ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

Diluted mean-field spin-glass models at
criticality

G Parisi'?, F Ricci-Tersenghi'? and T Rizzo®

! Dipartimento di Fisica, IPCF-CNR, UOS Roma, Italy

2 INFN, Sezione di Romal, Universita ‘La Sapienza’, Piazzale Aldo Moro 2,
1-00185, Rome, Italy

3 JPCF-CNR, UOS Roma, Universita ‘La Sapienza’, Piazzale Aldo Moro 2,
1-00185, Rome, Italy

E-mail: giorgio.parisi@romal.infn.it, federico.ricci@romal.infn.it and
tommaso.rizzoQinwind.it

Received 9 January 2014
Accepted for publication 24 February 2014
Published 17 April 2014

Online at stacks.iop.org/JSTAT /2014/P04013
doi:10.1088/1742-5468 /2014 /04/P04013

Abstract. We present a method derived by cavity arguments to compute the
spin-glass and higher order susceptibilities in diluted mean-field spin-glass models.
The divergence of the spin-glass susceptibility is associated with the existence
of a non-zero solution of a homogeneous linear integral equation. Higher order
susceptibilities, relevant for critical dynamics through the parameter exponent
A, can be expressed at criticality as integrals involving the critical eigenvector.
The numerical evaluation of the corresponding analytic expressions is discussed.
The method is illustrated in the context of the de Almeida—Thouless line for a
spin glass on a Bethe lattice but can be generalized straightforwardly to more
complex situations.

Keywords: classical phase transitions (theory), cavity and replica method,
disordered systems (theory), spin glasses (theory)

ArXiv ePrint: 1401.1729

(© 2014 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/14/P04013+4-21$33.00


mailto:giorgio.parisi@roma1.infn.it
mailto:federico.ricci@roma1.infn.it
mailto:tommaso.rizzo@inwind.it
stacks.iop.org/JSTAT/2014/P04013
http://dx.doi.org/10.1088/1742-5468/2014/04/P04013
http://arxiv.org/abs/1401.1729

Diluted mean-field spin-glass models at criticality

Contents

1. Introduction 2

2. Outline of the results 3

3. The equation for the critical point 5
3.1. Derivation of the equation. . . . . . . . . . . .. ... )
3.2. Solving the critical equation. . . . . . . . . . ..o 7
3.3. The zero temperature limit . . . . . . . . . . .. .00 11

4. Six-point susceptibilities at criticality 14

5. Conclusions 18
Acknowledgments 18
Appendix. The SK limit at finite and zero temperature 18
References 20

1. Introduction

In disordered magnetic systems the spin-glass (SG) singularity occurs by definition for
those values of the external parameters where the spin-glass susceptibility diverges [1]. The
computation of this four-point correlation function in the paramagnetic phase is therefore
tantamount to the location of the phase transition. Higher order (six-point) susceptibilities
also play an important role because they determine the function ¢(z) quantitatively in the
replica-symmetry-breaking phase in the vicinity of the critical point [2, 3]. Recently, it has
been discovered that they also determine the non-universal dynamical critical exponents
quantitatively [3]-[7]. Furthermore, the same equilibrium susceptibilities are important for
off-equilibrium behavior [8, 9]. In this paper we discuss the problem of the computation
of these susceptibilities in mean-field spin-glass models with finite connectivity.

In mean-field spin-glass models, both fully connected and with finite connectivity, one
can use the replica method in order to write down a saddle-point expression for the free
energy and determine the location of the phase transition in parameter space by studying
the stability of the paramagnetic solution. In fully connected models, like the Sherrington—
Kirkpatrick (SK) model, the order parameter is an n x n matrix and this program can be
completed both in the paramagnetic and in the spin-glass phase [1]. In the case of models
with finite connectivity the replicated order parameter is a more complicated object and
the computations are more difficult [10]; on the other hand, one can exploit the (local)
tree-like structure of the corresponding graphs and apply the cavity method instead, thus
avoiding replicas [11].

By means of the cavity method it is rather easy to obtain a self-consistent equation for
the order parameter which, in the paramagnetic phase, is a probability density of the local
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cavity fields. However, the self-consistent equation and its solution are perfectly regular
at the SG transition and cannot be used to locate it (except in the case of strictly zero
external field). Previous studies in the context of the replica method have shown that
the critical point is associated instead with the solution of certain integral equations [12,
14], and the same equations have also been rederived in the context of the cavity method
[13]. The cavity method derivation relies essentially on joint iterative equations for the
fields and the susceptibilities, a technique that was originally developed for the study
of the number of metastable states on locally tree-like models [15]. The derivation also
allows one to understand the connection between the integral equations and numerical
methods based on coupled systems which allowed the first quantitative description of the
region of validity of the paramagnetic phase [19]. In this paper we present an alternative
cavity method derivation of these integral equations and discuss their numerical solution
down to zero temperature. This discussion is instrumental to the main new result that we
report here, i.e. the expression, derived by cavity arguments, of the two static six-point
susceptibilities that control the critical dynamics.

