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Using a formalism based on the spectral decomposition of the replicated transfer matrix for dis-
ordered Ising models, we obtain several results that apply both to isolated one-dimensional systems
and to locally tree-like graph and factor graph (p-spin) ensembles. We present exact analytical
expressions, which can be efficiently approximated numerically, for many types of correlation func-
tions and for the average free energies of open and closed finite chains. All the results achieved, with
the exception of those involving closed chains, are then rigorously derived without replicas, using a
probabilistic approach with the same flavour of cavity method.

I. INTRODUCTION

The investigation of one-dimensional disordered Ising systems has a relatively long tradition among the scholars1–3,
since they are analytically tractable and display a non-trivial phenomenology. Moreover some of their properties also
apply to diluted mean field models, where with high probability there is a unique finite path connecting any two spins
and where the leading finite-size correction to the free energy is given by short and isolated loops4.

A pure one-dimensional system can be easily analyzed with the transfer matrix formalism. The spectral properties
of this 2× 2 matrix completely characterize the model, since the partition function of an chain of length ` is simply
obtained from its `-th power. This operation becomes effortless once the transfer matrix is expressed as a linear
combination of orthonormal left and right eigenvectors.

The situation is much more complicated in disordered systems, where the (random) partition function is given by
the product of non-commuting random matrices5. This situation arises when random interactions or random magnetic
fields are present, as in spin glasses or random field Ising models (RFIM) respectively.

As long as the sources of disorder are independently distributed, one can express the integer moments of the
partition function through the power of the 2n × 2n transfer matrix of a system of n replicated spins. Then, as usual
with replica calculations, the analytic continuation to small values of n is performed to compute relevant physical
quantities. This approach was pioneered by Weigt and Monasson2. Taking advantage of the symmetry group of the
replicated transfer matrix (RTM) at integer n, they where able to associate the decay rate of different connected
correlation functions to different eigenvalues of the RTM. They also computed the free energy of an infinite chain,
rederiving a result earlier obtained by means of a recursion of a distributional equation1.

In recent years the spectral formalism of the RTM has been the subject of further investigations6 and has been
used to determine the DAT line in many mean field spin glasses7. Nevertheless its capabilities have not been pushed
to full extent: a manageable decomposition in terms of left and right eigenvectors and a in-depth analysis of the n ↓ 0
limit is lacking; little is known about the behaviour at finite length of the free energies and about the differences
between open and closed chains; a complete characterization of the connected correlation functions is lacking, and the
analysis of thermally disconnected functions, relevant to the RFIM transition, has not been taken in consideration
yet. In the present paper we address all these issues, giving exact analytical expressions valid at any finite length of
the aforementioned quantities.

Inspired by some recent observations linking the RTM formalism with a cavity approach8, we give an alternative
derivation of the expressions for the connected and disconnected correlation functions and for the free energy of open
chains, using a rigorous probabilistic analysis. This approach avoids the use of replicas and of uncontrolled analytic
continuations and relies on iterative distributional equations involving some physically sensible observables. The
integral operators arising with this method are the same we encountered in the RTM analysis, therefore closing the
bridge between the two formalism.

The paper is organized as follows: in Section II we define the model we are considering and expose the main results
of this paper; in Section III we develop all the spectral formalism of the RTM and we apply it in Section IV to the
computation of free energies and correlation functions. Most of the results obtained with the RTM are the rederived
with a purely probabilistic approach in Section V.
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Fig. 1: Pictorial representation of the matrix Tn (left), its powers T `n (center) and the matrix T̃
(`)
n (right).

II. DEFINITIONS AND MAIN RESULTS

In this paper we consider one-dimensional Ising spin system with i.i.d. random fields and couplings , e.g. an isolated
chain or a chain embedded in a locally tree-like graph, therefore described by the product of uncorrelated 2×2 random
transfer matrices Mi defined by

Mi(σi+1, σi) = eβJiσi+1σi+hiσi . (1)

The partition function of a closed chain of length ` is then a random variable given by

Z`,c = Tr
`−1∏
i=0

Mi. (2)

A powerful technique to compute the statistical properties of this kind of objects is the well known replica method9.
As we shall see, as long as the system stays in a replica symmetric phase, its statistical properties are encoded in the
(replica symmetric) replicated transfer matrix Tn, the 2n × 2n matrix defined by

Tn(σ, τ) = EJ,h eβJ
∑n
a=1 σ

aτa+βh
∑n
a=1 τ

a

. (3)

Here and in the following we denote with σ the vector (σ1, . . . , σn), with the n replicated spins σa taking values in
Z2 = {−1, 1}. A similar definition holds for τ . As usual in the replica method9 we shall work at integer value of n
and perform the analytic continuation for n ↓ 0 at the end of the computations. We shall assume in the following
that the field h is an arbitrary distributed external random field, if we are considering an isolated chain, or, if we are
considering a chain embedded in a locally tree-like graph, to be a random cavity field conditioned to act on a spin
that is already connected to two other spins (its neighbours on the chain). See Figure 1 for a representation of Tn
and its powers T `n.

A first spectral analysis of Tn was conducted by Weigt and Monasson2. Following their lead we take advantage of
the replica index permutation symmetry of Tn to choose an appropriate bases to express its right eigenvectors. There
are n + 1 non-equivalent irreducible representation of the permutation group, which can be glued together to form
the sectors D(q), q = 0, 1, . . . ,

⌊
n
2

⌋
, partitioning Z⊗n2 . In the following, with some abuse of notation, we will denote

with D(q) the set of eigenvalues of Tn with eigenvector in that sector. The eigenvectors of Tn in the sector D(q) can
be parametrized by functions gλq (u) that, in the limit n ↓ 0, satisfy the eigenvalue equation

λ gλq (u) = EJ,h
∫

dv gλq (v) δ (u− û(J, v + h))

(
1

β

∂û

∂v

)q
, (4)

where û(J, h) = 1
β atanh (tanh(βJ) tanh(βh)) is the cavity iteration rule.

In this paper we extend the analysis of the spectral properties of Tn to achieve a complete description of the
n ↓ 0 limit, derive exact expressions for correlation functions and free energies of chains. Since Tn is the product
of two non-singular symmetric matrices, it possess a complete orthonormal (in the left-right sense) basis of left
and right eigenvectors with real eigenvalue. The left eigenvector corresponding to a certain right ψR is simply
Eheβh

∑
a σ

a

ψR(σ) ≡ ρh(σ)ψR(σ). Therefore the spectral decomposition of Tn into the subspaces D(q) is given by

Tn(σ, τ) =

bn2 c∑
q=0

∑
λ∈D(q)

λ ρλq (σ)ρh(τ)ρλq (τ)
∑

a1<···<aq
b1<···<bq

Qa1...aq ;b1...bq σ
a1 . . . σaqτ b1 . . . τ bq . (5)

Here we have denoted with ρλq (τ) the replica symmetric part of the eigenvector in the sectorD(q) with eigenvalue λ.

The second sum is over all the eigenvalues of Tn in the sector D(q), given in the n ↓ 0 limit by the solutions of Eq.
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(4). The coefficients Qa1...aq ;b1...bq have simple algebraic expressions in each sector (see Eqs. (27) and (28)) and are
invariant under permutations of any of their two sets of indices. While a different left-right decomposition of Tn has
already been attempted6, an unfortunate choice in the parametrization of the eigenvectors in terms of function of two
variable led to an unmanageable formalism. Thanks to the spectral representation (5) we can easily take the powers
of Tn and contract the matrix with the quantities we want to average. In Section III we derive Eqs. (4) and (5), and
discuss the non-trivial aspects of the small n limit.

