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Part 1

Introduction






Chapter 1

General Introduction

Disordered Systems is a broad, well established and actively investigated branch
of statistical physics. The disordered systems we consider in the context of this
thesis are those whose Hamiltonian encloses some kind of randomness, usually in
the form of random couplings, fields or topologies. While this definition is quite
general, it does not encompass the whole discipline, since it leaves aside systems with
non-random Hamiltonian where the disorder is self-induced [7], such as structural
glasses.

Most prominent examples of disordered systems are spin glass models, introduced
by Edwards and Anderson [8] and simplified by Sherrington and Kirkpatrick [9].
The exact solution for the latter mean field modl produced by Parisi in 1979 [10]
and clarified a few years later [11-13|, showed a surprisingly rich phenomenology.
In such systems the order parameter is a function describing the decomposition
of the Gibbs measure into an exponential number of pure states, organized in an
ultrametric structure [13].

The analytical techniques developed in those years to solve the mean field spin
glass, namely the replica and the cavity method, successively refined to deal with
diluted systems [14}/15], proved to be highly effective and general tools. In the last
thirty years, concepts, analytical techniques, numerical tools and people as well from
disordered systems found application to a plethora of other scientific fields: most
noticeably supercooled liquids [16}/17] and combinatorial optimization [18-24], but
also inference [25-27], protein motion 28], signal processing [29], immunology [30,[31],
neural networks [32(35|, metal-insulator transition [36,37], quantum algorithms [38],
epidemic spreading [39], game theory [40,41] photonics [42], biological networks [43],
random matrices [44}|45], finance [46,47] and random interfaces [48].

Also from the mathematical perspective, the effort to rigorously prove the
results obtained through heuristic physics methods lead to the development of new
techniques [49,/50] and ideas [511|52].

Another paradigmatic model of disordered system, much discussed along this
thesis, is the Random Field Ising Model (RFIM). A renormalization group analysis
shows that disorder is a relevant direction for the renormalization flow, and that
the phase transition is controlled by a zero temperature fixed point [53]. Recently
this fixed point was showed to be in the same universality class of a critical point
displayed by glass-forming liquids [54,55]. Another interesting feature of this model,
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still under investigation, is the breaking down, in finite dimension, of the dimensional
reduction property that characterizes its mean field version [56.[57].

One of the heuristic techniques used to deal with disordered systems, the Cavity
Method, relies on some explicit factorization assumptions, valid in fully connected
and diluted random graphs only in the thermodynamic limit. In these cases, in
the non-glassy, replica symmetric phase, the asymptotic free energy takes the name
of Bethe free energy. In particular, in diluted models, the validity of the Bethe
approximation relies on locally tree-likeness, that is on the asymptotic absence of
short loops. Departure from the Bethe free energy is observed in diluted systems
when the system size is finite. One of the aims of this thesis is to connect the finite
size corrections to the presence of (few) short loops. The perspective in studying
this mean field models with finite connectivity, is to apply the same formalism to
deal with the many short loops one finds in finite dimensional lattices. The basic
step for a perturbation theory around the Bethe approximation in finite dimension
are in fact taken in Chapter

A large part of this thesis deals with disordered Ising models, such as RFIMs
and spin-glasses, although most of the techniques presented can be generalized to
others models. The Matching Problem (MP), a combinatorial optimization problem
with a long standing tradition in the statistical physics community [18}58-62], is the
other big player of this essay.

The material presented is organized as follows:

e Part[l: Introduction

— Chapter [I] : General introduction

This very same Chapter. It contains a brief introduction to the scientific
field, states aims and scopes of the thesis, and explains the organization
of the material with a short overview of each Chapter.

— Chapter [2] : Preliminaries

The main concepts and tools recurring throughout the thesis are intro-
duced: the notion of random graphs; disorder systems and the main tools
that physicists developed to cope with them, the replica and the cavity
methods; combinatorial optimization problems, as seen from a physicist
viewpoint; a brief overview of the problem of finite size corrections.

— Chapter [3]: The Replicated Transfer Matrix

This is the first original contribution of this thesis. We set up an analytical
framework to characterize the properties of one-dimensional disordered
systems. The formalism is based on the spectral theory of the Replicated
Transfer Matrix, though most results can be rederived using a probabilist
approach. The main application of the formalism are the computation
of many types of correlation functions in diluted systems and the com-
putations of free energies of closed and open chains embedded in locally
tree-like graphs. This last result will be much used in successive Chapters.
This Chapter is based on the work we published in Ref. [1].



o Part[I: Perturbative Finite Size Corrections

— Chapter [4 : Finite Size Corrections On Random Graphs

In diluted random graph ensembles the average number of short loops
is finite also when the number of nodes in the graph goes to infinity.
Therefore, in this systems, the free energy in the thermodynamic limit
is that of an infinite tree graph. The first finite size corrections, though,
resents the presence of these sparse (simple) loops. The computation
of finite size corrections in diluted random graphs is an analytically
manageable calculation where the additional contributions of loops to
the Bethe free energy can be clearly highlighted. This is done in three
steps: we express the replicated partition function as an integral over a
certain order parameter; we perform the saddle point computation, which
gives the leading order Bethe contribution; we compute the Gaussian
fluctuations around the saddle point. It is then easy to show that the
Gaussian fluctuations can be expressed as a linear combination of free
energies of open and closed chains. We carry on this program in two
different graph ensembles, the Erdds-Rényi and the Random Regular
Graph ensembles. We published the contents of this Chapter in Refs. [2]
and [3].

e Part[III: Non-Perturbative Finite Size Corrections

Here we discuss two types of finite size corrections that do not arise from
the presence of loops. The techniques we employ are specific to the problems
involved.

— Chapter [5] : The Random Field Ising Model

We consider magnetic systems with random external fields. In the ferro-
magnetic phase the fluctuations of the field causes a free energy difference
among the up and down states. Minimization of the free energy on a
sample-by-sample basis leads to an anomalous O(1/v/N) subleading scal-
ing for the average free energy. We show how to compute the coefficient of
this correction using a variant of the replica method with m + n replicas
constrained to stay in the two different states. The computation can be
carried out exactly in diluted and fully connected systems. This is the
content of Ref. [4].

— Chapter [6] : The Euclidean Assignment Problem

We investigate the scaling behaviour of the average cost in the Euclidean
Assignment Problem, also known as th uclidan Bipartit Matching Problem.
We show how the difference in the number of blue and red points in a
small region of space is a source for a transport field. This is formalized in
a Poisson-like equation that yields a surprisingly ample set of predictions
for the leading and subleading behaviour and coefficients of the average
cost, for each dimension d. These results have been published in Ref. [5].
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o Part[[V]: Beyond the Bethe Approximation In Finite Dimension

We address two different problems in the Fuclidean space, where diagram-
matic terms corresponding to simple loops give the first order contribution in
perturbative expansions around the Bethe approximation.

— Chapter [7]: The Euclidean Matching Problem

We first consider the Euclidean (monopartite) Matching Problem. We
write a replicated action containing the correlations among distances
between any subset of points. Then we keep only the terms corresponding
to polygons and we compute them perturbatively.

— Chapter [§: The Large M Expansion

Here we propose a very general method to perform a perturbative ex-
pansion around the Bethe approximation for finite dimensional systems,
whether disordered or not. The expansion involves an integer parameter
M. Varying M between infinity and one we interpolate between a ran-
dom regular graph and the original lattice. The first order in the 1/M
expansion corresponds to the contributions from simple loops.