We will illustrate the method in the context of the de Almeida-Thouless (dAT)
transition on an Ising SG defined on a random lattice with fixed connectivity, but it
can be generalized straightforwardly to more complicated models in order to obtain the
corresponding expressions for the same six-point susceptibilities. These extensions include,
e.g., Potts spins, fluctuating connectivity and p-spin interactions. The method can also
be applied to different kinds of SG phase transitions including notably some instances of
discontinuous replica-symmetry-breaking transitions that display the phenomenology of
structural glasses.

The plan of the paper is as follows. In section 2 we will present the results in a concise
way together with their physical motivations. In section 3 we will derive the integral
equation condition and we will discuss its numerical solution down to zero temperature.
In section 4 we will present the derivation of the six-point susceptibilities and use it to
determine them on the dAT line in the case of an SG model with connectivity ¢ = 4. In
section 5 we give our conclusions. In the appendix we report the detailed analysis of the
high-connectivity (SK) limit.

2. Outline of the results

The spin-glass transition is characterized by the divergence of the spin-glass susceptibility
xsq defined as

xsa = 5 2 [owsr) — G )P (1)

where the angular brackets mean thermal average and the overline means disorder average.
The dynamics is also critical at the phase transition. In particular, the time decay of
the correlation C(t) = N~ 32V (5,(0)s;(t)) is exponential in the paramagnetic phase but
becomes power-law at the critical point

O(t) = qoa + (2)
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where gga is the Edwards—Anderson parameter. It has been recently established [3]
that the dynamical exponent a can be computed from the ratio of two static six-point
susceptibilities; more precisely we have

M(l—-a)  w

[(1—2a) w (3)

where I'(z) is the Gamma function and ws, w; are defined as

P D LT R AR R AR (4)

ijk

Ty 3 a2 ®)

ijk

Wa

where the suffix ¢ means connected correlations [3]. Note that in the literature the so-called
parameter exponent ) is often introduced, which controls a through I'*(1—a)/T'(1—2a) =
A; in terms of A\ equation (3) reads A = wy/w;. Besides these more recent developments it
is known [1, 2, 9] that the very same ratio wq/w; is equal to the position of the breaking
point in continuous RSB transitions. For instance, in the RSB phase near the dAT line
(which will be studied in the following) this ratio is precisely equal to the point x where
the function ¢(z) displays a continuous part. We will provide a general method to obtain
the expressions of ysq, w1 and wo in models with finite connectivity.

In finite-connectivity models the paramagnetic phase can be described through a self-
consistent equation for the distribution of the fields. In the following we specialize to the
case of Ising spins in the presence of a field H interacting by means of two-body quenched
couplings J;; on a random regular graph, i.e. a random graph with fixed connectivity
¢ = M + 1. In the following, with a slight abuse of notation, we will also refer to this kind
of graph as a Bethe lattice. The relevant iterative equation is [11]

Plu) = / Pag(unr) dus 3(u — a(J, ups + ) (6)

with the overline being the average with respect to the distribution of the quenched
coupling J and

a(J, h) = %arctanh(tanh pJ tanh Sh). (7)

The function P,; is the distribution of the sum of M independent fields, each one
distributed according to P, i.e.,

P (u) = /HP(ul)dul ) (u — Zul) ) (8)

We will show that the dAT line, where by definition ygg diverges, is specified by the
condition that the following homogeneous linear equation admits a non-zero solution g(u):

da(J,uy + H)\?
T
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where the derivative inside the integral reads

da(J,h)  [tanh(B.J) — tanh(3h)]? (10)
dh [l —tanh(Bh)]2tanh(B.J)"
Then we will show that the six-point susceptibilities needed to determine the parameter
exponent at criticality can be expressed in terms of the eigenvector g(u) of the integral
equation (9). More precisely, one obtains
wy _ ((2mf(1 —mi)?))

o (= md) "

where
mo = tanh Sluy + ug + ug + upr—2 + H)| (12)

and
((---)) = / duy dug duz duns—o g(ur)g(u2)g(us) Payr—o(upr—2) - - (13)

Note that since equation (9) is homogeneous the eigenvector g(u) is specified up to a
normalization constant but the ratio wy/w; is independent of it.

As discussed in [3, 4], the connection between the parameter exponent A and the ratio
wo/wy is rather general and holds not only for the SG transition in a field but also in
the case of discontinuous SG transitions described dynamically by the mode-coupling-
theory phenomenology. Furthermore, it has been shown that the ratio ws/wy also plays a
crucial role in off-equilibrium dynamics [8, 9]. In order to realize these different types of
transitions one can consider, for instance, SG models with p-spin interactions or with Potts
spins. Although in this paper we shall only consider the case of Ising spins with two-body
interactions on fixed-connectivity graphs, we stress once again that analogous expressions
can be obtained in more complex situations through straightforward extensions of the
cavity arguments used in the following.

We note that the expression for the susceptibility can also be generalized. Indeed,
the above equation for the critical condition is an instance of a sequence of eigenvalue
equations of the general form

da(J, ups + H))k 14)

prg(u) = /duM duy Par—1(ups — u1)g(ur) 5(“ —a(J,un + H)> ( dH

that can be used in order to obtain higher order moments of the susceptibility; see [18]
where this method has been applied in order to study the multi-fractal distribution of
connected correlations at large distance.

