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Abstract Renormalization group based on the Migdal-Kadanoff bond removal approach is
often considered a simple and valuable tool to understand the critical behavior of compli-
cated statistical mechanical models. In presence of quenched disorder, however, predictions
obtained with the Migdal-Kadanoff bond removal approach quite often fail to quantitatively
and qualitatively reproduce critical properties obtained in the mean-field approximation or
by numerical simulations in finite dimensions. In an attempt to overcome this limitation
we analyze the behavior of Ising and Blume-Emery—Griffiths models on more structured
hierarchical lattices. We find that, apart from some exceptions, the failure is not limited to
Midgal-Kadanoff cells but originates right from the hierarchization of Bravais lattices on
small cells, and shows up also when in-cell loops are considered.

Keywords Hierarchical lattice - Renormalization group - Critical behavior -
Migdal-Kadanoff - Ferromagnet - Spin-glass - Ising model - Blume—Emery—Griffiths model

1 Introduction

In this work we shall investigate the renormalization group (RG) analysis of spin systems
with quenched disorder on hierarchical lattices. We will consider both Migdal-Kadanoff
(MK) as well as more complex hierarchical lattices and we will study the critical behavior
of systems with magnetic interactions in presence of random fields and random exchange
interactions.
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Our main aim is to investigate whether hierarchical cells more complicated than MK ones
and more similar to the local structure of short-range Bravais lattices can reproduce features
of ferromagnets and spin-glasses so far unobserved in Real Space Renormalization Group
(RSRG) studies with MK lattices. In order to obtain a more general comprehension of the
effect of bond moving we will provide estimates for critical quantities on several hierarchical
lattices with different topology and compare them to known analytic and numerical results,
when available.

Particular attention will be devoted to the spin-glass phase. Understanding the nature of
the low temperature phase of spin-glasses in finite dimensional systems has turned out to
be an extremely difficult task. Since the resolution of the mean-field approximation, valid
above the upper critical dimension (d = 6), more than thirty years have passed without
a final word about the possible generalization of mean-field properties of spin-glasses to
finite dimensional cases. The mean-field, else called Replica Symmetry Breaking (RSB)
theory [1,2] involves a very interesting solution for the spin-glass phase and its critical
properties, rich of physical (and mathematical) implications, and has been fundamental in
solving very diverse problems both in physics and in other disciplines [3-5]. Because of its
complicated structure, to overcome technical (maybe also conceptual) obstacles hindering
the “portability” of RSB theory predictions to short-range systems on Bravais latticeind < 6
is a rather big challenge in theoretical physics. Indeed, the RSB solution is so complex that
non-perturbative effects cannot be taken under control in any perturbative loop-expansion
around the upper critical dimension and critical scaling behavior is yet to be understood [6—
11]. The main hindrance is the lack of translational invariance for locally frustrated systems
with quenched disordered interactions, making the techniques developed for quantum field
theory and successfully exported to statistical mechanical problems [12,13], e.g., the Ising
model critical exponents, inapplicable.

For what concerns Kadanoft original approach in real space [14,15], a proper extension
of RG techniques to disordered and locally frustrated systems is still on its way. The gen-
eralization of classic RSRG methods on Bravais lattices to disordered interaction, such as
the ones proposed for Ising spin models in the seventies [16,17], has led to controversial
results. On the one hand, by means of a cumulant expansion approach, evidence for a spin-
glass phase is yielded in dimension two [18,19], lower than the lower critical dimension on
the Bravais lattice: d = 2.5 [20-22]. On the other hand, the renormalization through block
transformation on spin clusters does not yield any spin-glass fixed point even in dimension
three [18].

The only results have been achieved using “realizable” approximations, namely those that
are the exact solution of some alternative problem. The first and most famous example is that
of the classic “bond-moving” approximate MK transformation, that when applied to Ising
models on Bravais lattices provides the exact solution for an Ising model on a very different
lattice [23], known as “hierarchical” lattices [24]. Note that, because of the “bond-moving”
procedure, the hierarchical lattices corresponding to MK transformation (MK lattices in the
following) have basically a 1D topology, as, e.g., the “necklace” lattice in Fig. 1.

Therefore, most of the RSRG studies have been concentrating on hierarchical lattices for
which, in the ordered cases, the RG flow is indeed exact (no truncation required). The study
of these systems has brought to important results, cf., e.g., Refs. [23,25-27] and references
therein.

However, MK lattices fail to represent short-range spin-glasses on Bravais lattices also
in the mean-field approximation and are, thus, strongly limited in probing the actual nature
of the spin-glass phase [28,29]. For what concerns perturbative disorder in ferromagnetic
systems, it has been found that the Nishimori conjecture does not provide the exact value of
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Fig. 1 Necklace MK lattice. It a
has b = 2 and fractal dimension
d=3
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the multicritical point coordinate [26,30]. Recently Ohzeki, Nishimori and Berker [26,31]
have put forward an improved conjecture for models on hierarchical lattices finding in many
cases a noteworthy recovery of the critical properties.

The lack of translational invariance on hierarchical lattices is supposed to make peculiarly
difficult the study of first order transitions. For pure systems, while the expected first order
transition is obtained in some model (see for example [32,33]), there are relevant cases in
which the transition is missing on MK lattices [34,35]. For disordered systems it is known
that MK lattices fail to locate the first order transition in the random Blume—Emery—Griffiths
model [33], predicted by both mean-field theory [36] and numerical simulations in finite
dimension [37], nor the expected re-entrance in the phase diagram [33,36,37].