One of the applications of the spectral formalism is the computation of the average free energy of open and closed
chains, as exposed in Section IV A. Recently it has been shown4 that the first finite size correction to thermodynamic
free energy of systems on diluted graphs can be expressed as a linear combination of the free energies of closed and
open chains. It has also been argued4,10 that a perturbative expansion around the Bethe approximation towards
finite dimensional lattices, shall account for the presence of loops (closed chains) and will contain the free energies
and the correlation function of one-dimensional objects, motivating the importance of exact and easily approximable
expressions for their free energies.

Taking the trace of T `n and performing the n ↓ 0 limit one obtains the average free energy of a closed chain of size
`:

− βf c` = −β`f0 +
∑

λ∈D(1)

∆λ ` λ
`−1 +

∞∑
q=1

d̂q
∑

λ∈D(q)

λ` . (6)

The terms ∆λ, due to a correspondence between the eigenvalues of the sectors D(0) and D(1) at n = 0, are expressed

in Eq. (48). The coefficients d̂q are the analytic continuation of the degeneracies of the eigenvalues, and are given
in Eq. (41). We note that the correction to the intensive free energy f0 (expressed in Eq. (43)) is given by a linear
combination of exponential and ` times exponential terms. The decaying part of f c` is dominated by the largest
eigenvalue among the various sectors.

In the computation of the free energy of an open chain, we allow for the incoming fields at the extremities of the
chain to be distributed differently from the fields h acting on the internal spins, and denote them by h̃. This is in fact
what happens in general when considering an open chain embedded in a sparse graph. The expression we derived for
the average free energy of an open chain of length ` is

−βfo` =− `βf0 + Eh̃
∫

du P (u) 2 log cosh
(
β(u+ h̃)

)
− Eh

∫
dudv P (u)P (v) log cosh (β(u+ v + h))

+ log 2 +
∑

λ∈D(1)

a2
λ,0 λ

` ,
(7)

where P (u) is the distribution of cavity messages along the chain and the coefficients aλ,0 are related to the left

eigenvectors of the sector D(0) and given in Eq. (59).
Another achievement of this paper, obtained through the spectral decomposition of the RTM, is the expression of

the connected correlation functions of two spin at distance `, in a form that is both analytically exact and easy to
approximate numerically with high precision. In Section IV B we derive the formula

〈σ0σ`〉qc =
∑

λ∈D(k)

a2
λ,q λ

` , (8)

where aλ,k can be computed through the eigenfunction gλq using Eq. (64). We indicate with • the average over all
kinds of disorder in the model considered. For Ising model on sparse random graphs with mean residual degree z, the
susceptibility χq =

∑
i<j

1
NE〈σiσj〉qc diverges when the greatest eigenvalue of D(q) reaches the value 1/z. Therefore

the sectors D(1) and D(2) are the relevant ones to the ferromagnetic and the spin-glass transitions respectively (see
Figures 2 and 3).

The computation of the thermally disconnected correlation function, 〈σ0〉〈σ`〉 − 〈σ0〉 〈σ`〉, particularly relevant to
the RFIM11, requires a careful treatment of the analytic continuation to n = 0. The final expression we obtained,
Eq. (71), is not a linear combination of terms involving only one eigenvalue, as in the previous formulas. The leading
term for large ` is easily extracted though: let λ1 be the greatest eigenvalue of the sector D(1), then

〈σ0〉〈σ`〉 − 〈σ0〉 〈σ`〉 = ∆λ1 a
2
λ1,1 ` λ

`−1
1 +O(λ`1) for `→ +∞, (9)

with ∆λ and aλ,1 given in Eq. (48) and Eq. (64) respectively. Therefore, on one-dimensional chains and sparse
graphs, the susceptibility corresponding to the thermally disconnected correlation function present the characteristic
double pole behaviour near the transition point, whose prefactor can also be computed by Eq. (9).
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The expressions we found for free energies of chains, Eqs. (6) and (7), and the correlation function Eqs. (8) and
(9), are exact for every value of the length ` of the chain but involve the computation of infinitely many terms.
Fortunately it turns out from our numerical simulations that the spectrum of the integral operator in Eq. (4) is
discrete and the eigenvalues are well spaced. Therefore considering only the first few highest eigenvalues one obtains
very good approximations already at small values of `. They can be computed numerically, discretizing the kernel
of the integral operator of Eq. (4) and directly computing the eigenvalues of the associated matrix. Moreover the
leading eigenvector and eigenvalue of each sector can be efficiently selected with multiple applications of the discretized
operator on an arbitrarily chosen vector (as it was done to obtain Figures 2 and 3).

All the results we obtained using the replicated partition function formalism, with the noticeable exception of the
formula for the average free energies of closed chains Eq. (6), can be recovered using a purely probabilistic approach
in the same spirit of the usual cavity method912.

In Section V A we devise two alternative probabilistic derivation for the average free energies of open chains . The
first is based on a recursive equation involving the moments of the partition function, which leads to an expression
for the moment of the random partition function Zn` of an asymmetric open chain in terms of the left and right
eigenvector of an integral operator we also encountered in the RTM formalism:

Zn` (u;x) =
∑

λ∈D(0)

λ`(n) gλ0 (u;n)Sλ0 (x;n) [2 cosh(βx)]n. (10)

Here n is not related to the number of replicas, since replicas are not present in this approach, but is an arbitrarily
chosen real positive number. The other method presented in Section V A the iteration of the average free energy itself
during the construction of the chain, which requires to keep track of the message of u` the cavity message propagating
through a chain at distance ` from one of the extremities, at each iteration. The two approaches are deeply related
and obviously lead to the same result.

Crucial to the probabilistic computation of the connected correlation functions, ah has been noted recently8 is the
random variable X` defined by X` ≡ ∂u`

∂H0
, whereH0 field acting on the same extremity. It turns out that the connected

correlation function of Eq. (8) is encoded in the q-the moments of the joint law of u` and X` at fixed u`. This object,
the function

G(`)
q (u) =

∫
dX P`(u,X) Xq, (11)

obeys a recursion rule, Eq. (87), containing the integral operator of Eq. (4). Expressing G
(`)
q (u) in the basis of the

eigenvalues of D(q) leads then straightforwardly to the expression (8) we obtained using replicas. Moreover in Section
V B a more general result is presented in Eq. (90).

The thermally disconnected correlation function σ0σ`〉c is computed in Section V C, using some results we obtained
for the connected correlation function and for the moment of the partition function of an open chain, thanks to the
relation

∂

∂H0

∂

∂H`
Zn`,o = n 〈σ0σ`〉c Zn`,o + n2 〈σ0〉〈σ`〉 Zn`,o. (12)

An alternative approach, technically more difficult, outlined in Section V C involves the resolution of an iterative

equation for the function R(`)(u) = δ(u− u`)〈σ0〉(`), which takes into account the shift in the magnetization of the
first spin during the growth of the chain.

In the following Sections we fill-in all the technical details associated to the previous claims.

III. SPECTRAL DECOMPOSITION

We present an in-depth tractation of the spectral theory of the replica symmetric RTM. In Section III A we discuss
the spectral decomposition of the matrix for integer values of the number of replicas n. We introduce in Section III B
an integral representations of the eigenvectors, in order to discuss the main features of the analytic continuation to
small values of n in Section III C. In Section III D we discuss some technicalities related to a peculiar aspect of the
n ↓ 0 limit, the degeneracy between the Longitudinal and the Anomalous sectors.

