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A number of general trends are known to occur in systems displaying secondary processes in glasses and glass
formers. Universal features can be identified as components of large and small cooperativeness whose competi-
tion leads to excess wings or apart peaks in the susceptibility spectrum. To the aim of understanding such rich
and complex phenomenology we analyze the behavior of a model combining two apart glassy components
with a tunable different cooperativeness. The model salient feature is, indeed, based on the competition of the
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1. Introduction

In several supercooled liquids and glasses processes are observed
whose typical timescales are much longer than cage rattling microscopic
motion and local rearrangement timescales of the so-called (fast) 3
processes and, yet are much shorter than the time-scale of structural
relaxation, i.e., of the & processes. These are usually termed “secondary
processes” and are related to complicated though local (non-cooperative
or not fully cooperative) dynamics. We will, in particular, investigate
Johari and Goldstein processes [1], for which special properties hold,
such as dependence of their relaxation time on density and temperature
and a strict relationship to structural processes [2]. In the present paper
we will term them simply as 3, referring to fast 3 processes as y. Their ex-
istence was first pointed out in the 1960s from dielectric loss spectra
measurements, in which they are identified by the occurrence of a second
peak at a frequency higher than the frequency v, of the « process peak.
This so-called 3-peak has been recorded in a large number of substances
as, e.g., poly-alcohols [3-5], mixtures of rigid polar molecules and oligo-
mers [6-9], propylene glycols [10] and many others comprehensively
gathered in Ref. [11].

Also in cases where the spectral density of response losses does not
clearly show a second peak, secondary processes are known to be active
and their presence is, then, identified, by some anomaly at frequency
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higher than v,, called excess wing [12,13]. Though it was initially ob-
served as an apart phenomenon [14], more recent investigation has
shown that the excess wings rather are manifestations of 3 JG processes
[15,8,11]. Properly tuning external parameters (temperature, pressure,
concentration, ...) 3-peaks can come out of the excess wings or, vice
versa, secondary peaks can reduce to excess wings. According to
Cummins [16] the relevant parameter to tune in passing from one
scenario to the other one might be the rotation-translation coupling
constant, becoming stronger as density increases, and being larger
for a liquid glass former made of elongated and strongly anisotropic
molecules.

Theoretical attempts have been carried out in this direction in the
framework of Mode Coupling Theory (MCT). According to this theory
the relaxation of reorientational correlation and rotation-translation
coupling in liquids composed of strongly anisotropic molecules appears
to be logarithmic in time [17]. A comprehensive picture is, though, not
yet established and many questions are open, for instance, about the
dependence of the characteristic time-scales of ]G processes on temper-
ature and pressure, else, on concentration, about the chance that sec-
ondary processes might disclose a certain degree of cooperativeness
[18], or the explanation for the persistence of the 3 processes also
below the calorimetric glass transition temperature T,. A very interest-
ing question is whether there is a straightforward connection, and, in
case, which one, between processes evolving at qualitatively different
time-scales. Were it the case, one might devise the long-time behavior
of e relaxation from the behaviors of the fast small-amplitude cage dy-
namics (y processes) and of the 3 secondary processes. In glasses and
glass formers, where e and 3 peaks of the loss spectra can be clearly
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resolved in frequency one can resort to a description based on two time-
scale bifurcation accelerations as temperature is lowered. Processes
consequently evolve on three well-separated time sectors. Examples
of well resolved peak separation can be found, e.g., in 4-polybutadiene,
toluene [19], sorbitol [5] mixture of quinaldine in tri-styrene [6,8,7] or
trimer propylene glycol [10].

A way to reproduce secondary processes, or at least some stretching
in the high frequency side of the e relaxation, is to include the coupling
of correlators of two different components, such as the density corre-
lators of tagged particles and their surrounding medium [20]. In the
limit of strong coupling between correlators it is possible to yield a
Cole-Cole law for the loss spectrum in the limit [21], but no distinct
apart secondary 3 peak is resolved. To the aim of overcoming these
limitations in the theoretical description of secondary processes we
propose a model with a single component but a dynamic kernel corre-
sponding to two different kinds of cooperativeness.