3. The equation for the critical point

3.1. Derivation of the equation

A derivation of the condition (9) by means of the cavity method has been given in [13].
In this section we will present an alternative derivation which is the key to unveiling
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the connection between the critical eigenvector and the computation of the six-point
susceptibilities (which are also related to cubic cumulants of the order parameter). Our
starting point is the spin-glass susceptibility which, due to the average over disorder, can
be rewritten with respect to a given site s of the Bethe lattice as

— dmg 2
_ N2 = 15
vo = Xl = 3 () (15)
where my is the magnetization of the root sy and H; is a local field on site i. For a given
site ¢ we define its father j = F'(i) as the spin j € 90, with 00 being the set of neighbors
of 0, such that ¢ is connected to 0 through j. On the other hand, the magnetization on
the root can be written as

moy = tanh Bho, h[) = HO -+ Z Uj—0 (16)
j€00

where u,;_,o is by definition the field acting on site zero when all its neighbors except j are
removed (in the language of computer science it would be the message passed from site j
to site zero). Therefore, we have

dmo . 2 duj%O
am, ~ ),

j=F(i). (17)

Due to the locally tree-like nature of the lattice, the field u;_,¢ is influenced only by a field
on one of its sons i € S(j), defined such that j = F(7); therefore, we may write

Z<%> =(-mp) 142 3 (duﬁO) (18)

Jj€00 keS(j

where in the above expression the 1 is present in order to take into account the case in
which the site ¢ is the root itself. At this point we introduce the following physical object
in order to average over the disorder:

=t —u0) 3 (M) (19)

kesS(4)

In principle, we should have written x,(u), but the difference between different branches
has disappeared due to the disorder average. In physical terms y(u) is essentially the spin-
glass susceptibility of a given branch conditioned to the fact that the value of the field
u;0 is u. Indeed, using equation (18) we can see that the total xsg can now be written
as an integral of x(u) over possible values of u,

XsG = /PM+1(U)[1 — tanh?(BH + Bu))? du
+(M+1) /PM(u’)X(u”)[l — tanh?(BH + B(u' + u"))]* du’ du”. (20)

doi:10.1088,/1742-5468,/2014,/04/P04013 6


http://dx.doi.org/10.1088/1742-5468/2014/04/P04013

Diluted mean-field spin-glass models at criticality

Performing essentially the same steps as for the total ysg one can obtain the following
iterative equation for the function x(u):

() = / Par () 6 — i, + H)] (W)de

M / Par () x ()

da(J,w +u" + H)
dH

2
X 0lu — u(J, v +u" + H)] ( ) du’ du” (21)
where we have used the definitions of section 2. Note that we need the whole function
x(u) in order to write the iterative equation and this why we introduced it in the first
place. The above equation can be solved, leading to a finite x(u) and xsq, provided
that the linear system is invertible. This is not possible, meaning that we are at a critical
point, if the corresponding homogeneous linear system, i.e. equation (9), admits a non-zero
solution, thus completing our argument. The function y(u) diverges at the critical point
and standard arguments tell us that the critical eigenvector g(u) controls its divergence.
More precisely we have

o) (22)

x(u) o

where 7 depends on the external parameters (e.g. temperature and field) and vanishes
linearly at the critical point.

3.2. Solving the critical equation

Now we want to show how to actually solve equation (9) and to connect it to the original
method for computing the dAT line. The standard way to compute P(u) from equation (6)
is by population dynamics: the function P(u) is approximated by a population of N
fields, P(u) = N—! Zfil d(u — u;), which plugged into the rhs produces a new sum of
delta functions, which is a new population. On iterating this process several times the
population may converge to a good approximation for the P(u) that solves the self-
consistency equation (6).

The computation of g(u) from equation (9) is not straightforward. Indeed, if both P(u)
and g(u) are approximated by populations, then the rhs of equation (9) would result in a
weighted population, due to the extra factor

[tanh(B.J) — tanh(Su)]? )2
[1 — tanh(fu)]? tanh(8J) )

f(BI, pu) = (

Working with a weighted population is not a good idea, because if the weights become
very different, then the effective size of the population gets reduced. Just to illustrate the
concept with an extremal case, if half of the population elements get a null weight the
effective size of the population gets reduced by at least a factor of 2.

The problem of solving a self-consistent integral equation containing a reweighting
term f(5.J, Bu) is not new, as it appears, e.g., in 1RSB equations obtained by the replica

doi:10.1088,/1742-5468,/2014,/04/P04013 7
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method [16] or the cavity method [11] and even in more complicated equation obtained
by the replica cluster variational method [17].

A possible way to solve these equation is that of discretizing the g(u) by approximating
it with a histogram of N bins. The fact that equation (3) is linear in g(u) implies that
the equations for the N heights of the histogram bins are again linear. In practice, one
should compute the largest eigenvalue of a random N x N matrix that depends on the
fixed point P(u) (which can be kept as a population); when this eigenvalue equals 1 then
equation (9) is satisfied and the system is at the critical point.