A. The Permutation Group

The 2n × 2n matrix Tn defined by Eq. (3) is invariant under the action of the group of permutations among the
replicated spins: for each permutation π acting on the n spin, we have the equivalence Tn(π(σ), π(τ)) = Tn(σ, τ). This
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symmetry allows us to block-diagonalize Tn according to the irreducible representations of the permutation group.
This idea has been first introduced by Weigt and Monasson2 in order to compute the eigenvalue spectrum of Tn.

For the sake of completeness we now review Weigt and Monasson’s method, then we extend it further, in order to
achieve the decomposition of the transfer matrix in terms of left and right eigenvectors. The replicated space is Z⊗n2 .
Let’s call ∆m, with m = 0, ..., n, the subspace of configurations having exactly m spins up. These subspaces are clearly
invariant under any permutation of the replicas, therefore we can consider the representation of the permutation group
in the n + 1 subspaces ∆m and look for the irreducible ones. The complete decomposition of ∆m into irreducible
subspaces D(m,q) has been done by Wigner13. It reads:

∆0 = D(0,0) ,

∆1 = D(1,0) ⊕D(1,1) ,

. . .

∆m = D(m,0) ⊕ . . .⊕D(m, min(m,n−m)) ,

. . .

∆n−1 = D(n−1,0) ⊕D(n−1,1) ,

∆n = D(n,0) .

(13)

Representations D(m,q), at fixed q, are isomorphic and have dimension

dq ≡ dim
(
D(m,q)

)
=

(
n

q

)
−
(

n

q − 1

)
q = 0, ..., bn/2c , (14)

where bxc is the smallest integer part of x. Notice that by definition d0 = 0. As we have (n + 1 − 2q) subspaces
D(m,q), the q-sector of our matrix Tn will contain (n + 1 − 2q) eigenvalues with degeneracy dq. One can check that∑bn/2c
q=0 dq (n+ 1− 2q) = 2n.

A vector of the space D(m,q) can be constructed using Young tableaux7, and has the form

|m, q〉 = (|+〉|−〉 − |−〉|+〉)q SYM
(
|+〉m−q|−〉n−m−q

)
, (15)

where the operation SYM means a complete symmetrization with respect to the n−2q last entries (the first 2q entries
are, instead, antisymmetrized). A basis of the subspace D(m,q) can be constructed by applying all the transformations
of the permutation group to the vector |m, q〉 in Eq. (15) and choosing a maximal linearly independent subset.

We look for the eigenvectors of Tn in the subspaces

D(q) =

n−q⊕
m=q

D(m,q) q = 0, . . . ,
⌊n

2

⌋
(16)

of dimension dq(n + 1 − 2q). Since Tn has no symmetries beside the replicas permutation one, it has n + 1 − 2q

different eigenvalues in D(q), each with multiplicity dq. In the following we will refer to the subspaces D(q) as to

sectors. Moreover, with some abuse of notation, we shall use the symbol D(q) for the set of eigenvalues corresponding
to eigenvectors in that sector.

Of particular relevance are the sectors D(0), D(1) and D
(2)
0 since they are associated to the Longitudinal, Anomalous

and Replicon modes respectively from meanfield spin-glass theory14, as we will later show when discussing correlation
functions in Section IV B.

By Eqs. (15) and (16) it is possible to factorize the replica symmetric part in the eigenvectors ψλq (σ) of the transfer

matrix in the sector D(q), that is we can write

ψλq (σ) = ρλq

(∑
a

σa

) ∑
a1<···<aq

Ca1...aq σ
a1 . . . σaq , (17)

where the replica symmetric part ρλq of the eigenvectors is the one relevant to the computation of the eigenvalues.

By last equation the eigenvectors of the sector D(0) are completely replica symmetric. The coefficients Ca1...aq are
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invariant for any permutation of the indices and are equal to zero if any two of the indices are equal. Moreover they
have to satisfy the constraint

n∑
a1=1

Ca1...aq = 0, (18)

which is a necessary and sufficient condition for any vector of the form of Eq. (17) to belong to the subspace D(q).
Any set of dq linearly independent coefficient vectors C can be chosen as an appropriate basis for the subspace. It
is easy to prove that the product of two non-singular symmetric matrices possess a complete orthonormal (in the
left-right sense) basis of left and right eigenvectors with real eigenvalues, and this is indeed case for Tn. In fact if we
define, with a little abuse of notation, the vector

ρh(σ) ≡ Eheβh
∑
a σ

a

, (19)

than Tn(σ, τ) =
∑
σ′ EJ eβJσσ

′ × δσ′τρh(τ). Moreover the left eigenvector ψL corresponding to a certain right
ψR(σ;λ, k) is simply given by

ψL(σ;λ, k) = ρh(σ)ψR(σ;λ, k) , (20)

where k denotes one choice of the coefficients Ca1...aq among the dq possible. Imposing the orthonormality condition∑
σ

ψL(σ;λ, k)ψR(σ;λ′, k′) = δλλ′ δkk′ , (21)

with the sum ranging over all the 2n configuration of the replicated spin, and after successive application of Eq. (18),
we obtain ∑

σ

ρλq (σ)ρh(σ)ρλ
′

q (σ)

q∏
a=1

(1− σ2a−1σ2a) = δλλ′ (22)

along with ∑
a1<···<aq

Cka1...aqC
k′

a1...aq = δkk′ . (23)

We are now able to write down the transfer matrix in the spectral form

Tn(σ, τ) =

bn2 c∑
q=0

Tn,q(σ, τ) (24)

where Tn,q is the restriction of Tn to the subspace D(q), defined by

Tn,q(σ, τ) =
∑

λ∈D(q)

λ ρλq (σ)ρh(τ)ρλq (τ)
∑

a1<···<aq
b1<···<bq

Qa1...aq ;b1...bq σ
a1 . . . σaqτ b1 . . . τ bq . (25)

The coefficients Q appearing in last expression are invariant for any permutation of the set of indices a or b, therefore
they depended only on the number of equal indexes in the sets {a1, . . . , aq} and {b1, . . . , bq}. They are defined by

Qa1...aq ;b1...bq =

dq∑
k=1

Cka1...aqC
k
b1...bq , (26)

and their (q+1) different values can be computed applying recursively Eqs. 18 and 23. If we denote Q
(q)
p the coefficient

in the sector D(q) with p pairs of different indexes, for the first sectors we have

Q
(1)
0 =

n− 1

n
Q

(1)
1 = − 1

n
(27)

Q
(2)
0 =

n− 3

2(n− 1)
Q

(2)
1 = − Q

(2)
0

n− 2
Q

(2)
2 = −2Q

(2)
1

n− 3
(28)



7

B. Integral representations

In order to perform the limit n ↓ 0 it is convenient to find a suitable parametrization for the eigenvectors of the form
(17). For the replica symmetric part of the eigenvectors ψλq , see Eq. (17), we employ the standard parametrization

ρλq (σ) =

∫
du gλq (u;n)

eβu
∑
a σ

a

[2 cosh(βu)]
n , (29)

in terms of the functions gλq (u;n). Turns out that all the functions gλq parametrizing the eigenvectors of the sector

D(0), are by themselves the eigenfunctions of an integral operator associated to that sector. In fact, expressing the
linear terms in Eq. (17) through the identity

σa1 . . . σaq =
∂

∂εa1
. . .

