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2Dipartimento di Fisica, Università “Sapienza”, P.le Aldo Moro 2, I-00185 Rome, Italy

3ISC-CNR, UOS Sapienza, P.le Aldo Moro 2, I-00185 Rome, Italy
(Received 3 March 2014; published 14 July 2014)

The Ising and Blume-Emery-Griffiths (BEG) models’ critical behavior is analyzed in two dimensions and
three dimensions by means of a renormalization group scheme on small clusters made of a few lattice cells.
Different kinds of cells are proposed for both ordered and disordered model cases. In particular, cells preserving
a possible antiferromagnetic ordering under renormalization allow for the determination of the Néel critical point
and its scaling indices. These also provide more reliable estimates of the Curie fixed point than those obtained
using cells preserving only the ferromagnetic ordering. In all studied dimensions, the present procedure does not
yield a strong-disorder critical point corresponding to the transition to the spin-glass phase. This limitation is
thoroughly analyzed and motivated.
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I. INTRODUCTION

In this work we shall discuss the real-space renormaliza-
tion group (RG) study of critical behavior of spin systems
interacting via different types of magnetic interaction. We
will consider the Ising and the Blume-Emery-Griffiths (BEG)
models, where spins can take either the value ±1, magnetic
site, or 0, hole.

The real-space RG is based on a number of RG transforma-
tions. Different RG transformations have been used in litera-
ture, all sharing the property of being “simple,” i.e., the space
of allowed couplings must be kept low dimensional to avoid
their proliferation. This process necessarily involves arbitrary
and uncontrolled approximations. One possible approach is to
replace the original lattice by a different lattice obtained by a
bond-moving procedure. This is the case of the hierarchical
lattices (see Refs. [1,2] for the definition and, e.g., Ref. [3] for
a recent summary of the achievements). The main drawback
is that hierarchical lattices are quite inhomogeneous and
have geometrical properties that differ from those of Bravais
lattices even locally, sometimes leading to different physical
behaviors [4].

In this work, instead, we employ alternative cell-block
transformations, such as those proposed in the 1970s, e.g.,
in Refs. [5,6]. In particular, this approach has been proven
to be reliable in the study of the percolation problem [7,8],
where each site is present with a given probability, independent
of the state of the neighbors sites. When site interactions
are introduced, this real-space RG approach has turned out
to be quite powerful for studying the paramagnetic (PM)-
ferromagnetic (FM) transition, while it often fails to detect
more complex phases, such as the antiferromagnetic (AFM)
phase in systems with antiferromagnetic interactions or the
spin-glass (SG) phase in disordered systems.

In this paper we start from the cluster approximation for
ferromagnets used by Berker and Wortis [6] and we will
consider possible generalizations to more structured block RG
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transformations to capture the Néel point of antiferromagnetic
systems, and we will analyze the robustness of both the
FM Curie and AFM Néel critical points to a small amount
of disorder. We shall also investigate the possibility of the
onset of a SG critical point in the case of strong quenched
disorder.

The construction of the block RG transformation is reg-
ulated by two opposite requirements: (i) minimal cluster
structure to capture the properties of the phases and (ii) compu-
tational feasibility. In particular, the last request again results
in a “hierarchical structure” of the system, different from the
original Bravais lattice, such to prevent the development of
different kinds of interactions at every RG step. However,
in contrast to hierarchical lattices, the local geometry of the
Bravais lattice is preserved.

We will consider the critical behavior in both two-
dimensional (2D) and three-dimensional (3D) dimensions and
compare our results to the outcome of numerical simulations
and, for small disorder, to the predictions of the gauge theory
of Nishimori [9].

The paper is organized as follows. Section II is devoted
to 2D Ising models. Here we also recall the real-space block
RG transformation procedure and its extension to the case of
(quenched) random interactions. We also introduce the gen-
eralization of the block RG transformation used to tackle
antiferromagnetic and disordered interactions. In Sec. III we
extend the analysis to 3D Ising models and in Sec. IV to the
Blume-Emery-Griffiths model.

Finally, in Sec. V we summarize our findings and we
comment about the inability to locate a SG critical point for
strong disorder and how it might be overcome.

II. CLUSTER RENORMALIZATION GROUP
FOR THE 2D ISING MODEL

The real-space block RG transformation dates back to the
1970s and consists of the following steps:

(i) group spins on the real-space Bravais lattice into blocks
with a given geometry;
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(ii) replace each block with a new spin variable, block-spin,
whose value is dictated by the values of all the spins inside
cell through a projection matrix;

(iii) sum in the partition over all spins inside the cells for
fixed value of the block-spins;

(iv) rescale the lattice-space to its original value and
compute the new, renormalized, values of interactions among
the block-spins, leaving the partition function invariant.

When points (i) to (iv) are iterated they yield the RG flow
KR = R(K) in the interaction parameters space K. Starting
from the initial physical values the renormalized parameters
flow towards a fixed point K∗ = R(K∗) that characterizes the
phase of the system. The stability matrix of the fixed point
gives the critical exponents.

In this section we apply this procedure to the 2D Ising
model with quenched disordered bimodal ferromagnetic-
antiferromagnetic interactions. The Hamiltonian, expressed in
a form suitable for the RG study, is

− βH(s) =
∑
〈ij〉

[
Jij sisj + hij

si + sj

2
+ h

†
ij

si − sj

2

]
, (1)

where 〈ij 〉 denotes the ordered sum over nearest-neighbor sites
on the 2D Bravais lattice. As usual in RG studies, we use
reduced parameters where the temperature is absorbed into
the interactions parameters.

The initial (physical) probability distribution of the cou-
plings is

P (Kij ) = P (Jij ) P (hij ) P (h†
ij )

= [(1 − p)δ(Jij + J ) + pδ(Jij − J )]

× δ(hij − h) δ(h†
ij ), (2)

where K = {J,h,h†}.

A. Ferromagnetic 2D Ising model

To illustrate, and fix the notation, we shall first discuss
the case of the pure ferromagnetic model (p = 1). Following
Berker and Wortis [6], we consider square cells of a 2D square
lattice and arrange them in the cluster shown in Fig. 1 (we shall
refer to this geometry as SQ2). The cluster consists of only
two square cells with periodic boundary conditions. The cell a

FIG. 1. SQ2 cluster [6]: two square cells C = a, b are arranged
with periodic boundary conditions. Full line denotes intracell bonds,
while the dotted lines denote intercell bonds. Under the block
RG transformation the cells are replaced by the block-spins σa,b.
The periodic boundary conditions ensures that each block-spin is
connected to the other one by four bonds.

contains spins {s1, s2, s3, s4} and the cell b spins {s5, s6, s7, s8}.
This geometry ensures that the block RG transformation
does not introduce additional couplings, besides J , h, and
h†. Moreover, periodic boundary conditions guarantee that
each spin has exactly four neighboring sites, so the system
has the correct multiplicity factor for the completely aligned
configurations. A correct multiplicity is a necessary, but not
sufficient, requirement for a correct estimation of the critical
temperature.