Our aim is to study whether, and which of the, above mentioned differences are con-
sequence of the bond moving procedure at the basis of the MK RG analysis, and if these
are partially, or completely, removed on more structured lattices. We will thus compare the
RSRG analysis of the critical behavior of well known statistical mechanical models with
quenched field and bond randomness on both MK lattices and the more structured “folded
hierarchical lattices”, as we will call them.

The latter family consists of hierarchical lattices obtained by applying the two root reduc-
tion directly to the Bravais lattice [35] (see Figs. 2, 3, 5, 6, 9), without the bond moving
specific of the MK transformation. So the final lattice has no longer just a 1D topology, but
retains, in a small scale, the basic topology of the original lattice. So, unlike the MK family,
in this case the original lattice is continuously reconstructed in the limit in which the length
b of the basic cell goes to infinity: the original lattice is a folded hierarchical lattice with an
infinite basic cell.
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Fig. 3 3D WB HL obtained
from a cubic lattice by grouping
together the incoming and
outcoming spins denoted by the
arrows. The HL has b = 2 and
fractal dimension

d =logl2/log2 =3.585...

—_—
N
N
—_—
—_—
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In the following, we will first critically revisit, in each model case, the analysis on hierar-
chical lattices carried out in the literature. We will, then, compare those results to the outcome
of our studies on more complex lattices in the family of folded cells.

The paper is organized as follows: in Sect. 2 we recall the implementation of the RSRG
in the ferromagnetic Ising model. In Sect. 2.1 we extend the RSRG in presence of generic
quenched disorder. In Sect. 2.2, we investigate the Random Field Ising model (RFIM) and
in Sects. 2.3 and 2.4 the Ising spin-glass, respectively below and above the lower critical
dimension. We compare known and new estimates of critical parameters and discuss how
they comply to known statistical mechanical criteria in presence of disorder. In Sect. 3 we
consider the Blume-Emery—Griffiths model in dimension d > 3. Our analysis shows a re-
entrance in the phase diagram for strong disorder, absent on MK lattices [33] but found in the
mean-field approximation [38] and in numerical simulations on 3D cubic lattices [37,39,40].

2 Hierarchical Renormalization: Ising Model

The RSRG approach, approximated on realistic Bravais lattices, becomes exact on Hierar-
chical Lattices (HL) [14,23,24,35,41]. These lattices are constructed by carrying successive
similar operations, that is, one moves from one hierarchical level to the next one by replacing
each bond by a well-defined unit cells. See, for example, Fig. 1 for a MK lattice or Fig. 2
for the diamond lattice. The RSRG procedure works the reverse way, i.e., one performs a
decimation of the internal sites of a given cell, leading to renormalized interactions among
the survived sites, and hence moves up of one hierarchical level.

Since the decimation procedure may produce additional interactions the starting Hamil-
tonian of the Ising model is:

Si + 8
2

— BH(s) = Z |:JijSiSj + hyj

5 — s
+h = ’] (1
(@)

2

where s; = %1 and (ij) indicates a sum over nearest-neighbor pairs. We use reduced para-
meters in which the temperature is absorbed into the couplings.

Decimating the inner sites {s} = {s € Cup | 54, sp} of the basic cell C,j, of the hierarchical
lattice with external sites s, and s;,, while imposing the conservation of the partition function
of the cell
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Zoy = Xy =, € PO, )
{s}

yields the RG equations:

1 XppX—— 1 X4 t 1 Xp—
Jr ==log| —— ), hr ==log{ — ), hp =—log{ — ). 3
R=y Og(x+,x,+) k=2 Og(x,, R™2 o8 X_y ©)

The partition sums xy,y, , also called edge Boltzmann factors of the cell, are the weights of
the cell for fixed external spins s, and s,. The sum in Eq. (2) runs over all inner or free spins
of the cell C,p. Note as when the external field is missing & = h" = 0and H(s) = H(—s),
which implies g = hl, = 0.

The fixed points of the RG equations identify the phases of the model and, in the pure
case, the critical exponents are obtained from the eigenvalues of the stability matrix of the
fixed point [42]. If at the fixed point 4 = A" = 0 then the stability matrix is diagonal with
scaling exponents yr j = log, At ;, where Ay = 9;Jg and A, = d,h g and b the length of
the cell in lattice spacings, i.e., the scaling factor in the decimation procedure. From these
one obtains the critical exponents v = 1/yr and n = d + 2 — 2 yp,, while the others follow
from the usual scaling relations for the pure Ising model [42].

2.1 Hierarchical Renormalization in Presence of Quenched Disorder

In disordered systems one has to consider the evolution of the whole coupling probability
distribution P (XC) [43,44], rather than that of a single coupling configuration K : KF =
R(IC). The RG equation then becomes

Pr(K®) = /dIC P(K) 8[ IR — R(K0)] )

Practically the RSRG scheme is accomplished by representing the probability distribution
P(IC) by a pool of M real numbers [45]. The process then starts by creating a pool of M
coupling constants generated using the initial probability distribution. A RSRG iteration
consists in M operations in which one randomly picks a set of b couplings from the pool
and generate one renormalized coupling. Following this procedure, one creates a new pool
of size M representing the renormalized probability distribution form which the moments
can be evaluated. We have used pools up to M = 10, large enough to guarantee statistically
stable results.

