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We perform a numerical study of the long-range (LR) ferromagnetic Ising model with power law decaying
interactions (J o< 7 ~¢~7) on both a one-dimensional chain (d = 1) and a square lattice (d = 2). We use advanced
cluster algorithms to avoid the critical slowing down. We first check the validity of the relation connecting the
critical behavior of the LR model with parameters (d,o) to that of a short-range (SR) model in an equivalent
dimension D. We then study the critical behavior of the d = 2 LR model close to the lower critical ¢, uncovering
that the spatial correlation function decays with two different power laws: The effect of the subdominant power
law is much stronger than finite-size effects and actually makes the estimate of critical exponents very subtle.
By including this subdominant power law, the numerical data are consistent with the standard renormalization
group (RG) prediction by Sak [Phys. Rev. B 8, 281 (1973)], thus making not necessary (and unlikely, according
to Occam’s razor) the recent proposal by Picco [arXiv:1207.1018] of having a new set of RG fixed points in

addition to the mean-field one and the SR one.
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I. INTRODUCTION

Itis well known that ferromagnetic (FM) systems of discrete
spins with a finite range of interaction have a lower critical
dimension D; = 1. It means that a one-dimensional chain
of spins cannot undergo a phase transition at any positive
temperature [1]. The situation is different if one considers
long-range (LR) models [2] in d dimensions. They are fully
connected models, with a Hamiltonian:

N

H = —% Z Ji_iO’,’Oj. (1)

ij=1

The range of interactions is infinite and the intensity of the
coupling J;; decays as a power law with the distance between
spins: J;; o |r;;|~“). One can also define spin glasses on
LR models, taking J;; as independent identically distributed
random variables, extracted from a distribution P(J) (like,
for example, a binary or Gaussian distribution), requiring that
the variance of P(J) decays as a power law: Jé o |ryj| @)
[3]. These models can have a transition at dimensions smaller
than the lower critical one for usual short-range (SR) models.
Indeed, a FM LR model can have a transition also in d = 1.
Furthermore, varying o, the behavior of the system (such as,
for example, the critical exponents) can vary from a mean-field
to a non-mean-field one until it reaches a certain value o7, and
the behavior of the corresponding SR system is recovered. In
fact, one can write a relation between (d,o) and the effective
dimension D of an equivalent SR model. At o, the effective
dimension D reduces to the real dimension d of the LR system.
The behavior in and out of the range of validity of mean-field
approximation can thus be observed varying only a parameter,
and this is very useful if one wants to simulate the system
numerically because the computational complexity of the
model does not change with the effective dimension. Different
LR models have been introduced in the past, and more than one
relation o <> D exist. Nonetheless, the differences between
various LR models, the exactness of the o <> D relations, and
their limits are still unclear. Often, LR models (both FM and
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disordered ones) have been used to extract properties of the
analogous SR effective models; however, it is not clear whether
this operation is really justified.

The purpose of this work is to summarize the previous
works on LR models and to answer some crucial questions on
how good LR models are for simulating SR models, which
is the best 0 <> D relation, what its range of validity is, and
how similar different LR models are. Many of the answers are
unknown even in the simplest FM case. For this reason we
mostly analyze FM systems.

II. REVIEW OF KNOWN ANALYTICAL AND NUMERICAL
RESULTS FOR FERROMAGNETIC LONG-RANGE
MODELS

A. Field theory of long-range models

The simplest LR model that can undergo a paramagnetic-
FM phase transition is a one-dimensional chain of spins
with the Hamiltonian of Eq. (1) and J;; o |i — j|~*). For
this model, Dyson demonstrated analytically that there is a
standard second order phase transition if 0 < o < 1 [2]. For
o < 0 the energy is no longer an extensive quantity.

This model can be easily generalized to d dimensions,
redefining the couplings as J;; o ri;(“ur”) , where r;; is the
Euclidean distance r;; = |r; — Fj|.

This model has been analyzed using a renormalization
group (RG) approach in Ref. [4]. The field theory in the
momentum space can be written as

[ dxe@ = Y wownb
k

+u Y plk)p(k)p(ka)p(—ki — ky — k),

kikaks

2

where uy(k) = r + j,k° 4+ jok?, and the parameter r varies
linearly with the temperature, being null at criticality.
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The intuitive, but too naive, interpretation given in Ref. [4]
is the following: If o > 2, the leading term in u,(k) is the k>
one, then the usual SR behavior in d dimensions is recovered;
for o < 2, the leading term in u,(k) is the k° one, the k? term
being subleading, and a behavior different from the SR one is
present.

If 20 —d < 0 the Gaussian fixed point u* =r* =0 is
stable. The critical exponents are easily calculated, leading
tov=1/o, n=2—0, y=1. At e =20 —d =0, this
fixed point is marginally stable and logarithmic behavior
appears for the correlation length and susceptibility. This point
corresponds to the upper critical exponent oy = % Fore > 0
the Gaussian fixed point is unstable with respect to u and a
new fixed point u* = O(e) is found. The critical exponents
can be obtained as a series expansion in €. 1 is found to be not
renormalized up to third order in € and it is commonly believed
that it will have the mean-field value at all orders because new
k° ¢(k)p(—k) terms are not generated under renormalization.
This has been also verified numerically with good accuracy in
Ref. [5].

Summarizing, the picture that emerges from the work of
Ref. [4] is the following: For0 < o < oy = % the system is in
a mean-field region, for oy < o < o = 2 the exponents are
different from the mean-field ones and change continuously
with o, and for o > o, the SR behavior is recovered.

B. Problems at the lower critical o,

The picture described in the previous section presents some
debated points. For example, in this picture the lower critical
exponent is o = 2 for all the dimensions.! However,ind = 1,
at 0 = 1 the transition becomes of the Kosterlitz-Thouless
(KT) type [6], supported by analytical [7,8] and numerical [9]
evidence.