Next, for each cell c a new block-spin σc is defined, step
(ii), using a projection matrix M(σc,si∈c) that maps each
configuration of the spin of the cell si∈c to the value of
the block-spin σc. The most general projection matrix that
preserves the up-down symmetry of the Ising spins is

M(1,si∈c) M(−1,si∈c) si∈c

1 0 + + ++
1 − t t + + +−
1/2 1/2 + + −−
t 1 − t + − −−
0 1 − − −−

with M(−1, − si∈c) = M(1,si∈c). The parameter t is a free
parameter that controls the relative weight of nonsymmetric
configurations, and its value can be tuned to fine adjust
the outcome of the RG analysis to known results. From its
definition one may expect 0 � t � 1; however, we will see that
fine-tuning may lead to t outside these boundaries. For t = 0
one recovers the majority rule: The value of the block-spin is
the value of the majority of spins of the cell, and ±1 with equal
probability in case of parity. We will refer to the version of the
method in which t differs from zero (fixed to correctly obtain
known critical points of the model) as a tuned two-square-cell
lattice (“tSQ2”).

The next step is done by summing in the partition sum over
all possible configurations of the spins of the cells si for fixed
block-spins σc. This leads to the renormalized Hamiltonian
H′(σ )

e−βH′(σ ) =
∑

s

[ ∏
c

M(σc,si∈c)

]
e−βH(s) (3)

for the block-spin.
The procedure must leave the partition function invariant.

Therefore, the final step is the replacement σ → s and a
rescaling that changes H′ back to the original form of the
Hamiltonian in the new spin s,

− βHR(s) = α

(
JR sasb + hR

sa + sb

2
+ h

†
R

sa − sb

2

)
, (4)

with the following renormalized interactions:

JR = 1

4α
log

(
x++x−−
x+−x−+

)
,

hR = 1

2α
log

(
x++
x−−

)
, h

†
R = 1

2α
log

(
x+−
x−+

)
, (5)

where

xσaσb
=

∑
s

M(σa,si∈a)M(σb,si∈b) e−βH(s) (6)
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are the so-called edge Boltzmann factors. The coefficient α is
the number of nearest-neighbor sites on the lattice, 4 for the
2D case.

Note that if h = 0, then H(s) = H(−s), implying x+− =
x−+ and x++ = x−− and, eventually, hR = h

†
R = 0.

Equations (5) and (6) define the the RG flow KR = R(K).
The critical exponents are obtained from the eigenvalues of
the stability matrix ∂KR/∂K evaluated at the fixed point K∗,
which can be written in terms of

∂xsasb

∂J
=

∑
s

〈ij〉

M(σa,si∈a)M(σb,si∈b) sisj e−βH(s),

∂xsasb

∂h
=

∑
s

〈ij〉

M(σa,si∈a)M(σb,si∈b)
si + sj

2
e−βH(s),

∂xsasb

∂h† =
∑

s
〈ij〉

M(σa,si∈a)M(σb,si∈b)
si − sj

2
e−βH(s).

The nontrivial fixed point(s) are for h = h† = 0. In this case the
stability matrix is diagonal and the relevant scaling exponent
are yT = logb(∂/∂J )JR and yh = logb(∂/∂h)hR , where b is the
lattice scaling factor, equal to 2 for the SQ2 cluster of Fig. 1.
The critical exponents are then

ν = 1

yT

, η = d + 2 − 2yh. (7)

The others follow from the scaling laws.
The numerical implementation of this procedure gives for

the ordered ferromagnetic 2D Ising model (p = 1) the critical
temperature Tc = J−1

c = 1.896 for the PM-FM transition
and scaling exponents yT = 0.727 and yh = 1.942; see also
Ref. [6]. The value yh is less than the dimension of the space,
implying that the transition is of the second order [10]. The
values of the critical exponents are shown in the first row of
Table I.

By comparing with the exact Onsager solution [11], the
critical temperature deviates of about 20% from the exact
result T Ons

c = 2/ log(1 + √
2) = 2.2692 . . . and the values of

the critical exponent all suffer major deviations. We postpone
the discussion on how this estimates could be improved.

TABLE I. Critical exponents of the ferromagnetic 2D Ising model
obtained with the different clusters discussed in this work compared
with the known exact results. In the second (third) line the parameter
t is fixed to reproduce the known Onsager (Nishimori) critical
temperature of the 2D lattice.

α β γ δ ν η

SQ2 −0.7523 0.08038 2.592 33.24 1.376 0.1168
tSQ2 Ons. −0.1233 0.1383 1.847 14.35 1.062 0.2606
tSQ2 Nish. −1.426 0.05884 3.309 57.23 1.713 0.06870
SSQ2 −0.6545 0.2141 2.226 11.40 1.327 0.3226
SQ4 −0.1524 0.1915 1.769 10.24 1.076 0.3559
SSQ4 −0.4458 0.4779 1.490 4.118 1.222 0.7815
Exact 0 0.125 1.75 15 1 0.25

B. Disordered 2D Ising model

In the presence of quenched disorder the RG flow cannot
be restricted to single interaction values K and necessarily
involves the whole coupling probability distribution P (K).
The RG equation then becomes

PR(KR) =
∫

dK P (K) δ
[
KR − R(K)

]
. (8)

The block RG transformation must then be repeated starting
from interaction parameters configurations K extracted with
probability P (K). The outcomes KR are then used to construct
the renormalized probability distribution PR(K), which, in
turn, is used as an entry for the next iteration.

In a numerical study, the number of possible interaction
parameter configurations that can be considered is finite. The
flow of the renormalized probability distribution PR(K) then
can be followed by using a method initially suggested in
Ref. [12]. One first sets up a starting pool of M 	 1 different
randomly chosen real numbers produced according to the
initial probability of the couplings, Eq. (2) for the bimodal
Ising model. Then a coupling configuration K is constructed
by randomly picking numbers from the pool and assigning
them to the couplings. A renormalized KR is, thus, evaluated.
The procedure is repeated M times obtaining a new pool
that represents the renormalized probability distribution, from
which one can compute the moments and estimate PR(K) from
the frequency histogram.

In Fig. 2 we show the flow of the probability distribution
P (Jij ) of a single pool in the disordered 2D Ising model
(1)–(2) with h = 0 and p = 0.9 generated by the block
RG transformation on the SQ2 cluster. In the upper figure,
T = J−1 = 1.4, the average μJ moves towards smaller values
while the width of the distribution shrinks. This signals a PM
phase, with the PM fixed point probability distribution function
of mean μJ → 0 and variance σ 2

J → 0. In the lower figure,
T = J−1 = 1.2, the probability distribution width narrows
while shifting towards larger value of μJ . This denotes a
FM phase, with the FM fixed point probability specified by
μJ → ∞ and σJ /μJ → 0. We observe that a SG phase would
be signaled by a fixed point probability distribution with
σJ → ∞ while μJ /σJ → 0, so spins at great distance are
still strongly interacting but the sign of the interaction is not
defined.

To reduce the possible bias introduced by the choice of the
initial pool, Nobre et al. [13] have proposed to repeat the block
RG transformations using a set of Ns samples with different
initial pools of size M . When close to a critical point, flows
originating from different pools may flow towards different
fixed point distributions. The size of the region where the
phase is not uniquely identified gives an uncertainty on the
critical value obtained with pools of size M .

In our numerical study of the disordered 2D Ising model we
have used Ns = 20 pools of size M = 106 each, and we have
assumed a phase uniquely defined if at least 80% of the RG
flows flow towards the same fixed distribution. With this choice
the uncertainty is generally less than 0.1% and the systematic
error considerably decreased.