2. The model

The model we shall discuss is known as the spherical s + p spin glass
model defined by the Hamiltonian

(s) (p)
H=- Z ‘]iln-iso-il -"Ois_ Z -]i,.‘.ipo-ilmo—ip (-l)

iy<...<ig iy<...<ip

where jlf“_)_‘i[ (t = s,p with s < p for convention) are uncorrelated, zero
mean, Gaussian variable of variance

() =k @

where the overbar denotes the average over the quenched disorder and
0; are N continuous real variable (spins) ranging from —e to + « obeying
the global constraint Y ;0? = N (spherical constraint). The model,
defined on a complete graph, is intrinsically mean-field. Indeed, each
spin interacts with all others and neither geometric nor dimensional
structure is relevant for the interaction network. In order to guaran-
tee thermodynamic convergence and an extensive energy the inter-
action magnitude is very small, and scales with the system size as

2.1. A bit of thermodynamics

Due to the mean-field nature of the model the metastable glassy
states responsible for the dynamic arrest can be studied by means of
thermodynamics. Indeed, in these spherical spin models with quenched
disordered couplings, the configurational entropy, related to the num-
ber of metastable states, is a true, static, thermodynamic state function,
unlike realistic structural glasses [22]. Therefore, to make connection
with glass formers, we first recall some results on the model static prop-
erties, both in its ideal glassy phase and in the supercooled liquid phase.
Let us define the overlap

N
0= y 2ol 3)

between any two glassy stable or metastable states o and 3 whose
equilibrium measure in the corresponding ergodic component is
labeled by (...)qp.

In a cooling procedure, these states first occur as excited metastable
states at the temperature T = Ty = Ty coinciding with the dynamic or
mode coupling temperature. Physically, this is the temperature at which
the glassy states dominate the free energy landscape through which the
system dynamics takes place. At this temperature their number be-
comes macroscopic, i.e., exponentially large with the system size, and

the configurational entropy (also called complexity) becomes extensive
with the system size N.

Below T = Tq = T the phase space breaks down into several
regions (glass phase), and the overlap gz takes different values g,
with probability p,.. The number of different values depends on both
the region of the phase diagram and the values of s and p, and can be fi-
nite or infinite. In the first case the phase is called R Replica Symmetry
Broken (RRSB), where R is the number of different values of qqz, while
in the second case it is termed Full Replica Symmetry Broken (FRSB).
Mixed phases are also possible [23,24].

Here, we focus on the cases where secondary processes show up. As
it will be later clarified, these correspond to a static description in which
(op takes two non-trivial value (R = 2) with probability:

P(q) = p16(q) + (P,—P1)0(q—01) )
+(1=p,)6(q—qy).

In terms of free energy landscape, this picture displays a hierarchical
structure where each glassy minimum - representing a separated ergo-
dic component - also contains a further set of glassy minima inside, as
pictorially represented in Fig. 1, cf. Ref. [25]. Inner states have a higher
overlap g, while outer states have a lower overlap, q; < q;. Such “nested”
minima appear as metastable states at the tricritical point along the dy-
namic (swallowtail) arrest line. They become the ideal equilibrium stable
glass states at the static - Kauzmann - transition line. As the dynamic
arrest line is approached, e.g., by cooling, far from the tricritical point
only one set of states appear. This implies that only one kind of diverg-
ing timescale occurs for slow processes, the structural ones.

The values of q; and ¢, are given by the solution of the self-
consistent equations [26,25]:

G

M@= a0 20 )
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where

X(q) =1—qy,

X(q1) = x(q2) +DP2(q2—a1),

X(0)= x(q1) +P14s,

and where we have introduced the functions

8X) = 251X + X, ()
MX) =g (X) = v X v, XPT 8)
with

vy = 1B )2. 9)

In a pure static study, the thermodynamics is ruled by the states that
extremize the free energy, and this leads to the two additional self-
consistent equations (static condition)

1
2(q2)—&(q1) = (42— aq1) M(‘h)_m (10)
_lan(CIz)
2 bl
ps  X(@)
2 0 1 2@) (11)
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Fig. 1. Pictorial representation of the inverse q(x) of the cumulative function x(q) of the P(q) defined in Eq. (4) as J, is increased keepingJ; fixed. Below, the inner and outer states in the 2RSB
case are shown along with their “generation” by fragmentation or clustering moving from 1RSB sectors of the phase diagram, where no secondary processes occur.

which fix the value of p; and p,. Non-trivial solutions of these equa-
tions appear at the static (else called Kauzmann) critical tempera-
ture T = Tx = Tq.

