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We introduce an approach to derive an effective scalar field theory for the glass transition; the fluctuating
field is the overlap between equilibrium configurations. We apply it to the case of constrained liquids for
which the introduction of a conjugate source to the overlap field was predicted to lead to an equilibrium
critical point. We show that the long-distance physics in the vicinity of this critical point is in the same
universality class as that of a paradigmatic disordered model: the random-field Ising model. The quenched
disorder is provided here by a reference equilibrium liquid configuration. We discuss to what extent this
field-theoretical description and the mapping to the random field Ising model hold in the whole supercooled
liquid regime, in particular, near the glass transition.
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Introduction.—One of the first steps in the analysis of a
standard phase transition consists of identifying the correct
order parameter. Once this crucial step is done, one can first
construct a Landau functional and analyze it to obtain a
mean-field description; then, eventually, one can promote
the order parameter to a truly fluctuating field and study the
associated field theory in order to get a full-fledged
theoretical description. In the case of the glass transition,
establishing what is the correct order parameter is by no
means an easy task. The random first-order transition
(RFOT) theory [1,2] identifies as order parameter the
similarity, also called overlap, between equilibrium
configurations. More specifically, one should take an
equilibrium (reference) configuration and then restrict
the thermodynamic sampling only to equilibrium configu-
rations constrained to have a high overlap with the
reference one on the boundary of the sample. By definition,
a RFOT takes place when this boundary condition forces
the entire system to have a large value of the overlap instead
of the zero (or very low) one characteristic of the liquid
phase. This is analogous to forcing a positive boundary
magnetization in the case of a ferromagnetic phase tran-
sition. The identification of this order parameter was first
made in the context of disordered mean-field systems [3],
but it was soon realized that the overlap and its fluctuations
provide an interesting tool in the study of glassy systems, in
particular, supercooled liquids, irrespective of the presence
or not of quenched disorder [4]. Studying the response to
perturbations directly acting on the order parameter, as
done in usual phase transitions, has recently allowed access
to the growing static length accompanying the slowing

down of the dynamics. In the RFOT context, the perturba-
tion is a pinning field that forces configurations to have a
high overlap locally; the corresponding correlation length is
called “point to set” [5]. As discussed before, promoting the
order parameter to a fully fluctuating field is a way to study
fluctuations and correlations beyond mean-field theory: this
was recently done to analyze the slow but intermediate β
relaxation in the vicinity of the “ideal” dynamical transition
that is found both in the mode-coupling approach and in the
RFOT theory of liquids [6,7]. In particular, it has been
shown that the dynamical transition is in the universality
class of the spinodal of the random-field Ising model
(RFIM). Both singularities, of course, can only be present
when activated events such as nucleation are not taken into
account. Finally, the overlap has also been the focus of an
intense numerical research in model supercooled liquids:
the distribution of the fluctuations of the uniform overlap
between equilibrium configurations has been computed and
found to develop a nontrivial, non-Gaussian shape as one
cools the liquid [8–10].
The aim of our work is to develop an effective field

theory of glass-forming systems directly formulated in
terms of an overlap field. This is highly desirable for
several reasons: first, it allows one to focus directly on
what is thought to be the physically relevant field; second, it
leads to a scalar field theory in the presence of quenched
disorder and should, therefore, settle the recurrent debate
about whether the glass transition is related to random-
field, random-bond, or spin-glass physics [2,11,12]. Our
approach is able to capture nonperturbative effects con-
jectured to be crucial to describe the glass transition: by
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perturbatively integrating out irrelevant degrees of freedom
only, we derive an effective theory for the relevant field,
identified as the overlap with a reference equilibrium
configuration. The model (or field theory) obtained by
this procedure can then be nonperturbatively studied either
by renormalization-group analysis or by computer
simulations.
In the following, we first introduce our method in a

general setting for glass-forming liquids. Then, we apply it
to the critical point that terminates the transition line in an
extended phase diagram where one introduces a coupling
between liquid configurations, and we show that the critical
behavior is the same as in the equilibrium RFIM. The
motivation for studying this specific region of parameters,
besides providing a first progress towards a comprehensive
field theory of the glass transition, stems from recent
numerical works [8–10] that have directly focused on
the behavior of supercooled liquids in the presence of
such an attractive coupling and have provided evidence for
a first-order transition line and a terminal critical point. In
consequence, our predictions are prone to direct tests in
the future. (Note that the analysis of Ref. [13] does not
apply here since, in the presence of a nonzero coupling,
the first-order transition line is not a RFOTand the spinodal
is not equivalent to a dynamical mode-coupling-like
transition [14].)
Consider a glass-forming liquid formed by N particles

and described by a Hamiltonian H½rN� where rN denotes a
configuration of the N particles. We consider a reference
equilibrium configuration rN0 and define the overlap at point
x between the latter and another configuration rN as
q̂x½rN; rN0 �≔