The (p,T ) phase diagram of the disordered 2D Ising
model obtained using the SQ2 cluster is shown in Fig. 3
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FIG. 2. (Color online) RG flow of the probability distribution
P (Jij ) for the disordered 2D Ising model (1)–(2) with h = 0 and
p = 0.9 obtained with the SQ2 cluster. The histograms are obtained
by taking 5 × 103 bins around the mean value μJ . The bin width is
fixed by the requirement that 99.9% of the values are inside the grid
used to follow the histogram flow. Upper: T = J −1 = 1.4, evidence
for the PM phase. Lower: T = J −1 = 1.2, p = 0.9, evidence for the
FM phase.

(black squares). As the probability p of the ferromagnetic
bonds is lowered the critical temperature decreases until, for
low-enough p, the FM phase disappears. In the figure also the
Nishimori line [14]

1

T
= 1

2
log

p

1 − p
(9)

is shown. Along this line the model is invariant under the
gauge transformation of spins and interactions and exact
information about the phase diagram can be obtained [9]. The
point where the Nishimori line crosses the transition line is
called “multicritical”: When a SG phase is actually present,
this is the point at which PM, FM, and SG phases all are in
contact with each other.

By the RG on the SQ2 cluster the “multicritical” point
is found at pmc = 0.8667, Tmc = 1.070. For p < pmc, exact
results impose no FM ordering [9]. Inspection of the figure

FIG. 3. (p,T ) phase diagram of the disordered 2D Ising model
obtained with the tSQ2 cluster and different choices for the parameter
t in the projection matrix. Filled square: t = 0; empty circle: t =
−0.06453 fixed by the requirement Tc(p = 1) = T Ons

c (Onsager);
empty square: t = 0.0304 fixed by the requirement Tc(pmc) = Tmc

(Nishimori); dashed line: Nishimori line.

shows that not only the method fails to predict the correct
critical temperature T Ons

c of the pure ferromagnetic model but
also that the requirements following from the gauge theory.

One can try to improve the numerical estimates tuning the
parameter t in the projection matrix to fix some known points
in the (p,T ) diagram. We consider two possible choices: fixing
the critical temperature of the pure system to the exact value or
the crossing point with the Nishimori line to the multicritical
point. The requirement Tc = T Ons

c leads to t = −0.06453,
while the requirement Tc(pmc) = Tmc to t = 0.0304. Note the
“unphysical” negative value of t , also used by Berker and
Wortis [6], which implies that under the block transformation
the contribution of some spin configurations of the cell to the
partition sum can be negative. The transition lines obtained
with these choices for t are shown in Fig. 3. In both cases,
and besides the unphysical values of t , the slope of the
transition line increase as p decreases, but still no re-entrance
or vertical line is recovered. In either case the only critical
point remaining is the FM fixed point at p = 1 with scaling
exponents yT = 0.9419 and yh = 1.870 for t = −0.06453 and
yT = 0.5837 and yh = 1.965 for t = 0.0304. The numerical
values of the critical exponents are shown in the second and
third rows of Table I, respectively. Note that in all cases α < 0.
According to the Harris criterion [15], this indicates that the
FM fixed point is stable against the introduction of a small
amount of quenched disorder.

Summarizing the results: the block RG transformation
based on the SQ2 cluster finds no true multicritical point, nor
a “strong-disorder” fixed point, and, hence, no change in the
universality class of the critical behavior is detected.

C. Antiferromagnetic order: Need for “SSQ2”

Another important issue of the block RG transformation
discussed so far is the absence of an AFM phase. Below some
critical value of p and down to p = 0, only the PM phase is
found. This failure might also strongly bias the quest for a
spin-glass phase in dimensions higher than two.
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FIG. 4. T , p phase diagram of the Ising 2D model as obtained
by iterating the RG on different clusters with two and four cells. The
dashed line is the Nishimori line [Eq. (9)].

By analyzing the block RG transformation used so far, we
see that it assigns the same weight to symmetric configurations
(e.g., + + −−) of the spins of the cell, regardless of their
ordering. As a consequence, it is not able to identify an
antiferromagnetic ordering, and a staggered magnetization
cannot be properly defined.

We thus need a cluster construction that distinguishes the
symmetry-breaking ordering associated with the AFM phase.
By referring to labeling of Fig. 1, we then assign the spins
{s1,s3,s5,s7} to the cell a and the spins {s2,s4,s6,s8} to the
cell b, shaping a staggered topology (SSQ2 in the following).
The projection matrix of the cell remains unchanged. The
phase diagram obtained through this block RG transformation
is shown in Fig. 4. The improvement with respect to the
SQ2 cluster is evident. The p = 0 antiferromagnetic critical
point is now found, as well as a PM-AFM transition line for
p > 0. Since in this model, for h = 0 the symmetry (p,J ) ↔
(1 − p, − J ) holds and the staggered cluster preserves AFM
ordering, the PM-AFM line is symmetric to the PM-FM line
with respect to p = 1/2. The behavior of the critical line below
pmc, however, still violates the requirement imposed by the
gauge theory.

The SSQ2 cluster improves the estimate of the pure critical
fixed point (p = 1). The critical temperature turns out Tc(p =
1) = 2.352 and deviates of about 3.5% from Onsager result.
The scaling exponents are yT = 0.7534 and yh = 1.839, and
the associated critical exponents are reported in Table I.
Though they display differences of 20% to 40% from the
exact values, their estimates are sensitively better than those
obtained with the classic SQ2 cluster.

As far as the AFM transition is concerned, the behavior is
specular to that of the FM transition. The points along the AFM
critical line are attracted by a unique second-order AFM Néel
fixed point at p = 0 at the same critical temperature Tc(p =
0) = 2.352 with scaling exponents yT = 0.7534, as found
for the FM fixed point, and yh = 0.01565. The symmetry
of the RG equations implies that the PM-AFM and PM-FM
fixed points have the same yT . However, the values of yh

differ markedly, the AFM one being almost zero. The reason
is that the magnetization is not the correct order parameter

FIG. 5. The 16-spin SQ4 cluster: before (left-hand side) and after
(right-hand side) renormalization. Full lines denote intracell bonds,
while dotted lines intercell bonds due to periodic boundary conditions.
Block-spins σa,b,c,d on the right-hand side cluster are constructed
from spins si=1,...,16 denoted by the same symbol on the left-hand side
cluster.

for the AFM transition, as it remains zero on both sides
of the transition. If, rather, the staggered magnetization is
considered, and, hence, a staggered field h† is introduced in
the Hamiltonian, then the relevant scaling exponent turns out
to be yh† = log2 ∂h†h

†
R = 1.797 	 yh.

D. Four-square-cell cluster (SQ4)

The SSQ2 cluster leads to an AFM fixed point and improves
both the analysis of the AFM and FM phases. However, it
does not allow for possible frustrated configurations in the
renormalized cells. In an attempt to circumvent this problem
we extend the cluster from two to four cells.

As the number of cells increases, so does the number of
possible cluster definitions. We found that the best block RG
transformation, in terms of similarity with the exact results,
is obtained with the cluster shown in Fig. 5. The block RG
transformation is performed by summing in the partition sum
over all possible configurations of the spins of the cells si=1,...,16

for fixed block-spins,

σa := {s1,s2,s3,s4}, σb := {s5,s6,s7,s8},
σc := {s9,s10,s11,s12}, σd := {s13,s14,s15,s16}.

The 16 spins of the SQ4 cluster, together with the intercell
interactions from periodic boundary conditions, form a 4 × 4
array of 4-spin cells. The block RG transformation gener-
ates, besides nearest-neighbor interactions, also next-nearest-
neighbor interactions and “plaquette” interactions.