∂

∂εaq

∣∣∣∣
ε=0

e
∑
a εaσ

a

(30)

and plugging Eq. (29) into the eigenvalue equation Tnψq = λψq, we obtain, after some manipulations, the new
eigenvalue equation

λ gλq (u;n) = EJ,h
∫

dv δ
(
u− û(J, h+ v)

)( 1

β

∂û

∂v

)q
Zn(J, h, v) gλq (v;n). (31)

The function û(J, x), defined by

û(J, x) =
1

β
atanh (tanh(βJ) tanh(βx)) , (32)

will be recognized by the learned reader as the update rule for cavity messages. As we shall see, the function

Z(J, h, v) =
2 cosh(βJ) cosh (β(v + h))

cosh(βv)
(33)

is related to the intensive free energy of an chain. Notice that in writing down Eq. (31) we have shifted the problem
of finding a complete bases of eigenvectors for the matrix Tn to the equivalent problem of the spectral decomposition
of the integral operators of Eq. (31), for q = 0, . . . , bn2 c. Turns out that, for a given sector D(q), the integral operator
has a set of left eigenfunctions in the form

Sλq (v;n) = Eh
∫

du gλq (u;n)

[
cosh (β(u+ v + h))

2 cosh(βu) cosh(βv)

]n [
1− tanh2 (β(u+ v + h))

]q
, (34)

as can be inferred from Eq. (20) and can be directly verified. In the rest of the paper we will assume that the left
and right eigenfunctions of the sector D(q) satisfy the normalization condition∫

du Sλq (u;n) gλ
′

q (u;n) = δλλ′ (35)

derived from Eq. (22). We are now ready to take the n ↓ 0 limit and discuss its non trivial aspects.

C. The small n limit

In the limit n ↓ 0 we obtain an infinite number of sectors D(q), q = 0, 1, . . ., in a fashion that is characteristic to
replicas computations. Setting n = 0 in Eq. (31) we obtain Eq. (4), which we rewrite for convenience:

λ gλq (u) = EJ,h
∫

dv δ (u− û(J, h+ v))

(
1

β

∂û

∂v

)q
gλq (v) . (36)

From now on we shall refer to gλq (v) as a solution of last equation and shall explicitly express the n dependence for
the solutions of (31) at finite n. In Figure 2 and Figure 3 we show two examples of eigenvalues and eigenfunctions in
the sector D(1) and D(2) respectively.
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Fig. 2: (Top) The leading eigenvalue λ1 of the sector D(1) in the RFIM, as a function of the temperature and of the
gaussian external field with variance σ2

H . (Bottom) The corresponding right eigenfunction g1(u) at σH = 0.8 . The

random fields h and h̃ are distributed as the cavity fields arriving on a chain embedded in a RRG with connectivity
z = 3, therefore the transition point is localized at λ1 = 1

2 .

For q = 0 , i.e. in the sector D(0), Eq. (36) admits a unique maximum eigenvalue λ = 1 by Perron-Frobenius
theorem. The corresponding eigenfunction is the probability distribution of cavity biases, which we call P (u)12. We
have thus established a first connection between the cavity method and the RTM formalism, and we shall enforce
this connection in Section V. The other eigenfunctions of D(0) are characterized by

∫
du gλ0 (u) = 0 at n = 0. It is

convenient, to held compatibility with the normalization condition Eq. (35) as we will see, to impose a diverging
scaling for all the eigenfunctions of D(0) except for the first one:

gλ0 (u;n) ∼ 1√
n

(
gλ0 (u) + n g̃λ0 (u)

)
. (37)

The symbol ∼ denotes equivalence between the r.h.s. ad l.h.s. up to higher order correction in n, and g̃λ0 is the
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first correction to the leading order of the eigenfunction in D(0). Using Eq. (37) for the right eigenfunctions and
considering also the correction in n to the eigenvalues, we can compute the left eigenfunctions of D(0) from Eq. (34).
In fact we obtain at the leading order

Sλ0 (v;n) ∼
√
nSλ0 (v) =

√
n

[
cλ + Eh

∫
du gλ0 (u) log

(
cosh (β(u+ v + h))

cosh(βu)

)]
, (38)

where cλ is the normalization of the first order correction to the eigenfunction gλ0 , that is

cλ ≡
∫

du g̃λ0 (u) =
1

λ− 1
Eh
∫

du gλ0 (u) log

(
cosh (β(u+ h))

cosh(βu)

)
. (39)

In all calculations involving the sector D(0) we will express the eigenvectors using Eqs. (37) and (38), then proceed
carefully to take the n ↓ 0 limit.

To find an expression for the left eigenfunctions in the other sectors no such care is needed to take the n ↓ 0 limit
in Eq. (34), therefore we straightly obtain

Sλq (v) = Eh
∫

du gλq (u)
[
1− tanh2 (β(u+ v + h))

]q
for q ≥ 1 . (40)

The degeneracy between D(0) and D(1) corresponds to the degeneracy between the Longitudinal and Anomalous
eigenvalues in the Hessian of the Sherrington-Kirkpatrick model14,15. The multiplicity of the eigenvalues in the two
sectors, d0 = 1 and d1 = n− 1, sum up to give an O(n) contribution as should be expected, while from Eq. (14) the
other sectors have degeneracies of order O(n) without the need of further elisions. Therefore it is convenient to define

d̂q =

{
1 for q = 1 ,

limn→0
dq
n = (−1)q+1 2q−1

q(q−1) for q ≥ 2 .
(41)

The first eigenvalue of D(0) requires separate considerations. We define the coefficient f0 from its n expansion:

λ(n) ∼ 1− βf0n. (42)

As we already noted, the cavity messages distribution P (u) is the eigenvector associated to the largest eigenvalue of
the sector D(0) for n = 0. The corresponding left eigenvalue is S(u) ≡ 1. In Section IV A we shall see that f0 is the
intensive free energy of a chain. From Eq. (47) we obtain

− βf0 = EJ,h
∫

dv log [Z(J, h, v)]P (v) . (43)

D. The degeneracy between the Longitudinal and the Anomalous sector

A close inspection of the eigenvalue equation (36) reveals a surprising relation between the sectors D(0) and D(1)

at n = 0. It can be shown, respectively deriving or integrating both members of Eq. (36) for q = 1 and q = 0, that
all the eigenfunctions of D(1) have a corresponding eigenfunction in D(0) with the same eigenvalue. On the other
hand, all the eigenfunctions of D(0), except for the first one, i.e. the ones having zero sum, have a corresponding
eigenfunction in D(1) with the same eigenvalue. We have thus established a degeneracy between the Longitudinal and
the Anomalous sectors. The following relations hold:

gλ0 (u) =
1

β
∂u g

λ
1 (u);

1

β
∂u S

λ
0 (u) = −Sλ1 (u). (44)

Particular attention has to be taken in the limits involving these two sectors, keeping track of the O(n) corrections
both to eigenvalues and eigenvectors. A double pole contribution to some observables, as we shall later see, stems
from the first correction in n to the paired eigenvalues in D(0) and D(1). In fact if we define the eigenvalue shifts δλ0

and δλ1 by

λ0(n) ∼ λ+ n δλ0, (45)

λ1(n) ∼ λ+ n δλ1, (46)
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Fig. 3: (Top) The leading eigenvalue λ2 of the sector D(2) in a J = ±1 spin-glass, as a function of the temperature
and of the uniform external field H. The phase diagram is also shown in the H − T plane. (Bottom) The

corresponding right eigenfunctions g2(u) along the orange line of the top picture. The random fields h and h̃ are
distributed as the cavity fields arriving on a chain embedded in a RRG with connectivity z = 3, therefore the

transition point is localized at λ2 = 1
2 .

and consider the expansion to the first order in n of the eigenvalue equation (31) for q =, from standard perturbation
theory we have

δλq = EJ,h
∫

dudv Sλq (u) log [Z(J, h, v)] δ (u− û(J, h+ v))

(
1

β

∂û

∂v

)q
gλq (v). (47)

The shift difference ∆λ = δλ0 − δλ1 is the relevant quantity we are looking after, since it arises in the calculation of
the free energies of closed chains and of the thermally disconnecter correlation function, see Section IV. Using Eq.
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(47) and the relation (44) between the eigenfunctions in the two sectors, we obtain the expression

∆λ = −EJ,h
∫

dudv Sλ0 (u)δ (u− û(J, v + h)) [tanh (β(v + h))− tanh(βv)] gλ1 (v) (48)

If we call (•, •) the scalar product in L2 and define the kernel

Q(u, v) = EJ,h δ (u− û(J, v + h)) [tanh (β(v + h))− tanh(βv)] , (49)

then Eq. (48) can be rewritten as

∆λ = −(Sλ0 , Q g
λ
1 ). (50)

In the next Section we shall apply the formalism we have developed to the computation of some physically relevant
quantities.