R
y fðyÞ½ρ̂ðxþ ðy=2ÞjrNÞρ̂ðx − ðy=2ÞjrN0 Þ − ρ2�,

where
R
y ≡

R
dDy and fðyÞ is a smoothing function of short

range (typically the cage size); ρðxjrNÞ¼P
N
i¼1δ

ðDÞðx−riÞ
is the microscopic density at point x, and ρ is the mean
liquid density. We can now define an overlap field pðxÞ and
introduce an effective Hamiltonian or action for this field,

S½pjrN0 � ¼ − log
Z

drN

N!
δ½p − q̂½rN; rN0 ��e−βH½rN�; (1)

where δ½� is a functional that enforces a delta function
at each point x and β ¼ 1=ðkBTÞ. The probability to
observe a certain profile of the overlap field is given by
expð−S½pjrN0 �Þ. Thermodynamic quantities and correlation
lengths, e.g., point-to-set ones, are obtained as usual from a
“partition function” and the associated functional W,

eW½ϵjrN0 � ¼
Z

Dpe−S½pjr
N
0 �þ

R
dDxϵðxÞpðxÞ; (2)

where we have introduced an auxiliary coupling ϵðxÞ that,
in field-theoretical language, plays the role of a “source” for
generating the connected correlation functions of the
overlap field. A RFOT corresponds to the appearance

for ϵ ¼ 0 of long-range order in the overlap field, which
acquires a large value in the entire sample. Because of the
reference configuration rN0 , the action S describes a
scalar field theory in the presence of quenched disorder.
In order to analyze it and understand in more detail
what kind of disorder is generated by rN0 , one can study
the cumulants of S by considering replicas of the
original system. As known in the context of the critical
behavior of the RFIM [15,16] (see also Refs. [6,17]),

expð−Srep½fpag�Þ ¼ expð−P
n
a¼1 S½pajrN0 �Þ generates the

cumulants of the action S½pjrN0 � through an expansion in
increasing number of free replica sums [15,16]

Srep½fpag� ¼
Xn
a¼1

S1½pa� −
1

2

Xn
a;b¼1

S2½pa; pb�

þ 1

3!

Xn
abc¼1

S3½pa; pb; pc� þ � � � ; (3)

where Sl½p1;…; pl� is the lth cumulant: e.g., S½pjrN0 � ¼
S1½p� and S½p1jrN0 �S½p2jrN0 �−S½p1jrN0 �S½p2jrN0 �¼S2½p1;p2�.
The Franz-Parisi potential [3], which is the average free-
energy cost to keep two configurations at a fixed global
overlap, is the Legendre transform of the first cumulant
of W½ϵjrN0 � (and is not equal to S1 except in the mean-
field limit).
Our goal is to derive the action for the overlap field and

its cumulants in glass-forming systems. To proceed, one
can formally rewrite

e−Srep½fpag� ∝
Z

drN0
Yn
a¼1

drNa δ½pa − q̂½rNa ; rN0 ��

× e−βðH½rN0 �þ
P

n
a¼1

H½rNa �Þ: (4)