The problem of the inconsistency of the results of [4] near
o = 2 is not related only to the one-dimensional case. In fact,
according to the picture of Ref. [4], n =2 — o foro < 2 and
n = nsr for o > 2. This would imply a jump discontinuity
in n at 0 = 2 and a nonmonotonic behavior in o. While this
phenomenon is not forbidden by thermodynamic arguments
(which only require n < 2 + o), it has attracted considerable
attention over the past decades, because it is quite singular.

In Ref. [10] a different scenario was proposed. In fact, if
the term j;k? is not ignored in Eq. (2) when o < 2, as done
in Ref. [4], it can be seen that the nontrivial fixed point is
characterized by j; = O(€?) # 0. Even if one starts with j, =
0, SR forces appear after the renormalization, determining the
critical behavior. As a consequence, for d < 4 the boundary
between the intermediate and the SR regime was found to
shift from o, = 2 to 6 = 2 — nsgr. In particular, foro < 2 —
nsr, the introduction of j, # 0 does not change the critical
exponents, which remain those of Ref. [4]. Wheno > 2 — ngR,

'In SR systems the lower critical dimension is the dimension at
which the phase transition ceases to exist. In LR models, we call
lower critical exponent the value of o such that the SR behavior is
recovered. If the SR model has a phase transition in d dimensions,
then there is a transition also for ¢ > o ; on the contrary, asind = 1,
there is no transition for o > o7.
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all the exponents become the SR ones, without discontinuity,
and without losing the monotonicity in o. In fact, in this regime
the fixed point is characterized by j¥ = 0, and the field theory
is the usual SR one.

In support to this picture, in a field-theoretic approach,
Honkonen and Nalimov [11] proved, to all orders in perturba-
tion theory, the stability of the SR fixed point for ¢ > 2 — nsg
and of the LR one for 0 < 2 — ngg. Within this new scenario,
the theory is also consistent with the exact results for the
one-dimensional case. In fact, ford = 1, nsg = 1. In this way,
the lower critical exponent is o7 = 1, as expected. However,
the analysis of [10] has also been the subject of criticism: In
Ref. [12] the results are contested when the dimension of the
fieldn > 2,in Ref. [13] the absence of the kink at = 2 — ngg
is hypothesized, and in Ref. [14] the picture of Ref. [4] is
supported. All these works on the subject are related to the
importance of understanding how to treat systems in presence
of different, competing fixed points.

There are also numerical studies. In Ref. [5] a Monte
Carlo (MC) study of a LR model in d = 2, using cluster
algorithms, supports the scenario of Ref. [10] where n =
max(2 — o,nsg = 1), excluding definitively the picture of
Ref. [4]. In particular, they affirm to find logarithmic cor-
rections to scaling at ¢ = 1.75, clear indication of a crossover
between different critical points. Very recently, in Ref. [15] the
same study has been improved. In fact, the measurement of n
foraLR systemin d = 2 has been repeated, close to the region
where its behavior is changing, i.e., for o ~ 2 — ngg, obtaining
more precise results. The author of Ref. [15] confirms that there
is no discontinuity but a clear deviation from the behavior
predicted by Sak in Ref. [10] is measured. In particular,
in the intermediate regime up to o >~ 1.5 the results are in
agreement with the prediction n = g g =2 — 0. For o > 2,
n is in perfect agreement with the value for a SR model. In the
remaining part for 1.6 < o < 2 the results do not agree with
the prediction of the RG analysis [4,10]. On the contrary, n
seems to interpolate smoothly between these two behaviors.
Moreover logarithmic corrections are not found in this region.
The results in Ref. [5] are compatible with those in Ref. [15],
due to the larger error bars. This smooth behavior for 7 is
also supported by a recent RG calculation [16]. The authors
start again from Eq. (2), but perform a double expansion,
first in 0 = 2 — o, and only after in € = 20 — d. The first
expansion is thus performed around the SR model, which
is recovered at o = 0. For this reason at the Oth order in
8o, the € expansion for the exponent 7 is the same of the
expansion of n for the SR model in ¢ =4 — D. Thus, they
claim that near o = 2, the critical exponent of the LR model
in d dimensions is approximately the same as the critical
exponent of D = 4 4+ d — 20 SR model. The first order terms
in §o give a negative contribution to 5. If the higher order
terms in the §o expansion do not change the sign of the
contribution to n, one can conclude that the critical exponent
n of the SR model in D = 6 — 20 leads to an upper bound
for the n of the LR model in d = 2 dimensions. Thus, from
this analysis, in principle, the contribution of the SR part to
the 1 exponent could be present in all the LR region, between
% < o < 2. In Ref. [16] the authors find a good agreement
for the  coming from the numerical calculations of Ref. [15]
for the LR model in two dimensions with the results coming
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FIG. 1. (Color online) Behavior of (o) fora LR modelind = 2
as proposed in different works: In the work of Fisher er al. [4] n =
2 — o uptoo = 2, while for Sak [10] 7 = max(2 — o,7sr = §), and
the data of Picco [15] n seem to interpolate smoothly between 2 — o

1

and nsg = 3.

from the five loop calculation of D = 6 — 20 dimensional
SR model in the region 1.75 < o < 2. We want to stress that
the RG calculation done in Ref. [16] is, however, compatible
with the scenario proposed by Sak for the n exponent. In fact,
in Ref. [16] only an upper bound for 7 is given. It could be
possible that the inclusion of higher orders terms in the §o
expansion leads to the n predicted by Sak. Concluding, the
scenario at the lower critical exponent is far from being clear.
The three proposed behaviors are summarized in Fig. 1.