We prefer to approximate g(u) by a population (as we always do for P(u) as well) and
we devise two different methods for solving equation (9).

In the first method, the factor f(5J, fu) is interpreted as the probability that the
newly generated element should be included in the new population representing g(u). In
the present case we have that 0 < f(fJ, Bu) < 1 and so the interpretation as a probability
is straightforward. In more complicated cases [18], the reweighting factor may be larger
than 1 and in that case more than one copy of the same new element should be eventually
included in the new population. If this is the case, we suggest that the new population
should be made larger than the old one, and then it should be filtered by randomly
choosing its elements; in this way a much smaller fraction of twin elements will finally
remain in the new population and the information content of the population is preserved.

The second method is essentially equivalent to the original method invented to identify
the location of the dAT line in sparse models [19]. Each cavity field u; is perturbed by an
infinitesimal quantity du; and the evolution of the pairs (u;, du;) is followed according to
the belief propagation (BP) equations. Thanks to the symmetry of the interactions, we
have that (du;lu; = u) = 0 for any u value and the interesting quantities to look at are
the variances, which evolve under BP by the following equation:

(Su?|u)iq = M/du1<5u2|u1)t
M B M [tanh(5J) — tanh(Bu)]? \>
X 1‘! dP(u;) & (u - u(J, H+ Zl u)> ([1 —anh(Fu)? tanh(,@J)) (23)

which corresponds to equation (9) by equating g(u) = (du?|u; = u) in the large time limit.
Equation (23) has a non-zero solution only at the critical point. Therefore, in order to
measure g(u) = (du?|u) also away from the critical point one can renormalize it at each
BP step, and this corresponds to solving the following equation:

g(u) = uM/dul g(u1)
- ~ - tanh(8.J) — tanh(Bu)]?
. gdp (w:) 0 (“ —a(JH+ ;”)) ([1 - tanh(ﬂu)]Qtanh(ﬂJ)) (24

where pu is the inverse of the normalization factor in the large time limit. The above
equation no longer depends on time, but only involves asymptotic quantities and the
new parameter p. It admits a non-zero solution at any temperature and external field.
Interpretation of equation (24) is straightforward: in the high temperature paramagnetic

doi:10.1088,/1742-5468,/2014,/04/P04013 8
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1 15 2

T T
Figure 1. Left panel: critical dAT line for a spin-glass model with couplings
Jij = £1 and external field h on a random regular graph (Bethe lattice) of fixed

degree M + 1 = 4. Right panel: maximum eigenvalue p of the integral kernel in
equation (24) computed along the blue line in the left panel (H = 0.7).

phase p < 1, so any perturbation goes to zero exponentially as p' and the BP fixed point is
stable; in the low temperature spin-glass phase p > 1, a perturbation grows as u! and the
BP fixed point is unstable (indeed the correct solution is provided by an Ansatz breaking
the replica symmetry).

In practice, after having computed the P(u) from equation (6) by population dynamics,
we solve equation (24), by one of the two methods described above, and we compute the
maximum eigenvalue p of the integral kernel and the corresponding eigenvector g(u).

We present data obtained for a spin-glass model (J;; = £1 with equal probabilities
and uniform external field h) on a random regular graph (Bethe lattice) with fixed degree
M + 1 = 4. The dAT line for this model was already presented in [20] and is reproduced
in figure 1 (left panel) for completeness. In figure 1 (right panel) we show the maximum
eigenvalue 1 as a function of the temperature at a fixed field H = 0.7 (horizontal line in
the left panel); the behavior is exactly that discussed above.

In figure 2 (upper panel) we show the fixed point distribution of cavity fields, P(u), at
several temperatures and fixed external field H = 0.7 (please note that the y axis is in log
scale). It is worth noticing that the P(u) becomes broader by lowering the temperature,
but has no particular change at the critical temperature, T.(H = 0.7) = 0.7353, and finally
becomes singular at zero temperature (we comment more on this below). In figure 2 (lower
panel) we show the eigenfunction g(u) corresponding to the maximum eigenvalue p. It is
worth noticing that these functions are even smoother than the corresponding P(u) and
even in the 7' = 0 limit g(u) remains continuous, although with steps (further comments
are given below).

The method presented in this paper is perfectly suitable for the study of critical
properties of disordered models defined on random graphs. Indeed, the functions P(u) and
g(u) are well defined on the entire critical line and smooth enough (infinitely differentiable)
for any 7' > 0. Even at T' = 0 they are well defined distributions, which lead to smooth
physical observables, once integrated over.

doi:10.1088,/1742-5468,/2014,/04/P04013 9
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Figure 2. Fixed point P(u) (upper panel) and g(u) (lower panel) for H = 0.7 and
several temperatures (including 7' = 0).

In figure 3 we show these functions computed at several points along the critical line,
including the T' = 0 critical point for g(u). Actually, in the lower panel of figure 3 we
have included three different g(u)s computed at 7' = 0 with field values which are all
compatible with our best estimate for the critical field, H. = 1.534(1). The comparison
of these three distributions should make the reader aware of which features of the
critical g(u) at T" = 0 are robust with respect to very small field fluctuations and which
are not.