To account for the metastable states that dominate the dynamics in
the 2RSB phase for temperatures T & [Ty, Tq), Eqs. (10) and (11) must be
replaced by

M/(qK) =

) 12
(1_qK)2 ( )

which follows from the requirement that the solution maximizes the
complexity [27]. This condition ensures that the dynamics ruled by
the memory kernel M(¢) can be marginally stable [26]. It is known as
the marginal condition because it coincides with the marginal stability
condition in the solution of the statics of the model [28]. It bridges the
static and dynamic properties in the 2RSB phase, where q; and g, be-
come the two nontrivial asymptotic plateau values, i. e., non-ergodicity
factors, of the dynamic correlation function in the three step relaxation
scenario.

Away from the 2RSB phase, only one plateau occurs. In these cases
the solutions to the above equations coincide q; = ¢». Beyond the dy-
namic critical line glass-to-glass transitions can occur, between 1RSB
and 2RSB kinds of glasses. Here we are mainly interested in the equilib-
rium dynamics of supercooled liquids. The interested reader in the
frozen glass phase can look, e.g., at Refs. [24,26].

2.2. Dynamic phase diagrams and swallowtail singularity

The existence of two nontrivial asymptotic plateaus of the dynamic
correlation function, approaching the 2RSB phase, is associated with
the presence of a given type of singularity in the dynamic equations. Ac-
cording to Arnold's classification of singular points in catastrophe theo-
ry, the model has to display a double bifurcation A4, or swallowtail,
singularity.

A static glass 2RSB phase in the spherical s + p spin glass model
can, actually, be found provided s and p are equal or larger than the
solution of

(p2 +5°+p+ S—3ps>2—ps(p—2)(s—2) -0, (13)

as it has been shown in Ref. [26]. Some threshold values of (s,p) are (3,8),
(4,11) or (5,16). The larger p-s, the broader the region of phase diagram
where the static 2RSB phase can be found. This is a necessary condition
for the occurrence of a 2RSB phase somewhere in the static (thermody-
namic) phase diagram but does not guarantee the occurrence of an A4
singularity along the dynamic arrest line.

To have a 2RSB phase accessible in the MCT equilibrium dynamics -
i.e., a swallowtail singularity along the dynamic arrest line - the condi-
tion on s and p is stronger [29]:

ViE=D)p—1)—v(p-2)s-2)2 V2. (14)
In this case the A4 point is exposed to the fluid phase, and a three
step correlation function or a three peak loss function develops ap-
proaching the dynamic transition next to this point. Some lower
bound values are (s,p) = (3,10), (4,16), and (5,22).
Moreover, in order to have a swallowtail also in the static-Kauzmann
transition line the parameters s and p must further satisfy the equation

(sp—p—s+1)y*—(p+5+1)y+2=0 (15)
where y € [0,1] is the solution of
(sp—p—s—1)y+p+s—1=spz(y) (16)
and z(y) is the CS z-function [30]
1-y+ Iny
2(y) = —2y-—2>—%. (17)
1=y

Some critical values are (s,p): (3,13), (4,23), and (5,35). In this case
the stable ideal 2RSB phase can be accessed directly from the stable
fluid phase.

Relevant external parameters for the phase diagram will be the
“concentration” of large cooperativeness p, defined as
]p = P] 3

Is=0=-p)] (18)

J:JS +Jp (19)
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Fig. 2. Dynamic phase diagrams in the v, v, plane. The dynamic lines with swallow tail are
represented for a series of models with s = 3,4, 5, and 6.

and the temperature, defined in units of the small cooperativeness
interaction Js,

T S
J Vv (20

Transition lines can be drawn parametrically in the overlap
variable g € [0,1] at the dynamic arrest fold singularity, cf. Fig. 2:
[31]

 5—1)g-(-2)
= s —2(1—q)? 2y

12 -
Y1 = oS —2(1—q)? @2)

or in T,p using the parameter transformations Eqs. (9), (20), as
shown in Fig. 3.

