values of d and has

been confirmed also by the investigations conducted by means of statistical physics methods. In fact, from a simple
heuristic argument [12], we expect that, given a red point, the nearest blue points can be found approximately in a

volume of order O
(

1
N

)

around it: their distances from the red point is, for this reason, of order N− 1
d . Supposing

that each red point is matched to one of its nearest blue points, the expected total cost scales as EN = O
(

N−p
d

)

for large N . It turns out that this asymptotic estimation is correct only for d ≥ 3 as it can be rigorously proved
[13]. In a fundamental paper on this subject, published in 1984, Ajtai et al. [14] proved that for d = 2 a logarithmic

correction appears, EN = O
(

(

lnN
N

)

p
2

)

. In dimension d = 1 instead, the divergence from the expected result is even

greater, in fact it is informally known to the literature [14, 21] (even if to our knowledge nowhere formally stated),

that EN = O
(

N−p
2

)

in this case. We can resume the state of the art of knowledge regarding the asymptotic behaviour
of the average optimal cost in the Ebmp, with the following formula:

β
(p)
N (d) ≡ E

(p)
N (d)

N−p
d

=











O(N
p
2 ) d = 1,

O
(

(logN)
p
2

)

d = 2,

e
(p)
d +O(N−γd) d > 2.

(4)

The determination of the exponents γd is one of the contributions of the present paper and it will be discussed in the

following. The coefficients e
(p)
d are not known to the literature and could not be derived using our approach either,

even though we give accurate numerical estimates in Table II. The rescaled average optimal cost, β
(p)
N (d), is what a

physicist would call the intensive energy, and will be used in the rest of the paper. As with EN , we will sometimes
drop the p and d dependence from it and write simply βN .
The scenario depicted in Eq. (4) has to be compared with the one arising in the Euclidean monopartite matching

problem (Emmp). Mézard and Parisi [12] studied analytically this problem considering the correlations among the
costs as perturbations around the case with random independent entries wij . In the Emmp there is a unique set of 2N
points to be matched among themselves. It has been proven [15, 16] that, in the Emmp, the rescaled average optimal

cost β
(p)
N (d) has a finite limit and is a self-averaging quantity in every dimension d. The odd behaviour noticed in the

bipartite case in low dimensions is due to the presence of differences, in small regions of space, between the number
of red and blue points, that imply the presence of “long distance” pairings and the failure of arguments based on
subadditivity [17]. Obviously, in the monoportite cases such problems do not exist, since a partial matching between
the points in an arbitrary subregion of [0, 1]d leaves only one point at most unpaired.
Moreover numeric and analytic arguments [17] show that in the Emmp the first subleading correction to the large

N limit of βN is of order O(N−1) in any dimension. This assumptions though was also been improperly used in the

Ebmp to numerically extrapolate the value e
(p)
d = limN→∞ β

(p)
N (d) for d > 2 in the case of flat distances [17] (i.e.

p = 1). This led to some inaccurate estimations of e
(1)
d that we address in Table II. In fact in Section III we give

numerical evidence that the appropriate value for the exponent γd of the subleading correction to βN in dimension
d > 2, as defined in Eq. (4), is

γd =
d− 2

d
, (5)

for any value of p. Notice that in the mean-field limit d → ∞ one recovers the subleading scaling O(N−1) of the
random assignment problem [7, 9].
The main focus of this work is the Ebmp with quadratic costs, i.e. the case p = 2 in Eq. (2). In Section II, inspired by

some considerations on the continuum equivalent of the matching problem, the so called Monge–Kantorovič problem,
we present a powerful ansatz, Eq. (15), for the asymptotic dependence of the optimal cost from the realization of the
disorder. After a careful treatment of the diverging quantities, through an appropriate renormalization procedure, we
obtain a whole new set of analytic predictions for βN . In fact we recover the whole scenario given in Eq. (4) for p = 2,
deriving the proposed expression Eq. (5) for γd as well. Moreover we refine the classification given in Eq. (4), with
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β
(2)
N (d) ∼











1
6N + e

(2)
1 d = 1,

1
2π lnN + e

(2)
2 d = 2,

e
(2)
d + ζd(1)

2π2 N−γd d > 2,

(6)

where ζd(x) is the Epstein zeta function. Here and in the following the symbol ∼ means that the term on the l.h.s. is
asymptotically equal to the r.h.s. except for some additional term decaying faster than each term in the r.h.s. (e.g.