IV. SOME APPLICATIONS OF THE FORMALISM

A. Free energy of chains

Let us first consider the average free energy of a closed chain of length `, each node receiving i.i.d. random fields
h, and call it f c` . If the chain considered is embedded in a locally tree-like graph, the random fields h are distributed
according to the cavity messages distribution on that graph ensemble. Since TrT `n is the replicated partition function
of this system, the free energy is given by

− βf c` = lim
n→0

∂n TrT `n , (51)

where, thanks the orthonormal decomposition of Tn, the trace can be written in the form

TrT `n =

n
2∑

q=0

dq
∑

λ∈D(q)

λ` . (52)

In last equation the eigenvalue degeneracies dq are given in Eq. (14), and the eigenvalues λ depends implicitly on n.
In the small n limit the sum over q can be extended to infinity. The considerations over the eigenvalues’ shifts and
degeneracies of last Section lead to the final expression

− βf c` = −β`f0 +
∑

λ∈D(1)

∆λ ` λ
`−1 +

∞∑
q=1

d̂q
∑

λ∈D(q)

λ` . (53)

The coefficients d̂q are given by Eq. (41), the shift differences ∆λ given by Eq. (48) and an expression for the intensive
free energy f0 is found in Eq. (43). We notice that all the quantities entering Eq. (53) can be expressed in terms of
the eigenvalues and eigenfunctions of Eq. (36).

The computation of the average free energy of open chains is a little more involved. In the definition of open chains,
we allow the spins at the extremities to receive a random field h̃ that could have a distribution different from the one
of the fields acting on the internal spins of the chain. We introduce this relaxation of the model in order to apply our
formalism to the case of open chains embedded in a generic tree-like random graph.

It is convenient to define the replicated partition function of an open chain of length `, conditioned on the configu-
ration of the replicated spins at its extrema in the following way: starting from T `n, we remove the field h on the right

and substitute it with a field h̃, then we add the other field h̃ on the left (see Figure 1). Therefore we define

T̃ (`)
n (σ, τ) ≡ ρh̃(σ)T `n(σ, τ) ρ−1

h (τ)ρh̃(τ), (54)

where, with a little abuse of notation, the vector ρh̃ is defined by

ρh̃(σ) ≡ Eh̃ e
βh̃

∑
a σ

a

. (55)
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By definition the matrix T̃
(`)
n is symmetric (see Figure 1 for a pictorial representation). From Eq. (54) and Eq. (24)

we obtain the spectral decomposition

T̃ (`)
n (σ, τ) =

bn2 c∑
q=0

∑
λ∈D(q)

λ` ρh̃(σ)ρλq (σ)ρh̃(τ)ρλq (τ)
∑

a1<···<aq
b1<···<bq

Qa1...aq ;b1...bq σ
a1 . . . σaqτ b1 . . . τ bq . (56)

The average free energy of an open chain of length ` is then given by

− βfo` = lim
n→0

∂n
∑
σ,τ

T̃ (`)
n (σ, τ) . (57)

From Eq. (56) it easy to see that only the D(0) sector of T̃
(`)
n contributes to last equation.

A different behaviour characterize the terms corresponding to the leading eigenvalue at n = 0 (the cavity one) from
the others. As in the case of the closed chain, the extensive contribution to the free energy comes from the leading
eigenvalue of D(0), λ ∼ 1−nβf0. An O(1) contribution comes from the leading eigenfunction gλ0 (u;n) = P (u)+O(n),
while each other eigenvalue, the ones degenerate with D(0), gives an exponential term. Therefore, after a careful
treatment of the small n limit, we arrive to the expression

−βfo` =− `βf0 + Eh̃
∫

du P (u) 2 log cosh
(
β(u+ h̃)

)
− Eh

∫
dudv P (u)P (v) log cosh (β(u+ v + h))

+ log 2 +
∑

λ∈D(1)

a2
λ,0 λ

` ,
(58)

with

aλ,0 =
1

λ− 1
Eh
∫

du gλ0 (u) log

[
cosh (β(u+ h))

cosh(βu)

]
+ Eh̃

∫
du gλ0 (u) log

[
cosh(β(u+ h̃))

cosh(βu)

]
(59)

In Eq. (58) it is clearly expressed at the order O(1) in ` the free energy shift, with respect to the free energy of a
closed chain, due to the addition of two extremal spins and the removal of an internal one.

The coefficients aλ,0 are strictly related to the left eigenfunctions Sλ0 defined in Eq. (38). In fact if the random field

at the extremities of the chain are distributed as the one on the internal spins, i.e. h̃
d
=h as in the case of a chain

embedded in a Poissonian random graph, then aλ,0 = Sλ0 (0). More generally if a probability distribution G(0)(u)
exists such that

P̃ (h̃) = Eh
∫

du G(0)(u) δ(h̃− (u+ h)) (60)

holds, then Eq. (59) can be written in the compact form aλ,0 = (Sλ0 , G
(0)). Obviously if h̃

d
=h we have G(0)(u) = δ(u).

For a chain embedded in a random regular graphs ensemble instead, G(0)(u) is given by the distribution of cavity
biases Pcav(u)12.

B. Correlation functions

We take advantage of the spectral representation of the RTM to find some analytical expressions for the two-
point correlation functions. We consider two spins, σ0 and σ`, at distance ` along a chain. As in the previous
paragraph, we admit the possibility for the chain to be embedded in a locally tree-like graph, therefore the random
fields h̃ acting on σ0 and σ` can be distributed differently from the fields h on the internal spin of the chain. The

decomposition of T̃
(`)
n (σ, τ) in Eq. (56) can be exploited to obtain the correlation functions. In fact contracting

T̃n
`
(σ, τ) with two spins having the same replica index constrains them to be in the same thermal state, as in

〈σ0σ`〉 = limn→0

∑
σ,τ σ

1 T̃
(`)
n (σ, τ) τ1. Choosing different replica indexes instead corresponds to choosing different

thermal states, e.g. 〈σ0〉〈σ`〉 = limn→0

∑
σ,τ σ

1 T̃
(`)
n (σ, τ) τ2. Generalizing this considerations is easy to obtain

〈σ0σ`〉k = lim
n→0

∑
σ,τ

σ1 . . . σk T̃ (`)
n (σ, τ) τ1 . . . τk. (61)



13

Since vectors of the form σ1 . . . σk have non-zero projections in D(q) only for q ≤ k, only these sectors of the spectral

representation of T̃
(`)
n contribute to Eq. (61). The expression for 〈σ0σ`〉k is quite complicated and it involves also the

correction for small n to the eigenfunction of D(0) and D(1), as in the case of the thermally disconnected correlation
function we shall later see. Therefore, since this kind of correlation function has little physical relevance, we won’t
report its expression in terms of the transfer matrix eigenvalues and eigenfunctions.