3. Dynamic equations

To study the slowing down of the dynamics as the critical arrest
is approached from the liquid phase, we cannot rely only on the

0.8
075 | |
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Fig. 3. Dynamic phase diagrams in the T/J;, p plane for different sets of models.

static analysis and the dynamics of the model must be analyzed.
The relaxation dynamics of the system is described by the Langevin
equation

—100y(t) __oH[{o}]
N so (0 k® (23)

<nk(t)nn (t/)> = ZkBTF()_l(dlcnﬁ(t_t/)

where 1) is the thermal white noise and [o!'is the microscopic
time-scale. Using the Martin-Siggia-Rose response field approach
in the path-integral formalism [32,33], the average over the
quenched disorder can be performed, and the equations of motion
reduce to the self-consistent dynamics of single variable o(t). The
fundamental observables to study the onset of the dynamic slowing
down are the diagonal spin-spin time correlation function C(t, t")
and the spin-response function G(t, t'), which for our model are de-
fined as'

C(t,t) = (o(Ho(t)), (24)
N8 /
G(t,t) = QB"T(?%?O? >t (25)

with C(t, t) = 1 from the spherical constraint. The brackets denote
the thermal average over different trajectories (and initial condi-
tions). For temperature above T4 the dynamics is time translational
invariant (TTI) and the response and correlation functions are
related by the Fluctuation-Dissipation Theorem (FDT):

oc(t—t)

G(t—t") = 0(t—t) T

(26)
In this case, and using the shorthands F'(t) = 0F(t)/0t, the dynamic
equation for C(t — t’) takes the form

To '9,C(t) +TC(t) + / ;dt'/\/l [C(t—th]C'(¢) =T—1 (27)

with initial the condition C(t = 0) = 1 and

T =r—MI[C(t = 0)]. (28)

The parameter r in the above equation is a “bare mass” [34] related
to the Lagrange multiplier needed to impose the spherical constraint
[35]. The value of ¥ can depend on temperature and on p through M
[C(t = 0)]. However, above Ty, T is constant and equal to 1, so that the
r.h.s. of Eq. (27) vanishes.

The kernel memory function M(t) = M[C(t)] for the spherical s + p
spin glass model we are considering has the functional form shown in
Eq. (8). We stress that Eq. (27) (with 7 = 1) is the equation governing
the time correlation function in a schematic mode-coupling theory in
which the second order time derivative term of the Mode Couplings
equations is replaced by a first order one [36,37].

To discuss the slowing down of the dynamics as the critical
point is approached it is, further, useful to introduce the function 7
(q) 130]

)= g, —M@), (29)

which determines the asymptotic value of the correlation function.
Indeed, it can be shown that in the long time limit the asymptotic

T We have included the temperature into the definition of the response function.
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value g = lim; _, .C(t) of the correlator C(t) solution of Eq. (27) is
given by the condition:

OB G0

where T is the parameter appearing in Eq. (27) and defined in
Eq. (28). The additional requirement for a critical dynamics, the
marginal condition, imposes that 7(q) must be a local minimum
with 7 (q) = 0 for g solution of Eq. (30). When this happens C(t) de-
velops a plateau at C(t) = g, or multiple plateaus if more solutions
to Eq. (30) become marginal simultaneously, as it is the case of the
2RSB phase that we are discussing.

The properties of the dynamics close to the critical point can be
analyzed by writing C(t) = q + ¢(t), where q is generic for the moment,
and expanding M|[C(t)] for small ¢:

o (m)
Mig+g)= 3D g (1)
m=0 °
where
m _ d"M@  m  d"Fq)
M = = g g (32)
The integral term in Eq. (27) then reads
/dtM[C(t £))C(¢) =
(M@ g M@ .
Z m=1)! Q)T]qﬁ (6—(1
m=1 ) m=1
(33)
where
= / ;dt’[cbm(t— —™0]d (1), (34)
leading, after few algebraic manipulations, to:
To ' ¢(t) + [T+ M(@)—(1—q)M <>}¢<t>
© M(mfl) M(m)(q) m
3y =0 |40 (35)

t) = (1—q)[f + M(q)]—

The final step replaces the kernel M(t) in terms of7(q) by writing, see
Eq. (32),

M:;)!(Q) _ (1_1q)3 Yin—6m)- (36)
with
o2 1=0" d" 7

it g T =7)

leading to:

Od’ 32 m+1"