In both cases we asses the formal equivalence between these contributions
and the first order finite size corrections to mean field models. The material
presented in this chapter has not been published yet and both problems are
currently under investigation. Therefore these results have to be considered
incomplete and not polished.

e Part[V]: Conclusions

We finally discuss the results obtained in the previous chapters and highlight
some directions for future investigation.

The computation of finite size corrections is the common link between Part [[T|and
[T, while Part [V]is the natural follow up of Chapter [ regarding the characterization
of loop contributions to the free energy. The discussion over the replicated transfer
matrix of Chapter [3| will be exploited in several part of the thesis, specifically in
Chapters [4] [[] and [8] An alternative arrangement of the material would see Chapter
[4] along with Chapter [§ as a unique discussion about loops expansions, and Chapters
[6] and [7] as a Part dedicated to Euclidean matching problems.

A reasoned history of my doctoral studies would go as follows. At the beginning of
the first year one of my advisors, Giorgio Parisi, set me to work on the Euclidean and
the random link matching problems. He was convinced that the term corresponding
to correlations in triangles in the Euclidean space was the same one arising in the
finite size corrections in the random link model. I am glad he was right. After
a few months I was hijacked by Giorgio himself and pointed toward the study of
finite size corrections on random graphs. In fact the idea there was the same we
where prosecuting in the study of the matching problem: to relate the finite size
corrections to the presence of short simple loops. Some time later I discovered that
this was also a preparatory study, aiming at shaping up analytical and numerical



tools, in order to tackle the problem of the large M expansion on lattices. In the
middle of the second year, the need to better understand the properties of chains in
random graphs, steamed in a discussion between Flaviano Morone, Tommaso Rizzo
and me, that led to the work on the replicated transfer matrix. At the end of the
second year we started working on the bipartite matching problem. The aim was
to characterize the anomalous leading scaling of the cost in very low dimensions.
It turned out that the analytical framework we set up predicts in high dimension
an anomalous subleading scaling, so that I can subsume also this work under the
umbrella of “Finite Size Corrections". The presence of O(1/+/N) corrections in the
RFIM instead, came as an unexpected surprise from numerical simulations at zero
temperature on Erdos-Rényi graphs. Fortunately we had the analytical technology
to deal with it. I devoted most part of the third year to finishing and polishing all
these projects. In the last part of the year I blew the dust off the replica calculations
I did on the matching problem in the first year, and did many new ones, to produce,
along with Giorgio and Gabriele Sicuro, the contents of Chapter [7] Also, according
to our long thought plan, we are finally focusing more and more on the large M
expansion. We are confident that, once the formalism is polished, it will provide a
useful tool to investigate finite dimensional systems.






Chapter 2

Preliminaries

2.1 Graph Theory

2.1.1 Basic notions

In this paragraph we introduce the concept of graph, a simple mathematical structure
that encompasses encompasses and broadens the commonly known lattices. Most
statistical physics models we address in this thesis are defined on a (random) graph.
Graph Theory is a well established subject in mathematics, here we review its basics
aspects.

A graph G = (V,E) consists in a verter set V, usually taken as a subset of
the natural numbers V = {1,2,..., N}, such that |V| = N, and an edge set E, a
collection of unordered pairs of vertices. We will denote with ¢, j, ... the elements of
V', and with (4,7) and edge between vertices i and j. Elements of E the form (7,1%)
are called self-loops. Multiple instances of the same edge (i, 7) are called multi-edges.
A graph without self-loops and multi-edges called simple. In what follows when we
write graph we will always mean simple graph. It is common use to call vertices also
nodes, and to call edges also links. We will use both terminologies indistinctly.

The neighbourhood of a vertex i is the set of vertexes that have am edge in
common with ¢, and it is denoted as 9i = {j € V : (i,j) € E}. The degree (or
connectivity) of a vertex i is the number of its neighbours, deg(i) = |0i|, and it is
sometimes denoted as k;. A vertex with degree zero is called an isolated vertex. A
vertex with degree one is called a leaf or a dangling node. The residual degree of
a node i is k] = k; — 1. The degree distribution pg(k) is the frequency of the node
degrees, namely

pe(k) = + S Uk = k), (21)
N eV

and the mean degree zg is given by

o= % S k=Y palk) k. (2.2)

icV k>0

A path of length ¢ in a graph is a sequence of vertices w = (ig, i1, . .., %¢) such that
(4m,im+i) € E. The path is closed if iy = iy, and it is open otherwise. If no vertex,
except for the extremities, is crossed more then once the path is called simple. A
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closed path can also be called loop or closed chain. An open path is also called
an open chain. The distance between two nodes is the length of the shortest path
joining them. A graph is connected if there is a path joining any two nodes. The
d-neighbourhood of a vertex i is the set of vertexes at a distance at most d from
i. A graph is called complete or fully connected if any pair of nodes is connected
by an edge. A graph is bipartite if V can be partitioned in two set such that there
is no edge joining vertices in the same set. A subgraph of a graph G is a graph
G' = (V',E') such that V' C V and E' C E.

The set E can also be taken to be composed of ordered pairs of vertices. in this
case the graph is called oriented and the elements of E are called oriented edges or
arcs, and written in the form (i — j). Analogous definitions to the ones given above
apply for directed graphs.

2.1.2 Random Graphs
Graph Ensembles

It is often the case, especially when dealing with complex networks such as the ones
appearing in finance and biology [63}/64], that a particular graph is considered just
as a contingent realization of an ample class of them. The mathematical structure
corresponding to this concept is that of random graph ensemble [65]. A random
graph ensemble G = (G,P) is a set of graphs G and a probability law P defined over
it. The average value of some observable A(G) over the ensemble is then given by

E[A] = > P[G] A(G). (2.3)
Geg
As an example, the average degree distribution {py} is given by and the (ensemble)
average degree z are defined as

pr = E[pa(k)] z=Eik, (2.4)

where Ej; denotes expectations over py, .
We shall now introduce some random graph ensembles commonly used in statis-
tical physics and other disciplines.

o Ggr(N,p): the Erdés-Rényi (ER) ensemble.

Historically, this is the first random graph ensemble ever proposed, marking
the beginning of random graph theory [66]. It is also the most simple one.
Each graph of the ensemble has N vertices and can be sampled as follow: start
with a graph with N vertices and no edges, then for each of the (g) pairs of
vertices independently add an edge with probability p. Calling M the number
of edges corresponding to a graph G, the law of the ER ensemble depends only

on M and is thus given by
PIG] = pM (1 - p)(3) M. (2.5)

If p is scaled as p = &, in order for the nodes to have finite connectivities,

taking the limit N — 400 we have that
—cck

k!

e

PE ~ (2.6)
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that is, the degree is Poisson distributed with mean ¢, that is z = ¢ for large

N.

In order to sample a graph from the ER ensemble it is convenient first to
extract M from the appropriate binomial distribution, then to assign each of
the M edges to a pair of nodes. This procedure requires O(N) operations,
while choosing each potential edge with probability p would require O(N?)
operations.

o Ggrra(V, 2): the Random Regular Graph (RRG) ensemble.