The evolution of the moments of P (IC) are of particular interest for the identification of
the phases. In the Ising models with quenched disorder, denoting by 1y = [J;;] the average
of the couplings and by oJZ =[(8J; j)z] its variance, the Paramagnetic (PM), Ferromagnetic
(FM), and Spin Glass (SG) phases, are identified by the attractors

wy —>0; o5 —0; PM;
ny —> 00, 05 —> o0 (uy/oy — o0); FM;
nwy —0; o5 — o0; SG.

To reduce the finite pool size effects, the procedure is repeated for Ny different pools,
typically from 10 to 20. This is especially relevant near a critical point, where due to finite
pool size effects, different pools can flow towards different attractors. We have adopted the
convention that a phase is identified if at least 80 % of the pools flow into the same attractor,
and this fixes the error on the location of critical points.
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Table 1 Critical value of J and

hq for the RFIM on the necklace Lattice ho ho/J

MK lattice, Fig. 1, and WB Bimod. MK 0.942(4) 0.876(3)

lattice, Fig. 3, with bimodal or

Gaussian distribution of random Gauss MK 0.934(5) 0.869(4)

fields Bimod. WB 0.460(2) 0.443(5)
Gauss WB 0.456(3) 0.448(4)

In presence of disorder it is difficult to give an analytical prescription for computing the
critical exponents. These can be estimated by following the RG flow close to the unstable
fixed point. We will discuss this procedure in detail.

2.2 Random Field Ising Model

In this section we discuss the RSRG study of the RFIM and compare the results on the necklace
MK lattice with fractal dimension d = 3 of Fig. 1 [46] with those on the Wheatstone—Bridge
(WB) hierarchical lattice with fractal dimension d = 3.585. .. of Fig. 3.

The initial probability distribution P (kC) of couplings is

PUijs hijs b =8(1; = ) p(hiy) 8 (i) ®)
where p(h;;) is either a bimodal or a Gaussian distribution:

2[8hij—ho)+8(hij+ho)],
plhi)=1 _1__ eXP(—hizj/zh(z))- ©

2mh}

P(IC) is an even function of 4;; and h:r] This symmetry is preserved under the RSRG
transformation. To enforce it on a finite pools we symmetrize the pool by adding for each
renormalized interactions (J;;, h;;, hJJ) the symmetric one (J;;, —h;j, —h};). This doubles
the pool size but reduces the bias on the RSRG flow, especially with small pool sizes.

The critical behavior of the RFIM is controlled by a zero-temperature fixed point where
both wy, the coupling average, and oy, the field standard deviation, flow to infinity. The
critical point separates the high temperature phase, o, / t; — 00, from the low temperature
phase, o, / uj — 0. The zero-temperature fixed point can be identified by searching for
the values of J and hg for which the ratio oy / ; approaches a finite, non-zero, value.
The numerical critical values are reported in Table 1, whereas the fixed point probability
distribution is shown in Fig. 4.

The zero-temperature fixed point is characterized by three independent exponents: the
coupling probability distribution scaling exponent y, the magnetic field scaling exponent
yp and the thermal scaling exponent yr. From the scaling exponents one has the critical
exponents v = 1/yr, o =2 — (d — y)vand 8 = (d — yp)v, and the others follow from
the scaling relations [49]. The scaling exponents can be estimated by using the following

procedure [46].

1 Previous results [47] on this lattice suffers from some inconsistency, as discussed in Ref. [48].
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Fig. 4 Zero-temperature fixed point probability distribution for RFIM on 3D WB lattice with bimodal initial
distribution: P(J, h) (left) and P(J, hT) (right). The Gaussian case is similar. The fixed point probability
distribution is invariant under an arbitrary scale factor. In the plots o, /iy = ho/J

2.2.1 Distribution Scaling Exponent

The exponent y measures the growth of the width of the couplings probability distribution
under renormalization. The fixed point probability distribution P* is invariant under an
arbitrary scale factor. Therefore to estimate y we start on the phase boundary and evaluate
the rescaling factor A = oy, /o) = [y, /107 Which measure the growth of the width along the
renormalization flow. To balance the drift of the RG flow away from the (unstable) critical
surface, at each renormalization step the probability is moved back by shifting the couplings
by 0.8 x (u — wy) with u = a5, /(ho/J). The shift is usually of the order of 0.1 % for each
coupling.
The exponent y is estimated as
y =log, 2, (7)

where the overbar denotes average along the RG flow, 10 RSRG steps in our case. The
estimated values are given in Table 2. In all cases y < d/2, the upper bound provided by
Berker and McKay [50].

2.2.2 Field Scaling Exponent

The exponent y, measures the growth of an infinitesimal homogeneous symmetry-breaking
external field & under RG, and is given by

Wi = log, | & ®)
oh | pe

where the average is taken with the zero-temperature fixed point probability distribution P*.
The values are reported in Table 2. In all cases the value is smaller than the fractal dimension,
3 for MK and 3.585 ... for WB, and the magnetization is continuous at the transition.