Once we have the process for computing the critical distributions P(u) and g(u) along
the entire critical line under control, we can use the resulting data to estimate universal
quantities of physical interest.
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Figure 3. Fixed point P(u) (upper panel) and g(u) (lower panel) for several
points along the critical dAT line, indexed by the corresponding field value. The
lower panel also shows the g(u) computed at T' = 0 with three field values, all
compatible with our best estimate for H, = 1.534(1).

3.3. The zero temperature limit

The computation of the functions P(u) and g(u) at T" = 0 requires some more care,
because these functions may develop singularities. The BP equation to be satisfied by the
cavity field population P(u) is the following:

P(U):/HP(Ui)5<U_’&J (H—i—Zul)) (25)

with 4y(x) = sign(Jx)min(|z|,1), where we have assumed |J| = 1 without loss of
generality. The function @ essentially moves the weight of fields such that |H + ", u;| > 1

doi:10.1088/1742-5468 /2014 /04/P04013 11
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Figure 4. Fixed point P(u) for T'= 0 and several external fields.

on the extrema of the allowed domain u € [—1, 1]. Therefore, the fixed point function P(u)
is a distribution with at least two delta functions in . = 1 and —1. Depending on the value
of the external field H, further delta peaks are present in P(u) at values u = n|J| + mH
with integer valued n and m.

In figure 4 (upper panel) we show distributions P(u) computed at T = 0 with H
being a multiple of A = 0.2, and the presence of peaks equally spaced by A is evident.
Such a regularity in peak location is present only if the external field and the coupling
interaction can be written as H = ny A and |J| = nyA, with integer valued n; and nsy, and
A being the peak distance. For example, in figure 4 (lower panel) we show distributions
P(u) computed with an external field that does not satisfy the above requirement, and
indeed the peaks have less regular positions.
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Figure 5. Maximum eigenvalue p of the 7' = 0 integral kernel in equation (26) as
a function of the external field H.

What is more interesting to notice is the continuous part between the peaks; this
‘background’ only exists in the low temperature spin-glass phase where the replica
symmetry should be broken, as was already noticed in [21]. The reason for this is simple:
in the paramagnetic phase (where the RS solution is exact) the distribution P(u) made
of A-spaced delta peaks solves the BP equations and is stable with respect to small
perturbations. What was less obvious is that starting from a generic initial condition
(e.g., we start with a distribution uniform in [—1,1]) the population dynamics algorithm
always converges to this solution in the paramagnetic phase. In the spin-glass phase the
presence of the continuous part in P(u) is due to the instability of the Dirac deltas with
respect to any perturbation; the only compromise is the coexistence of these delta peaks
with a continuous part. We have checked that, as expected, the weight of the continuous
part goes to zero at the critical point, which can be easily identified by study of the largest
eigenvalues 1 of the following linear integral equation:

g(u) = MM/PM_l(uM —uy)g(uy) dupys duy 8 (u — (ups + H)sign J) 0(|J] — Juas + H|).
(26)

The largest eigenvalue p computed at T' = 0 as a function of the external field is shown in
figure 5 and provides the following estimate for the critical field: H.(T' = 0) = 1.534(1).

At T = 0 the eigenvector g(u) presents Heaviside steps where the corresponding P(u)
has Dirac deltas. We show in figure 6 the distributions g(u) computed at the same field
values as in figure 4. In general, the distribution g(u) is less singular than the corresponding
P(u). We observed that g(u) becomes more singular on approaching the zero temperature
critical point (see figure 3 and related comments below).

It is interesting to consider the large M limit of the dAT line. At finite temperature one
expects to obtain the standard dAT line of the Sherrington—Kirkpatrick model. However,
while the dAT line of the SK model has Hyar(0) = oo at zero temperature, in diluted
models Hgar(0) is finite at any finite value of M that diverges in the large M limit. In
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Figure 6. Fixed point g(u) for T' = 0 and several external fields.

order to characterize this behavior we will have to first take the 8 — oo limit and then
the M — oo limit. The final result, derived in the appendix, is

U
s Xp | ——=| .
MY2 \for T2 2.J?

Therefore, Hyar diverges with M as Haar = V.J2 In M.

(27)

4. Six-point susceptibilities at criticality

In this section we will derive expressions for the two six-point susceptibilities w; and ws,
whose ratio is directly related to the dynamical exponents according to equation (3). We
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start with the computation of w;, whose definition is

w) = %Z (si57)c(j5k) e (Sk5)e- (28)

ijk

We will see that w; diverges at criticality as 772 where 7 is the same as in equation (22).
In order to compute (;5;)c(s;Sk)c(sksi)c we will consider only the case in which the three
indices are different. Indeed, one can check at the end that this is the only relevant case at
criticality, because the remaining two cases give contributions that either are not diverging
or are diverging with a power less than 773.