C. Identification of a 0 < D relation

A somehow related problem is the identification of a
(d,0) < D relation that links the exponent o of the LR model
in d dimensions with the dimension D of an effective SR model
with the same critical behavior. Comparing the field theory of
a LR model in one dimension (d = 1) with that of a SR model
above its upper critical dimension (D > Dy), the relation

3)

o ==
D
is found. The upper critical dimension for the FM SR model,
Dy = 4, thus corresponds to the upper critical exponent for
the FM LR model oy = 1/2. In the same way, the upper
critical dimension for the SG SR model, Dy = 6, corresponds
to the upper critical exponent for the SG LR model oy = 1/3.
Moreover, o = 0 corresponds to D = 0o, as one can expect.
However, this relation has a problem. In fact, the exponent
for which there is no more a phase transition, o, = 1, will
correspond to a lower critical dimension in SR models D; = 2.
However, we know that the lower critical dimension for a SR
model (with discrete degrees of freedom) is Dy = 1. This
problem can be overcome modifying slightly the matching
relation [17]:
o = 2R @
D
This equation can be justified in a more general formulation
[18]. We recall that the singular part of the free energy density
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for a system in D dimensions has the scaling form,

fs=

where ¢ is the reduced temperature, # is the reduced magnetic
field, and u is the irrelevant operator that gives the leading cor-
rections to scaling. y;, y, y, are connected to the eigenvalues
of the linearized form of the RG transformation around the
critical fixed point. If we suppose that there is a connection
between a LR model in one dimension and a SR model in
D dimensions, we can equate the singular part of their free
energy densities:
1

SR /SR SR
L—DCDSR( YL h, LY )

1 ! ,
L—DCD(L'”t,L”‘h,Ly"u),

- %@LR(U?“;,L-‘%Rh,Lyﬁ“u). (5)
In order to compare the exponents, we want to eliminate the
different prefactors, and we can obtain this result writing
everything in terms of the total number of spins N, where
N = L? in the SR model and N = L in the LR one. We
obtain

lq;SR ( NPy NP N}'ER/DM)

N
1 ,
— ﬁqaLR(NerRt,N>'hLRh,Ny5Ru). (6)
Thus, the connection between the exponents is
SR
LR Y (D)
yoo)=—p—.
If we recall the relations with the critical exponents,
1 2y, —d
v=—, n=d+2-2y, y="2"2 w=—y,
Yt Yt
(N
Eq. (6) becomes
2 — nsr(D)
Vr(0) = Dvsp(D); 2—mr(0) =0 = ————;
P
. wsr(D)
YLr(0) = ysr(D);  wir(0o) = —

Each relation among the four in Eq. (8) defines a 0 < D
correspondence. If SR and LR models are in the same
universality class, then all four correspondences in Eq. (8)
are equivalent.

Please note that the useful aspect of our definitions of the
models is that all the o <> D relations are valid for both the
FM and the SG versions of the models.

If one wants to test the exactness of the equivalence between
a D-dimensional SR model and a one-dimensional LR model,
one has to simulate a LR system at a value of o that corresponds
to D following for example Eq. (4) and verify if there is the
correspondence between all the exponents as in Eq. (8). For
the FM there is not a systematic study of the correspondence,
while, recently, this problem has been analyzed for SG in
Ref. [18] for D =3 and D = 4. For D = 4 the matching
between LR and SR models seems very good. For D = 3 the
data are evenly compatible; however, errors are bigger and
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the answer is not definite. Anyhow, it is reasonable that the
correspondence between SR and LR models becomes weaker
approaching the lower critical dimension. Indeed at the upper
critical dimension the field theory is exactly the same, while at
the lower critical dimension for the FM model we know that SR
and LR models have even qualitatively different behaviors. In
fact, the SR model has a T = 0 transition, while the LR model
has a KT transition.

D. The hierarchical long-range model

Another widely used LR model is the Dyson hierarchical
model (HM) [2] (see [19] for a review). It is a particular one-
dimensional LR model, in which the Hamiltonian of 2" spins
can be constructed iteratively in the following way:

l{n(Sl,. ..,Szn) = IYn_l(sl,. ..,Szn—l)
2"
+H, (141, 2 0820) + Z Jij si s;.
i<j=1

)

The intensity of the interactions decreases with the level n by
a factor ¢ = 27+, One expects the model to behave like the
usual LR one, with the same exponent o, because the decaying
at large scales of the coupling intensity is the same. Indeed,
the model undergoes a standard second order phase transition
if27'>¢c>222]Ge.,0<0o <1).For27!'>¢c>c¢y =
27372 (ie., 0 < 0 < oy = 1/2), the Gaussian solution of the
field theory associated with this model is the stable one and
the critical exponents are the mean-field ones as for usual
LR systems. Again, for 2732 > > =277 (ie, 1/2 <
o < o, = 1) the exponents differ from the classical ones, but
nobody has checked if and how much they differ from the
LR ones. The first order term in the € expansion of the two
models is the same, while the second order one differs slightly,
the coefficients being 4.445 for the HM and 4.368 for the LR
model [20].

One crucial difference between the two models is that
for the borderline case o, = 1 there is no KT phase transition
for the HM. Indeed, in the HM all the interactions are weaker
than in the usual LR model. For this reason if the HM has a
transition, it implies that the LR model has a transition too,
but the reverse is not necessarily true. Nonetheless, there is a
KT phase transition also in the HM for o = 1 if interactions
at level n, J, = 272", are made slightly stronger, i.e., J, =
272 In(n) [21].

III. NEW RESULTS ON THE CONNECTION BETWEEN
LR AND SR MODELS

A. Monte Carlo algorithm and data analysis

We have performed MC simulations at values of o
corresponding to D = 2 and D = 3 following Eq. (4). Indeed,
Eq. (4) was introduced recently studying SG models and was
never applied to FM, for which the relation (3) was often used.
Moreover, we want to see how similar the HM is with respect
to the power law LR model.