2.2.3 Thermal Scaling Exponent

The scaling exponent y7r describes how the RG flow leaves the critical surface, and can be
evaluated by comparing two close RG flows. The pool representing the fixed point distribution
P* is then duplicated, and the copy is slightly perturbed by shifting all couplings J;; by the
small amount § = 10™*/. The two copies are simultaneously transformed, with the original
kept close to the critical surface as done for the computation of y, while the second is left
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Table 2 Scaling exponents of RFIM on the necklace MK lattice of Fig. 1 and the WB lattice of Fig. 3

Lattice y Yh yT
Bimod. MK 1.491(3) 2.991(1) 0.45(23)
Bimod. MK [51] 1.4916(3) 2.9911(2) 0.445(2)
Gauss MK 1.486(3) 2.990(1) 0.44(20)
Bimod. WB 1.788(2) 3.575(1) 0.69(35)
Gauss WB 1.787(2) 3.576(1) 0.68(31)
3D sim. [52] 1.49(3) 2.988(4) 0.73(5)
4D sim. [53] 1.779(4) 3.827(1) 1.280(2)

The scaling exponents on the MK lattice with bimodal field are in agreement with those of Ref. [46]. The more
accurate values of Ref. [51] are obtained using the histograms representation for the interactions probability
distribution, feasible only on MK cells. The last two rows refer to simulations on 3D and 4D regular lattices
with bimodal distributed fields

free to depart from it. At each step the difference ¢ between the values of o,/ ; from the
two pools are recorded. The scaling exponent yr is evaluated as

Iy
yr = 1og,,( :l)’ ©)

n

where t, is the difference after n RSRG steps, and the average is along the RG flow. > Typically
n ranges from 3 to 9, so that perturbed pool is not too far from the critical surface, while
M > 10° to have a stable results. The values are reported in Table 2.

The exponents y and y, depend strongly on the fractal dimension d of the lattice. The
values for the MK lattice, d = 3, are in good agreement with the results of numerical
simulations of the RFIM with bimodal field distribution on the cubic lattice, while those on
WB lattice, d = 3.585 .. ., are closer to the results of simulations on the 4D lattice.

The value of yr for the WB hierarchical lattice is larger than that for the MK lattice, in
agreement with the trend seen in the numerical simulations.

The values for the Gaussian and bimodal case are compatible with each other, indicating
that they belong to the same universality class.

2.3 Random Bond Ising Modelind < 2.5

In this section we consider the Ising model, Eq. (1), with random +J,
P(Jij, hij, hjj) =[p8(Ji; — )+ (1 = p)s(Jij + 1] a(hij)(s(hjj), (10)

with p € [0, 1], on hierarchical lattices mimicking the topology of the 2D square lattice. The
presence of bond disorder, absent in the RFIM, needs a finer treatment of the bond structure
in the RG analysis, and is one of the main reasons of moving from MK lattice to more
structured HL. We shall consider the folded square (FS) HL in Fig. 5 with b = 3 proposed
by Nobre [30], and its extension to b = 5 shown in Fig. 6.

On a regular lattice for p low enough there exists an antiferromagnetic (AFM) phase. On
HL the AFM order is preserved under RSRG only if the rescaling factor b is odd and the
RG equations are antisymmetric for / — —J. The phase diagram is then symmetric for

2 The argument of the logarithm is always positive because the variance can either shrink or increase but does
not oscillate between different RSRG steps.
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f t b

Fig. 5 Left square lattice cells. Right b = 3 folded square HL with two roots (empty dots). The outcoming
and incoming sites, indicated by the arrows, are collapsed and replaced by the root sites a and b. The 4 inner
sites of the square cell become the inner sites (filled dots) of the HL. This construction gives a self-dual lattice
with fractal dimensiond =1In9/In3 =2

(R )

Fig. 6 Left square lattice cells. Right b = 5 folded square HL with two roots (empty dots). For the construction
see Fig. 5. The lattice has fractal dimension d =In25/1n5 =2

p <> (1 — p), and hence under the exchange of the FM and AFM phases. The phase diagram
of the 2D model obtained with the b = 5 FS HL is shown in Fig. 7.

The pure FM fixed point, p = 1, occurs at the critical temperature T, = J. ' =
2.269185(1), in quite good agreement with the Onsager exact result 7, = 2/ log(1 ++/2) =
2.269185. .. This result, found also with the » = 3 FS HL [30] and the WB HL with
d = 2.32 [27], follows from the duality properties of the unit cells [35].

The scaling exponents of the p = 1 fixed point can be estimated as discussed in Sect. 2.
We find yr = 0.7303(1) and y, = 0.8518(1) for the b = 3 FS and yr = 0.7589(1) and
yp = 1.059(1) for the b = 5 FS, either way, not consistent with those from the Onsager
solution: y7 = 1 and y, = 1.875. The critical exponents are reported in Table 3.

For both FS HL we found o < 0. According to the widely accepted form of the Harris
criterion [54,55] the disorder in ferromagnetic systems is irrelevant if the exponent « of the
pure system is negative. This agrees with the direct analysis of the RG flow which reveals
no other fixed points besides the pure FM p = 1 one, and hence no different universality
classes in presence of disorder. The typical evolution on the critical surface of the coupling
probability distribution is shown in Fig. 8. Though it is known that this criterion can fail on
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2.5

0.84 086 088 0.9 092 094 096 0.98 1

p

Fig.7 (p,T =1J -1 phase diagram of the 2D +J Random Bond Ising model on the » = 5 FS HL. The
phase diagram is symmetric under p — 1 — p and only the PM/FM region is shown. The dashed line is the
Nishimori line, see text

Table 3 Critical exponent of the

pure FM critical point of the 2D b = 3 folded square b =5 folded square Exact
+J Random Bond Ising model _ _
on the folded square HL ¢ 0.7385(1) 0.6353(1) 0
B 1.572(1) 1.240(1) 0.125
y —0.4057(1) 0.1558(1) 1.75
8 0.7419(1) 1.126(1) 15
v 1.369(1) 1.318(1) 1
n 2.296(1) 1.882(1) 0.25