β
(p)
N (1) = 1

6N + e
(2)
1 + o(1)). While the coefficients e

(2)
d have to be determined numerically, we managed to obtain

analytically the coefficients of the leading order expansion of βN for d = 1, 2 and of the subleading order for d > 2.
In the following Sections we give a detailed derivation of these results.

II. A SCALING HYPOTHESIS FOR THE QUADRATIC COST

A. The Monge–Kantorovič problem and Monge–Ampère Equation

Let us now briefly introduce the so called Monge–Kantorovič problem, as the conclusions of this paragraph have a
crucial role in the following discussion. Given two measure densities ρ1 : T

d → R
+ and ρ2 : T

d → R
+, Td = R

d/Zd

being the d-dimensional flat torus,
∫

Td ρ1(x) d
d x =

∫

Td ρ2(x) d
d x = 1, we define M as the set of measure preserving

maps µ : Td → T
d, i.e. the set of all maps µ such that:

ρ1(x) = ρ2(µ(x)) det Jµ(x) ∀x ∈ T
d , (7)

where Jµ(x) is the Jacobian matrix of µ, (Jµ(x))ij ≡
∂µi

∂xj
(x). Given a transportation cost function w : Td×T

d → R
+,

we introduce the cost functional

E[µ;w] =

∫

Td

w(x,µ(x))ρ1(x) d
d x. (8)

We ask for the map M ∈ M that minimizes the cost functional (8), i.e., such that E[M;w] = minµ∈M E[µ;w]. This
problem is known in Measure Theory as the Monge transport problem [18, 19] and a lot of results have been obtained
regarding the existence of the optimal map and its properties [20]. One of the most interesting cases is the quadratic
one, in which the cost is given by the convex function w(x,y) = ‖x− y‖2, and we have to minimize the functional

E
(2)[µ] =

∫

Td

‖x− µ(x)‖2ρ1(x) dd x. (9)

In the case of quadratic cost it can be proved that the optimal map can be expressed as the gradient of a certain
function ϕ [19], i.e. M(x) = gradϕ(x). Eq. (7) can be than rewritten in terms of ϕ, obtaining the so called Monge–

Ampère equation

ρ1(x) = ρ2(gradϕ(x)) detHessϕ(x), (10)

where (Hessϕ(x))ij =
∂2ϕ(x)
∂xi∂xj

is the Hessian matrix of ϕ.

Suppose now that ρ1(x) = 1 + δρ1(x) and ρ2(x) = 1 + δρ2(x) , being |δρ1(x)| ≪ 1 and |δρ2(x)| ≪ 1 ∀x ∈ T
d. We

expect that, under these hypothesis, we can write M(x) = x + m(x) with ‖m(x)‖ ≪ 1 ∀x ∈ T
d: in the first order

approximation, det JM(x) ≈ 1 + divm(x), so Eq. (7) becomes:

divm(x) = ρ1(x)− ρ2(x) ≡ δρ(x). (11)

In particular, if w(x,y) has the form (9) we can introduce m(x) = gradφ(x), obtaining the simple Poisson equation

∆φ = δρ. (12)

Denoting by δρ̂n ≡
∫

Td δρ(x) e
−2πin·x dd x, in this case the total cost of the transport is given at the first order by

E
(2)[M] ≈

∫

Td

[gradφ(x)]2 dd x =
∑

n∈Zd\{0}

|δρ̂n|2

4π2‖n‖2
. (13)

Although last equation has been derived under assumptions difficult to justify in the discrete and random version of
the Monge–Kantorovič problem, that is in the Ebmp, we will see how Eq. (13) retains its validity also in that case.
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B. The scaling ansatz

Inspired by the previous considerations, we made an ansatz about the functional dependence of the optimal cost of
the Euclidean bipartite matching problem with quadratic cost from the density of the two sets of points. The ansatz
is simple, yet it is surprisingly predictive.