To avoid truncations we then start from the more general
Hamiltonian,

− βH(s) = 1

2

∑
i

4∑
k=1

Ji,i+μk
si si+μk

+ 1

2

∑
i

4∑
k=1

Ki,i+ηk
si si+ηk

+
∑

i

Di

4∏
k=1

si+ξ k
,

(10)

where i = (ix,iy) denotes a site on the 2D lattice, μ the relative
position of the nearest-neighbor sites, η the relative position
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FIG. 6. Allocation of the interactions for the SQ4 cluster. The
interactions J, K, and D are represented, respectively, by horizontal
and vertical lines, diagonal lines, and circles. Ensembles of adjacent
two J s, two Ks, and one D are grouped together to form “arrow
packages” that completely cover both the initial and the renormalized
clusters of Fig. 5. These ensembles are the building blocks of the
RG procedure, so the correlation between the interactions in the
ensembles is preserved under the renormalization.

of the next nearest-neighbor sites, and ξ the relative position
of the plaquette sites as follows:

μ1 = (0,1), μ2 = (1,0), μ3 = (0, − 1), μ4 = (−1,0),

η1 = (1,1), η2=(1, − 1), η3=(−1, − 1), η4 = (−1,1),

ξ 1 = (0,0) , ξ 2 = (0,1) , ξ 3 = (1,1) , ξ 4 = (1,0).

The initial distributions of the couplings is

P (Kij ) = [(1 − p)δ(Jij + J ) + pδ(Jij − J )]δ(Kij )δ(Di).

To best preserve the correlation between the interactions J ,
K , and D we build the pools that numerically represent the
interaction probability distribution by correlated ensembles
consisting of two J s, two Ks, and one D adjacent to each
other. These are the maximum sets that completely cover both
the initial and the renormalized clusters, as shown in Fig. 6.
Notice that, because of the periodic boundary conditions, the
four ensembles in the renormalized system of Fig. 6 only differ
in the values for the J s, while the Ks and the D are always the
same.

The block RG with the Hamiltonian (10) leads to four J -like
(J±

R , J̃±
R ), two K-like (K±

R ), and one D-like (DR) renormalized
interactions whose values are

J±
R = 1

16

(
log

x++++ x−−++
x+−+− x+−−+

± log
x++−+ x+++−
x+−++ x−+++

)

J̃±
R = 1

16

(
log

x++++ x+−−+
x+−+− x−−++

± log
x−+++ x+++−
x++−+ x+−++

)

K±
R = 1

32

(
log

x++++ x+−+−
x−−++ x+−−+

± log
x+−++ x+++−
x++−+ x−+++

)

DR = 1

32
log

x++++ x+−+− x−−++ x+−−+
x+−++ x+++− x++−+ x−+++

, (11)

with the edge Boltzmann factors

xσaσbσcσd
=

∑
s

MaMbMcMd e−βH(s),

where Mx ≡ M(σx,si∈x) are the cell projection matrices. The
renormalized J s are assigned to the the four renormalized
ensembles as {J+

R , J̃−
R }, {J̃−

R , J̃+
R }, {J̃+

R , J−
R }, {J−

R , J+
R }.

TABLE II. Estimate of the FM critical point (p = 1) temperature
(TOns) and the coordinate of intersection point between the PM-FM
transition line with the Nishimori line (pmc, Tmc) for the disordered
bimodal 2D Ising model obtained with the different block RG
transformations discussed in this work compared with the locations
known for the 2D lattice.

TOns pmc Tmc

SQ2 1.896 0.867 1.070
tSQ2 Ons. 2.269 0.834 1.242
tSQ2 Nish. 1.714 0.89081 0.9528
SSQ2 2.352 0.827 1.277
SQ4 2.391 0.835 1.231
SSQ4 2.802 0.809 1.388
2D [11,17,18] 2.269. . . 0.89081(7) 0.9528(4)

The phase diagram obtained with Ns = 10 pools of size
M = 106 is shown in Fig. 4, line SQ4. All the points on the
critical line are attracted by the pure fixed point at p = 1 and
critical temperature of Tc(p = 1) = 2.391, about 5% off the
exact 2D result.

To evaluate the critical exponents we have to include in the
Hamiltonian an external magnetic field and, hence, consider
also the three spin interaction

∑
i

∑4
k=1 si si+μk

si+μk+1 gener-
ated by the RG. This gives a total of five parameters. At the
pure fixed point only two are relevant with scaling exponent
yT = 0.9292 and yh = 1.822. The values of the associated
critical exponents are reported in the fifth line of Table I.

The re-entrance of the critical line below the multicritical
point Tc(p) < Tmc is still absent. However, the line appears
steeper than those obtained with the previous block RG
transformations, approaching the expected behavior of the
model. Despite this qualitative improvement, the intersection
between the transition line and the Nishimori line occurs
sensitively above the exact multicritical point, cfr. Table II,
and, as in the previous cases, it does not correspond to a real
multicritical point.

The RG analysis indeed does not show critical fixed points
besides the pure critical point at p = 1. The so-called strong-
disorder fixed point [16] is missing and the crossing is not
associated with flows towards the FM and strong-disorder fixed
points.

E. Four-staggered-cell cluster (SSQ4)

As found for the SQ2 cluster, the SQ4 cluster does not show
an AFM fixed point and the PM-AFM transition is missing. To
recover it we then consider the generalization to a staggered
grouping of spins for the four-cell cluster (SSQ4). By referring
to the numbering of Fig. 5,

{s1,s5,s9,s13} → sa , {s2,s6,s10,s14} → sb ,

{s3,s7,s11,s15} → sc , {s4,s8,s12,s16} → sd .

The phase diagram obtained with this block RG transformation
is shown in Fig. 4. Though we can now identify the PM-AFM
transition, we observe a worsening of the estimates of the
critical points: Tc = 2.802 for both the Curie and the Néel
points. The points along the PM-FM transition line flow
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towards the FM fixed point at p = 1, while those on the
PM-AFM transition line are attracted by the AFM fixed point
at p = 0. Therefore, also in this case, we do not find a
strong-disorder fixed point.

The two relevant scaling exponents of the stability matrices
at the FM critical fixed point are yT = 0.8177 and yh = 1.609;
see Table I for the corresponding critical exponents.

For the AFM fixed point we have yT = 0.8177, the same
as the FM fixed point. As discussed previously, for the
AFM transition the relevant order parameter is the staggered
magnetization, and the scaling exponent of the staggered field
is yh† = 1.569.

To summarize, for the 2D Ising model with bimodal
disorder, Eq. (2), we have evidence for both PM-FM and PM-
AFM transitions for large-enough |p|. Quantitatively, the best
estimates for the Curie and Néel critical points are obtained
in the SSQ2 cluster scheme (cfr. Table II). The multicritical
point is missing since we do not find any strong-disorder fixed
point. No SG phase can be tested because we are in dimension
d < 2.5. Therefore in the next section we move to the 3D case.

III. CLUSTER RENORMALIZATION GROUP
FOR THE 3D ISING MODEL

In this section we extend the method based on the SQ2
cluster to the three-dimensional case by using the cluster of
two cubic cells with periodic boundary conditions shown in
Fig. 7 (referred as CB2) for the study of the 3D Ising model.