HL if the bonds in the cell are not all equivalent [44,56—60], the Harris criterion appears
satisfied for the » = 3 and b = 5 FS HL.
Another quantity used to infer the relevance of the disorder is the slope of the critical line
at p =1 [54]:
1 dTc(p)

s = .
TC(p) dp p=1

an

For the 2D +J Random Bond Ising model the Domany’s perturbative approach yields s =
2\/§/Un(\/§ + 1)] = 3.209... [61]. This assumes from the beginning weak disorder, i.e.,
irrelevant disorder and hence no change in the universality class of the PM/FM transition for
p < 1. Ohzeki and collaborators have suggested [62] that by comparing the value of s one
can discriminate whether or not the quenched disorder is a relevant perturbation on self-dual
lattices, causing a change in the universality class. For the » = 3 FS we obtain s = 3.30(3),
compatible with the value of s = 3.27866 from duality arguments [62]. For the b = 5 FS
the estimated value is s = 3.32(3). Either way, the values are different from the Domany’s
value s = 3.209.. .. According to the arguments of Ref. [62] this would imply that disorder
is relevant. We then conclude that if it is true that a slope equal to Domany’s value might be
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Fig. 8 Evolution of the coupling distribution on the critical surface. The width quickly decreases, the distri-
bution tends to a delta function and the disorder disappears. In figure steps from 4 to 11 and p = 0.99

consistent with the irrelevance of disorder, a value different from Domany’s value does not
necessarily implies the relevance of disorder. The RG approach on the b = 3 and b = 5 FS
HL fails to give a quantitatively exact description of the critical behavior and the numerical
discrepancy with the Domany’s value can just be a consequence of this.

Even though the 2D Random Bond Ising model does not display an SG phase [63], its study
on hierarchical lattices is an excellent test of the Nishimori’s conjecture [64—68]. In the 3D
model the Nishimori’s conjecture identifies the point on the Nishimori linee 2/ = (1—p)/p
where H (pme) = —plogy(Pme) — (1 — pme) logr (1 — pme) = 1/2 with the multicritical
point where the PM, FM and SG phases meet. In the 2D model the SG phase is absent and
the point should coincide with an unstable critical point on the PM/FM phase boundary. The
Nishimori’s conjecture is known to fail on some HL [26,31,69]. We then test it on the FS
HL.

From the Nishimori’s conjecture the intersection between the PM/FM boundary and the
Nishimori line should occur at py,e >~ 0.889972. For the b = 3 FS HL the crossing occurs at
Time = 0.9557(18) with ppye = 0.8903(2), leading to 2H (py) = 0.998(1) [26,30]. For the
b =5FS HL we find

Tme = 0.9571(1),  pme = 0.8902(1) (12)

with 2H (py) = 0.9985(1), similar to what found with the » = 3 folded square cell. We
then conclude that the conjecture also fails on FS HL. Note that the values obtained with
the folded square cell agree with the estimate pye = 0.8905(5) from the transfer matrix
approach [70], but are slightly larger than those from the high temperature series expansion,
Pme = 0.886(3) [71], and Monte Carlo simulations, pm. = 0.8872(8) [72].

An important feature of the p, T phase diagram, which follows from duality, is the re-
entrance of the transition line below the multicritical point, i.e., pr—g > Pmc. Withthe b =3
FS one has pr—o = 0.8951(3) [30], while with the » = 5 FS the value is pr—o = 0.8966(2),
confirming the re-entrance in both cases. These values are consistent with those from the finite
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Table 4 Stiffness exponent 0 for

the 2D Gaussian Random Bond Lattice type o
Ising model on different HL b =2 MK —0.270(2) [45]
b =3MK —0.278(2) [76]
b=2WB —0.290(3) [35]
b=3WB —0.298(2) [76]
b=3FS —0.275(1) [35]
b=5FS —0.2714(2)
—0.291(2) [74]
2D square —0.287(4) [77]
The last tree lines refers to direct —0.284(4) [78]

numerical simulations

size scaling analysis of the ground state, that leads to p(Tp :)0 = 0.896(1) or p(;zo =0.894(2),
depending on which exponent is used to characterize the transition [73].

We conclude the analysis of the 2D model with a discussion of the zero temperature stift-
ness exponent 6. The exponent 6 is related to the scaling of the bond probability distribution
width o; under the RG transformation:

o1 (b) ~ab’. (13)

A positive (negative) 6 means a RG flow that flow towards a strong (weak) couplings fixed
point, distinctive of a low temperature SG (high temperature PM) phase. For continuous and
symmetric probability distributions P (J) the temperature 7 appears in the RSRG equations
as a dimensionless ratio between couplings, and the scaling (13) implies that the typical size
of the “droplets” of aligned spins goes as L ~ T /% [74]. For a phase transition at T = 0
this readly leads to the correlation length scaling & ~ T~ with v = —1/6 [75].

To compare with known results, we have considered the case of a zero-average Gaussian
bond distribution, finding § = —0.275(1) [v = 3.635(0)] for the b = 3 FS, in agreement
with Ref. [76], and § = —0.2714(2) [v = 3.684(3)] for the b = 5 FS. The values found for
others HL are shown in Table 4. The values for the FS are similar to those found on the MK
lattice, whilst the values for the WB lattices are closer to those of the regular 2D lattice.