Far more interesting from the physical viewpoint are the connected correlation functions. The ferromagnetic

connected correlation functions can be expressed as 〈σ0σ`〉c = limn→0
1
2

∑
σ,τ

(
σ1 − σ2

)
T̃

(`)
n (σ, τ)

(
τ1 − τ2

)
, as one

can rapidly check, and this expression can be easily generalized to

〈σ0σ`〉kc = lim
n→0

1

2k

∑
σ,τ

(
σ1 − σ2

)
. . .
(
σ2k−1 − σ2k

)
T̃ (`)
n (σ, τ)

(
τ1 − τ2

)
. . .
(
τ2k−1 − τ2k

)
. (62)

t It is worth noticing that the vector v =
(
σ1 − σ2

)
. . .
(
σ2k−1 − σ2k

)
belongs to the subspace D(k), therefore we can

choose a basis for the spectral representation of T̃
(`)
n such that all but one vectors are orthogonal to v. This leads to

the following compact expression for the connected correlation functions:

〈σ0σ`〉kc =
∑

λ∈D(k)

a2
λ,k λ

` , (63)

with the coefficients aλ,k given by

aλ,k = Eh̃
∫

du gλk (u)
[
1− tanh2

(
β(u+ h̃)

)]k
. (64)

As in the case of the coefficient aλ,0 defined in Eq. (59), if a solution G(0) of (60) exist then aλ,k is simply given by

the projection of G(0) on Sλk , that is aλ,k = (Sλk , G
(0)).

Equation (63) allows us to easily compute the susceptibilities χk = limN→∞
1
N

∑
i,j 〈σiσj〉kc in a random graph with

mean degree and mean residual degree z0 and z respectively, in fact in thermodynamic limit we have

χk = (1−m2)k +

∞∑
`=1

z0z
`−1 〈σ0σ`〉kc

= (1−m2)k + z0

∑
λ∈D(k)

a2
λ,k

λ

1− zλ

(65)

At a transition point the largest eigenvalue of one of the sectors D(q) reaches the value 1
z and the corresponding

susceptibility diverges. Assuming a smooth behaviour for the eigenvalue in the high temperature region before the
transition, λ(T ) = 1

z +O(T − Tc) for T → T+
c , we obtain the mean-field critical exponent γ = 1.

The computation of the thermal disconnected correlation function 〈σ0〉〈σ`〉, relevant to the RFIM transition, is
more complicated, since it involves the subleading corrections in n to the eigenvectors of Tn. Great care has to be

taken in the limit limn→0

∑
σ,τ σ

1 T̃
(`)
n (σ, τ) τ2 = 〈σ0〉〈σ`〉. As in Eq. (37), let us call g̃λ0 (u) the correction to the

eigenfunction gλ0 (u). We denote with 〈•〉q the expectation over T̃
(`)
n (σ, τ) restricted to the sector D(q). Than in D(0)

we obtain

〈σ1τ2〉0 ∼ 〈σ∞〉
2

+
∑

λ∈D(1)

1

n
a2
λ,1 λ

` + a2
λ,1 ` δλ0 λ

`−1

− 2aλ,1 λ
`

[∫
du g̃λ0 (u) tanh(β(u+ h̃)) +

∫
du gλ0 (u) tanh(β(u+ h̃)) log

cosh(β(u+ h̃))

cosh(βu)

]
,

(66)

where the contribution 〈σ∞〉 comes from the cavity eigenvector and is the average magnetization of a spin at the end
of an infinite chain.
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Similarly, if we define g̃λ1 (u) by gλ1 (u;n) ∼ gλ1 (u) + n g̃λ1 (u), in the sector D(1) we have

〈σ1τ2〉1 ∼
∑

λ∈D(1)

−1

n
a2
λ,1 λ

` − a2
λ,1 ` δλ1 λ

`−1

− 2aλ,1 λ
`

[∫
du g̃λ1 (u)

(
1− tanh2(β(u+ h̃))

)
+

∫
du gλ1 (u)

(
1− tanh2(β(u+ h̃))

)
log

cosh(β(u+ h̃))

cosh(βu)

]
(67)

Summing the two contributions, the final result for the disconnected correlation function is

〈σ0〉〈σ`〉 = 〈σ∞〉
2

+
∑

λ∈D(1)

∆λ a
2
λ,1 ` λ

`−1 + αλ λ
`. (68)

Therefore each eigenvalue of the Anomalous sector contributes to 〈σ0〉〈σ`〉 with an simple exponential term and with
a term that leads to a double pole behaviour in the associated susceptibility, with coefficients ∆λ given in Eq. (48).
The coefficients αλ of the exponential decays instead are given by

αλ = 2 aλ,1

[ ∫
du gλ1 (u) tanh(β(u+ h̃))

(
tanh(β(u+ h̃))− tanh(βu)

)
−
∫

du g̃λ1 (u)
(

1− tanh2(β(u+ h̃))
)
−
∫

du g̃λ0 (u) tanh(β(u+ h̃))

] (69)

Since the magnetization of a spin conditioned to be to be the extremity of a chain of size ` is given by

〈σ`〉 = lim
n→0

∑
σ,τ

σ1 T̃ (`)
n (σ, τ) = 〈σ∞〉 −

∑
λ∈D(1)

aλ,1 aλ,0 λ
`, (70)

if we call Λ the highest eigenvalue of the sector D(1), the most relevant contributions to the thermally-disconnected
disorder-connected correlation function is given by

〈σ0〉〈σ`〉 − 〈σ0〉 〈σ`〉 = ∆Λ a
2
Λ,1 `Λ`−1 +

(
αΛ − 2〈σ∞〉 aΛ,1 aΛ,0

)
Λ` + o(Λ`) for `→ +∞. (71)

We notice that, while the coefficient of the exponential term is quite hard to compute, the coefficient a2
Λ,1∆Λ, which

regulates the leading behaviour, has a much simpler expression given in Eq. (48) and Eq. (64). From Eq. 71 turns
out that near a ferromagnetic transition point, i.e. Λ = 1

z , as long as ∆Λ is not zero, the leading behaviour of the

disconnected susceptibility χdisc =
∑
i,j 〈σ0〉〈σ`〉 − 〈σ0〉 〈σ`〉 reads

χdisc ' z0 ∆Λ a
2
Λ,1

1

(1− zΛ)2
. (72)

The expected double-pole behaviour of the disconnected susceptibility is thus recovered.

V. CAVITY DERIVATION

In this section we present the derivation of several of the results of last Section using a probabilistic approach, in
the same spirit of the usual cavity method calculations9,12. While being this approach more physically intuitive with
respect to the RTM formalism, it requires the set up of an ad-hoc recursion rule for each observable. Noticeably we
could not recover Eq. (53) for the free energy of closed chains.