The measure of this ensemble is uniform over all the graphs with N vertices
where each vertex has connectivity z [67]. Graph with this property are called
regular. Notice that in order for the ensemble to be non-empty N z has to be
an even number. Sampling of graphs in the RRG ensemble is more involved
than in the ER ensemble.

An exact sampling method was proposed by Bollobas [68], and goes under
the name of configuration model, although we reserve this name to the more
general ensemble and generative procedure we present next. Here we resume
Bolloba s’ procedure. Start with a set of Nz elements, called stubs or half-edges,
and partition them in N subset containing z stubs each and representing the
nodes of the graph. Pair the stubs at random (they are even), that is choose
uniformly at random a matching among them (see also Sec. sec:prel-matching).
Construct the graph associated to this particular pairing (sometimes called
"configuration"). Repeat the pairing procedure until the resulting graph has
no self-loops and multi-edges. It is easy to show that this contruction induces
a law that is uniform over all regular graphs. It is very slow though, and it is
exponentially slower as the degree increases, as we will discuss in Paragraph
due to the fact that the probability of obtain a non-simple graph after a
matching is finite.

An alternative method, proposed in Ref. [69], is less computationally expensive
at the expense of provably yielding a uniform measure only in the infinite graph
limit. The method is a slight and reasonable variation to Bollobas’s one. One
starts matching pairs of stubs one by one at random, and if at a certain step a
self-loop or a multi-edge is produced, only this last matching is discarded and
a new one is proposed, instead of starting over the entire matching procedure.
If during the procedure no feasible pairing remains available the graph is
discarded and the procedure restarts with a new set of unpaired stubs.

This is the method we use throughout the thesis to generate random regular
graphs. Since we deal with finite size correction we took care to check that
this heuristic that does not produce biases in our numerical estimates to the
relevant (i.e. O(1/N)) order.

o Geonr(N, {k;}Y,): the configuration model.

This graph ensemble has uniform measure over all the graphs of N nodes
where the node ¢ has degree k;. Notice that this definition is non-trivial only
if 37, ki is even. The degree distribution in this ensemble is the same for all
graphs and Geonr is sometimes named arbitrary degree distribution ensemble.
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Both the exact and the approximate sampling procedure for this ensembles
are the straightforward generalizations of the one given for the random regular
graph ensemble. On the other hand Gggg is just a particular instance of the
Geonr ensemble.

Alternative definition can be considered for this ensemble, for example vertex
degrees could be independently generated from a distribution {py} instead of
being fixed to {k;}.

Random graph theory, and statistical physics as well, is often concerned with
the properties of ensemble in the limit of large IV, that we will call the large graph
limit, therefore we will assume the existence of a prescription for the scaling with
N of the parameters defining the ensembles, such as p in Ggg(N,p) and {k;} in
Geonr (N, {k;}). In what follows we will be interested mainly in sparse random
graph ensembles, that is ensembles with finite average degree z in the limit N 1 oo.
Therefore, for instance, we will assume the edge probability p in Ggy to scale as
p = & to achieve sparsity.

Beyond sparsity, a property possessed by finite dimensional lattices as well, some
peculiar features characterize the ensembles we presented above. One of them, very
convenient for their analytical investigation, is the property of being locally tree-like.
We will give a more precise definition of locally tree-likeness in Paragraph [2.1.2] the
basic idea though is that a ball of finite size centered on a randomly chosen node
does not contain any loop with a probability that goes to one as N goes to infinity.
In this sense the random graph is locally a tree. As discussed in Paragraph
loops of finite length are rare in random graphs.

Since we mainly discuss the large graph limit, let us define for convenience the
symbol ~ as

FIN)~g(N) = F(N)=g(N)+ol) as Ntoo. (27)

Hereafter we will refer to G as to one of the ensembles above in the large N limit.

Asymptotic properties depended only on the degree distribution {py}, due to
the lack of additional constraints in the definition of the ensembles. For example
it can be shown that the ensemble Ggy is asymptotically equivalent to Ggr with
Poissonian distributed {k;}. More refined random topologies where utter local or
global properties can be devised (e.g. assortativity [63]), their analysis is usually
more involved though.

Let us define the random variable edge perspective degree k , of a node chosen as
follows: choose uniformly at random one of its edges from a random graph G in G
and let k be the residual degree (i.e. k =k — 1) of one of its extremities. A little
thought shows that the probability p; of obtaining a certain residual degree k is
proportional to & + 1 and to the number of nodes having degree k + 1. Therefore,
for the edge perspective degree distribution {p;}, and its average edge perspective
degree Z, that we also call residual degree distribution and average residual degree,
we have

_ 1 = - =
pl} ~ ;pfc—&-l (k + 1) z E]; ]{7, (28)

where [E; denotes expectations over p;. For Poissonian random graph z = z, while
for RRGs Z = z — 1 trivially.
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Sparse graph ensembles G enjoy some powerful factorization properties due to
the large graph limit. For example, if we choose uniformly and independently at

random a n nodes %1, ...,i,, their joint degree distribution factorizes as follows:
Pldeg(i1) = ki, ..., deg(in) = kn] ~ [] Pldeg(im) = k). (2.9)
m=1

Also the joint degree distribution of nodes in a finite neighbourhood of a given
node factorizes. The local structure of finite neighbourhoods will be discussed in
Paragraph

The features we discussed have very important consequences to the analytical
treatment of sparse random graph ensembles, in fact they are the among basic
assumption on which the Cavity Method relies. We point the reader to Ref. |15] for
a more in-depth discussion of all these arguments.

Giant Component

An outstanding feature of our sparse random graphs ensembles is the existence of a
sharp threshold, depending on the first two moments of the degree distribution, and
in particular only on the average residual degree Z, above which a giant connected
component arises. For some values of the parameters defining a graph ensembles in
fact, the almost sure presence of a unique connected component, which contains a
finite fraction of the nodes, can be rigorously proven |70]. Below that threshold, it is
possible to show that w.h.p. only tree-like components exist, thus almost any graph
sampled from G is a forest.

We will give an heuristic argument, which holds to for large graphs, to explain
this phenomena. This the first cavity argument we present in this thesis, and it goes
as follows: consider a uniformly chosen vertex ¢ from the random graph G and call
m the probability it belongs to a giant component. Notice that according to this
definition mN would be the average size of the giant component. The node i is not
in the giant component if no one of its neighbours is in the giant component once
the node i has been removed from the graph, that is once a cavity is formed. We
call m.,, this probability for one of the neighbours to belong to the giant component
in the cavity graph. In the large graph limit we can write

1—m=E; (1 —mea)F, (2.10)

where in the r.h.s. we exploited the factorization of the joint probability distribution
in the cavity graph. We can then write a self-consistent equation for m.,, reiterating
previous argument:

1- Meay = E]; (1 - mcav)];7 (211)

where the residual degree k is considered. Last equation always admits the solution
Mmew = 0. It turns out, as it can be easily seen expanding Eq. for small
M.y, that a second solution exists for Z > 1, and disappears continuously for Z < 1.
Therefore the threshold condition for the emergence of a giant component is given
by

Z.=1. (2.12)
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Simple loops distribution

As already stated, and as discussed more in depth in the next Paragraph, sparse
random graphs have the local structure of a tree in the large N limit. Still a finite
number of loops with finite lengths, therefore containing a finite number of nodes
although a null fraction of them, survives the limit. These loops are simple, that
is non-intersecting. It can be proven [67,/68,71] that, given a set of non-negative
integers {rg}jzog, the joint distribution of the number of simple loops for large N is
given by

e—)\g )\zz

Tg!