We denote with ρB(x) ≡ 1
N

∑N
i=1 δ (x− bi) ≡ ρ1(x) and with ρR(x) ≡ 1

N

∑N
i=1 δ (x− ri) ≡ ρ2(x) the random

densities in [0, 1]d of the N B-points and R-points respectively. We suppose that periodic boundary conditions are
imposed, so we work on the torus T

d, as explained in the introduction. Let us call δρ(x) ≡ ρB(x) − ρR(x) the
difference between the two densities and

δρ̂n ≡ 1

N

N
∑

i=1

(

e−2πin·bi − e−2πin·ri) n ∈ Z
d, (14)

its Fourier modes. Following the hint given by the continuous problem, Eq. (13), we introduce the following functional

EN [δρ̂] ≡
∑

n∈Zd\{0}

|δρ̂n|2

4π2‖n‖2
. (15)

Our hypothesis is that the functional EN [δρ̂] at large N captures the leading terms of the exact optimal cost

E
(2)
N [π∗; {ri,bi}], i.e. asymptotically E

(2)
N [π∗; {ri,bi}] ∼ EN [δρ̂], in the notation of Section I. Note that we are

using only (12) to evaluate the scaling of the optimal cost, without any reference to the optimality conditions it-
self. However, this is sufficient to reproduce the correct average behaviour: in fact, in the limit of validity of our
linearisation of the Monge–Ampère equation, the solution of (12) on the torus is unique and therefore determines

automatically the optimal map. It can be shown by direct calculation that |δρ̂n|2 = 2
N

for each n 6= 0. Therefore we
have

β
(2)
N (d) ∼ N

2
d EN [δρ̂] =

∑

n∈Zd\{0}

N
2−d
d

2π2‖n‖2
. (16)

For d ≥ 2 the sum in the previous relation is divergent.However, by means of a proper regularisation of the sum,
we can still extract useful informations on the scaling of βN . For d = 2 Eq. (16) provides, after the regularization
procedure, the leading scaling behaviour with the correct prefactor, whilst for d > 2 the procedure gives the leading

scaling and the prefactor of the subleading behaviour. Sadly, in no case for d > 2 the coefficient, which we name e
(2)
d ,

of the leading term in the βN expansion can be computed using our formalism.

1. Case d = 1

0 0.005 0.01 0.015 0.02 0.025 0.03

0.162

0.164

0.166

N−1

1 N
β
N

Simulations for d = 1 and p = 2

Numerical data

Fit by f
(2)
1 (N)

0 0.01 0.02 0.03

−0.17

−0.165

−0.16

−0.155

N−1

β
N

−
N 6

d = 1

FIG. 1. Numerical simulations for d = 1. We fitted our numerical data for 1
N
β
(2)
N (1) using the three parameters fit function

f
(2)
1 (N) = α

(2)
1 +

e
(2)
1
N

+ c

N2 .
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Let us consider the Ebmp in dimension d = 1. In low dimensions, that is for d = 1, 2, the optimal cost is no longer
a subadditive quantity and the fluctuations of the density of points are dominant [17]. Moreover for d = 1 the optimal
cost is also not self-averaging [17], while for d = 2 this is still an open question.
In one dimension the structure of the optimal matching is known [17, 21]: for any p > 1 and using open boundary

conditions, the optimal matching is the one associating the k-th blue point to the k-th red point, ordering the points

from left to right along the line. This consideration leads to the prediction β
(2)
N (1) = O(N

p
2 ) for the leading behaviour

with generic cost exponent p. For closed periodic boundary conditions, the case we are considering, a similar scenario
holds: enumerating the red points and the blue points clockwise or anticlockwise, the optimal matching is given by a
cyclic permutation, with offset to be determined by the optimality condition.
The one-dimensional case constitutes the simplest application of our formula, Eq. (16), since this is the only where

the sum is not divergent. We obtain straightforwardly

β
(2)
N (1) ∼ N

π2

+∞
∑

n=1

1

n2
=

N

6
. (17)

This is indeed the exact asymptotic behaviour of βN [21], and it is a first validation of our very simple ansatz, Eq. (15):
we were able to catch both the anomalous scaling O (N) and its correct prefactor.
We checked the validity of Eq. (17) averaging the optimal cost of the Ebmp given by an exact algorithm [22] for

system sizes up to N = 2048. We found the numerical data for 1
N
βN to be well approximated by a three parameters

fitting function of the form f
(2)
1 (N) = α

(2)
1 +

e
(2)
1

N
+ c

N2 , where an additional correction of higher order is included. From

a least square fit we obtained the coefficient α
(2)
1 = 0.166668(3), in perfect agreement with our analytical prediction

(see Figure 1).