A. Open chains

We want to study the statistical properties of a random Ising open chain without the use of replicas. We start
with an asymmetric chain of length `, whose random partition function we denote with Z`, constructed iteratively
according to the following procedure: Z0 is the partition function of a single spin receiving a random field u0, i.e.
Z0 = 2 cosh(βu0); at the i-th step of the construction we add a spin σi, a random coupling Ji between σi and σi−1
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and a random field hi−1 on σi−1; the random variable Z` is the partition function of the system obtained after the
`-th step of the procedure. Note that the last spin added to the chain has no external fields acting on it. The following
distributional identity can be easily derived:

Z`+1 =
2 cosh(βJ`) cosh(β(u` + h`))

cosh(βu`)
× Z` ≡ Z(J`, h`, u`)× Z`. (73)

It is convenient to introduce the quantity Zn` (u) ≡ δ(u− u`)Zn` , which corresponds to the expectation of Zn` along
with the indicator function of the event u` = u. Here n is an arbitrary chosen positive real number, the symbol being
chosen to stress the analogy with the replica formalism where the quantity n (integer in this case) is the number of
replicated systems. Using this definition from Eq. (73) follows readily

Zn`+1(u) = EJ,h
∫

dv δ (u− û(J, v + h)) Zn(J, h, v) Zn` (v), (74)

where ũ(J, x) = 1
β atanh(tanh(βJ) tanh(βx)) is the usual message passing rule. The integral operator of Eq. (74) is

the same we found in the RTM formalism in Eq. (31) for the sector D(0), therefore we can make use of the spectral
analysis result from those paragraphs, in particular of the completeness relation

EJ,h δ (u− û(J, v + h)) Zn(J, h, v) =
∑

λ∈D(0)

λ(n) gλ0 (u;n) Sλ0 (v;n), (75)

between left and right eigenvectors. The definition of the left eigenfunctions of D(0) was already given in Eq. (34),
but we rewrite it for convenience:

Sλ0 (v;n) = Eh
∫

du gλ0 (u;n)

[
cosh (β(u+ v + h))

2 cosh(βu) cosh(βv)

]n
. (76)

Let us define another random partition function, Z`(u;x), obtained from Z`(u) conditioning on the value of the

message u0 on the first spin, that is Z`(u;x) = Z`(u)|(u0 = x). Since also Zn` (u;x) as a function of u obeys equation
(74), using the decomposition Eq. (75) and the initial condition Z0 = 2 cosh(βu0) we arrive to the important result

Zn` (u;x) =
∑

λ∈D(0)

λ`(n) gλ0 (u;n)Sλ0 (x;n) [2 cosh(βx)]n. (77)

Using last equation it is easy to compute any moment Zn` , n not necessarily integer, of the partition function of a
random asymmetric Ising chain of length `. More interesting is the computation of the properties of a symmetric
Ising open chain, the one considered in Section IV A, which receives on each extremity an external field distributed
according to a certain probability distribution P̃ (h̃). As already stated, this is definition stems from the need to cover
the important case of a chain embedded in a locally tree-like graph. Let us call Z`,o the random partition function of
this open chain. It is related to the random partition function Z` of the asymmetric open chain by

Z`,o =
cosh(β(u` + h̃`))

cosh(βu`)
× Z`−1(u`;u1)× 2 cosh(βJ0) cosh(βh̃0)

cosh(βu1)
(78)

where u1 is distributed as ũ(J0, h̃0). From Eq. (78) along with Eq. (77) and Eq. (76), we derive the main result of
this paragraph:

Zn`,o =
∑

λ∈D(0)

λ`(n) a2
λ,0(n). (79)

where aλ,0(n) is defined by

aλ,0(n) ≡ Eh̃
∫

du

[
cosh(β(u+ h̃))

cosh(βu)

]n
gλ0 (u;n). (80)

In the RTM formalism of Section III and IV, last expression could be derived from T̃
(`)
n defined in Eq. (56) by analytic

continuation of Zn`,o =
∑
σ,τ T̃

(`)
n (σ, τ) to non-integer n.
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The average free energy of an open chain of length ` can then be obtained by

− βfo` = lim
n→0

∂n Zn`,o. (81)

The computation involves computing the order n of all the quantities present in Eq. (79), as it was done in Section
(IV A). In this paragraph however, without any use of replicas, we gave a purely probabilistic argument valid for any
real value of n. We refer therefore to Section (IV A) for the successive step of the computation of fo` , leading to the
final result Eq. (58). Notice that in the notation of that paragraph aλ,0 is related to aλ,0(n) defined in Eq. (80) by
aλ,0(n) ∼

√
n aλ,0.

The expression (58) for fo` could also be obtained by a different approach that does not involve any limit n ↓ 0 but

is technically more difficult. We define the function ϕ(`)(u) by

ϕ(`)(u) ≡ δ(u− u`) logZ`, (82)

and observe that given the distribution of the cavity message at distance ` along the chain, u`, which we call G
(`)
0 (u),

it obeys the iterative rule

ϕ(`+1)(u) = EJ,h
∫

dv δ (u− û(J, h+ v)) ϕ(`)(v)

+ EJ,h
∫

dv δ (u− û(J, h+ v)) log

[
2 cosh(βJ) cosh(β(v + h))

cosh(βv)

]
G

(`)
0 (v)

(83)

Last equation can be solved decomposing ϕ(`)(u) and G
(`)
0 (v) along the eigenfunctions of D(0) at n = 0, then ϕ(`)(u)

can be used to obtain fo` .

B. Connected correlation functions

Let us derive the eigenvalue equation (4) and the expression for the connected correlation functions Eq. (8),
without making any use of replicas. Here we consider straightly the random open chain with partition function Z`,o,

characterized by independent random etxernal field distributes a h on the internal spins and as h̃ on the extremities.

The connected correlation function 〈σ0σ`〉c = ∂〈σ`〉
∂H0

, where H0 is an auxiliary field acting on σ0, can be expressed as
a function of the message u`, coming through the chain to the spin σ`, and its derivative with respect to H0. In fact
we have

〈σ0σ`〉c =
(

1− tanh2(β(h̃` + u`))
) ∂u`
∂H0

, (84)

where h̃`, as usual, is the random effective field acting on σ` and coming eventually from the rest of the graph. Let

us define the random variable X` by X` ≡ ∂u`
∂H0

. The average over disorder of Eq. (84) and its moments 〈σ0σ`〉qc can

then be computed once we know the joint law of the random variables u` and X` , which we call P`(u,X). Since X`

obeys the chain rule X`+1 = ∂u`+1

∂u`
X` the recursion rule for P` reads

P`+1(u,X) = EJ,h
∫

dv dY δ

(
X − ∂û

∂v
Y

)
δ (u− û(J, h+ v)) P`(v, Y ), (85)

where û is the message passing rule defined in Eq. (32). From last expression it turns out we can write an iteration
rule for the momenta of X` at fixed u`,

G(`)
q (u) =

∫
dX P`(u,X) Xq , (86)

which reads

G(`+1)
q (u) = EJ,h

∫
dv δ (u− û(J, h+ v))

(
∂û

∂v

)q
G(`)
q (v). (87)

Equations (85) and (87) with q = 2 have been recently introduced in literature8 in order to derive an analytical
expression for the spin-glass susceptibility.
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We note that the knowledge of the maximum eigenvalue of the integral operator of Eq. (87) for a generic q allows
one to reconstruct the full distribution of the connected correlation function at large distance16.

From last equation it is clear the relation of G
(`)
q with the eigenfunctions gλq of Eq. (4). In fact, decomposing G

(`)
q (u)

along the eigenfunctions of D(0), projecting Eq. (87) on the left eigenvectors Sλq (u) and with some computations
analogue to the ones leading from Eq. (79) to Eq. (80), we arrive to

G(`)
q (u) =

∑
λ∈D(q)

aλ,q λ
` gλq (u), (88)

where aλ,q is defined in Eq. (64). Equation (88), along with Eq. (84), gives the expression (63) obtained with the
RTM formalism for the connected correlation functions.