The n replicas plus the reference configuration can now be
described by greek letters α ¼ 0; 1;…; n whereas roman
letters are still used for replicas from 1 to n only. We also
introduce additional collective fields qαβðxÞ that describe
the overlap between two different replicas α and β.
Equation (4) then becomes

e−Srep½fpag� ∝
Z Y

ab≠
Dqab

�Z Y
α

drNα
Y
αβ≠

δ½qαβ − q̂½rNα ; rNβ ��

× e−β
P

α
H½rNα �

�
∝
Z Y

ab≠
Dqabe−S½fpa;qabg�; (5)

where we have used the notation q0a ¼ qa0 ≡ pa and
S½fpa; qabg� is defined as minus the logarithm of the
expression between square brackets. Our approach differs
from the usual replica one in that it treats the fields pa ¼
q0a and qab differently. The underlying working hypoth-
esis, which can at least be checked in the vicinity of the
terminal critical point in the presence of a nonzero coupling
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ϵ, is that the pa’s may develop long-range fluctuations
while, for fixed pa’s, the qab’s are harmless for the long-
distance physics and can be approximately integrated out.
In the following we show how this procedure can be carried
out near the terminal critical point.
One first needs a tractable expression for the action

S½fpa; qabg� in terms of the overlap fields [defined via
Eq. (5)]. This action of course depends on the microscopic
details of the glass-forming system under study, and
deriving its expression can be a rather formidable task.
One can formally derive S½fqαβg� from the Morita-Hiroike
functional of the 1- and 2-particle densities [18] of the
replicated ðnþ 1Þ-component liquid mixture along lines
similar to those followed by Ref. [7]. A short cut is,
however, provided by the coarse-grained effective Landau-
like functional considered in Ref. [17],

S½fqαβg� ¼
E0

kBT

Z
x

�
c
2

X
αβ≠

ð∂qαβðxÞÞ2 þ
X
αβ≠

VðqαβðxÞÞ

−
u
3

X
αβγ≠

qαβðxÞqβγðxÞqγαðxÞ
�
; (6)

where VðqÞ ¼ ðt=2Þq2 − ½ðuþ wÞ=3�q3 þ ðy=4Þq4 and
the primary dependence on temperature is given by t ≈
kBðT − T0Þ=E0 with E0 the typical energy scale of the
liquid and T0 a constant with dimension of temperature. In
numerical applications, we focus on the parameter values
found to roughly reproduce properties of glass-forming
liquid ortho-terphenyl: u ¼ 0.385; w ¼ 2.73; y ¼ 1.82, and
c ¼ 1 (in appropriate length units) [17].
To derive an effective field theory for the overlaps paðxÞ

with a reference configuration, one needs to perform the
functional integration over the qabðxÞ’s while keeping the
fieldspaðxÞ fixed [see Eq. (5)]. It is clear from Eq. (6) that, as
discussed above, nonzero pa’s exert an external source or
field on the qab’s. In Eq. (6) the cubic term generates a
contribution −u

P
ab≠paðxÞpbðxÞqabðxÞ. In consequence,

the qab’s do not develop fluctuations on all scales and stay
“massive” near the terminal critical point [19]. It is then
sufficient to perform the functional integration on these fields
through a perturbative treatment. Perturbation is carried out
with a saddle-point approximation as zeroth order. The
saddle-point equations for the qab’s with a ≠ b read

c∂2qab�ðxÞ þ V 0ðqab�ðxÞÞ ¼ upaðxÞpbðxÞ
þ u

X
c≠a;b

qac�ðxÞqcb� ðxÞ: (7)

The solution of this equation has to be inserted back into the
action in order to obtain the final result. Since we are
interested in the long wavelength fluctuations of the pa’s,
it is sufficient to solve the saddle-point equations in an
expansion in the gradient term, the zeroth order then
corresponding to simply neglecting the gradient.

All quantities can be expanded in increasing number of
free replica sums as in Eq. (3), e.g.,

qab�ðxÞ ¼ q½0�x ½pa; pb� þ
X
c

q½1�x ½pa; pbjpc� þO

�X
cd

�
:

(8)

Such expansions allow algebraic manipulations that lead to
well defined and unique expressions of the various orders
[15,16,20]. In the lowest order in the gradient amplitude
parameter c, Eqs. (7) and (8) lead, for instance, to
q½0�x ½pa; pb�≡ q½0�ðpaðxÞ; pbðxÞÞ and

V 0ðq½0�ðpa; pbÞÞ ¼ upapb − uq½0�ðpa; pbÞ
× ½q½0�ðpa; paÞ þ q½0�ðpb; pbÞ�: (9)

With the above results, one immediately derives from
Eqs. (3) and (5) the expressions of the first two cumulants
of the action for the pa’s at the level of the saddle-point
approximation and including Oð∂2Þ terms only