Once verified the validity of Eq. (17), we used it to extrapolate the subleading coefficient e
(2)
1 , fixing α

(2)
1 = 1

6 and

using the fitting function f
(2)
1 (N) with two free parameters (see Figure 1 and Table I).

2. Case d = 2

10−5 10−4 10−3 10−2 10−1 100
0

0.5

1

1.5

N−1

β
N

Simulations for d = 2 and p = 2

Numerical data

Fit by f
(2)
2 (N)

10−4 10−3 10−2 10−1

0.128

0.13

0.132

0.134

N−1

β
N

−
ln

N
2
π

d = 2

FIG. 2. Numerical simulations for d = 2. We fitted our numerical data for β
(2)
N (2) using the function f

(2)
2 (N) = a lnN + e

(2)
2 +

b
lnN

. The 1
lnN

correction was suggested by the right hand plot.

As already stated in the introduction, in dimension two we have that βN = O (lnN). In this paragraph we will
show how to derive this scaling from our ansatz, Eq. (16), and we will also obtain the corresponding prefactor. The
sum appearing in Eq. (16) diverges in dimension two and above, therefore we have to find a suitable regularization
to give meaning to the expression. The regularization procedure presents some peculiarities at d = 2 from which the
anomalous scaling arises.
We choose a regularizing smooth function F (x) such that F (0) = 1 and F (x) → 0 for x → +∞. The function has

to decrease rapidly enough to make the series
∑

n∈Z2\{0}
1

‖n‖2F
(

2π‖n‖
2πℓ−1

)

converge: here we introduced a cut-off in

momentum space, 2πℓ−1, where ℓ ≡ 1√
N

is the characteristic length for the system, being ℓ of the order of the average

distance between a blue point and the nearest red point. Clearly 2πℓ−1 → +∞ for N → +∞. Finally, let us denote
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d = 1 d = 2 d = 3 d = 4 d = 5
1

2π2 ζd(1)
1
6

− −0.45157 . . . −0.28091 . . . −0.21423 . . .

α
(2)
d 0.166668(3) − −0.4489(16) −0.282(4) −0.2139(13)

e
(2)
d −0.1645(13) 0.1332(5) 0.66251(2) 0.571284(6) 0.584786(2)

TABLE I. Results of numerical simulations for p = 2. In the first line the analytical prediction for α
(2)
d for d 6= 2 is presented.

by Nd(r) =
∣

∣{x ∈ Z
d \ {0}|‖x‖ < r}

∣

∣, the number of lattice points (excluded the origin) included in a ball of radius
r centred in the origin in dimension d. Then, for arbitrary a ∈ (0, 1), we can write

∑

n∈Z2\{0}

1

‖n‖2
F

( ‖n‖√
N

)

= lim
R→∞

∫ R

a

1

r2
F

(

r√
N

)[

∂N2(r)

∂r
− 2πr

]

d r + 2π

∫ ∞

a

F

(

r√
N

)

d r

r

≈ lim
R→∞

∫ R

a

1

r2

[

∂N2(r)

∂r
− 2πr

]

d r + 2π

∫ ∞

a
√

N

F (r)

r
d r,

(18)

where we have isolated in the last term the singular part of the series. The first integral in the right hand side is

well behaved: indeed,
∫ R

a
1
r2

[

∂N2(r)
∂r

− 2πr
]

d r = N2(r)−πr2

r2

∣

∣

∣

R

a
+
∫ R

a

N2(r)−πr2

2r3 . Both the first and the second term are

finite in the R → ∞ limit due to the fact that [23] N2(r) − πr2 ≤ 1 + 2
√
2πr. Therefore we have

∑

n∈Z2\{0}

1

‖n‖2
F

( ‖n‖√
N

)

≈
∫ +∞

a

1

2r3
[

N2(r)− πr2
]

d r + 2π log

√
N

a
+ 2π

∫ ∞

1

F (r)

r
d r. (19)

Eq. (16) for the case d = 2 can then be rewritten as

β
(2)
N (2) ∼ lnN

2π
+ e

(2)
2 . (20)

where e
(2)
2 is some constant. To our knowledge the result limN→∞

β
(2)
N

(2)

lnN
= 1

2π is new to the literature.