P[{r, simple loops of length K}Z:"g] ~ H
>3

(2.13)

Therefore the numbers of loops of lengths ¢ are Poissonian independent random
variables, with mean
Z

A simple heuristic argument can be given to understand the mean value g—z. In the
setting of the configuration model consider the probability of two randomly chosen
nodes, ig and i1, to be connected by and edge. Calling kg and k; the degree of the
two nodes, to the leading order in 1/N each of the kg stubs of ig tries to connect
independently at random with one of the k; stubs of i; over the zN total stubs.
Therefore the probability of the edge is given by

o k1 1
P[(Zo,zl) € E] = Z Dko pklk‘oZiN + O (]\72)

ko.k1 (2.15)
2 vo(L)
N NZ)®
Now consider the probability of the existence of a randomly chosen open path
(40, 11,142) of length two. We have a factor ko accounting for the outgoing stubs from

i, then a factor k1/zN to connect to i1, then k; — 1 ways to depart from i; and a
factor ko/zN to connect to ia. In the end

o .. ki(ky —1) k 1
P[{(i0,41), (i1,i2)} C E] = Z Dko Pk Pks koyi +0 (3>
zIN zN N
ko,k1,k2 (2.16)

Extending the above reasoning to the probability of existence of an open chain of
length ¢ we straightforwardly obtain

-1

1
P[open chain of length /] = Zjve +0 (NZ—H> . (2.17)

The number of different paths is given by the way of choosing ¢+ 1 nodes, N!/(N —
¢ —1)! divided by a factor two accounting for path reversal symmetry, therefore

s0—1
E[# open chains of length ¢] =

N +0(1). (2.18)
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The computation of the probability of existence of a certain closed path

N1

Sine a simple loop of length ¢ contains ¢ nodes and has 2¢ has a symmetry factor,
we finally have

~0 1
P[closed chain of length ¢] ~ % +0 () (2.19)

50
E[# closed chains of length ¢] ~ %, (2.20)
where we have recovered the results expected from Egs. (2.13) and (2.14). The
factorized Poissonian form of the loops’ joint distribution is due to the asymptotic
independence of this rare events.
Also in this framework an important result regarding the configuration model
can be simply understood. In the large N limit, the probability that the graph
induced by a random pairing is simple is given by [67]

N

z

T (2.21)

Pl[pairing is simple| ~ e s

This formula can be seen as an extension of Eq. to loops of length £ = 1 and
¢ =2 (self-loops and multi-edges), and in this sense it is just the probability for the
graph to contain r; = 0 and ro = 0 of them.

Notice that at finite N the maximum length of simple loops is limited by N
itself. Moreover probabilistic arguments such as the one leading to Eq. fail as

soon as 3 ~ N , that is for lengths greater then £ ~ %

Local weak convergence

Here we define one of the most important characteristic of sparse random graph
ensembles, that of being locally tree-like, in a sounder mathematical framework. In
these ensembles in fact almost any finite neighbourhood of a node is isomorphic to a
random tree in the large graph limit. To accurately define this property we have
to go through some definitions. We will follow the analytical framework proposed
by Aldous and Steele [50], since it provided very useful in turning Cavity Method
predictions to rigorous results.

Let G, be the class of graphs with a countable (also infinite) number of nodes
and a distinguished node that we call root. We will define a notion of convergence of
elements in G, through which we will infer a topology on Gy, so that we get to use
all the instruments from weak convergence theory. For G € G, let us call B;(G) the
[-neighbourhood of its root.

Definition 1 (Convergence in G,). Let {G,} be an infinite sequence of elements of
G.. We say that {G,} converges to G if for each integer | there is a n; such that
Bi(G) is isomorphic to Bi(Gso) for each n > n;.

It can be shown that it is possible to provide G, with a topology compatible with
this notion of convergence, such that it becomes a complete separable metric space.
As a consequence all the tool of weak convergence theory apply and we denote weak

d
convergence of measure on G, as p, — i.
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Let Gy be one of the ensemble of paragraph Let {Gn} be a random
sequence of graphs in G, sampled from Gy, with root selected uniformly at random.
Denote with {pn} the corresponding sequence of laws. We call {7} a random
sequence of trees of increasing depth [ that we define inductively. T has a single
node ig. 717 is constructed from Tj extracting ko from {p}, adding k¢ nodes and
linking them with ig. We call these last nodes children of ig. We build T extracting
independently for each children 4,, at the first level k,, new children, sampled
from {pi},at the second level and linking them with i,,. Each successive level is
constructed analogously, leaves of the preceding level sprouting independently a new
offspring according to an edge-perspective degree-distribution {py}.

Let us call T' the random limiting object of {T;} and p its law. Graphs sampled
from the ensemble G are then said to be locally tree-like, as it can be proved that

N 4, u (i.e. they are locally isomorphic to a random tree). With a little abuse of
notation we could state this as B;(Gy) 4 Bi(T) 4 T; for large N.

2.1.3 Factor Graphs

In order to introduce the Cavity Method, an useful analytical tool to deal with diluted
disordered systems, it’s convenient to make use of the factor graph mathematical
structure (it’s not mandatory though, we could have resorted to ordinary graphs
with a little more effort and clumsiness). Factor graphs allows us to model a great
variety of inferential statistic problems [15] [72] and are the natural set for the Belief
Propagation (BP) algorithm we are going to introduce in the next paragraph. They
are used in statistical physics as a graph representation of the geometrical structure
(defined by their interactions) imposed on a set of variables.

A factor graph is an ordered triple G = (V, F, E'), where V is the set of variable
nodes (without loss of generality we take it to be [N]) and F' is the set of function
nodes (for us will be F' = [M]). E is a set containing ordered couple (i,7) such
that ¢ € V and r € F, so that E C V x F. We will generically call nodes elements
of both V and G. To easy the notation we will use the letters i, j, ... for variable
nodes (that we shall also call variable nodes) and r, s, ... for function nodes (f-nodes).
In summations or productories where dummy indices ¢ or r are present without
further specifications, they are intended to run over the sets V and F' respectively.
Factor graphs can be subsumed in the contest of ordinary Graph Theory as bipartite
graphs and from Graph Theory we shall import definitions and results. We call
neighbourhood of a variable node the set 9i = {r € F': (i,r) € E} and neighbours
its elements. The degree of a node is the number of its neighbours. We write
unambiguously i € r to mean in ¢ € 9r. We call v-neighbourhood of i the set of
variable nodes having a common neighbour with . Specular definitions hold for
f-nodes. A path between nodes is a sequence of edge P = (eq, e, ..., ep) such that
two consecutive edges share a common node and it length is the number of edge it
contains (p for P). The distance between two nodes is the length of shortest path
such that the first and the last edge contain respectively the two nodes. With this
definition neighbours of a node are simply nodes at distance one from it and we can
define an [-neighbourhood of a node as the set of nodes at distance at most [ from
it. A loop is a path that start and ends with the same node and a tree (we will see
the importance of this definition) is a factor graph without loops.
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Fig. 2.1. Visual representation of the factor graph associated to the bidimensional Ising
model. Black squares are function nodes, white circles are variable nodes.