From the above study we conclude that in passing fromb = 3to b = 5, and thus increasing
the connectivity of the lattice, we obtain in general a slight improvement in the numerical
values the critical exponents of the pure fixed point, cfr. Table 3. The values, however, remain
far from the exact ones. This rather slow convergence may indicate that the degree of the
internal correlation of the FS cell required to correctly describe the critical behavior might
be so large to make the single FS cell comparable with a whole real Bravais lattices.

2.4 Random Bond Ising Model ind > 2.5

In this section we consider the +J Random Bond Ising model on HL mimicking the 3D cubic
lattice topology, where the SG phase should be present. To stress this we call the model £/
Ising SG model. Recently Salmon et al. [27] have obtained accurate phase diagrams for the
Ising SG on the WB HL in Figs. 2 and 3, and shown that on these lattices the lower critical
dimension of the SG phase is larger than d = In5/In2 = 2.32.. ., cfr. Fig. 2. The fractal
dimension of the WB HL in Fig. 3 is d = 3.585.. . ., greater than the expected lower critical
dimension 2.5 of the SG transition, but also greater than d = 3. Quantitative deviations from
the 3D cubic lattice might, then, occur.
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p a
el

AT
7

Fig. 9 Left cubic cells with b = 3. Right b = 3 folded cube HL. The incoming and outcoming sites, indicated
by the arrows, are collapsed and replaced by the two root sites @ and b (empty dots). The other sites of the
cubic cell become the inner sites of the hierarchical cell (filled dots)

Fig. 10 b = 3 MK cell with
fractal dimension d = 3 [69,79]
a b

We study the model on the Folded Cube (FC) HL shown in Fig. 9. This is the “three-
dimensional” extension of the FS lattice of Fig. 5 introduced to study the anisotropic 3D
ferromagnetic Potts model [34]. This lattice has a fractal dimension d = In35/In3 =
3.2362..., and hence closer to 3 than the WB lattice. Moreover it has b = 3 and, unlike the
WAB, it may retain a possible AFM order. For comparison we also consider the MK lattice in
Fig. 10 (b = 3 MK) with b = 3 and fractal dimension d = 3 introduced in Refs. [33,79].

The phase diagram of the &=/ Ising SG model onthe » = 3 FC HL is shown in Fig. 11. Note
the small re-entrance just below the muticritical point, so that by decreasing the temperature
one passes from the PM phase to the ordered FM phase, and then to the disordered SG phase.
The position of the critical points is reported in Table 5.

The points on the critical PM/FM line (critical surface) flow under RG towards the pure
FM fixed point located at p = 1. The value T, = 5.066(1) on the b = 3 FC HL is 12 % larger
than the estimated value 7. = 4.5115 from numerical simulations on the 3D lattice [80]. We
note that with the 3D WB the difference increases to 21 % [27], while the best known MK
result obtained with the b = 3 MK lattice is 19 % larger [79].

The scaling exponents of the FM fixed point on the » = 3 FC HL are yr = 1.523(1)
and y, = 1.864(1). With the 3D WB one has y7 = 1.149(1) and y;, = 0.9636(1), whereas
yr = 1.460(1) and y, = 1.613(1) on the b = 3 MK lattice. In all cases y, < d and the
transition is continuous [81], however none of these agree with the result from numerical
simulation on 3D lattice, yr = 1.587(1) and y;, = 2.482(1) [82], yet the b = 3 FC HL gives
the closest estimation. The critical exponents are reported in Table 6.
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Fig.11 (p, T = Jh phase diagram of the £J Ising SG model on the b = 3 FC HL. The dashed line is the

Nishimori line. The plot is symmetric under p — 1 — p and only the FM part is shown

Table 5 Critical points of the £/ Ising SG on various HL

b=3FC 3D WB 4D WB [27] b=3MK

EM p 1 1 1

T 5.066(1) 5.457(1) 5.383(1)
SG P 0.5 0.5 0.5 0.5

T 1.072(1) 1.112(2) 2.515(2) 1.136(4)
T=0 p 0.764(2) 0.760(1) 0.667(2) 0.761(1)

T 0 0 0 0
Muticritical p 0.7547(3) 0.745(2) 0.664(2) 0.752(7)

T 1.779(1) 1.620(2) 2.836(2) 1.797(3)

The values for the 3D WB and b = 3 MK agrees with those of Ref. [27]

Table 6 Critical exponents of the pure FM fixed point controlling the PM/FM transition for +J Ising SG

model
b=3MK 3D WB b=3FC 3D sim. [82]

o —0.2169(1) —1.121(1) —0.1253(1) 0.110(1)

B 1.112(1) 2.282(1) 0.9012(1) 0.3265(3)

y —0.006490(1) —1.443(1) 0.3229(1) 1.2372(5)

3 0.9942(1) 0.3676(1) 1.358(1) 4.789(2)

v 0.6850(1) 0.8705(1) 0.6567(1) 0.6301(4)

n 2.009(1) 3.658(1) 1.508(1) 0.0364(5)

Note thator < 0 on all HL and, according to the Harris criterion [54], the disorder should be
irrelevant. From the analysis of the RG flow this is certainly true for weak disorder. However
for large disorder a second, strong disorder, SG fixed point appears controlling the PM/SG

transition.

All points on the PM/SG transition line are attracted by the (unstable) SG fixed point
located at p = 0.5. The b = 3 FC HL gives the critical temperature 7, = 1.072(1), with
a difference of 4.5 % with respect to the numerical simulation value 7, = 1.120(4) [83]. In
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Fig. 12 SG fixed point coupling probability distribution for the &= Ising SG model on the b = 3 MK lattice
(MK), 3D WB HL (WB) and b = 3 FC HL (FC).