Let us label the spins sq, so and s3, and let us denote by sg the spin where the three
paths on the tree that connects the spins s, s and s3 join. This does not include the case
in which, say, spin s; lies on the line connecting spins s, and s3, but it can also be argued
that this gives a less divergent contribution and can be neglected at the critical point.
We also denote by s/, so and s3 the neighbors of sg on the branches where s, s, and s3

respectively lie. Now let us consider the connected correlation

1 dm2

(s189)c = G, (29)

Given the locally tree-like nature of the graph the response of ms would be the same in
the presence of an external field on site sy proportional to the derivative of the field passed
from sy, to sg,

de o dmg dU1/_>0

dH, ~ dH, dH, (30)
On the other hand, we have

dmg dmo dmo du2/_>0 2 du2/_)[)

A, ~ A, aH, dm, 4T M), (31)

where my is the magnetization of site sy induced by the global cavity field acting on it,
moy = tanh BHUa H() = Z Ui—0- (32)
i€d0
Putting everything together, we arrive at the following useful relationship:

dug 0 duy o

dH, dH;

(s152)c = (1 —my) (33)

Using the above relationship for (s1s3). and (sys3). we finally obtain

du ’ 2 du ’ 2 du ’ 2
(1 o2\3 250 150 3750
(s152)c(8283)c(s351)c = (1 — mg) ( a7, ) ( AT, ) ( i, ) . (34)

In the next step we have to average the above expression over the disorder and the
positions of sites sq, so and s3 and the N possible values of the central spin sq. It is clear
that the three terms duys_o/dHy, duy_o/dHy and duz _,o/dH3 are uncorrelated between
each other; however, they are correlated with the corresponding messages uy/_.o, ug o and
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us_. Therefore, we can perform the integration over them with the help of the function
X(u) defined in equation (19). In the end we arrive at the following expression:

L M+1
N l;«%;ék (8i8j)c(SiSk)c(SkSi)e = ( 3 ) /dU1 dug dus dupr—o
X x(u1)x(u2)x (us) Par—2(unr—2) (1 — mg)® + o(77?) (35)

where
mo = tanh Buy + ug + ug + upr—o + H] (36)

and Py;_o(up—o) is the distribution of the sum of M — 2 fields distributed independently
according to the function P(u). According to equation (22), at criticality the joint
susceptibility x(u) diverges and can be written as a solution g(u) of the homogeneous
equation (9) times a constant diverging as the inverse of the distance from the critical
point 7. Then, it follows that w; diverges as 773. We stress that the above expression is
only valid at leading order and we can now show that the cases we did not consider give
contributions that are less divergent at criticality. It is immediate to verify that the case
in which the three spins are equal gives a contribution that remains finite at criticality.
The case in which only two spins are equal can be obtained following the derivation of
section 3, assuming that the two coinciding spins are located on the root; the final result
is

1 2 2
O CIHIE D

]

_ (M +1) / Par(W)x ()1 — tanh®(BH + B/ + u" )P du' du”.  (37)

From this we see immediately that this quantity diverges only as 77! at criticality. Finally,
the case in which the three spins are different but are arranged on a single path is equivalent
in the above framework to the assumption that one of the three spins coincides with s,
and it is straightforward to verify that this gives a contribution diverging as 772.

Now we turn to the computation of the second cumulant

1 -
= ﬁ <Si8j8k>g. (38)
ijk

%)

We proceed as above and we write

1 dm2

<$18283>C = @m (39)

This can be obtained by deriving equation (33) with respect to Hj. It is evident that the
only term that depends on Hj is the field us _,¢ entering in the expression of mg; therefore,
we can write

duy o dug 0 dus o

dH, dH, dH;
doi:10.1088/1742-5468 /2014 /04/P04013 16
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Squaring the above expression and proceeding as above we can write:

1 —_— M+1

IN Z (5i5j81)2 = ( 5 >/du1 dus dug dunr—2 x(ur)x (u2)x(us) Prr—2(unr—2)
i#j#k

x 2m2(1 —m3)? + o(77?). (41)

The first term corresponds to the assumption that the three spins are different and are
connected through a spin sg different from each of them. We can easily repeat the analysis
for w; and show that this term gives a contribution diverging as 773 at criticality while
the other terms in (38) give less divergent contributions.

Since in the critical region x(u) is proportional to g(u) according to equation (22) we
can now express the coefficient wo / wi as

wp _ ((2mf(1 —mg)?*))

o {@-mp)) "
where

mo = tanh Sluy + ug + ug + upr—2 + H)| (43)
and

((--+)) = /du1 dug dus duns—2 g(u1)g(uz)g(us) Pr—o(unr—2) - -+ (44)

This completes the derivation of equation (11). We note that in the large M limit one can
easily check that the above expression reduces to the results of Sompolinsky and Zippelius
for the SK model; see equations (6.20) and (6.21) in [22].

It is also interesting to consider the zero temperature limit of the ratio wy/wy. In order
to do so we have to consider the distribution of the variable ug = uy + us +us + upr—o + H
in (43). If this variable has a continuous distribution Fy(ug) in the 7" — 0 limit we can
make the rescaling fug = y in (42). Now the region relevant for the integrals is the region
corresponding to uy = 0 where Py(ug) can be replaced by P(0); the net result is

wy [ 2tanh® y (1 — tanh® y)dy 1 (45)
wy [ (1 — tanh® y)*dy 2

Note that this result holds independently of the connectivity and it also coincides with
the result for the SK model in the 7" — 0 limit.