(38)
5
S 8 ) (t) = ——9 .
+(1 q)3n;h'm mlIm (€) (1—q)y

This equation describes the behavior of C(t) close to a generic
q € [0,1]. In the ergodic liquid (paramagnetic) phase above T4 the
asymptotic value of C(t) is ¢ = 0. However, as the critical point
where the dynamical critical arrest occurs is approached, one

(or more) value of g > 0 appears where 7(q)—7<1 and

8 =7(q)=0. (39)
Then, we introduce the small parameter

0=8, = (1—-q’°[F(q)—T)<1. (40)

and write

8y =1—A, (41)

where

A= 020 ug (42)

is called the exponent parameter. The dynamics close to the plateau
C(t) = q is, therefore, ruled by

g

—1 7
T ¢<t>——(1_1q)3¢(t>
2 3
O+W (1=’ (©) + L (0] +0(¢”) (43)

(1—-q)*

For 0 < 1 the solution of Eq. (43) assumes the scaling form
o2
o(t)=0""g(r), T=t/t;=0(1) (44)

with g(7) solution of the scaling equation:

/;dr’ [g(T—T)

and t,, diverging at the critical point o — 0.

—g(M)]g (7)) + (1=Ng () = -1,

3.1. Three step relaxation

Close to the transition point to a 2RSB phase the correlation function
C(t) develops two plateaus for C(t) = q, (with k = 1, 2), with

7(qy) =T(gy)and ¥'(qy) = 7' (qy) = 0. (45)

Near each plateau gy, the scaling solution (44) predicts for C(t) 2 qx
the power law behavior:

C(t)—qu~t ™™, (46)
with the exponent 0 < a,. < 1/2 fixed by

r’(1—a,)

M =T-2q,)

(47)
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Fig. 4. Correlation functions for the model 3 + 16: two step relaxation is evident as the
temperature is lowered. The exponent parameters are A\, = 0.689542, A; = 0.538201.

where

3
A =120 g, (48)

For C(t) < g, the scaling solution leads the von Schweidler law
C(t)—gu~—t" (49)
with the exponent 0 < b,; < 1 obtained from

r’(1+b,)

M=t 2b,)

(50)

In Figs. 4 and 5 we show the numerical solution of Eq. (27) close to
the dynamical arrest for a system with a 2RSB phase showing a three
step relaxation and a system displaying a nearly logarithmic decay.

In Fig. 6 we plot the p dependence at given s for the MCT parameter
exponent A ».

4. Susceptibility spectra

Experimental data are more often available in the frequency domain
rather than in the time domain. We show in Figs. 7 and 8 the behavior of
the susceptibility in cooling procedures towards the A4 singularity

1

09Ff E
0.8} model 4+16 1
07 p=0.46042 1

0.6 Tycr=0.554292 (a.u.)
05}
04} T=0.555 (a.u.)
03}

c(t)

T=0.560 (a.u.)

02}
0.1}

1e+06
t

1e+09 1e+12

0.001 1 1000

Fig. 5. Correlation functions for the model 4 + 16: the two step relaxation is practically in-
visible because of the merging of two nearly logarithmic decays. Indeed, the model param-
eter exponents are A\, = 0.993307 and A; = 0.992734 for this model.

1

0.9

0.8

7"1 2

0.7

0.6

0.5

Fig. 6. The behavior of the exponent parameters A; (bottom) and A, (top) for different
models displaying three step relaxation.

where the 3 peak; if existing, is most prominent. The two cases are qual-
itatively quite different. In the case shown in Fig. 7, the 3-16 model, the
onset of a 3 peak is quite tidy. In the 4 4 16 case, reported in Fig. 8, no 3
peak is evident not even at very low temperatures and a kind of excess
wing appears in its place.

For what concerns loss spectra, the Mode Coupling scaling next to a
A4 point in the o space, that is next to the minima efy,;, of the dynamic
susceptibility ¢”(v), becomes [37]:

v —b, v\ %
aK<VK—.> “’”(F) k=12 (51)

min min

K
min

a, + b,

" 3

)=

where the height of the minimum scales as ¢;,</T—T,,. and the
position of the frequency goes like

2a,
Vhinoe(T—Tge) /%) (52)

In Fig. 9 we show an instance of such scaling next to the A4 singular-
ity point for the 3 + 16 model.