We have simulated the d = 1 LR model using the cluster
algorithm proposed in Ref. [22], where the use of the
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cumulative probability distribution for adding a new spin to the
cluster to be flipped makes it possible to keep running times
O(N), where N is the total number of spins, even if the model
is fully connected.”

In cluster algorithms, a first spin o; is randomly chosen
and the neighbors o; having the same sign are inserted in the
cluster with a probability

pj=1—eP. (10)

The probability that the first neighbor to be included in the
cluster is the jth from the reference spin is

P(j)=pjd—=pj-1)--- (A= po. (1D
Thus, by defining the cumulative bond probability,

J
CG)y=)_ P, (12)
n=1
and extracting a random number r uniformly in [0, 1],if C(j —
1) < r < C(j), then the first spin included in the cluster is the
jth. The condition on the spin being parallel to those in the
cluster is checked after the selection. If the selected spin is
antiparallel to those in the cluster, it is not added.
After the first neighbor has been chosen, we want to
include in the cluster spins at distance k > j. Equation (11) is
generalized to

Pi(k) = pr(1 — pr—1)---(1 = pjs1), (13)

and it leads to a cumulative bond probability.

k k
Citky= Y Pimy=1-exp| > =264, |. (14)
n=j+1 n=j+1

where Eq. (10) has been used to obtain the last expression (J,,
is the coupling between spins at distance n). A new random
number is extracted and a new spin is selected. Spins are added
in this way until the maximum distance L/d /2 is reached,
where L is the size of the system. Then we try to add neighbors
starting from all the other spins already inserted in the cluster
in the same way. Naturally, in this procedure we have to take
into account that there are more than one spin at distance k
(especially in dimensions d higher than 1), and we must ensure
that every spin is counted with the right probability.

Given C;(k) we construct a look-up table to calculate the
distance k associated with the random number extracted. In
this way the cumulative probability is calculated only once
at the beginning and it is the same for all the spins, since
the system is homogeneous. Moreover, only C(j) has to be
computed, since C;(k) can be derived from it as

C(k) — C(j)

1-C@)
Once the random number is extracted, we search in the look-up
table to determine k. This operation has a cost O[In(N)]. The

main advantage of this method is that it is exact, at variance to
the one of Ref. [22].

Cjk) =

2Standard cluster algorithms usually require O(N?) operations for
fully connected models.
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We have used periodic boundary conditions, such that two
spins i and j interact with a single coupling that depends on the
minimum distance between them: (r;;); = min(|i — j|,,L —
li — jlx), where x =1, ...,d and L is the size of the system.

We have performed MC simulations of at least 10° Monte
Carlo steps (MCS). We have checked for the equilibration
dividing the measurements in bins with a geometrically
growing size, and we have assumed that the system has reached
the equilibrium when the average of the magnetization in at
least the last two bins is the same within the error (that is,
at least 3/4 of the simulation is sampling the same average
magnetization). We have found that the equilibration time is
T 2~ 103 cluster MCS for the largest sizes. Willing to compute
the susceptibility and the Binder parameter, we need the second
and fourth moments of the magnetization. We have obtained
two different estimates for these quantities. The first estimate
is the usual one,

i) -{me)

The second method uses the improved estimators that can be
defined when cluster algorithms are used [23],

m= (C.  m* = HICNC) — —5(ICP). (15)

SN - N? N3 ’

where |C| and |C’| are the sizes of flipped clusters. Operatively,
we compute (|C||C’]) in the following way: We choose
randomly a spin and, starting from it, we construct a cluster.
We call |C| the number of spins of this first cluster. Then we
choose a second spin randomly. If it is in the cluster we already
built, we put |C’| = |C|. If it is not in that cluster, we construct
a new cluster starting from it, and we call the new cluster size
|C'|. C and C’ are always disjoint (i.e., nonoverlapping). Please
note that we cannot compute the average (|C||C’|) simply as
(|C|?) because in this way we would not take into account the
condition |C| + |C'| < N.

While the improved estimator for m? in Eq. (15) has been
already introduced in Ref. [23], we believe that the one for m*
is new. We have computed the susceptibility and the Binder
parameter and their errors with the jackknife method separately
for the two methods. At the end we have taken the weighted
average between the two values. In this way we are conscious
that we are underestimating a little the error because the two
measures are correlated but we assume them to be uncorrelated
when we perform the weighted average.

We have used this method to simulate a one-dimensional LR
model with values of o correspondingto D = 2and D = 3.1In
D = 2 we know exactly the exponent n = i and it corresponds

to o = 232 = 0.875. In D = 3, n = 0.0364(5) as found in
Ref. [24] and it corresponds to o = Z’%ﬂ = 0.65453. We
have computed the critical exponents v and w using a finite-size
scaling (FSS) analysis.

A great advantage of LR models is that the 1 exponent is
not renormalized in the non-mean-field region, as explained
before; thus, we know its analytical expression: n =2 — 0.
For this reason we can compute from the susceptibility x =
N (m?) the scale-invariant quantity x;/L°. Another quantity

T
that we look at is the dimensionless Binder parameter: B =
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FIG. 2. (Color online) Scale-invariant observable x;/L° (left)
and Binder cumulant (right), computed at different n = log, L, as
a function of the temperature 7, at o = 0.654533. The curves at
different sizes should cross at a temperature that approaches 7, when
L grows. The Binder cumulant shows stronger corrections to scaling
with respect to x,/L°.

-
sizes.