In figure 7 we plot the ratio ws/w; computed according to the formula (42) on the
dAT line of the Bethe lattice model with connectivity M + 1 = 4. The data shown satisfy
the expected zero temperature limit we/w; = 1/2. The ratio increases from zero to 1/2
upon lowering the temperature and correspondingly the dynamical exponent a defined
by equation (3) decreases from 1/2 to 0.395. The value of a = 0.404 that can be read
for H = 0.7 was compared in previous work with numerical data, displaying a very good
agreement; see figure 1 in [4].
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Figure 7. The ratio we/w; computed along the critical dAT line as a function
of the temperature for the Bethe lattice SG with connectivity ¢ = 4. The ratio
tends to 1/2 at zero temperature.

5. Conclusions

We have presented a method, based on cavity arguments, to compute the spin-glass and
higher order susceptibilities in diluted mean-field spin-glass models. The divergence of
the spin-glass susceptibility is associated with the existence of a non-zero solution of
a homogeneous linear integral equation. Six-point susceptibilities, relevant for the ¢(z)
function in the RSB phase and for critical dynamics through the parameter exponent A,
can be expressed at criticality as integrals involving the critical eigenvector. The numerical
evaluation of the corresponding analytic expressions down to zero temperature has been
discussed together with the connection with alternative numerical methods. The method
was illustrated in the context of the de Almeida—Thouless line for a spin glass on a Bethe
lattice but can be generalized straightforwardly to more complex situations. The key for
the derivation is equation (33), from which one can express the six-point susceptibilities
in terms of the joint susceptibility y(u), which is in turn proportional to the eigenvector
g(u) of the homogeneous integral equation at criticality. We note that in the case of factor
graphs, corresponding to p-spin interactions, one has to take into account that the node
connecting the three spins in the discussion of section 4 can be either a factor or a variable
node, but it is straightforward to derive the equivalent of equation (33) for a factor node.
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Appendix. The SK limit at finite and zero temperature

In this appendix we study the dAT line analytically in the large-M limit. At any finite
temperature we will recover the standard dAT line of the Sherrington—Kirkpatrick model.
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It is well known that the dAT line of the SK model has Hga1(0) = 0o at zero temperature;
instead in diluted models Hqar(0) is finite at any finite value of M but diverges in the
large M limit. In order to characterize this behavior we will have to first take the f — oo
limit and then the M — oo limit.

In order to reach the large-M limit we must consider rescaled couplings J/M 172 with
J finite. As a consequence, the distribution Py/(uys) becomes a Gaussian with a finite
variance. The distribution P(u) instead is concentrated on very small values of u and it
is appropriate to consider the distribution of the variable y = uM'2. The distribution of
y is given according to equation (6) by

1/2
Py) = /PM(uM) dup 0 (y 5 arctanh {tanh% tanh[Suy + BH]}). (A.1)
In the large M limit we have
1/2 BJ
5 arctanh {tanh Vil tanh [Suy + BH]] — Jtanh[Suy + SH]. (A.2)

The function Pys(uys) according to equation (8) becomes a Gaussian in the large-M limit
with a variance equal to the variance of y; this leads to the standard replica symmetric
equation of the SK model

q= /P(z) tanh[3z + SH]]* dz, P(z) = \/ﬁ exp [— 2;2_2] : (A.3)

In order to write the dAT condition (9) in the SK limit we note that the function g(u)
is also concentrated around small values of u and can be approximated with a delta
function on the rhs of equation (9). Integrating equation (9) in v one obtains the following
homogeneous equation for g = [ g(u) du:

sinh[25.J/M1/?] )2
=M | P(2)d A4
g / (2)dz (cosh[?ﬁJ/Ml/Q] +cosh26(z + H)]) Y (A.4)

where we have used the following alternative representation of da/dh:
tanh(3.J) — tanh(8h)]> sinh[26.J] (A5)

[1 — tanh(Bh)]2tanh(B.J)  cosh[28.J] + cosh[28h]

In the large-M limit we have

_ sinh[26.J/M'/?] ’
A/lfl—r>noo M <cosh[25J/M1/2] + cosh[283(z + H)])

= J?B*(1 — tanh®*[B(z + H)])? (A.6)

thus, we recover the dAT line for the SK model
- / P(2)dz TPA2(1 — tanh?[B(z + H)))2. (A7)

doi:10.1088/1742-5468 /2014 /04/P04013 19


http://dx.doi.org/10.1088/1742-5468/2014/04/P04013

Diluted mean-field spin-glass models at criticality

The zero temperature limit of this equation can be obtained by noticing that the variance
of the Gaussian distribution P(z) goes to J? and that

lim B(1 — tanh®[Bz])* = 4 6(=). (A.8)
B—00
This leads to
—1/2
4 J? H?
3V 27 2.J2

As a consequence, Hqar(T) goes to infinity at low temperatures. On the other hand, it
must remain finite at any finite M, and in order to get its behavior we must take the large
£ limit before the large M limit. In this case we can proceed as before in order to get to
equation (A.4). However, in the next equation we have to take § — oo first, and due to
its non-linearity this gives

sinh[24.J/M'/?] B 7]
(cosh[%J/MW] T cosh[2B(z + H)]) = MY ( e T H \) (A.10)

lim M
B—00

where 6(z) is the step function. Taking M — oo in the above equation we obtain

: /]
Jim M7 (MW — 2| ) = 2| J| M35 (). (A.11)
Substituting back into equation (A.4) we obtain the dAT equation in the large-M limit,
1 2|J| H?
M2~ Jop2 ex {_ﬁ} : (A.12)