Having gone through the definitions, we want to relate the abstract mathematical
structure with actual (physical) problems. To do so we extend the factor graph
definition to that of graphical model, that is a factor graph with variables x; associated
to its variable nodes i, taking values in a set X (that we shall suppose to be finite),
and real-valued function 1, associated to each f-node r and taking as argument the
variables associated to its neighbours. If we write x, = {x; : i € r} for the argument
of ¢, and x for the entire set of variables associated to G, for a generic graphical
model (that we shall also call G for convenience) we can express the probability
density distribution as

M
pe(x) = W (2.22)
G

Z¢ is a normalization factor that statistical physicists will interpret as the partition
function. Vice-versa to each probability density of type (that is every one,
but the corresponding factor graph could be trivial in some cases) we can naturally
assign a graphical model. We arrived then to a probabilistic interpretation of a
factor graph structure, where f-nodes represent ‘interaction’ among variable nodes
neighbours. As an example, in a Ising spin model (see Fig. the interaction term
would be

ij (s, wj) = P, (2.23)

The utility of factor graphs has been discovered by statistical physics community
thanks to the success of Cavity Method in solving computational problems (random
K-Sat for example) that couldn’t be modelled on ordinary (non bipartite) graphs
. Sometimes we will use the term graph instead of factor graph when the context
allows no ambiguity.

2.2 Spin glasses and Random Fields

Archetypal example of disordered systems are spin glasses and random fields models.
Here we will briefly describe their phenomenology. For a broader discussion we point
out to the reader Refs. [13] and [73]. Both models present disorder in the form of
some kind of randomness encoded in the Hamiltonian: random couplings for spin
glasses, and random external magnetic fields for random field models. This kind
of disorder, that can be thought as to correspond to very slow (frozen) degrees of
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freedom, goes under the name of quenched disorder. The free energy of this system
depends on the particular realization of the disorder. One is then usually interested
in the average properties of this system, the most relevant one being the average

free energy
1
f = IEfsample = _BWE ln Zsample7 (224)
where F is the average over the disorder. Some observables O in disordered systems,
most noticeably the free energy, have the self-averaging property, that is the relation

lim P(]O —E[O]| >¢€) =0, (2.25)
N—+o0
holds, therefore almost any realization of the system has the same value of O in the
thermodynamic limit.

Spin glasses are statistical mechanics models of magnetic systems presenting
competing interactions, at odd with the purely ferromagnetic usual ones. In this
thesis we will deal with the Ising spin glass, where the dynamical variables are binary
(Ising) spins {o;}Y; taking values in {—1,41}. Although binary variables provide a
drastic simplification to real systems, Ising models are widely recognized to be able
to catch in many cases most qualitative aspects of real systems. Generalizations to
vectorial spins go under the name of Heisenberg models. Given a graph G = (V, E)
as the underlying topology of the model, we associate to each edge an interaction
Jij extracted independently at random according to some distribution P(J). The
single sample, {.J;j}-dependent Hamiltonian is then given by

HJ[{O'}] = — Z Jz‘jO'iO'j - ]’LZO'Z' (2.26)
(4,9) i

and the corresponding (random) partition function is

75 = Z e~ PH{o}] (2.27)
{o}

If P(J) has support only on positive reals the model is called a disordered ferromag-
netic model, while if J;; can take also negative values we call it a spin glass. We call
frustration the presence, in a given sample, of simple loops such that the product of
the signs of J;j along the path is —1, meaning that it is not possible to satisfy each
bond, i.e. to find a configuration {o;} such that 0;J;;0; = 1 along the frustrated
loop. Frustration is the distinguishing feature of spin glasses , and the cause of some
of their peculiar features, such as degeneracy of ground states and computational
hardness.

The correct solution of the fully-connected spin glass model (the Sherrington-
Kirkpatrick (SK) model) was obtained by Parisi [10] within the replica method,
through a peculiar scheme to escape the symmetry of the action under replica permu-
tation. This approach, called (Full) Replica Symmetry Breaking, beside yielding the
correct value for the average free energy, hinted to a deep probabilistic structure of
the SK models, clarified in the following years. Below a certain temperature T, the
system enters a disordered glassy phase, characterized by the slowing down of the
dynamics, slow decay of correlation functions, presence of an exponential number of
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pure states. The complexity of states, ergodicity breaking, ultrametricity, stochastic
stability, slowing down of the dynamics,became central concept to the analysis of the
SK model. We point to Refs. [13] and [52] for a detailed discussion of the argument.
Finite dimensional spin glass on the other hand are a much open problem. Two
competing theories, one inspired to the solution of the SK model, the other, the
droplet theory, to domain based arguments, depicts two very different scenarios for
the thermodynamic phase under 7,.. Replica symmetry breaking advocates support
the existence of a spin glass phase with an exponential number of pure states [74],
while the droplet community claims that only two symmetry related pure states
exist |75]. Monte Carlo numerical simulations, plagued by the extreme slowing down
of the dynamics, have not given yet conclusive results, despite the intense effort of
the last years.

Another class of disordered systems is that of magnetic systems in a random
external field. The prototype of these systems is the Random Field Ising Model
(RFIM), defined by the Hamiltonian

Hh[{O’}] =—J Z 005 — Zhiai, (228)
(4,9) i

with J > 0 and {h;} independent identically distributed random variables E h; =
0, Ehh; = 5ijA2. The control parameters for the system are the temperature
T and the ratio r = %. A simple argument, due to Imry and Ma, shows that
the lower critical dimension for the system is d; = 2. For d > 2 in fact there is
a critical line r.(T) in the r — T space separating the paramagnetic phase above
from a ferromagnetic phase below. For pure ferromagnetic systems instead the
lower critical dimension is d; = 2. While there was some argument in favour of a
spin glass phase for some values of the parameters [76.(77], this possibility has been
recently excluded [78]. Another interesting conjecture, based on a supersymmetry
argument [56], concern the equivalence to all order of perturbation theory of random
field systems in dimension d with pure systems in dimension d — 2. This equivalence
is called dimensional reduction, and it would predict a lower critical dimension d; = 3
at odd with the rigorous result d; = 3. Therefore dimensional reduction breaks down
at least at low dimension. Recently some authors, using a functional renormalization
group approach, proposed the value d* = 5.1 as the lower critical dimension for the
validity of dimensional reduction |79]. In the RFIM disorder is a relevant direction
for the renormalization group flow, and the phase transition is controlled by the
zero temperature fixed point [53|. In-depth discussions of the RFIM can be found in
Refs. [80] and [73].

2.3 Replica Method

Replica method is a powerful analytical tool to address systems with quenched
disorder [13]. The necessity of its use steams from the difficulty in averaging the
random partition function Z as argument of the logarithm in

f= —ﬁivEln z. (2.29)
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Its main ingredient is the mathematical identity

" -1

lim =InZ, (2.30)
n—0 n
such that we can write .
— 15 _ n
f= %g% N InEZ™. (2.31)

Computation of EZ™ is then performed for integer n, since this case is mathematically
tractable. One therefore introduces n copies of the system, called replicas, having
the same disordered in the Hamiltonian. Computation is then carried out, usually
introducing an order parameter and performing a steepest descent evaluation point
in the thermodynamic limit (N 1 o0). The n | 0 limit is finally taken, yielding the
average thermodynamic free energy. There are some faulty steps in this approach,
preventing it from being rigorous: analytical continuation to n = 0, which is not an
accumulation point; exchange of the limits n | 0 and N 1 oo; saddle point evaluation
is always performed in a restricted subspace, defined through some symmetry related
ansatz), since minimization of the action in the full parametric space is infeasible.
Nonetheless replica method has proved to be an highly effective method and some
of its predictions where proved to be right (sometimes decades later), while none to
be wrong.