In Fig. 2 the two observables x; /L° and By are plotted as a
function of the temperature, around the critical temperature 7,
for different sizes L = 2" of the systems. We have extracted
the temperatures 7} of the crossing of x, /L for sizes L = 2"
and L' = 2L = 2"*!. They should approach the critical point
following

(%1;)2]‘ Both observables should cross at 7, for large

Tp = T5(14+al™). (16)
We have computed the values of the Binder parameter B(L,T;")
BQL,T})
B(L,T;)
temperatures 7. The latter behaves as

and the quotient Qp =

at the previously extracted

_ BQL.T})

= =1+bL™".
OB BL.T}) +

a7

Thus, we have performed a fit with  left as a free parameter.
The results are shown in the left side of Fig. 3. Once we
have determined w, we extract the derivative of the Binder
parameter at T, B'(L,T}), as the angular coefficient of the
straight line passing through the data. We compute the quotient
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FIG. 3. (Color online) (Left) Quotient of the Binder parameter for L and 2L at T;*, computed at the crossing temperature of x; /L. The
straight line is the best fit using Eq. (17) with w left as a free parameter. (Right) Quotient of the derivative of the Binder parameter at 7,". The
straight line is the best fit as a function of L~ using Eq. (18), with @ determined from the previous fit and the intercept 2'/" left as a free

parameter.
Op = LZ,((ZL;’TTQ that follows:
AL
B'QQL, T}
= BCLID _ oy op-o (18)
B'(L.T})

Thus, using the value of w previously determined and
performing a linear fit as a function of L~“, we extract the
value of v from the intercept. The results are shown in the
right panel of Fig. 3. At this point, fitting with a line the values
of T} as a function of L~®~1/"_ with the previously determined
w and v, we can extract T, as the intercept using Eq. (16).

B. Results for the 1d LR models

The results in d =1 for o = 0.875 (corresponding to
D =2)and o0 = 0.654 533 (corresponding to D = 3) are the
following:

— =0.4124(13), T.(0.875) =2.10589(1),
R (0875) (13) ( ) (1)
1
— = 0.506(14), 0.65453) = 0.201(11),
or(0.65453) (14),  wrr( ) (11)

T.(0.65453) = 3.19289(2).

For o = 0.875 it is quite impossible to determine @ because
we see very little dependence of T;* with L and the quotient of
the Binder parameter is nearly independent of the size.

For the HM, we performed the same analysis. The only
difference is that we computed the Binder parameter and the
susceptibility exactly using the exact recursion relation for the
probability of the magnetization at level n,

pu(m) o< ™ " pu (L) pua1(MR) Syt gm-
mp,mp

where m; and my are the magnetizations of the half systems.
The results are

= 03841(9). 0.875) = 0.462(3),
o (0.875) ),  onm( ) 3)
1
— —0.5186(72), 0.65453) = 0.212(5).
Vi (0.654 53) (72), - onm( ) )

Naturally for the HM, many other methods can be used to
obtain more precise results. However, for the exponent w only
an estimate is available [25],

wum(2/3) = 0.2185787,

consistent with our results.

The values for the v and w exponents of LR and HM for
o = 0.654 53 are in perfect agreement, while those for o =
0.875 differ. Moreover, if we compare them with the SR values
[24],

wsr(D = 3) =0.84(4), wsr(D =2) =2,

and remembering the supposed relation between them,
wsr(D) = Dwrr(0), it seems that LR models have bigger
finite-size effects (smaller w) than SR models. Thus, looking
at the w exponent, Eq. (8) is not satisfied, especially for D = 2.

If we compare the values for the v exponent with the SR
ones, vsr(2) = 1 and vsr(3) = 0.6301(4) [24], we see that
Eq. (8) is a good approximation even for D = 3 (that is near
enough to the upper critical dimension) [v g = 1.976(55) =~
3vsg = 1.8903(12)], but it is not good for D =2 [vg =
2.425(8) # 2vsg = 2].

C. Generalization of the 0 < D relations in more than
one dimension

How can we generalize the o <> D relations if the LR
model is defined in more than one dimension? Let us first
remark the notation: d is the real dimension of the LR model
while D is the dimension of an equivalent SR model. If we use
the same arguments of the one-dimensional case in Ref. [18]
for the scaling form of the free energy, which we reported in
Sec. II C, the relation in Eq. (4) is modified as

o _ 2—nsr(D)
d D

However, Eq. (19) can be also obtained from another way.
In fact, one can think that an approximate superuniversality
exists. The conjecture is that the exponent y; g(d,0) and other
quantities are approximately functions only of 6 = o/d. This
conjecture is exact in all the mean-field region. In fact, 1 g = 1

19)
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intheregion0 < 6 < %, independently on d. The SR model is
recovered when o = o7(d) = 2 — nsgr(D = d) [5,10]. If now
we use this information, we obtain that ysg(D) = p1r(6 =
2‘%) = yLR(%). Thus, the new relation between a LR model
in d dimensions and an effective SR model in D dimensions
is Eq. (19). In this way we have connected two problems: the
determination of the (d,o) <> D relation and the threshold
oL, where the SR behavior is recovered. These problems are
often viewed as disconnected; however, we think that they are
closely related.