S1½pa� ¼
E0

kBT

Z
x

�
cð∂paÞ2 −

1

2
cð∂q½0�ðpa;paÞÞ2

þ 2VðpaÞ−Vðq½0�ðpa;paÞÞ−
2u
3
q½0�ðpa;paÞ3

þ up2
aq½0�ðpa;paÞ

�
(10)

and

S2½pa; pb� ¼ −
E0

kBT

Z
x

�
c
2
ð∂q½0�ðpa; pbÞÞ2

− 2upapbq½0�ðpa; pbÞ þ u½q½0�ðpa; paÞ
þ q½0�ðpb; pbÞ�q½0�ðpa; pbÞ2

þ 2Vðq½0�ðpa; pbÞÞ
�
; (11)

where the explicit x dependence has been omitted. This
derivation is easily extended to the higher orders, but the
algebra rapidly becomes tedious, and the results are given
in the Supplemental Material [21].
The above cumulants describe a scalar field theory for a

disordered system [6,15,16,20]. We now more specifically
consider the vicinity of the terminal critical point in the
ðT; ϵÞ plane. At the saddle-point level, the critical point is
defined by the following conditions:

∂S1ðp1Þ
∂p1

����
c
¼ ϵc;

∂2S1ðp1Þ
∂p2

1

����
c
¼ 0;

∂3S1ðp1Þ
∂p3

1

����
c
¼ 0:

(12)
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When inserted in Eq. (10), this gives ϵc ¼ 0.602E0=ðkBTcÞ,
tc ¼ 1.680, pc ¼ 0.534, and q½0�c ¼ 0.072 (using the relation
[17] between t and T one finds E0=ðkBTcÞ ¼ 0.952). One
can then expand the cumulants Sl½p1;…; pl� around the

critical value after defining ϕaðxÞ ¼ paðxÞ − pc. Keeping
only terms to order ϕ4 (higher-order terms are expected to be
irrelevant at criticality) leads to a Wilson-Ginzburg-Landau
action for the replica scalar fields ϕaðxÞ

Srep½fϕag� − ϵc

Z
x
ϕaðxÞ ¼

Z
x

�X
a

½c0ð∂ϕaÞ2 þ
r2
2
ϕ2
a þ

r3
3!
ϕ3
a þ

r4
4!
ϕ4
a

�

−
1

2

X
ab

ϕaϕb

�
Δ20 þ

Δ21

2
ðϕa þ ϕbÞ þ

Δ22

4
ϕaϕb þ

Δ23

2
ðϕ2

a þ ϕ2
bÞ
�

þ 1

3!

X
abc

ϕaϕbϕc

�
Δ30 þ

Δ31

3
ðϕa þ ϕb þ ϕcÞ

�
−
Δ40

4!

X
abcd

ϕaϕbϕcϕd þO

�X
abcde

��
; (13)

where r2 and r3 are zero at the saddle-point (mean-field)
critical point and all other coefficients are evaluated at
the latter point: c0 ¼ 0.91, r4 ¼ 23:33;Δ20 ¼ 0.22;Δ21 ¼
0.47;Δ22 ¼ 1.23;Δ23 ¼ 0.04;Δ30 ¼ −0.12;Δ31 ¼ −0.51;
Δ40 ¼ 0.33. We have neglected some square gradient terms
of higher orders in the fields because they are either less
relevant in the renormalization group (RG) sense or are
anyhow generated along the RG flow. Beyond the precise
values, the important fact is that r4, Δ20, Δ22, and Δ40 are
greater than zero. It is then easily inferred that the above
replicated action is obtained from a random one
S½ϕjh; δr2; δr3�, which describes the large-scale fluctua-
tions of the overlap field pðxÞ with a reference equilibrium
configuration

S½ϕjh; δr2; δr3� ¼
Z
x

�
c0½∂ϕðxÞ�2 þ r2

2
ϕðxÞ2 þ r3

3!
ϕðxÞ3

þ r4
4!
ϕðxÞ4

�
þ
Z
x

�
δr2ðxÞ

2
ϕðxÞ2

þ δr3ðxÞ
3!