5. Multi-scale and stretched relaxation

In the mean-field schematic MCT the liquid glass former is ho-
mogeneous. Different characteristic relaxation times can occur be-
cause of the interplay of different relaxation mechanisms taking

1 T T T T T

NIRRT
'W;":‘:,":"
’W&
s
e
i

0.1

e"(v)

0.01 p = 0.533823

1e-12 1e-08 0.0001 1 100

Fig. 7. Susceptibility loss for the 3 + 16 model in a cooling procedure towards the A4 sin-
gularity. The 3 peak appears in between c and y peaks as T is decreased.
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Fig. 8. Susceptibility loss for the 4 + 16 model in a cooling procedure towards the A4 sin-
gularity. No full 3 peak develops in cooling.

place homogeneously in space. Indeed, because of the mean-field
nature of MCT [38], position space does not play any role.

In order to have more relaxation times in MCT one has, thus, to re-
sort to a schematic model with a memory kernel more complicated
than a simple power of the time autocorrelation function, including at
least two parameters, cf. Eq. (8), or including more components, that
is involving the correlation of different degrees of freedom [20].

For instance, a F, theory [39,40] displays dynamic arrest at a certain
fold singularity A,, denoted by the mode coupling temperature T, but
the relaxation is Debye (a simple exponential in the time domain).

A F;, theory [41,42] colors the a relaxation to something that can be
interpreted, i.e., numerically interpolated, as a stretched Kohlrausch-
Williams-Watts exponential. The link is provided by setting a corre-
spondence between the b exponent of the von Schweidler law decay
from the correlation function plateau and the Bxww exponent [37].
However, this only holds next to the plateau (or to a minimum in the
loss spectrum), whereas the long time correlation eventually relaxes
to zero as an exponential (or a Debye peak in the low frequency
domain).

In a two dimensional parameter space (vs, v,) we observe that
enhancing the difference between the powers in the kernel (8) the
stretched KWW relaxation (and any related Cole-Cole, or Cole-Davidson
or Havriliak-Negami spectrum [43]) is just an artifact of interpolation.

For p > s we have a A4 singularity. In the near proximity to this point
dynamic arrest can occur at two different plateaus, each one with its
critical slowing down exponents a, », b1 », and characteristic tempera-
ture scalings of the relaxation time 71 y0<(T—T)"'2. Both relaxations
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: 4| T=0.613 - 0.652
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Fig. 9. Rescaled loss spectra next to the minima between «and [3 peaks, left, and 3 and 'y
peaks, right.
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Fig. 10. Low frequency Debye relaxation in the (3,16) model. In the supercooled liquid at
not very low temperature the beta peak is hidden in the high frequency tail of the alpha
relaxation (top), whereas, as temperature is sensitively lowered towards Ty, the 3 peak
emerges.

are well separated in time, and in frequency, where a minimum of
()" corresponds to each plateau in ¢(t), cf. Fig. 10. The low frequency
susceptibility peaks are, however, clearly Debye. In the time domain this
means that, apart from the approach to/decay from the plateaus, the re-
laxation is exponential.
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Fig. 11. Instance of a very good stretched exponential interpolation of pure two exponen-
tials in the (3,16) model.
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As we measure correlations and spectra a bit further away from the
A4 point, though, the two relaxations mix yielding a very well interpo-
lated stretched exponential as shown in Fig. 11.

6. Conclusions

In this work we have shown how some features of secondary process
observed in the relaxation of glass and glassy systems can be captured by
a simple schematic model. The model, known as the Spherical s 4 p Spin
Glass model, is a mean field model whose static and dynamics properties
can be worked out analytically. In particular its relaxation dynamics is
described by the MCT equation with a non-linear memory kernel sum
ofthes — 1 and p — 1 powers. Depending on the value of s and p different
scenarios are possible. Secondary processes are observed for s large
enough and p > s. Here we have focused on the properties of the
model, connection with experiments will be addressed in a future work.

Eventually we comment of the possibility of describing hierarchies
of apart secondary processes, both with discrete or continuous time-
scale separation. Though the discrimination of such phenomena is
actually rather difficult in experiments, different versions of the present
s + p models might straightforwardly account for them [28].

Further work on non-equilibrium dynamics and aging in s + p
models with secondary processes is currently in preparation.
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