Please note that the value of o, is not univer-
sal: o, (1) = 1,0.(2) = % [26],0.(3) =2 — 0.0364 = 1.9636
[24], or(4) = 2. In the same way, 6 = & is not universal:
6o(H) =1, 6.(2) =0.875, 6.(3) =0.65453, 6.(4) =0.5.
For the exponent of the correlation length, using the scaling
relation v = y /(2 — n), the known value of = 2 — o in the
LR region and Eq. (19), one obtains

yse(D)  d |:2 - nSR(D):|
2— (D) Do ™R D
d |:2 - USR(D)i|

= —v
D =R D

vsr(D) =

(20)

In analogy with Eq. (8), one can thus suppose that there
exists a value of o that satisfies all the following relations for
the critical exponents:

2—nr(6) 2 —nsr(D),
d B D
wir(6)  wsr(D)
d D
Please note that the two dimensions d and D enter only through
their ratio.

dvir(6) = D vsr(D);
2D

YLr(6) = ysr(D);

D. Simulationsind =2

Recently, in Ref. [15], the value v g = 0.96(2) foro = 1.6
in d = 2 was reported, extracted from a MC simulation. We
have also done simulations in d = 2 to extract the exponents
at values of o = 1.20,1.60, and, in particular, at o = 1.309 06
that correspondto D = 3and o = 1.75, where the SR behavior
in D = 2 should be recovered. For o = 1.2 and 0 = 1.309 06,
the simulations have been performed with the same cluster
algorithm and the same analysis method as for d = 1. The
obtained values for the vy r(0) and w r(o) exponents and for
the critical temperatures are

= 1.024(34),  wi(1.2) = 0.480(25),
vr(1.2)
T.(1.2) = 6.83427(1),
1
— 1.01433), wLr(1.30906) = 0.32(15),

vr(1.309 06)
T.(1.30906) = 6.32546(4).

The value of v g ato = 1.309 06 is compatible with the one for
the D = 3 SR model vsg = 0.6301(4) [24] following Eq. (21):
2uir = 1.97(6) >~ 3vsg = 1.8903(12). The value of wir at
o = 1.309 06 is very difficult to extrapolate because there are
unusual nonmonotonic finite-size effects.

PHYSICAL REVIEW E 89, 062120 (2014)

For 0 = 1.6 and o = 1.75 the finite-size effects look
extremely strong. Indeed, the size-dependent critical tempera-
tures where the Binder cumulants cross drifts a lot by varying
the system size, and it is not possible to extract the critical
Binder value B(o0,T,.). For this reason we move to use a
slightly different model, where the sum over all images is
made as in [5], thus leading to new couplings,

o0

oo
Ti= Y [(x; — x; + Lx)*

X=—00 y=—00

+ (i — yj + Ly 1742,

In the thermodynamic limit the two models (with and without
images) are equivalent. In Ref. [5] the authors were able to
compute the contributions from all the images exactly, because
they used slightly different couplings defined as

\i—jl-s-%
Jij = / x "y, (22)
|

L. 1
i—jl=3

Since we use the original definition of the couplings, in
principle, it would not be possible to include all the images
exactly. To overcome this problem, we estimate the error that
we commit on the largest coupling (formally the one between
two spins at distance 0) by including only the first (2a)? images
(that is images within a distance a),

dx dy[(Lx)* + (Ly)*]%

|x|>a
[y|>a

00 —(24+0)
< 2nL_(2+”)/ drr~ 17 = mL )

o
; oa

and we choose a such as to make this error smaller than 107°.
At this point we compute the new couplings between any
pair of spins as the sum of the couplings between the (2a)?
images. Due to the large values of o, the number of images
considered is always small. If a turns out to be smaller than 10,
we choose a = 10. Adding the images, the observables show a
reduced dependence on the system size, and the data analysis
is cleaner.

We have not used the scale-invariant quantity x;/L>~"
because there is not agreement on the values of n in this
region. For this reason we have performed the following
analysis. We have looked at the temperatures 7} at which the
Binder cumulants for sizes L and 2L cross. These crossings
scale according to Eq. (16). Then we have fitted the values of
B(L,T;}) with a power law function of the type

B(L,T}) ~ B(oco)+aL™®, (23)

determining w. For o = 1.75, assuming that the Binder
parameter at the critical point should recover the SR
value, we have used the value of the Binder parameter
Boo(T,) = 0.91588. .. [27] in the fit to reduce the uncertainty
in the determination of w. At this point we have computed
the quotient of the derivative of the Binder parameter at T;*
and extracted the exponent v. Knowing v and w, we have
estimated 7.
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FIG. 4. (Color online) The spin-spin correlation function for different sizes at ¢ = 1.75 and d = 2. The left panel shows raw data, while
in the right panel boundary effects have been drastically reduced by plotting parametrically versus the variable x'(x) = sin(zx/L)L /7.

The obtained results are the following:
1

VLR(I 6)

T.(1.6) = 5.29321(4),

= 0.996(33), wir(1.6) = 0.130(45),

= 0.98(10), wrr(1.75) =0.213(8),

VLR(1-75)
T.(1.75) = 4.894 55(17).

We do not observe any logarithmic corrections, as already
noticed in Ref. [5]. The value of wig at o = 1.75 is much
smaller than that for a SR model in D = 2; an explanation will
be given in the following. The value for v g (1.75) is compatible
with the SR one, vsg(D = 2) = 1.

E. At the lower critical o,

In addition to the verification of the (d,0) <> D relations,
we have concentrated our attention to the problems arising
when approaching the value of o where the SR behavior
should be recovered. In particular, we want to verify whether
the scenario of Ref. [10] holds, with n = max(2 — o,nsgr = %),
or if, for 1.6 < o < 2, the n exponent interpolates smoothly
between 2 — o and ngg as stated in Ref. [15]. We notice that if
the second scenario holds, the superuniversality conjecture
cannot be verified in the region near oy (d), where the n
exponent interpolates smoothly between the two behaviors.
Superuniversality is compatible only with the first scenario.