Table 7 Scaling exponent y7 of

the SG fixed point for the £J Lattice T

Ising SG model b =3MK 0.297 + 0.026
3D WB 0.308 + 0.063
b=3FC 0.262 % 0.037
3D sim. [84] 0.408 + 0.025

this case the closest value is obtained with the 3D WB HL, T, = 1.112(2). The SG fixed
point coupling probability distributions P* is shown in Fig. 12.

The critical exponents can be obtained from the scaling exponents of the SG fixed point
evaluated from the RG flow by using the same procedure described for the RFIM, with the
simplification of y = 0 because the fix point is at finite temperature [49].

The evaluation of y;, is particularly simple. At the SG fixed point & = A’ = 0 and
H*(—s) = H*"(s). A straightforward calculation then shows that d4g/dh = ¢, the number
of links connecting each external sites of the cells with the internal sites. The b = 3 FC, 3D
WB and MK cell all have ¢ = b2, so that yp = 2.

The scaling exponent yr is evaluated with the two-pools method measuring t = o7 — o7,
where o7 is the width of the critical coupling probability distribution P*. The value of yr
for the different lattices is reported in Table 7. The values are compatible with each other, but
quite far from the value yr = 0.408 £ 0.025 obtained with numerical simulation of the 3D
lattice. Moreover the worst estimation comes from the » = 3 FC HL, a fact enlightening the
limitations of the RG approach on HL for the study of the critical properties of disordered
systems. The values of the critical exponents are reported in Table 8.

Finally, the stiffness exponent of the SG fixed point is estimated from the growth of o
under successive RSRG steps. We find 6 = 0.2052(1), a value remarkably close to what
found from numerical simulations: & = 0.19(1) [74] or 6 = 0.20(5) [85]. The 3D WB HL
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Table 8 Critical exponents of the SG fixed point controlling the PM/SG transition for &/ Ising SG model

b =3MK 3D WB b=3FC 3D sim. [84]
o —8.10(88) —9.6(24) —10.4(17) —5.4(5)

B 3.37(30) 4.20(86) 4.27(60) 0.77(5)

y 3.37(30) 1.35(28) 2.92(41) 5.8(4)

v 3.37(30) 3.25(66) 3.82(54) 2.45(15)
1 1 1.585... 1.236... —0.375(10)

The exponent 7 is equal to d — 2, with d the fractal dimension of the HL

leads to & = 0.297(3) [27], while the b = 3 MK lattice gives 8 =~ 0.27 [85], values not as
good as the one given by b = 3 FC HL.

To summarize, the » = 3 FC HL leads to a general improvement in the description of
the PM/FM critical behavior, yet the numerical agreement with the numerical simulations is
not achieved. A similar general improvement is not seen for the PM/SG critical behavior. In
particular the critical exponent v is badly estimated. The stiffness exponent is, however, very
close to the known results from the numerical simulations. We can argue that this follows
because the stiffness exponent depends more on the local geometrical properties of the lattice,
whose description is improved by the b = 3 FC cell, while the critical properties depend on
longer distances, still dominated by the hierarchical backbone and thus far from the Bravais
lattice behavior.

3 Blume-Emery-Griffiths Model

‘We now move on to a different system, the Blume—Emery—Griffiths (BEG) model, introduced
to study the superfluid transition in He?-He* mixtures [86]. This is a spin-1 model with
s = %1 representing the magnetic (He?) sites and s = 0 the neutral or hole sites (He*). The
model presents a rich phase diagram with, besides a second order phase transition, a first
order transition between the PM and FM phases, in the ordered case, or between the PM and
SG phases, in the disordered case.

The ordered model has been studied in both mean-field approximation [§6—88] and finite
dimension using series extrapolation [89], RSRG analysis [17], Monte Carlo simulations [90],
effective-field theory [91] or two-particle cluster approximation [92].

The inclusion of weak and strong quenched disorder has been studied in the mean-field
limit [36,38,93,94], finite dimensional RSRG analysis on MK lattices [33,95] and Monte
Carlo simulations [37,39,40,96].

The numerical simulation shows that also in the disordered case, and similar to what
predicted by the mean-field analysis, the second order transition line ends at a tricritical point
where a first order transition develops. For positive and finite values of the chemical potential
of the holes the first order transition line bends leading to the so called inverse freezing
phenomenon, i.e., the arrest of the amorphous phase in a solid-like state upon heating [37,38].
Contrarily to these findings, the RSRG study of the disordered model on MK lattices does
not reveal this first order phase transition, nor the reentrance of the transition line [33].

In this section we deepen the RSRG study of the disorder BEG model by comparing the
results on the b = 3 MK lattice (Fig. 10), the » = 2 MK lattice (Fig. 13), the 3D WB HL
(Fig. 3) and the » = 3 FC HL (Fig. 9).
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Fig. 13 b = 2 MK cell with
fractal dimension d = 3.58, the
same of the 3D WB cell, cfr.
Fig. 3

The form of the BEG Hamiltonian suitable for the RG study is
— BH(s) = z Jijsisj + Z K,-js?s%
(i) (ij)
> Ay (s,? +s]2.) > A (s,? —sf.) (14)
(ij) (ij)
where s; = %1, 0 and, in the strong disordered case,
1
P(K;j) = 5[5(J,-,~ — D)+ 80 + D 8K sy - a6 (4f), (15)

with K;; = (Jij, Kij, Aij, Ajj). In the limit A < —1 the values s; = 0 are suppressed and
the model goes over the +J Ising SG model discussed in the previous section with p = 1/2.