The associated projection matrix is

M(1,si∈c) si∈c

1 + + + + + + ++
1 − t6 + + + + + + +−
1 − t4 + + + + + + −−
1 − t2 + + + + + − −−
1/2 + + + + − − −−
t6 + + + − − − −−
t4 + + − − − − −−
t2 + − − − − − −−
0 − − − − − − −−

and M(−1, − si∈c) = M(1,si∈c), which, for ti = 0, reduces
to the majority rule.

The initial probability distribution of the interactions is
given in Eq. (2), and we used Ns = 10 pools of size M =
106. The phase diagram for CB2 cluster is shown in Fig. 8.

FIG. 7. Three-dimensional two-cell cluster. With the cell group-
ing in the figure (solid lines) we refer to it as CB2.

FIG. 8. Phase diagram in the (p,T ) plane of the ±J 3D Ising
model obtained with the block RG transformation using the two cells
clusters CB2 and tCB2 (see text). The dashed line is the Nishimori line.
The t 
= 0 curve is obtained by fixing the values ti by the requirement
Tc(p = 1) = 4.5115.

Once again, only the pure fixed point at p = 1 controlling the
PM-FM transition is found.

For the choice ti = 0 the critical temperature is Tc =
4.0177, which, compared with the estimation from numerical
simulations Tc = 4.5115 [19], has a difference of about 12%.
The scaling exponents of the fixed point are yT = 1.253 and
yh = 2.684, the value of the critical exponents are reported
in Table III. The PM-FM transition line crosses the Nishimori
line at the point pmc = 0.76793 and Tmc = 1.6721, compatible
with the multicritical point obtained for the 3D Ising model
on a the cubic lattice [21]: pmc = 0.7673(4), Tmc = 1.676(3).
Despite this agreement, the transition line, however, does not
show any re-entrance.

When the parameters ti are fixed by the condition Tc(p =
1) = 4.5115 [19], leading to t2 = 0.011, t4 = −0.010, and
t6 = −0.050, the transition line shows a sharp increase of
the slope for p < pmc, yet no re-entrance nor vertical part
is observed, see tCB2 line in Fig. 8. There is still only the
critical point at p = 1 and the crossing with the Nishimori line
does not correspond to a real multicritical point. The scaling
exponent are yT = 1.303 and yh = 2.425, and one observes
a slight improvement of the values of the critical exponents;
see Table III. The condition Tc(pmc) = Tmc is compatible with
ti = 0 and does not give new results.

The 3D Ising model is known to present a multicritical
point where PM, FM, and SG phase meet [14]. Contrarily

TABLE III. FM critical exponents of the 3D Ising model
obtained with the block RG transformation using the two-cell clusters
discussed in the text. For the tCB2 method the values of ti are fixed
by the requirement Tc(p = 1) = 4.5115.

α β γ δ ν η

CB2 −0.3952 0.2521 1.891 8.499 0.7984 −0.3684
tCB2 −0.3015 0.4413 1.419 4.215 0.7672 0.1505
SCB2 −0.8887 0.4944 1.900 4.843 0.9629 0.02693
3D [20] 0.1101 0.3265 1.2373 4.789 0.6301 0.03645
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to numerical simulation predictions, where α = 2 − dν > 0
[20], in both cases we find a negative α, indicating that
in the RG analysis the FM p = 1 fixed point is stable
against the introduction of quenched disorder. Indeed, as noted
above, the RG based on the CB2 cluster fails to locate any fixed
point different from the PM-FM p = 1 critical fixed point.

A. Two-staggered-cubic-cell cluster (SCB2)

As done for the 2D case, to locate the AFM fixed point
we modify the two-cell cluster of Fig. 7 to have a staggered
topology and, hence, to preserve a possible antiferromagnetic
ordering in the renormalization process. The resulting phase
diagram is shown in Fig. 9, line “SCB2.” Now, besides the
FM fixed point at p = 1, a symmetric AFM fixed point at
p = 0 appears. The critical temperature is Tc = 4.5537, closer
to the FM critical temperature found from from numerical
simulations (cfr. Table IV). The scaling exponents for the
FM fixed point are yT = 1.039 and yh = 2.487; see Table III
for comparison of the corresponding critical exponents. The
exponent α is negative, even more than the previous cases,
signaling the absence of other fixed points for 1/2 � p < 1,
according to the Harris criterion [15].

For the AFM critical fixed point we get yT = 1.039 and
yh = 0.6075, while that of the staggered magnetic field is
yh† = 1.487. The re-entrance of the transition line below the
Nishimori line is missing, confirming also for the 3D case the
limitations of the block RG transformation based on the small
cluster scheme.

In conclusion, the phase diagram obtained for the 2D and
3D Ising models are qualitatively similar, with the notable
absence of any SG phase in the 3D case.

The extension to larger cells, similarly to the one discussed
in Sec. II D for the 2D case, becomes readily unfeasible for 3D
lattices. For example, with eight cubic cells one should sum
over the configurations of 43 spins, more than 1014 times the
configurations of the two-cell cluster.

FIG. 9. Phase diagram in the (p,T ) plane of the ±J 3D Ising
model obtained using the two-cubic-cell cluster with ti = 0, line CB2,
and the two-staggered-cell cluster, line SCB2. The dashed line is the
Nishimori line.

TABLE IV. Estimate of the FM critical fixed point and of the
intersection between the PM-FM transition line with the Nishimori
line for the disordered bimodal 3D Ising model obtained using the
two-cell clusters discussed in the text. In the last line we compare
with the values for the 3D Bravais lattice.

Tc (p = 1) pmc Tmc

CB2 4.0177 0.7679 1.672
tCB2 4.5115 0.7562 1.767
SCB2 4.5537 0.7445 1.870
3D [21] 4.5115 0.7673(4) 1.676(3)

However, based on the results of the 2D case, we do
not expect that such an extension would solve the problem
of the SG phase. To catch the SG phase one has to look
for different block RG transformation strategies that account
for SG local order. In particular, spins could not be right
variables to be directly mapped in the RG procedure, since the
local magnetization is not a meaningful parameter for the SG
phase.

IV. CLUSTER RENORMALIZATION GROUP FOR THE
BLUME-EMERY-GRIFFITHS MODEL

In this section we apply the RG analysis to the BEG
model, a spin-1 model introduced for the study of the
superfluid transition in He3-He4 mixtures [22]. The BEG
model was originally studied in the mean-field approximation
in Refs. [22–24]. Finite dimensional analysis has been carried
out by different means, e.g., series extrapolation techniques
[25], RG analysis [6], Monte Carlo simulations [26], effective-
field theory [27], or a two-particle cluster approximation
[28]. Extensions to quenched disorder, both perturbing the
ordered fixed point and in the regime of strong disorder,
have been studied throughout the years by means of a
mean-field approximation [29–31], real-space RG analysis
on Migdal-Kadanoff hierarchical lattices [32,33], and Monte
Carlo numerical simulations [34–37].

Besides a second-order phase transition, the model is known
to display a first-order phase transition associated with phase
separation between the PM and FM phases in the ordered case
and between the PM and SG phases in the quenched disordered
case. This rich phase diagram allows for a structured analysis
of the RG approximations. In particular, we go through a
detailed study of the ordered 2D BEG model, to compare with
the results of Ref. [6], and we show the main properties of the
quenched disordered 3D BEG model, which is a relevant test
model for RG methods of quenched disordered systems.