The validity of Eq. (20) has been confirmed by numerical simulation with system sizes up to N = 4 · 104. We found

a three parameter function of the form f
(2)
2 (N) = a lnN + e

(2)
2 + b

lnN
to be the best suited to fit the data for βN .

From a least square fit we obtain the coefficient 2πa = 1.0004(6), in perfect agreement with our analytical prediction

(see Figure 2). Once verified the validity of Eq. (20), we used it to extrapolate the subleading coefficient e
(2)
2 , fixing

a = 1
2π and fitting the other two parameters (see Figure 1 and Table I).

3. Case d > 2

In dimensions greater than two the average optimal cost has the leading scaling E
(2)
N (d) = O(N− 2

d ) that one could
expect from very simple arguments [6], as already stated in the introduction. This is in fact the scaling obtained if

each point is matched to one of its nearest points of different type, being their distance of order O(N− 1
d ). Moreover it

has been proven, using standard sub-additivity arguments, that βN is a self-averaging quantity and has a finite limit
for d > 2[17]. We will show that our ansatz Eq. (15) accounts for the subleading corrections to βN .
For d ≥ 2 the series

∑

n∈Zd\{0}
1

‖n‖2 is divergent. As in the previous paragraph, we use a sufficiently rapidly

decaying function F (x), with limx→∞ F (x) = 0 and limx→0 F (x) = 1, to regularize it. The characteristic length of
the system is given by ℓ = 1

d
√
N
. Denoting as before by Nd(r) the number of lattice points inside a sphere centred in

the origin and of radius r, with the exclusion of the origin itself, we can write

∑

n∈Zd\{0}

1

‖n‖2
F

( ‖n‖
d
√
N

)

=

∫ +∞

0

1

r2
F

(

r
d
√
N

)[

∂Nd(r)

∂r
− Sd r

d−1

]

d r +N
d−2
d Sd

∫ ∞

0

F (r) rd−3 d r

≈
∫ +∞

0

1

r2

[

∂Nd(r)

∂r
− Sd r

d−1

]

d r +N
d−2
d Sd

∫ ∞

0

F (r) rd−3 d r,

(21)
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0 0.03 0.05 0.07 0.1 0.12

0.62

0.64

0.66

N−γ3

β
N

Simulations for d = 3 and p = 2

Numerical data

Fit by f
(2)
3 (N)

0 1 · 10−2 2 · 10−2 3 · 10−2

0.564

0.566

0.568

0.57

0.572

N−γ4

β
N

Simulations for d = 4 and p = 2

Numerical data

Fit by f
(2)
4 (N)

0 5 · 10−3 1 · 10−2 1.5 · 10−2

0.582

0.583

0.584

0.585

N−γ5

β
N

Simulations for d = 5 and p = 2

Numerical data

Fit by f
(2)
5 (N)

FIG. 3. Numerical simulations for d > 2. We fitted our numerical data for β
(2)
N (d) using the function f

(2)
d (N) = e

(2)
d +

α
(2)
d N−γd + c

N
. The expected value for α

(2)
d was 1

2π2 ζd(1).

where Sd = 2π
d
2

Γ( d
2 )

is the unit sphere surface in d dimensions. The last term in Eq. (21) gives the leading order

contribution to βN , but in our formalism it cannot be explicitly computed since it depends on the choice of the
regularizing function F (x). We name the other integral on the right hand side as

Σd ≡
∫ +∞

0

1

r2

[

∂Nd(r)

∂r
− Sd r

d−1

]

d r. (22)

Σd gives the first subleading correction to the leading scaling of βN . Moreover it can be shown (see appendix A) that
Σd = ζd(1), the analytic continuation to the point s = 1 of the function

ζd(s) ≡
∑

n∈Zd\{0}

1

‖n‖2s
for Re s >

d

2
. (23)

The previous function is a particular case of a more general class of zeta functions, called Epstein zeta functions.
Therefore we are able to compute analytically the subleading behaviour of βN for d > 2,

β
(2)
N (d) ∼ e

(2)
d +

ζd(1)

2π2Nγd
, γd ≡ d− 2

d
. (24)