Throughout this thesis we will give numerous examples and applications of the
replica method , namely in Chapters Bd[][7] and [§] therefore we will not go to great
detail in this paragraph.

As an example of the method, the replicated partition function of the Sherrington-
Kirkpatrick spin glass model, after an Hubbard-Stratonovich transformation and
summation over the the replicated spin configurations, for large N is given by

EZ" ~ / [T dgay e~ VSt (2.32)
a<b

where the replicated action is given by

SHq}] = b 2 Zn: D N R DAL g (2.33)

a<b ol,..on

The order parameter here is the n x n zero diagonal symmetric matrix {qq }, for
a total of n(n—1)/2 degrees of freedom. In order to make the analytical continuation
to real n, a explicitly n-dependent ansatz for {g,s} has to be proposed. The most
simple one is to the Replica Symmetric (RS) ansatz, and assumes independence of
the saddle point value of g, from its indexes, that is q,, = ¢ for all a,b,a # b. The
RS ansatz is usually exact on fully-connected or locally-tree like topologies in the
high temperature phase. In spin glass systems though, below a certain temperature
T. a more complicated ansatz that goes under the name Replica Symmetry Breaking
(RSB) is needed. This low temperature phase is called the spin glass phase. In this
thesis we will deal only with RS systems, therefore we point the reader to Refs. |13]
and [15] for an in-depth discussion of the broad phenomenology of the spin glass
phase.
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As a final note we want to discuss the equivalence between to alternative de-
scription for the order parameter in Ising model on diluted systems. One can choose
as a set of order parameters the multioverlaps {qa;...q, }, With p > 1, expressing
correlation among replicas according to

1 a
qa; = N ZE<0—11>

1
dajay = N ZE<0?10;‘12>
7

(2.34)
_ i E(g% ap
day...ap = N Z <ai <0y >
i
where {s!},...,{o"} are the thermally independent replicas and (e) is the thermal

average. In fully-connected systems only the first two moment ¢, and g, are
needed to have a complete description of the system, since due the central limit
theorem effective fields acting on replicas are Gaussian distributed. An example of
multioverlap description is given in the matching problem of Chapter [7} Although
the problem is set on a fully-connected graph it acts effectively as a random diluted
graph, since only a small fraction of costs contributed to the relevant configurations.

The other possible description of replicated diluted system, and the on we employ
most often during the thesis, is the one given by the order parameter p(c!, 02, ... 0"),
a real or complex valued function of the 2" = |{—1, 1}"| replicated spin configurations.
Throughout the thesis we will use the notation p(c) = p(ol,...,0") and we will
refer to p(o) also as a vector with 2™ components. The function p(o) is related to
the multioverlaps {qq;...q, } by

Gor.ap = p  plo)o®...o%. (2.35)

o%,...,0%

The Replica Symmetric ansatz for this two sets of order parameters corresponds,
with a little abuse of notation, to p(s',...,o") = p(3"_; 0%) and day...ap = Cp-

2.4 Cavity Method

2.4.1 Belief Propagation

Cavity Method has been developed in the context of mean field glass theory [13] as
an alternative to the Replica Trick approach and turned out to be very effective in
tackling statistical models on locally tree-like structures. It is a generalization of the
long known Bethe-Peierls approximation and it’s main idea, used in different forms
and in different scenarios [13] [15], is that properties of a system of large size do not
change too much if the system is increased by a single element. Following [15] we
will take an algorithmic approach introducing the Cavity Method through Belief
Propagation, a message passing algorithm on single instances of the problem, and
we will deal with random instances in the next paragraph. Belief Propagation (BP)
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is a message passing algorithm on a generic graphical model (G, {#,}). It gives an
estimate of y probability distribution marginals that is correct for tree factor graphs
and has proved to be fairly accurate on some models with long (or even short) loops
and short range correlations. If BP equations admit a unique fixed point, BP fixed
point messages can be used to calculate the so called Bethe approximation to free
energy.

Let’s define p distribution marginals as

x;) = Z w(x) 1eV;

TV \i
Ty) = Z f1(x) r e F; (2.36)
Ty\or
= Z (x) AcCV.
Ty\A

We then introduce the aforementioned messages, that is we assign to each
(i,r) € E two probability distributions, I/i_)m(l'l) and Vflr(xi), over the space X,
where index ¢ denotes ¢-th iteration of the BP algorithm we are going to define.

BP update rules are local, messages at time ¢ 4+ 1 at each edge are calculated
from messages at time ¢ on adjacent edges. We write the BP update rules, also

known as sum-product rules as

r—)z Zwr '1;7" H jt—n“l)

Ty\i jer\i
0 =TT o (2.37)
z—>r
SEI\T

Symbol = denotes equivalence up to a constant factor given by the normalization
condition.

Starting from a given initial condition {1/Z _W} that could be the uniform dis-

tribution over X (i.e. ufﬂzr(xz) | )1(‘) one could ask himself if Eq. (2.37) leads to
some limit distributions at finite ¢ or as t T co. As a complementary point of view

we can search for solution of

Vr%z xz § ¢r fL‘r H V]‘)T‘ l‘]

Lr\s ]ET\’L (2 38)
Vz%r 5U1 H Vs%z $z
SEI\T

fixed points of dynamic , and study their stability and their attraction basin.
We notice that a probability distribution over a finite set of |X| elements can be
parametrized as a point of the | X|-dimensional simplex, so distribution limits are
well defined using equivalent norm in these spaces.

The BP estimate of marginal u; after ¢ iterations is given by

)= 1) (2.39)
ret

A first taste of the consistence and utility of these definitions is given by the
following fundamental theorem:
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Teorema 1 (BP is exact on trees). Let (G,{1,}) be a tree-like graphical model with
diameter ty. Then:

1. For any initial condition BP messages converge to the unique fixed point in
ty + 1 sterations at most.

2. Fized point messages yield an exact estimate of marginals, v} (x;) = pi(z;) Vi €

V.

Proof. In tree-like graphical models BP it’s just a clever way to sum over variables
in the partition function, beginning from leaf and down to the root. Let 7;—,, denote
the connected component including variable i once removed (7, r) from G. We shall
call t,(i — r) the depth of T;_,.