A. Ordered 2D BEG model

Following Berker and Wortis [6], in the ordered case we
write the BEG Hamiltonian as

− βH({s}) = J
∑
〈ij〉

sisj + K
∑
〈ij〉

s2
i s

2
j − 


∑
i

s2
i

+h
∑

i

si + L
∑
〈ij〉

(
sis

2
j + s2

i sj

)
, (12)
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where si = 0, ± 1. As for the Ising model, we are interested
in the case h = L = 0, but these interactions must be still
considered for the evaluation of the critical exponents. All
the transitions in this model are characterized by two order
parameters: the magnetization m ≡ 〈si〉 and the quadrupole
order parameter q ≡ 〈s2

i 〉, giving the density of magnetic or
occupied sites.

We stress that the BEG model with h = L = 0 reduces
to the Ising model discussed in the previous section in two
separate regions of the phase diagram: in the limit 
 → −∞,
where the holes si = 0 are trivially suppressed, and on the J =
0 plane, where the magnetization is zero and the model reduces
to the Ising model for the spin variable ui ≡ 2s2

i − 1 in the field
hu = K + (ln 2 − 
)/2. The exact mapping between the re-
gion 
 � −1 and the line J = 0,
 = 2K + ln 2 is known as
Griffiths symmetry [38]. A basic requirement for our RG trans-
formation is, consequently, to be equivalent in the two regions
and to reduce to the one previously defined for the Ising model.

We shall consider the block RG transformation based on the
same clusters used for the 2D Ising model, and, in particular
for the SQ2 cluster, we reproduce results coinciding with those
of Ref. [6].

The generalization of the cell projection matrix of Sec. II A
to the spin-1 case is provided by

M(1,si∈c) M(−1,si∈c) M(0,si∈c) si∈c

1 0 0 + + ++
1 − t t 0 + + +−
1/2 1/2 0 + + −−
t 1 − t 0 + − −−
0 1 0 − − −−

1 − t 0 t + + + 0
1 − t 0 t + + − 0

0 1 − t t + − − 0
0 1 − t t − − − 0

1/2 0 1/2 + + 0 0
1/4 1/4 1/2 + − 0 0
0 1/2 1/2 − − 0 0

t 0 1 − t + 0 0 0
0 t 1 − t − 0 0 0
0 0 1 0 0 0 0

This is the most general cell projection matrix that contains
the up-down, Griffiths, and the square symmetries [6]. In
particular, for t = 0 it reduces to the double majority rule:
The majority rule is first applied to the variable ui ≡ 2s2

i − 1
and then, if the magnetic sites are dominant, to si = ±1.

The block RG transformation leads to the renormalized
Hamiltonian for the new spin variables,

− βHR(sa,sb) = α
[
JR sasb + KR s2

as
2
b + LR

(
s2
asb + sas

2
b

)
−
R

(
s2
a + s2

b

) + hR(sa + sb)
]

(13)

with

JR = 1

4α
log

(
x++ x−−

x2+−

)

KR = 1

4α
log

(
x++ x−− x2

+− x4
00

x4
+0 x4

−0

)

TABLE V. Location of all the fixed points of the RG flow for the
2D BEG model obtained with the SSQ2 cluster. The phase transitions
are characterize by the magnetization m ≡ 〈si〉 and the quadrupole
order parameter q = 〈s2

i 〉. The notation for the fixed points is the same
as in Ref. [6], where their complete description is presented.

Fixed point Type J,K,


Higher-order fixed points
C∗ Critical 0.4259,−0.2910,−∞
G∗ Critical 0,1.701,4.096
L∗ Critical end 0.4250,+∞,+∞
T∗ Ordinary tricritical 0.8848,0.9031,3.528
P∗ Special tricritical 0.4994,1.495,3.992

First-order fixed points
Fe∗ Discontinuous m +∞,−∞,−∞
F∗

J ,F∗
K,A∗ Discontinuous m, q +∞,+∞,+∞

F∗
2 Discontinuous q 0,+∞,+∞

Trivial fixed points
Pa∗

+ Sink for m = 0,
large q phase 0,0, − ∞

Pa∗
− Sink for m = 0,

small q phase 0,0, + ∞
S∗ Smooth continuation

between Pa∗
+ and Pa∗

− 0,0, ln 2


R = 1

2
log

(
x2

00

x+0 x−0

)

LR = 1

4α
log

(
x++ x2

−0

x−− x2
+0

)

hR = 1

2
log

(
x+0

x−0

)
, (14)

where xsasb
are the edge factors (6) and α = 4 for the 2D lattice.

Note as in our case h = L = 0 at the beginning and they are
not generated in the RG process. The explicit expressions for
hR and LR are, nevertheless, required to obtain the critical
exponents (cfr. the Appendix).

The evaluation of the stability matrix can be problematic
if the RG flux flows towards a fixed point where one of the
parameters is infinite, e.g., 
 → −∞. In cases like this it is
more convenient to use a variable remaining finite at the fixed
point, e.g., A = e
. The locations of all the fixed points in the
RG flow generated by the block RG based on the SSQ2 cluster
are reported in Table V.

The fixed points C∗, G∗, and P∗ are of particular interest
for testing the RG procedure because they are known exactly.
Moreover, the FM Ising fixed point C∗ and the Griffiths fixed
point G∗ are related to each other. The first occurs for 
 →
−∞, while the second at J = 0, and the Griffiths symmetry
[6,38] imposes the relations

KG∗ = 4JC∗ , 
G∗ = 8JC∗ + ln 2. (15)

These relations are verified by our numerical results. The
FM fixed point C∗ can be used to fine tune the value of the
parameter t in the projection matrix, obtaining t = −0.06453,
the same value found for the 2D Ising model, see Sec. II.
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TABLE VI. Location of the fixed points C∗, G∗, and P∗ for
the ordered 2D BEG model obtained with all the two-cell cluster
discussed in the text compared to the exact results for the 2D lattice.

SQ2 [6] tSQ2 SSQ2 2D

J 0.5275 0.4407 0.4259 0.4407
C∗ K − 0.1618 − 0.2414 − 0.2910 not known


 −∞ −∞ −∞ −∞
J 0 0 0 0

G∗ K 2.110 1.763 1.701 1.763

 4.913 4.219 4.096 4.219

J 0.5822 0.5319 0.4994 0.5026
P∗ K 1.756 1.476 1.495 1.508


 4.678 4.012 3.992 4.020

The completely unstable Potts fixed point P∗ can be used
as an indicator of the precision of the cluster approximation
used in the RG analysis. The position of the point is known to
lie on the axis [6]

K = 3J, 
 = 8J, (16)

where the Hamiltonian (12) has a three-state permutation
symmetry. On this axis the BEG model can be reduced to
the three-state Potts model,

−βH = D
∑
〈ij〉

(
δsi sj

− 1
)

with D =
√

2
J 2 + K2 + 
2

37

and the critical point of the three-state Potts model is at
D = ln(1 + √

3) = 1.0050525 . . . [6]. The location of the
fixed points C∗, G∗, and P∗ are shown in Table VI, and we
note that the SSQ2 cluster gives a better estimation compared
to the SQ2 clusters.

In particular, the location (J,K,
) of the fixed point P∗
deviates from the exact result of about (16%, 16%, 16%) for
the SQ2 cluster, of (6%, 2%, 0.2%) for the tSG2 with t =
−0.06453, and of about (0.6%,0.8%,0.7%) for the SSQ2. In
terms of D this translates into D = 1.1696 for the SQ2 cluster,
D = 1.001535 for the tSQ2, and D = 0.997894 for the SSQ2.