The expression for ζd(1) is given by Eq. (A6), while the intensive costs e
(2)
d have to be determined numerically. Note

that for d → +∞ we recover the correct meanfield scaling behaviour already analysed by Houdayer et al. [17] for the
random assignment problem, i.e. γd → 1. However, for finite d, the scaling behaviour can be very different from the
mean field one.
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p = 1 p = 3 p = 4

d = 3 d = 4 d = 5 d = 3 d = 4 d = 5 d = 3 d = 4 d = 5

α
(p)
d −0.233(2) −0.152(17) −0.127(16) −0.652(3) −0.36(1) −0.28(4) −0.863(3) −0.44(2) −0.34(1)

e
(p)
d 0.7472(2) 0.7181(2) 0.73905(5) 0.6313(2) 0.4804(1) 0.4830(1) 0.6286(2) 0.4183(2) 0.41043(4)

TABLE II. Results of the fit of numerical data for β
(p)
N (d) by a function of the form f

(p)
d (N) = e

(p)
d +

α
(p)
d

Nγd
+ c

N
.

We verified the validity of Eq. (24) with numerical simulation on systems with sizes up to N = 10648 in dimension
d = 3, N = 14641 in dimension d = 4 and N = 32768 in dimension d = 5. We used three parameter functions of the

form f
(2)
d (N) = e

(2)
d +

α
(2)
d

Nγd
+ c

N
to fit our data for β

(2)
N (d). The scaling exponents γd are readily confirmed to be the

right ones (see Figure 3) and the fitted coefficients α
(2)
d are in strong agreement with the analytical prediction ζd(1)

2π2

(Table I). Then we fixed the α
(2)
d = ζd(1)

2π2 in f
(2)
d (N) to extrapolate the extensive coefficients e

(2)
d , reported in Table I.

III. RESULTS FOR GENERIC p

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14 0.16 0.18

0.5

0.6

0.7

N−γ3

β
N

Simulations for d = 3

ν = 1
ν = 2
ν = 3
ν = 4

0 1 · 10−2 2 · 10−2 3 · 10−2 4 · 10−2

0.4

0.5

0.6

0.7

N−γ4

β
N

Simulations for d = 4

ν = 1
ν = 2
ν = 3
ν = 4

0 5 · 10−3 1 · 10−2 1.5 · 10−2

0.4

0.5

0.6

0.7

N−γ5

β
N

Simulations for d = 5

p = 1
p = 2
p = 3
p = 4

FIG. 4. Numerical simulations for d > 2. We fitted our numerical data for β
(p)
N (d) using the function f

(p)
d (N) = e

(p)
d +

α
(p)
d N−γd + c

N
. We plotted the results obtained for p = 1, 3, 4. Fit results are presented in Table II.

The asymptotic form we proposed for the average optimal costE
(2)
N (d) in the Ebmp with quadratic costs and periodic

boundary conditions, Eq. (15), could not be extended to cover the case of generic cost exponent p. Nonetheless, for
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p = 1 p = 2 p = 3 p = 4

A
(p)
3 from Eq. (26) 0.516(5) 1 1.44(1) 1.908(4)

A
(p)
3 from Eq. (27) 0.51(3) 0.99(2) 1.46(3) 1.96(2)

TABLE III. Values of A
(p)
d for d = 3, extrapolated from Eqs. (26) and (27) respectively, as explained in the main text. The error

in the second row are upscaled by a factor ten from those given by our fitting program (gnuplot), to assure the compatibility
with the case p = 2.

d > 2 and any p > 0, from our numerical simulations we observe that the asymptotic form for βN is given by

β
(p)
N (d) ∼ e

(p)
d +

α
(p)
d

Nγd
, γd ≡ d− 2

d
. (25)

The non-trivial scaling exponent γd differs from the mean-field exponent γ∞ = 1 of the random link matching
problem[9] and othen Eucliden monopartite matching[17]. The identification of the correct exponent γd is crucial to

the extrapolation of e
(p)
d from numerical data. Since in the literature a mean-field like scaling has been considered

[17], we report in Table II the values of e
(p)
d and α

(p)
d for different values of p. They were obtained fitting βN with

functions of the form f
(p)
d (N) = e

(p)
d +

α
(p)
d

Nγd
+ c

N
. In Figure 4 we plot β

(1)
N , β

(3)
N and β

(4)
N for d = 3, 4, 5, along with

the data already presented for p = 2 for comparison. The scaling exponent γd = d−2
d

is confirmed by our simulations.
Generalizing the case p = 2, we therefore conjecture that the optimal cost as a function of the difference of the density
of point δρ(x), for |δρ(x)| ≪ 1 and in dimension d > 2, can be approximated by