We are going to prove that, for each number of iteration ¢ > t,(i — ), message

i(zr converges to the marginal distribution of 7 in the graphical model 7; .. It

follows that for each t > t, every marginal is exactly computed. Proof proceeds
by induction on t.(i — r). The first step is trivial: 7;_, is composed by the single

node i, t.(i — r) = 0 and its marginal distribution in 7;_,, given by ([2.39)) is equal

to Ui(t_)w = ﬁ Vvt > 0 in the original model thanks to (2.37)). Let our assumption

hold true for ¢,(i — a) < 7 and let’s prove it for ¢,(i — r) =7+ 1. Nodes j € s\ i,

with s € i \ r, are the roots of subtrees with depth 7 at most, therefore we can use

(t)
Vj~>s
2.37)) and thanks to (2.39)) they grant the

exact marginal of ¢ in 7;_,,, which is the message VZ-(frl) in the original model. This

completes the proof. ]

()

our inductive hypothesis and for ¢ > 7 messages {

A9

} correspond to marginals on

respective subtrees. Putting in {

Since t, < N, once fixed the root i, assuming the time to the neighbours of a
given node a to be of order O(deg,) and taking the factor graph to be a uniformly
sparse tree, we found an algorithm of complexity O(NN) to exactly compute the
marginal pu; iterating BP equations only for messages descending from leafs to the
root. This is a huge leap forward compared to the naive approach of summing over
wy\; variables which takes O(]X |N=1) operations. Moreover even on factor graphs
with loops often BP estimates get to be fairly accurate, and especially so when
length of loops are of order O(log(NN)), as in the ensemble we are going to study,
and no long range correlations arise. Even in same cases where many short loops
exists, such as in the two index assignment problem, BP has been proven to yield
exact results [81].

Preceding theorem could be generalized as follows, still on tree factor graphs:
given ACV,let Fy={reF:0rCAtanddA={r € F:90rNnA#0}\ Fa. Then

pa(ra) = T oeler) T 7o @), (2.40)

re€F 4 rcdA

where i(r) is the unique variable node of A neighbour of the the f-node r € JA.
Update rule can be often simplified taking into account the symmetries

and the structure of the considered model. When the alphabet X is composed by

two letters, that is variables can take only two values, probability distribution over
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X (‘and messages in particular) can be parametrized by a single real number. For a
given parametrization Eq. can be recast as equations involving multivariable
real functions, much more analytically and numerically amenable. A typical choice
for Ising-like systems (X = {—1,1}) is

(2.41)

and the new messages {hr Hl} acts as effective magnetic field on spins.

On a tree-like factor graph ensemble G we are mainly interested in the distribution
of messages over the whole graph, that we denote with P(?). In the large graph
limit we can associate to BP equations a distributional recursion rule

c D;
PO (D) IE/ D — fr {usj})]'[]:[ o)A (2.42)

that goes under the name of Density Evolution (DE). In last equation expectation
is taken over random f-node residual degree C, random independent variable node
redsidual degrees {D;} and a compatibility function label R. In fact, in random
graphical models, each f-node has an associated compatibility function randomly
chosen among a certain collection (e.g. in spin glass models the interaction term Jj;
is a random number ). Independence of messages coming from different subtrees
is exploited factorizing the incoming messages joint probability distribution. Once
sampled C' and {D;}, M(X)-valued function fr corresponds to BP updated rules
(we use only factor node to variable node messages for the sake of concision)

c Dj
Frosi (@) =" vr@, {a}) [T T 2si(z)). (2.43)
{z;} Jj=1s=1

Fixed points of Density Evolution take a crucial role in Cavity Method as we will
soon elucidate.

2.4.2 Replica Symmetry

Let’s turn our attention to fixed point BP equations

Dp—yi(x;) Zd}r Zy) H H Us—si(z5). (2.44)

Tr\i jer\i sej\r

Cavity Method in its simplest form, the Replica Symmetric (RS) Cavity Method,
assumes that have only one Solutionlﬂ or a symmetry related few (as in the Ising
model in the ferromagnetic phase, we shall omit this case though). In physical terms
this scenario corresponds to a single pure state for the system: the Gibbs measure p
is not decomposable in a convex linear combination of independent measures (when
this assumptions fails to be true, and an exponential number of pure states arises,

!That is true only for infinite graphs, for finite graphs we speak of quasi-solutions [15] or
approximate solutions but this is unimportant in the present context.
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we have to resort to Replica Symmetry Breaking). What we are establishing is a
one-to-one mapping of the BP (or DE) fixed points to the pure states of the system.
Linkage to usual thermodynamic functions is done through the Bethe free energy
functional fgene({Pr—i}) defined as

— B foeene({Prsi}) = Zln(Zw w) [T T1 #miloy)

JET sej\r

+ — 217\31 ln(Zl_‘[u,ﬂﬁZ xz)

ZEV T rel

(2.45)

Free entropy ¢ gives the correct Helmotz free energy (—ffm = ¢) on tree models and
is the RS approximation to the free energy on non tree models, known to be correct
on some simple case (e.g. Ising model on random graphs, two index assignment and
many others). It is also known as the Bethe free entropy. It can be shown that BP
fixed point messages can be recovered through a variational principle applied to
Bethe free entropy. More precisely each BP fixed point is also a local maximum of ¢
(considered as a function of | E| messages) and vice versa |15].

On a factor graph ensemble we can use the (supposed to be unique) fixed point
of Density Evolution P, and express the average Bethe free energy as

Co Dj
B A 1n(Z¢R{xJ} HH (2;)) + (1 = Do) ln(ZHV] ))-
{z;} j=1s=l1 T s=1

(2.46)
Expectation are taken over random variables the random variable node and factor
node degrees Dy and Cj, the random variable node residual degrees {D;}, the
compatibility function node label R and messages {7, } and {#;} independently and
identically distributed as Py. d and ¢ are the mean variable and factor node degrees
respectively.

On locally tree-like factor graphs, where loops’ length is O(In N), Replica Symme-
try Cavity Method achieves exact values for marginals and thermodynamic functions
as long as correlations between variables remain short-ranged, so that independence
of incoming messages assumption holds true. Obviously Cavity Method scores poorly
on those graphs where short loops are present and near neighbours of a variable
1 are strongly correlated even after ¢ removal, as in the case of most models on
finite dimensional lattices. To cope with that generalizations of Belief Propagation
algorithm have been proposed [82] and cluster-based free energy approximation
(of which the Bethe free energy can be considered the simplest level) have been
studied for a long time [83]. Long range correlations are responsible for the failure of
Replica Symmetric assumptions on locally tree-like models and Replica Symmetry
Breaking ansatz have been developed to dispatch a cure extending the Cavity Method
formalism.
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2.5 Combinatorial Optimization

2.5.1 Formulation and link with statistical physics

Optimization has a crucial role in every human activity, because whatever our
purposes are, being them determined by chance, feelings, instinct and reason, it’s
our nature to speculate rationally about the best way to achieve them quickly and
thoroughly. In mathematics and theoretical computer science a generic optimization
problem is characterized by a feasible solution space S and an objective function
f S — R called the cost function. One is interested in finding the set of optimal
solutions

S* = Argmin f(s) (2.47)
seS
and their cost, the optimal cost
E* = min f(s). (2.48)

Combinatorial optimization problems are a special class of optimization prob-
lems, the requisite being a finite feasible solution space S. The Matching problem
and the Assignment problem we are going to cover in the next chapters are well
known examples of optimization combinatorial problems, among many others as the
Travelling Salesman Problem, the Minimum Weight Spanning Tree, graph coloring,
boolean satisfiability problems and so on (see [84]) for an introduction to the theme).
All the combinatorial optimizations problems we just mentioned have a natural
representation in terms of factor graphs.