For any given coupling configuration the RG equation IC® = R(KC) generated by the
block RG transform on the cell C,;, are

1 1 _x3
JRr log(7x++), Kr == 10{‘;()67+JFQ)CJr zxoo)’
Xy 2 X0+ X0

2
1 2 1
AR :710g(x¢)7 Al zflog()ﬂ), (16)
2 X40 X0+ 2 X0+

where x;,, are the edge Boltzmann factors, Eq. (2).

The phase diagram obtained with the different lattices is shown in Fig. 14. The projection
of the renormalized P (KC) is plotted in Fig. 15. In all cases the PM/SG transition is second
order. All points on the critical PM/SG surface flow under RG towards the Ising SG fixed
point at ux — —o0, 6o — 0. The PM/SG transition is then in the same universality class
of the PM/SG transition in the Ising SG model discussed in the previous section.

We have no clear evidence on why the first order transition is missing. Based on physical
arguments we may propose the following conjecture. A second order transition is associated
with an instability, the high temperature phase becomes unstable and a new stable phase
appears continuously. The instability can manifest itself locally, and hence HL can capture
second order transitions. A first order transitions, on the contrary, is not triggered by an insta-
bility. The high temperature phase remains stable, but a thermodynamically more favorable
phase takes over. Such a situation requires some sort of long range structure of the lattice,
structure that is missing in the HL we have considered, and this explains why we do not
see the first order transition. If our conjecture is correct one may wonder if the first order
transition could appear on HL with folded cells with large but finite b. The drawback is that
the value of b could be so large to make the whole HL approach ineffective. The analysis on
this direction is left for future work.
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Fig. 14 RSRG phase diagram of the disordered BEG model compared with the result from numerical sim-
ulation on 3D lattice (3D) [37] Inset detail of the reentrance seen on the 3D WB HL and absent on MK
lattices
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Fig. 15 Projection of Ising SG fixed point probability distribution P*(K) for the disordered BEG model on
the b = 3 WB HL. The results with the MK lattices and b = 3 FC HL are similar

The re-entrance of the transition line, unseen with MK lattices, is however found, but only
with the 3D WB HL.

4 Discussion

The RSRG on hierarchical lattices is a simple and powerful method for studying the critical
behavior of model systems, much faster than Monte Carlo simulations on Bravais lattices.
Despite the numerical outcomes usually differ from those on Bravais lattices, it can provide
information on the general features of the critical behavior. The method, however, presents
some drawbacks and the picture that emerges may lack some important aspects.
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In this work we have provided a critical analysis of the RSRG on MK and more structured
hierarchical lattices by studying the critical behavior of the RFIM, the Random Bond Ising
Model and the Blume—Emery—Griffiths. The models have been chosen as representative of
some typical behaviors: ferromagnetic, AFM and spin-glass phases, first and second order
transitions.

Our results provide a clue to the possibility of obtaining approximations of models on
regular lattice by similar models on hierarchical lattice. We show that it is possible to obtain a
good picture of the actual phase diagram, but far more difficult to yield a proper determination
of critical exponents.

By introducing more structured elementary cells one hopes of capturing the local geo-
metrical properties of the bonds. At least part of it. For pure models, although it is not a
systematic approximation, a general improvement is obtained using unit cells that locally
mimic better the connectivity of the Bravais lattice. In the disordered case, instead, the sit-
uation is less definite, and no net improvement is observed: the 3D WB cell (Fig. 3) proves
to be the slightly most reliable, generally quantitatively better than the more complex FC
of Fig. 9. In particular, it shows the expected inverse transition for the BEG model, but we
cannot give a general explanation for this.

The fractal dimension of the lattice seems to play a minor role, as the three dimensional
regular lattice is better approximated by the 3D WB with d = 3.58..., compared to the
b =3 MK withd = 3 (Fig. 10) and the b = 3 FC (Fig. 9) withd = 3.24 ..., whilethe b = 2
MK (Fig. 13) with d = 3.58 ... gives the worst approximation by far.

The scaling factor b has the known role to determine if the AFM order can be preserved,
as it is possible only when b is odd so that negative interactions in the unit cell involve
negative interactions between the external sites, and the phase diagram turns out symmetric
under the inversion of the bonds sign. Our results indicate that this feature does not play a
crucial role in the disordered systems, at least until the negative bonds become dominant.
The two investigated hierarchical lattices with even b, the 3D WB and the b = 2 MK, indeed,
appear to be, respectively, the best and the worst in approximating the phase diagram of the
models on regular lattice. The only case in which the b = 3 FC lattice provides a remarkable
improvement with respect to the 3D WB lattice is in the estimate of the SG stiffness exponent.
A more structured inner local connectivity could, thus, become important at low temperatures.

In conclusion, our results show that the RSRG on hierarchical lattices is particularly poor
for disordered systems, and strongly suggest that its limitations are intrinsic to the hierarchical
nature. The most striking case is the lack of first order transition in the BEG model. Using
more structured cells may, indeed, improve the treatment of short distances, i.e., short loops,
however the longer distances appear definitely dominated by the hierarchical nature of the
lattice.

Finally as byproduct of our analysis, and besides the evaluation of the critical exponents,
we have found indications that the bimodal and Gaussian Random Field model in dimension
d < 2.5 are in the same universality class. Moreover, the Nishimori conjecture appears
always violated, whereas the Harris criterion is violated only above dimension 2.5.
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