E(p)
N [δρ̂] ≡ A

(p)
d

∑

n∈Zd\{0}

|δρ̂n|2

4π2‖n‖2
. (26)

where A
(p)
d are unknown parameters. From last equation, the asymptotic form Eq. (25) for βN can be derived, but

at odds with the case p = 2 where A
(2)
d ≡ 1 for any d, the lack of knowledge of the value of the parameters A

(p)
d

forbids the analytic prediction of the subleading coefficients α
(p)
d . We also notice that Eq. (26) cannot be extended

to dimensions d = 1, 2, since it is incompatible with the scaling scenario depicted in Eq. (4).
The ansatz given in Eq. (15) for p = 2 has been a posteriori confirmed by the correct prediction of both the

exponents γd and the subleading coefficients α
(2)
d . On the other hand, for generic p, the ansatz (26) is only supported

by the fact that it gives the correct exponents γd, which is the reason itself why it was introduced. Therefore we
tried to verify the internal consistence of Eq. (26). In fact after some algebraic manipulations and averaging over the
disorder one can derive

A
(p)
d ∼ ‖n‖2πN2

2

(

E
(p)
N [π∗; {ri,bi}]− E

(p)
N

)

|δρ̂n|2. (27)

where we used the notation introduced in Eq. (3). We computed numerically the r.h.s of the previous equation for
d = 3 and sizes up to N = 10648. The computation is numerically quite heavy since the density fluctuation are small.
While the l.h.s. of equation (27) is independent of the mode n in the large N limit, we observed a finite size effect

that seemed to be best accounted for by the scaling form A
(p)
3 (n, N) ∼ A

(p)
3 + b 1

3√
N

+ c
(

‖n‖
3√
N

)2

. Using this three

parameters function to fit our whole set of data (‖n‖ < 10) at fixed p, we extrapolate the values of A
(p)
3 that we report

in Table III. In the same table we compare these extrapolations with the predictions steaming from Eq. (26), that

is A
(p)
d =

α
(p)
d

α
(2)
d

= α
(p)
d

2π
ζd(1)

, where the coefficients α
(p)
d where computed in Table II. The agreement between the two

different sets of values is quantitatively and qualitatively good, even though we cannot definitively affirm the validity
of Eq. (26) due to the complexity and imprecision of the procedure utilized to test it. A more sound verification would
be to manually excite one of the modes through the addition a position dependent shift of the form ǫn cos(2πn · x)
to each randomly generated point in one of the sets. One should then observe a linear response of the totat cost to
the variation of ǫ as predicted by Eq. (26).

IV. CONCLUSIONS AND PERSPECTIVES

In the present work we proposed a simple form for the asymptotic behaviour of the average optimal cost, E
(2)
N (d),

in the Euclidean bipartite matching problem with quadratic costs and periodic boundary conditions. This ansatz,
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Eq. (15), contains no free parameters and leads to a strong set of predictions in every dimension, resumed in Eq.

(6). The rescaled cost β
(2)
N (d) ≡ E

(2)
N

N
−

2
d

for low dimensions is a diverging quantity in the Ebmp, at odds with the

monopartite case. We were able to prove that limN→∞
β
(2)
N

(1)

N
= 1

6 and limN→∞
β
(2)
N

(2)

logN
= 1

2π for d = 1 and d = 2

respectively. Above the critical dimension of the system, d = 2, the rescaled cost β
(2)
N (d) has a finite limit which is

inaccessible to our formalism. We were able though to determine analytically both the subleading scaling, O(N−γd)

with γd = d−2
d

, and its prefactor ζd(1)
2π2 . All the above claims are overwhelmingly supported by numerical simulations.

Finally, we provided numerical evidences that, in dimension d > 2, the subleading scaling exponent γd we predicted
for the case of quadratic costs is the same for arbitrary cost exponent p. This led us to extend the ansatz proposed
for quadratic costs, Eq. (15), to the general form Eq. (25) for d > 2. We tested numerically the validity of Eq. (25),
obtaining good but not definitive results, therefore we proposed another numerical procedure that could give a firmer
validation to the theory.