ϕðxÞ3 − hðxÞϕðxÞ
�
;

where the random field hðxÞ, the random mass δr2ðxÞ, and
the random cubic coupling δr3ðxÞ are delta-correlated
processes with zero mean and higher cumulants given by

hðxÞhðx0Þ ¼ δxx0Δ20;

hðxÞhðx0Þhðx00Þ ¼ δxx0x00Δ30;

hðxÞhðx0Þhðx00Þhðx000Þjcum ¼ δxx0x00x000Δ40;

δr2ðxÞδr2ðx0Þ ¼ δxx0Δ22;

hðxÞδr2ðx0Þ ¼ −δxx0Δ21;

hðxÞhðx0Þδr2ðx00Þ ¼ δxx0x00Δ31;

hðxÞδr3ðx0Þ ¼ −δxx0Δ23;

etc., with δxx0 ; δxx0x00 ;… short-hand notations for delta
functions and products of delta functions. The resulting

theory is, thus, a ϕ4 one in the presence of quenched
disorder without statistical inversion (Z2) symmetry. As is
known from the theory of disordered systems [24], the
random field is the most relevant of the above terms at
criticality and it leads to a universality class controlled by a
nontrivial zero-temperature fixed point. This is so even in
the absence of Z2 symmetry, as can be found from a simple
Harris-like criterion and has recently been confirmed by a
full nonperturbative RG analysis [25].
The conclusion of our analysis is that the terminal critical

point found in the presence of a conjugate source within the
mean-field theory belongs in finite dimension to the
universality class of the RFIM. Of course this is valid if
the transition is not destroyed by the disorder. One,
therefore, needs to compare the “bare” strength of the
random field

ffiffiffiffi
Δ

p
obtained from S2 to that of the surface

tension Y obtained from S1. We have computed the latter as
the free-energy cost per unit surface between two regions
with high and low overlap [26,27] at coexistence far below
the (mean-field) critical point and evaluated Δ at the same
temperature (see the Supplemental Material [21]). The
output is

ffiffiffiffi
Δ

p
=Y ≃ 0.47, which from known numerical

results on the RFIM in d ¼ 3 is compatible (Supplemental
Material [21]) with the existence of a transition [24]. We
have repeated the whole analysis for the finite dimensional
3-spin model with weak long-range interactions [21] and
obtained that the mapping to the RFIM also holds.
However, in this case, we have found

ffiffiffiffi
Δ

p
=Y ≃ 2.24, a

value likely too large for a transition to survive in d ¼ 3. As
a result, no glass transition (RFOT) is expected in the
model, in agreement with results and arguments presented
in Refs. [28,29].
The Landau-like functional for glass-forming liquids

[11,17] used as initial input in the present field-theoretical
approach is just a crude approximation. Deriving from first
principles a proper starting point with effective parameters
that incorporate the microscopic information about glass
formers is then a crucial task. As illustrated by recent
numerical work [9,10], this is now within reach. Indeed, by
constraining the overlap to a fixed value in a small-size
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system (less than the point-to-set length), it should be
possible to measure the local part of the first cumulants S1
and S2 (see above), thus allowing a direct evaluation of the
bare magnitude of the different sources of quenched
disorder in model supercooled liquids.
An important question for the theory of glass-forming

systems is to what extent the mapping to the RFIM found
near the terminal critical point in the presence of a nonzero
coupling ϵ is general? As a first piece of an answer, we have
verified that it also holds for the transition line in the
temperature ϵ > 0 plane, which is, therefore, a first-order
transition in the presence of a random field [30]. When
approaching the situation in the absence of coupling, ϵ ¼ 0,
where an ideal glass transition of RFOT type is predicted at
the mean-field level, establishing the mapping is not
straightforward. It can be done for completely connected
models (one can, e.g., show that the random energy model
[31] maps exactly to a zero-dimensional RFIM). However,
an extension to finite-dimensional systems is nontrivial as
there may be long-wavelength fluctuations associated with
diverging point-to-set spatial correlations. This will be the
focus of a future publication.

After completion of our work we came to know that
S. Franz and G. Parisi have also addressed the problem
of the critical point of constrained glassy systems [33].
Their approach is different but leads to the same conclusion
regarding the universality class of the terminal point in the
T-ϵ plane. We acknowledge support from the ERC
Grants No. NPRGGLASS and (C. C.) CRIPHERASY
(No. 247328).
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