The projection matrix defined above does not preserve the
three-state permutation symmetry on the Potts axis (16), as an
exact RG would do. The distance of the fixed point P∗ from the
Potts axis can then be used as an indicator of the error made
with the cluster approximation used to build the block RG
transformation. The distance of P∗ from the Potts axis, over
its distance from the origin, turn out to be 6 × 10−4 for the
SQ2 cluster, 10−2 for the tuned tSQ2 cluster, and 4 × 10−4 for
the SSQ2 cluster. Note, specifically, that a strong violation
is obtained with the tSQ2 cluster with the “unphysical”
negative t .

Finally, in Table VII, we show the five scaling exponents
for the fixed points G∗, C∗, L∗, and P ∗ (cfr. the Appendix). We
stress as the critical exponents obtained with the SSQ2 cluster
approximation are more precise than those obtained with the
original square-cell cluster SQ2.

Using, alternatively, the free t trick, the critical expo-
nents are more similar to the known exact ones respect
to the staggered-cell-cluster case. Especially, the exactly
known exponents for C∗, G∗, and L∗ are considerably better

TABLE VII. Scaling exponents of the fixed points C∗, G∗, L∗,
and P∗ obtained by means of different cell clusters. The parity of
the scaling exponent index refers to the parity of the interaction.
The exponent y2C = y2G = y2L = 1 corresponds to the thermal
eigenvalue of the Onsager transition (yT ), while the exponent y4G =
y1C = y1L = 1.875 corresponds to the magnetic eigenvalue one (yH )
[6]. The exact critical exponents for the P∗ fixed point correspond
instead to the transition in the three-state Potts model [39].

SQ2 [6] tSQ2 SSQ2 2D

y2 0.7267 0.9419 0.7534 1
y4 −1.0492 −1.644 −0.2714

C∗ y6 −∞ −∞ −∞
y1 1.942 1.870 1.839 1.875
y3 0.3792 −0.3556 0.3408

y2 0.7267 0.9419 0.7534 1
y4 1.942 1.870 1.839 1.875

G∗ y6 −1.834 −1.638 −0.8473
y1 0.5748 0.6628 0.5501
y3 −0.7327 −0.6731 −0.5270

y2 0.7267 0.9419 0.7534 1
y4 2.000 2.000 2.000

L∗ y6 −∞ −0.5095 −∞
y1 1.942 1.870 1.839 1.875
y3 0.2355 −0.3208 0.3428
y2 1.942 1.870 1.854 1.86
y4 0.8327 1.106 0.8958 1.2

P ∗ y6 0.4645 0.5248 0.4383
y1 1.936 1.869 1.837
y3 0.3846 0.5304 0.3021

approached with the tSQ2 cluster. This is not surprising since
t = −0.06453 fixes the exact location for C∗ (and G∗), and we,
then, expect that also the estimates of their scaling exponents
improve. The known exponents of P∗ show, instead, only a
slight improvement.

B. 3D BEG with quenched disorder

In this section we extend the analysis to the quenched
disordered BEG model in three dimensions. The quenched

1

2

3

-2
-1

 0
 1

 2
 3

J
-50

-40
-30

-20
-10

 0

Δ

 0

 0.005

 0.01

 0.015

 0.02

P

FIG. 10. (Color online) Flow of the renormalized probability dis-
tribution P (K) for the disordered 3D BEG model in the paramagnetic
phase: J = 4, K = 0, 
 = 0.4, and p = 0.6 on the SCB2 cluster. The
parameters K and 
† are integrated.

012112-10



SMALL-CLUSTER RENORMALIZATION GROUP IN ISING . . . PHYSICAL REVIEW E 90, 012112 (2014)

disordered 3D BEG model represents a relevant test for
the cluster RG applied to disordered systems. Monte Carlo
numerical simulations [35] show a critical transition line
between the PM phase and a SG phase, which, similarly to
what was found in the mean-field study [29], consists of a
second-order transition terminating in a tricritical point from
which a first-order inverse transition starts. Furthermore, a
re-entrance of the first-order transition line is present for
positive, finite values of the chemical potential of the holes
[31], yielding the so-called inverse freezing phenomenon.
The real-space RG study of Ozcelik and Berker [33] based
on Migdal-Kadanoff cells does not reveal any first-order
phase transitions nor any re-entrance. When the real-space
RG is extended to more structured hierarchical lattices [4]
the re-entrance can be recovered, but no tricritical point and
first-order transition are found.

The Hamiltonian of the disordered BEG model suitable for
the RG study is

− βH = +
∑
〈ij〉

Jij sisj +
∑
〈ij〉

Kij s
2
i s

2
j

−
∑
〈ij〉


ij

(
s2
i + s2

j

) −
∑
〈ij〉



†
ij

(
s2
i − s2

j

)
(17)

where the couplings are quenched random variables with the
probability distribution

P (Kij ) = [(1 − p) δ(Jij + J ) + p δ(Jij − J )]

× δ(Kij − K)δ(
ij − 
)δ(
†
ij ). (18)

If an external field h is added, besides the single site term, one
has to include also the odd interaction term sis

2
j . The model

has been studied using the CB2 cluster shown in Fig. 7 and its
staggered version SCB2 using in both cases Ns = 10 pools of
size M = 106.

Similarly to what was seen in the previous section, only
the PM and the FM phases are found, while the SG phase
remains undetected in the whole phase diagram. Two typical
flows of the probability distribution towards the PM and FM
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FIG. 11. (Color online) Flow of the renormalized probability dis-
tribution P (K) for the disordered 3D BEG model in the ferromagnetic
phase: J = 4, K = 0, 
 = 0.4, and p = 0.7 on the SCB2 cluster. The
parameters K and 
† are integrated.
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FIG. 12. (Color online) PM-FM critical surface in the
(T ,
/J,p) parameter space for the 3D BEG model with
K = 0 obtained with the SCB2 cluster.

fixed points are shown in Figs. 10 and 11. In the PM phase the
average value of Jij goes to zero, while in the FM it moves
towards +∞. In both cases the distributions become narrower
and narrower under the block RG transformation.

The PM-FM critical surface in the space (T ,
/J,p) for the
K = 0 case obtained with the SCB2 cluster is shown in Fig. 12.
All the points on the critical surface flow under RG towards
one of the two ordered fixed points at p = 1 with mean value
μ
 → ±∞ and variance σ 2


 → 0. The analysis of the critical
properties is then reduced to the study of an ordered model.
In particular, the fixed point at μ
 = −∞ corresponds at the
critical fixed point of the 3D Ising model discussed in Sec. III.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented an extension of the
real-space cluster RG method with two cells proposed by
Berker and Wortis [6] by considering a staggered topology for
the clusters. This not only makes the antiferromagnetic phase
detectable but also leads to an improvement of the estimates of
the critical exponents and of the location of the critical points
for both the Ising and BEG models.

The two-staggered-cell cluster appears to be more reliable
also with respect to the tuned version of the square-cell-cluster
approach where one, or more, free parameters in the cell
projection matrix are fixed by the knowledge of some points
in the phase diagrams. The latter tuning method is not only
less predictive, requiring as input some known points, but
also it may lead to an “unphysical” projection matrix [6]. We
have seen, indeed, that in certain cases, for example, when
fixing the critical temperature of the 2D Ising model to the
exact value, the resulting projection matrix assigns a negative
contribution to some spin configurations to the partition sum. A
choice not providing any physical insight. The staggered-cell
cluster, instead, is physically motivated: the invariance of an
antiferromagnetic ordering under RG. It is remarkable that this
request not only allows us to study the critical properties of
the Neèl transition but also quantitatively improves the results
for the pure ferromagnetic models.