Although our scaling ansatz proved itself to be very powerful, as discussed above, a deeper theoretical investigation
is required to derive analytically the limit of β(p)(d) at large N , not computable in our framework. Moreover, a
rigorous justification of our simple ansatz is desirable, and could be inspired by the considerations we made in Section
IIA on the Monge–Kantorovič problem.
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[15] J. Steele, Probability Theory and Combinatorial Optimization, CBMS-NSF Regional Conference Series in Applied Math-

ematics (Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104),
1997), ISBN 9781611970029, URL http://books.google.it/books?id=270ceANEV2sC.

[16] J. E. Yukich, Probability theory of classical Euclidean optimization problems (Springer Berlin, 1998).
[17] J. Houdayer, J. H. Boutet de Monvel, and O. C. Martin, The European Physical Journal B 6, 383 (1998), ISSN 1434-6028,

URL http://link.springer.com/10.1007/s100510050565.
[18] V. I. Bogachev and A. V. Kolesnikov, Russian Mathematical Surveys 67, 785 (2012), ISSN 0036-0279.
[19] L. C. Evans, Current developments in mathematics (1997), URL http://math.berkeley.edu/~evans/Monge-Kantorovich.survey.pdf.
[20] C. Villani, Optimal transport. Old and new. (Springer–Verlag, 2009).
[21] E. Boniolo, S. Caracciolo, and A. Sportiello (2012), unpublished.
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Appendix A: Evaluation of Σd

In this appendix we will show that, in dimension d > 2, the function

ζd(s) =
∑

n∈Zd\{0}

1

‖n‖2s
, (A1)

a particular Epstein zeta function defined for Re s > d
2 , analytically continued to the point s = 1, takes the value

of Σd defined in Eq. (22), i.e. ζd(1) = Σd. Then we will derive an easily computable representation of the analytic
continuation of ζd(s) which was already presented in the literature[14, 24].
Let us fix d > 2 and a > 0. Then, for Re s > d

2 , we can rewrite Eq. (A1) as

ζd(s) = lim
R→+∞





‖n‖≤R
∑

n∈Zd\{0}

1

‖n‖2s
− Sd

∫ R

a

rd−1

r2s
d r + Sd

∫ R

a

rd−1

r2s
d r





= lim
R→+∞





‖n‖≤R
∑

n∈Zd\{0}

1

‖n‖2s
− Sd

∫ R

a

rd−1

r2s
d r



 + Sd

ad−2s

2s− d
.

(A2)

Assuming that the limit in the last equation exists also for Re s < d
2 , we have isolated the singular term. The analytic

continuation of ζd(s) then reads

ζd(s) = lim
R→+∞





‖n‖≤R
∑

n∈Zd\{0}

1

‖n‖2s
− Sd

∫ R

0

rd−1

r2s
d r



 for Re s <
d

2
, (A3)

where to limit a → 0 has been taken. Note that, comparing the previous equation with Eq. (22), ζd(1) ≡ Σd. On the
other hand, for Re s > d

2

ζd(s) =
∑

n∈Zd\{0}

1

Γ(s)

∫ +∞

0

zs−1 e−‖n‖2z d z

=
πs

Γ(s)

∫ +∞

0

zs−1
(

Θd(z)− 1
)

d z,

(A4)

where Θ(z) is defined by Θ(z) ≡ ∑+∞
n=−∞ e−πn2z ≡ ϑ(0; iz), where ϑ(τ ; z) is the Jacobi theta function. Noticing that

for z ≪ 1 asymptotically we have Θ(z) ∼ 1√
z
, while Θ(z) ∼ 1 + 2 e−z for z ≫ 1, we can isolate the singular parts of

ζd(s) writing

ζd(s) =
πs

Γ(s)

[

2

2s− d
− 1

s
+

∫ +∞

1

zs−1
(

Θd(z)− 1
)

d z +

∫ 1

0

zs−1

(

Θd(z)− 1

z
d
2

)

d z

]

. (A5)

Last expression can be readily continued to the region Re s < d
2 . Using the property

√
tΘ(t) = Θ(t−1), we can write

Σd = ζd(1) = π

[

2

2− d
− 1 +

∫ +∞

1

(

1 + z
d
2−2

)

(

Θd(z)− 1
)

d z

]

. (A6)
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