Following the lead of the previous paragraph, we can extend the above derivation to compute the disorder averages
〈σ0σ`〉qc along with an arbitrary power of Z`,o. The generalization of Eq. (87) in fact becomes

G(`+1)
q (u;n) = EJ,h

∫
dv δ (u− û(J, h+ v))

(
∂û

∂v

)q
Z(J, h, v)G(`)

q (v;n), (89)

and Eq. (88) generalizes trivially as well. The final result is

〈σ0σ`〉qc Zn`,o =
∑

λ∈D(q)

λ`(n) a2
λ,q(n), (90)

which extrapolates smoothly to the result we obtained for n = 0, i.e. Eq. (63). In last equation the coefficients
aλ,q(n) are defined by

aλ,q(n) ≡ Eh̃
∫

du

[
cosh(β(u+ h̃))

cosh(βu)

]n [
1− tanh2(β(u+ h̃))

]q
gλq (u;n), (91)

such that aλ,q(0) = aλ,q.

C. The disconnected correlation function

The computations of the thermally disconnected correlation function 〈σ0〉〈σ`〉 is straightforward once we use the
results we obtained in the two preceding paragraphs. In fact, calling H0 and H` two auxiliary fields we add to the
first and the last spin of the chain respectively and set to zero after the computation, the following relation holds:

∂

∂H0

∂

∂H`
Zn`,o = n 〈σ0σ`〉c Zn`,o + n2 〈σ0〉〈σ`〉 Zn`,o. (92)

Using Eqs. (79) and (90) last expression leads to the main result of this paragraph, that is

〈σ0〉〈σ`〉 Zn`,o =
1

n

 ∑
λ∈D(0)

λ`(n) b2λ,0(n)−
∑

λ∈D(1)

λ`(n) a2
λ,1(n),

 (93)

where the coefficient bλ,0(n) ≡ ∂ aλ,0(n)
∂H0/`

reads

bλ,0(n) = Eh̃
∫

du

[
cosh(β(u+ h̃))

cosh(βu)

]n
tanh(β(u+ h̃))

√
n gλ0 (u;n). (94)

We included a factor
√
n in the definition of bλ,0(n) to facilitate the extrapolation of Eq. (93) to small n. In fact for

all but the first eigenfunctions of D(0) the normalization condition imposes the scaling gλ0 (u;n) ∼ 1√
n

[gλ0 (u)+n g̃λ0 (u)].

We could derive Eq. (93) also in the RTM formalism for integer values of n and then perform an analytic continuation

to arbitrary real n. In the limit n ↓ 0 it is easy to see that the contribution to 〈σ0〉〈σ`〉 from the first and the second
sums of Eq. (93) are given in Eqs. (66) and (67) of Section IV B respectively.
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An alternative probabilistic derivation of the formula (68) for 〈σ0〉〈σ`〉, which does not require the knowledge of

the momentums of the partition function and of 〈σ0σ`〉c Zn`,o, goes through the definition of

R(`)(u) ≡ δ(u− u`)〈σ0〉(`). (95)

We used the symbol 〈σ0〉(`) to denote the magnetization of the first spin at the `-th iteration of the construction
of the asymmetric chain described in Section V A. It can be easily shown that the knowledge of R(`)(u) allows the

computation of 〈σ0〉〈σ`〉. Since 〈σ0〉(`) is given by the derivative of the free energy of the chain at the step ` with
respect to a field on the the first spin, considering the free energy difference after an iteration it is easy to arrive to
the relation

〈σ0〉(`+1) = 〈σ0〉(`) + [tanh(β(u` + h))− tanh(βu`)]
∂u`
∂h0

. (96)

Therefore the recursion rule for R(`)(u) is given by

R(`+1)(u) = EJ,h
∫

dv R(`)(v) δ (u− û(J, h+ v))

+ EJ,h
∫

dv G
(`)
1 (v) δ (u− û(J, h+ v)) [tanh(β(v + h))− tanh(βv)],

(97)

where G
(`)
1 (v) was defined in Eq. (88) in last paragraph. Last equation can be solved decomposing R(`)(u) along the

eigenfunctions of D(0) at n = 0, and using Eq. (88) for G
(`)
1 (v). The computation is lengthy and not trivial, since it

involves expressing g̃λ0 and g̃λ1 (defined in Section IV B) respectively in terms of the basis of D(0) and D(1) at n = 0.
In the end though one arrives at the expression (68) for the disconnected correlation function.

VI. CONCLUSIONS

In the present paper we presented a thorough analysis of the spectral properties of the RTM. We have developed a
formalism that is suitable to compute many different types of connected and disconnected correlation functions and
can be applied both to one-dimensional systems and to locally tree-like graphs. The expressions we found are exact
for any value ` of the spin distance and can be approximated numerically considering only the top eigenvalues of
certain integral operators. Also the formalism can be trivially adapted to perform the same computations in diluted
p-spin models.

We also managed to obtain exact formulas for the moments of the partition function and of the average free energies
of open and closed chains of finite length. It has been recently found that short chains have an important role in
the finite size corrections to disordered models on diluted graphs4 and in perturbative expansions around the Bethe
approximation on Euclidean systems10. Therefore the analytical tools we have developed also apply to these contexts.

Most of the results have also been derived using rigorous probabilistic arguments. This approach has the merits
of avoiding the complication of the decomposition of the replicated space Z⊗n2 and of being more physically intuitive
of the replica one. The advantage of the replica method instead is that once the spectral representation of the RTM
is obtained all the observables can be computed just with opportune contraction. In the cavity analysis an ad-hoc
iterative function or a computation strategy has to be devised for each observable.

Noticeably we did not manage to derive Eq. (53) for the free energy of closed chains using a cavity argument. This
is the only point withstanding the proof of the complete equivalence between the two methods.

A limitation of both the RTM formalism and of its cavity counterpart, is the fact that it is applicable to the
analysis of disordered Ising models only in their replica symmetric phase. This includes all isolated one-dimensional
systems but not diluted models in the spin glass phase. Therefore an investigation of the spectral properties of the
1RSB replicated transfer matrix, extending Wigner’s decomposition13 to the 1RSB symmetry group, is desirable.
Another direction for the extension of our results, which should not require too much analytical effort17, is toward
the investigation of Potts models.

C.L. acknowledges the European Research Council (ERC) for financial support through grant agreement No. 247328.

1 R. Bruinsma and G. Aeppli, Physical Review Letters 50, 1494 (1983), ISSN 0031-9007, URL http://link.aps.org/doi/

10.1103/PhysRevLett.50.1494.

http://link.aps.org/doi/10.1103/PhysRevLett.50.1494
http://link.aps.org/doi/10.1103/PhysRevLett.50.1494


19

2 M. Weigt and R. Monasson, EPL (Europhysics Letters) 36, 4 (1996), 9608149, URL http://stacks.iop.org/0295-5075/

36/i=3/a=209http://arxiv.org/abs/cond-mat/9608149.
3 D. Fisher, P. Le Doussal, and C. Monthus, Physical Review E 64 (2001), ISSN 1063-651X, URL http://link.aps.org/

doi/10.1103/PhysRevE.64.066107.
4 U. Ferrari, C. Lucibello, F. Morone, G. Parisi, F. Ricci-Tersenghi, and T. Rizzo, Physical Review B 88 (2013), ISSN

1098-0121, URL http://link.aps.org/doi/10.1103/PhysRevB.88.184201.
5 A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics (Springer, 1993).
6 T. Nikoletopoulos and A. C. C. Coolen, Journal of Physics A: Mathematical and General 37, 8433

(2004), ISSN 0305-4470, 0405269v2, URL http://stacks.iop.org/0305-4470/37/i=35/a=003?key=crossref.

1e760bc99a921a1e3113518a33fbe36b.
7 K. Janzen and A. Engel, Journal of Statistical Mechanics: Theory and Experiment pp. 1–15 (2010), 1008.1733v1.
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