We observe that these results for the pure models are directly
valid for a percolation problem: Defining an occupation
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variable as ε12 = (σ1σ2 − 1)/2, the relative percolation thresh-
old is achieved at pc = 1/(1 + e2βc ).

We have then reported the results of the extension of the
cell-block RG transformation to quenched disordered systems.

We have established that, in two dimensions, even in the
staggered version, the results are not consistent with exact
results for the corresponding regular lattice. In particular, the
ferromagnetic phase is detected also beyond the intersection
with the Nishimori line. In this case we have also considered
the extension to four-cell clusters. Although the approximation
is not systematic, with a square-cell arrangement a clear
improvement is achieved in the pure model. We observe that
a four-cell cluster is the minimal requirement to preserve
possible plaquette frustration in presence of bond disorder
under the RG process, which is necessary to identify a
spin-glass critical point (at T = 0 in 2D). Our investigation
shows that the requirement, though necessary, is nonsufficient.
Indeed, the phase diagram of four-cell clusters, besides a minor
improvement in the slope of the critical line, shows the same
features of the two-cell case.

In the three-dimensional case, a similar scenario is obtained:
In the pure case the staggered version shows a clear improve-
ment, while the quenched disordered extension is ineffective
and the expected spin-glass phase remains undetected for both
the Ising and BEG models.

This failure follows previous attempts of generalizing real-
space RG methods conceived for ordered systems to disordered
systems. The generalization to disordered systems has led in
the past to ambiguous results. On the one hand, the cumulant
expansion [40,41] has provided evidence for a spin-glass phase
in dimension 2 that is lower than the lower critical dimension
2.5 [42–44]. On the other hand, however, the attempts to extend
the block RG transformation on spin clusters did not yield any
spin-glass fixed point, even in dimension 3 [40].

The lack of a spin-glass phase in our scheme is also related
to the incorrect location of the boundary of the ferromagnetic
phase in the disordered region. We have shown, indeed, that in
the disordered Ising model the ferromagnetic phase also enters
the region forbidden by Nishimori’s gauge theory. This occurs
with all clusters used. The problem is only partly mitigate when
the tuned cluster is used, cfr. Figs. 3 and 8, and its uncontrolled
nature does not allow for any further physical insight. A
milder, but more recognizable, attenuation is obtained with
the four-cell cluster, cfr. Fig. 4. In this regard, we stress
here that the correlation generated by the RG transformation
among different types of couplings cannot be disregarded.
In particular, taking the naive approximation P (J,K,
) �
P (J )P (K)P (
), and so using three independent pools for the
three kinds of interaction, the PM-FM transition line becomes
straight, which does not differ from what found with the
SQ2 cell. Nevertheless, our analysis shows that parameter
correlation is only one of the necessary ingredients and that
the limitations of the block RG study of disordered models are
not due to the truncation process of the interactions but mostly
to the nature itself of the block-cell construction.

The connection between the problem in the ferromagnetic
critical line and the detection of the spin-glass phase is
highlighted by looking at the single RG flow: The variance
σ 2

J of the probability distributions goes quickly to zero in all
the detected phases. This does not happen, for example, in the

real-space RG on the hierarchical lattice [4] where the variance
σ 2

J of the couplings increases in the FM phase, even though
σJ /μJ → 0, and the spin-glass phase is detected as the region
of the phase diagram where σJ /μJ → ∞. It is clear that,
in order to build a valuable generalization of the RG cluster
method to strong disorder, the first step is to obtain the correct
evolution of the FM phase for weak disorder.

Further issues take place when the extension to strong
disorder is considered. In particular, the improvement achieved
with the staggered-cell clusters shows that, to correctly detect
the antiferromagnetic phase, it is essential that the ground state
of the system is invariant under the RG transformation. In the
strong-disorder regime this requirement becomes harder to
satisfy, as the frustration causes a proliferation of nontrivial
degenerate ground states.

The present analysis makes eventually clear that, while the
cell-block RG method works well for pure, ferromagnetic or
antiferromagnetic, systems, the generalization to the case of
strong disorder calls for a different procedure for the block RG
transformation.

The renormalization via the majority rule, or its tuned
improvement, yields a local magnetization of the coarse-
grained cell. This is meaningful as far as magnetization is
the relevant order parameter of the transition. In the spin-glass
transition, though, magnetization is zero and the relevant order
parameter is the “replica” overlap. The overlap allows us,
in particular, to take into account the ergodicity breaking
caused by frustration, as it may translate into the replica
symmetry breaking of the appropriate overlap probability
distribution. To put forward a renormalization procedure based
on the overlap coarse graining one has, thus, to resort to
replicated clusters. More instances of the system should,
then, be renormalized together via the value of the mutual
overlap. Such a generalization, and its numerically feasible
implementation, is currently under investigation.
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APPENDIX: RG STABILITY MATRIX FOR
THE BEG MODEL

The critical exponents areobtained from the eigenvalue of
the stability matrix ∂KR/∂K evaluated at the fixed point K∗.
For the BEG model K = {J,K,
,L,h} and the elements of
the stability matrix are

∂JR

∂K = 1

4α

(
x ′

++
x++

+ x ′
−−

x−−
− 2x ′

+−
x+−

)

∂KR

∂K = 1

4α

(
x ′

++
x++

+ x ′
−−

x−−
+ 2x ′

+−
x+−

+ 4x ′
00

x00
− 4x ′

+0

x+0
− 4x ′

−0

x−0

)

012112-12



SMALL-CLUSTER RENORMALIZATION GROUP IN ISING . . . PHYSICAL REVIEW E 90, 012112 (2014)

∂
R

∂K = 1

2

(
x ′

+0

x+0
+ x ′

−0

x−0
− 2x ′

00

x00

)

∂LR

∂K = 1

4α

(
x ′

++
x++

+ 2x ′
−0

x−0
− x ′

−−
x−−

− 2x ′
+0

x+0

)

∂hR

∂K = 1

4

(
x ′

+0

x+0
− x ′

−0

x−0

)
,

where x ′
σaσb

= ∂xσaσb
/∂K and α = 2d, with d as the space

dimension. The derivative of the Boltzmann factors can be
expressed as

∂xσaσb

∂J
=

∑
s

MaMb

[
α

∑
〈ij〉

sisj

]
e−βH(s)

∂xσaσb

∂K
=

∑
s

MaMb

[
α

∑
〈ij〉

s2
i s

2
j

]
e−βH(s)

∂xσaσb

∂D
=

∑
s

MaMb

[
−

∑
i

s2
i

]
e−βH(s)

∂xσaσb

∂L
=

∑
s

MaMb

[
α

∑
〈ij〉

(
s2
i sj + sis

2
j

)]
e−βH(s)

∂xσaσb

∂h
=

∑
s

MaMb

[ ∑
i

si

]
e−βH(s),

where Mx ≡ M(σx,si∈x) are the cell projection matrices.
When the fixed point is at L = h = 0, the even and odd

couplings decouples and the stability matrix is block-diagonal,
with a 3 × 3 block for even couplings and a 2 × 2 block for
odd ones.

The scaling exponents controlling the stability of the fixed
point are yi = logb λi , where λi are the eigenvalues of the
stability matrix evaluated at the fixed point, and b is the scaling
factor of the RG scheme, b = 2 in this work.
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