We have tried to measure 1 in d = 2 at the lower critical
value o = o = 1.75. We have performed MC simulations
with a single image, because the use of images has the
disadvantage that couplings slightly depend on the system
size and consequently the small distance behavior of the
correlation function does depend on the system size, making
the study of finite-size effects more complicated. We have
looked at the two-point correlation function at the critical
point that decays at large distances as G(x) = (o(0)o(x)) =
|x|~@=2+M = |x|7". As is customary, we have measured the

correlation function along the principal axis:
1
G) = 213 D (01,0 j) + (0303 1)
iJ

In the left panel of Fig. 4 we plot the spin-spin correlation
function for different sizes. We notice that the effects due to
the periodic boundary conditions, which actually imply the
condition G'(L/2) = 0, are rather severe and make it hard to
interpolate the data. However, the use of the variable x'(x) =
sin(wx /L)L /7w, that is, actually an identity x'(x) = x for x «
L, is able to reduce drastically such boundary effects (see the
right panel in Fig. 4). In the rest of the analysis we use the
rescaled variable x’, which is equal to x in the thermodynamic
limit but allows for a better fitting of data at finite values of L.

The correlation function G(x) at o = 1.75 cannot be
interpolated by a single power law, as shown in the right panel
in Fig. 4, since G(x) seems to decay faster at small distances
and slower at large distances. The same feature is not present
at smaller o, near the upper critical value oy = 1, or in the
SR model in D = 2. What we are observing is not a finite-size
effect because it persists at large sizes.

Since the G(x) shows a small, but clear, upward curvature
in a log-log scale we have interpolated the data through the
function

’ —§
G(x) = M (24)
x'(x)"

which uses the variable x’(x) (that cancels most of the
boundary effects) and includes a short distance correcting term
Bx~9 to the large distance power law decay Ax~". In Fig. 5
we plot G (x) x’(x)" versus the correcting term x’(x) ™% and we
observe a rather good linear behavior (the straight line is a
linear fit to the L = 2048 data). In the left panel we have
used n = 0.25 and § = 0.3, while in the right panel we have
used the value for n reported by Picco in Ref. [15], that is,
np = 0.332 and §p = 0.5 (please notice that the results are
not very sensitive to the values of § and §p).
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FIG. 5. (Color online) Data for the spin-spin correlation function G(x) measured at o = 1.75 and d = 2, rescaled by the asymptotic power
law x’(x)", in order to highlight the corrections to the asymptotic decay. (Left) = 0.25 and § = 0.3. (Right) np = 0.332 and §, = 0.5.

By looking to the data in Fig. 5 we make two observations.
First, the linearity of the data in both panels is similar, with a
small preference to exponents used in the left panel: So we see
no reason to use an 7 exponent different from the theoretical
prediction, n = 2 — ¢. Second, a more careful inspection of
the data reveals that using the exponent np the data at large
distances (small values of x~%) always tend to bend up. A
possible explanation for this observation is that the value np
for the exponent found by Picco is somehow a compromise
between the asymptotic decay x~"7 and the preasymptotic
correcting term x~"%: Indeed data in the right panel of Fig. 5
show smaller corrections (they are flatter), but eventually tend
to increase because the exponent 7 p is likely to be larger than
the true exponent 7.

The effect of the two power laws in G (x) reflects also in the
measure of the 1 exponent from the susceptibility. Indeed, the
susceptibility is the integral over x of G(x). This means that
if we measure x as a function of the size of the system, it will
not follow a simple power law with exponent 2 — 5. Instead,
it will be of the form

(x(L,T)) = L* "(a + bL™){F,[L""(T — T,)]

+ LG LT =Tl +---}). (25)

The contribution proportional to L>~7% is a new correcting
term to the asymptotic behavior, which is much bigger than
the usual L~ correcting term. Indeed, the correcting term
L~ takes into account the fact that the correlation function
saturates and stops decaying at distances close to L /2 (as can
be seen in the left panel of Fig. 4), but at these distances G(x) is
small and so it is also the correcting term L~“. On the contrary,
the correcting term L% is dominant at short distances, where
the correlation G (x) is large and this makes the correction L%
much larger than the L™ correcting term.

If this new correcting term is not properly taken into
account, then the 1 value is likely to be overestimated. This
may be the reason why in Ref. [15] the exponent 7 is found
to be bigger than the one predicted by the RG analysis. The
presence of this new correcting term can also be the reason why
the @ exponent found in the previous analysis is very small
and not in agreement with the larger value of the SR model:

Actually, we think that in the correction-to-scaling analysis we
are measuring ¢ instead of w.

For each system size we have measured the connected
susceptibility at its maximum, which is a good proxy for
the critical temperature. Analogously to what we have done
for the correlation function, we have performed a fit to the
maximum susceptibility as a function of the size, with the sum
of two power laws: either with f(x) = L?>~"(a + bL~%), where
n=2—o0, or with g(x) = L>7"*(a + bL~%"), where np is
the value reported by Picco in Ref. [15]. We have ignored
the corrections term L~ because, as discussed above, it is
much smaller than the one considered. The results are shown
in Fig. 6. The values of § obtained are § = 0.41 and §p = 0.43.
The values are similar to the ones obtained from the correlation
function. Again, both scenarios are compatible with the data
and much larger sizes are needed to exclude one of the two.
The two power laws behavior is a very strange feature of the
correlation function, because it is not present in the usual SR
model, nor in the LR one far from the lower critical o. We
leave for a future work to understand its physical origin and to
eventually provide an analytical description of it.

In Ref. [16] data from numerical simulations for a magnetic
cumulant are analyzed and also in this case the authors discuss

10000
1000 - S
% 100 | e 1
£ -
= >
10 L + g 4
+ data —+——
1 ,*",."'* f(X) 4
- ‘ e
10 100 1000
L

FIG. 6. (Color online) Log-log plot of the susceptibility at the
maximum as a function of the size, for 0 = 1.75 and d = 2. Two
fits using f(x) = L>"(a + bL %) and g(x) = L* " (a + bL™°7) are
shown, which are both compatible with the data.
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FIG. 7. (Color online) 1/(vd) as a function of the exponent 6 =
o/dforHMind = 1 and the LR modelind = 1 and d = 2, as found
in various works and in this work. The SR values follow the matching
formula (19).

the existence of two contributions to the critical behavior, one
from the SR interaction and one from the LR interaction, that
leads to two different behaviors varying the size of the analyzed
systems. It is possible that this behavior is linked to the same
phenomenon that happens for correlations and susceptibility
and confirms the fact that much greater sizes are required to
extract properties in the thermodynamic limit.