Therefore, Hqar diverges with M as Haar = VJ2 In M. One may question the validity
of the above result, noticing that we used the Gaussian approximation for the function
Py(upr) while (i) H is diverging with M (although logarithmically) and (ii) according
to equation (A.10) we are basically integrating it on a region of size M1/ where the
function does not look at all like a Gaussian (consider, for instance, the case J = +1).
The result, however, is actually correct, as can be seen by means of a more precise analysis
including corrections that we do not report for reasons of space. Such a computation can
be performed considering the large M limit of equation (26) and rewriting the integral on
the rhs by means of a Fourier transform.

References

[1] Mézard M, Parisi G and Virasoro MA, 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)

[2] Gross D J, Kanter I and Sompolinsky H, 1985 Phys. Rev. Lett. 55 304

[3] Parisi G and Rizzo T, 2013 Phys. Rev. E 87 012101

[4] Caltagirone F, Ferrari U, Leuzzi L, Parisi G, Ricci-Tersenghi F and Rizzo T, 2012 Phys. Rev. Lett. 108
085702

[5] Caltagirone F, Parisi G and Rizzo T, 2012 Phys. Rev. E 85 051504

[6] Ferrari U, Leuzzi L, Parisi G and Rizzo T, 2012 Phys. Rev. B 86 014204

[7] Caltagirone F, Ferrari U, Leuzzi L, Parisi G and Rizzo T, 2012 Phys. Rev. B 86 064204

doi:10.1088/1742-5468 /2014 /04/P04013 20


http://dx.doi.org/10.1103/PhysRevLett.55.304
http://dx.doi.org/10.1103/PhysRevLett.55.304
http://dx.doi.org/10.1103/PhysRevE.87.012101
http://dx.doi.org/10.1103/PhysRevE.87.012101
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1103/PhysRevLett.108.085702
http://dx.doi.org/10.1103/PhysRevE.85.051504
http://dx.doi.org/10.1103/PhysRevE.85.051504
http://dx.doi.org/10.1103/PhysRevB.86.014204
http://dx.doi.org/10.1103/PhysRevB.86.014204
http://dx.doi.org/10.1103/PhysRevB.86.064204
http://dx.doi.org/10.1103/PhysRevB.86.064204
http://dx.doi.org/10.1088/1742-5468/2014/04/P04013

Diluted mean-field spin-glass models at criticality

[8] Caltagirone F, Parisi G and Rizzo T, 2013 Phys. Rev. E 87 032134

[9] Rizzo T, 2013 Phys. Rev. E 88 032135
[10] De Dominicis C and Goldschmidt Y Y, 1989 J. Phys. A: Math. Gen. 22 L775

De Dominicis C and Goldschmidt Y Y, 1990 Phys. Rev. B 41 2184

[11] Mézard M and Parisi G, 2001 Eur. Phys. J. B 20 217
[12] Weigt M and Monasson R, 1996 Europhys. Lett. 36 209
[13] Janzen K, Engel A and Mézard M, 2010 Phys. Rev. E 82 021127
[14] Janzen K and Engel A, 2010 J. Stat. Mech. P12002
[15] Parisi G and Rizzo T, 2005 Phys. Rev. B 72 184431
[16] Franz S, Leone M, Ricci-Tersenghi F and Zecchina R, 2001 Phys. Rev. Lett. 87 127209
[17] Rizzo T, Lage-Castellanos A, Mulet R and Ricci-Tersenghi F, 2010 J. Stat. Phys. 139 375
[18] Morone F, Parisi G and Ricci-Tersenghi F, 2013 arXiv:1308.2037
[19] Pagnani A, Parisi G and Ratieville M, 2003 Phys. Rev. E 68 046706
[20] Parisi G and Ricci-Tersenghi F, 2012 Phil. Mag. 92 341
[21] Montanari A, Parisi G and Ricci-Tersenghi F, 2004 J. Phys. A: Math. Gen. 37 2073
[22] Sompolinsky H and Zippelius A, 1982 Phys. Rev. B 25 6860

doi:10.1088/1742-5468 /2014 /04/P04013 21



	Diluted mean-field spin-glass models at criticality
	Contents
	Introduction
	Outline of the results
	The equation for the critical point
	Derivation of the equation
	Solving the critical equation
	The zero temperature limit

	Six-point susceptibilities at criticality
	Conclusions
	Acknowledgments
	Appendix. The SK limit at finite and zero temperature

	References