F. Check of the superuniversality conjecture

At this point we want to verify the superuniversality
conjecture or, equivalently, Egs. (19) and (20). For this reason
we summarize the results for the critical exponents in the
literature and in this work. In Fig. 7, 1/(dv) is plotted as
a function of the parameter & in the non-mean-field region,
for the HM model as found in Ref. [20], and for the LR
one-dimensional model, from Refs. [28,29]. Forthe LRd = 1
and d = 2 model, our results are reported too. From Fig. 7 it
is clear that the two analyzed one-dimensional models (HM
and the LR one) are not in the same universality class. While
their critical exponents are quite similar near the upper critical
oy = 1/2, the differences grow approaching the lower critical
o = 1. This is reasonable because we know that the two
models have very different behaviors at o7, = 1.

To verify the exactness of Eq. (20), in Fig. 7 the values of
the exponent of the SR model as found in Ref. [24] are placed
at the corresponding value of & as in Eq. (19): vsr(2) =1
for D = 2 corresponds to 6 = 0.875; vsr(3) = 0.6301(4) for
D = 3 corresponds to 6 = 0.65453. Equation (20) is a good
approximation near the upper critical dimension (it is good
for D = 3) but it is no more good for D = 2. Remembering
also the results for the w exponent, we can assert that it is not
possible to find a single value of o that verifies the equivalence
for all the critical exponents as in Eq. (21).

The lines are the third order € expansion for d =2 and
d = 3 as found in Ref. [4], where the third order term has been
fixed, imposing that the curves recover the SR value at 6;,(d)
and the second-order € expansion for d = 1. For d = 1 we
have not fixed the third order because at o7 (1) = 1 there is not
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FIG. 8. (Color online) 1/y as a function of the exponent 6 =
o/d in the non-mean-field region for HM in d = 1 and the LR model
ind = 1 and d = 2, as found in various works and in this work.

a second order phase transition. For this reason the curve for
1/v as a function of ¢ does not approach the point o7 (1) = 1
smoothly, but with a divergent derivative. Our data for d = 2
are in agreement with the € expansion.

In Fig. 8, 1/y is plotted as a function of & in the non-mean-
field region. The superuniversality conjecture is not exact but
it is a good approximation near oy. In fact, 1/y for d =1
and d = 2 is nearly independent from d and the two curves
are near when plotted versus 6. The values for the SR model
should be the end point of the line for y(6) with d = 2 and
d = 3, placed at 61.(2) and 61,(3). The lines are the third order
epsilon expansion as found in Ref. [4], where the third order
has been fixed (as before) imposing that the curves recover the
SR value at 6 (d).

IV. CONCLUSIONS

We have analyzed the connection between LR and SR
systems. For simplicity we have considered the FM version
of the models, given that the connection in which we are
interested is still not well understood even in this simple case.
First of all, we have analyzed the d = 1 LR FM model, for
which the couplings have a power-law decaying with exponent
o, and we have compared it with a SR system in D dimensions.
We have reviewed all the o <> D relations proposed in the
literature and we have analyzed their accuracy performing
MC simulations to measure the exponents of the LR model
through FSS. We have compared them with the exponents of
SR systems available in the literature. We have found that near
the upper critical dimension a reliable o <> D relation exists:
It means that, for example, for D = 3 a value of o exists for
which all the exponents of the LR and SR models are very
close, while near the lower critical dimension, for example,
for D = 2, it is not possible to find a value of ¢ for which
all the exponents of the LR model correspond to those of the
SR one.

Then we have generalized the o <> D relation for LR
systems in d dimensions, showing that the dimensions D
of the SR system and d of the LR one enter only through
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their ratio d/D. The (d,0) <> D relations in Eq. (21) can be
deduced also from a superuniversality conjecture. We have
verified this property performing MC simulations at various
values of o for d = 2 to measure the critical exponents. The
superuniversality conjecture is a good approximation near the
upper critical dimension and becomes worse going towards
the lower critical one.

Finally, for the d =2 LR model we have studied the
region near the lower critical exponent o, = 1.75. We have
discovered that in this region the correlation function has a
very strange behavior, characterized by two decaying power
laws. This makes it difficult to measure with high precision the
critical exponents and the lower critical dimension. Standard
FSS arguments do not help since the subdominant power law
has an effect much larger than leading order finite-size effects.
This kind of critical correlation function (with two different
power laws) can easily lead to overestimating 7 if a proper
fit with a double power law is not performed. Although we
have performed the improved fit with two power laws, the
exponent of the asymptotic decay, i.e., the critical exponent 7,

PHYSICAL REVIEW E 89, 062120 (2014)

has a very large uncertainty, that makes it compatible both with
the standard RG calculation by Sak [10] and with the recent
proposal by Picco [15]. According to Occam’s razor, we see
no reason to propose a different scenario [15,16] as long as
the numerical data, properly fitted, are compatible with the
standard RG scenario proposed by Sak 40 y ago [10]. We want
to stress that the RG analysis performed both in Refs. [10] and
[16] describes only the second, slower power law, because 7,
is related to the behavior of the correlation function at large
distances by definition. An important theoretical challenge is
to understand analytically the origin of the other power law,
that is important at small distances, appearing in the critical
correlation function close to the lower critical .
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