Link between combinatorial optimization and statistical physics is made through
the partition function

Z=3 e H (2.49)
seS

and the solution to the problem is recovered in the limit 5 1 co. cost function f is thus
associated to the total energy of a given configuration. To obtain a sensible statistical
physic model the cost function has to be properly scaled (an operation that leaves
S* unaltered) in the size of the problem N (often the number of variables involved)
so that thermodynamic quantities are linear in N. Moreover the large N limit has to
be taken, so that model is apt only to study the asymptotic behaviour of an
optimization problem. That’s not a hindering limitation however, because threshold
characterizing interesting transitions (e.g. the SAT-UNSAT transition in the random
K-SAT problem) can be made sharp only for NV 1 co and many asymptotic properties
tends to be acquired very fast as N grows.

Very often, at least from a theoretical point of view, one is interested in elucidating
the average behaviour of random instances of some optimization problems.

It turns out that techniques developed by physicists in the contest of spin glass
theory, and the Cavity Method in particular, are well-suited to cope with these
problems. The seminal paper in the field was published in 1985 by Parisi and
Mézard [18]. They used the Replica Trick in the Replica Symmetric approximation
to compute the asymptotic optimal total cost of the random link assignment problem.
After their work many other appeared in the successive years, addressing completely
connected or dense graphical model through the Replica Trick [19,85], which could be
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used in its original form and allowed for Replica Symmetry Breaking. At that time,
on sparse graphical models only the RS ansatz could be applied using the Replica
Trick [86]. The next leap forward was made in 2001 thanks again to Parisi and
Mézard, who showed how to implement the first step of replica symmetry breaking
on sparse graphical models through the Cavity Method [14]. The algorithmic version
of the 1RSB cavity method was then proposed in Ref. [20].

Development in this field through the 2000s have been impressive. The connection
between the Bethe approximation in physics and the Belief Propagation algorithm
from computer science was recognized [87], and a class of heuristic algorithms based
on Kikuchi’s cluster-variation method [83] was proposed [82]. Random constraint
satisfaction problems, such as K-SAT, where characterized in terms of the geometric
structure of the space of solutions, a collective effort which involved many scholars
for two decades, summarized in Ref. [22]. For example, in large instances of the
random 4-SAT problem, calling o the parameter controlling the density of clauses
that have to be satisfied, there exist three values oy < a. < ag such that : for
a < ag almost all solutions belong to unique cluster, that is any two of them are
connected by a path of solution involving a small rearrangement of the configuration
at each step; at & = a4 there is the clustering (also said dynamical) transition, and
for oy < a0 < . solutions are organized in an exponential (in N) number of clusters;
at a = a, the system undergoes a thermodynamic transition, called the static or
the condensation transition; for o, < a < ay a finite number of clusters carries the
whole Gibbs measure; finally, above «,, the satisfiability threshold, the problem
admits no solutions at all [15].

In this thesis we will focus on a problem with a simple, replica symmetric
structure, the Matching problem, that we present in the next paragraph.

2.5.2 The Matching Problem

The matching problem is a combinatorial optimization problem that has drawn
the attention of both the computer science [84,/88-92] and the statistical physics
[18,19,(59./62,93H97] communities for many decades. Among its pletora of applications,
we mention computer vision [98], control theory [99,100] and pattern matching [101].
Variants of the matching problem are the multi-index matching problem [60] and
the set packing problem [6]

Even in its most general formulation, the problem belongs to the P computational
complexity class, and many famous algorithms have been developed to solve it
efficiently [88,89}91].

For a given N x N cost matrix w;;, 7,j = 1,..., N, w;; = wj;, the minimum
matching problem is formulated as the following integer programming problem:
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MINIMIZE Eln;w] = wijng
1<)
SUBJECT TO ni; € {0,1} Vi, j
Ng; = 0 Vi (2.50)
nij = TLjZ' Vl,j

Znij =1 Vi
J

More generally and from a graph theoretic perspective, for an arbitrary graph
G = (V, E) a matching M is a subset of the nodes, M C F | such that no node in
V has two or more edges in M. Two nodes i and j are matched if (i,7) € M, and
in that case we call (i,j) a match. A perfect matching is a matching where each
node is matched. The size of a matching is its cardinality. A maximum matching
is matching such that no other matching has greater size. Notice that maximum
matchings generally are not unique. If we associate a real number w;;, that we call
cost or weight, we are considering the weighted matchings. Since in this thesis we
address only weighted matchings we call them matchings as well. A minimum weight
mazimum matching is a matching that solves the following problem, that we will
generally call the matching problem:

MINIMIZE Eln;wl= Y wing
(i.d)EE
SUBJECT TO > g MAXIMIZED
(i,j)€E (2.51)
nij € {O, 1} V(Z,]) eF
Y onig <1 VieV
jeai

Matching that satisfy this property are also called optimal matchings. The function
E[n;w] is the cost function and its mimum value E*[w] is the optimal (total) cost.
We see that this problem reduces to the formulation when the underlying graph
is the complete graph. When G is taken as a complete bipartite graph, we will call
problem 2.51] an assignement problem or a bipartite matching problem.

In this thesis we deal with random instances of the matching problem. One
kind of randomness that we do not examine is the one in the underlying graph G.
Matching on random graphs, in fact, both in its weighted and unweighted versions,
has been investigated in numerous papers [61},90,102,(103].

Here we investigate fully-connected models where the randomness is encoded
in the cost matrix {w;;}. The archetypal example of such problem is the random
link, where the matrix elemens w;; are independent and identically distributed. The
random link problem was investigated, using the replica method, by Parisi and
Mézard [18]. They obtained, for exponentially distributed costs, the celebrated
result

) cpn T
N1—1>r—r|-looEwE [w] = 13’ (2.52)
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later proved by Aldous [104] and successively, using different techniques, by Linusson
and Wastlund [105].

A much more difficult problem is the Euclidean matching problem. The cost
matrix here is induce by the distances among N points distributed uniformly in
a box in R, w;; = ||x; — x;||. Therefore the matrix element are highly correlated
and analytical treatment is very difficult. The problem was introduced in Ref. [5§]
and studied with the replica method, although a crude approximation was made,
considering only cost correlations among triple of points (triangles) and factorizing all
the others. In Chapter |[7] we show how to improve upon their approximations taking
into account correlations in polygons of arbitrary lengths. In Chapter [0] instead we
use a completely different approach, based on continuum approximation, to analyse
the Eulidean bipartite matching problem, where density fluctuations among the two
point sets lead to non-trivial scaling behaviour for the average optimal cost.

Noticeably, on complete graphs, although the BP algorithm does not converge, it
gives the exact optimal configuration and total cost after a certain problem-dependent
iteration step [81.,|106]. Also the Cavity method predictions for diluted models have
rigorously proved on locally tree-like structures [103]. .

For numerical analysis we make use of the solver implemented in the LEMON
GRAPH LIBRARY [107]. It is based on Edmond’s blossom algorithm [91], which has
O(|V||E|In |V|) computational time complexity. This would make for a ©(N?In N)
complexity for the fully connected graphs we deal in this thesis. Since edges
participating in optimal matchings belong to the O(1/N) fraction with the lowest
weights [108], in numerical experiments we prune from the graphs the edges with
weights above a certain cut-off value . Obviously + has to be chosen high enough
to not interfere with the optimal matching. The pruning procedure transforms the
graph in a diluted random graph, therefore the algorithmic complexity is reduced to
O(N%In N).

2.5.3 The Minimum Cut Algorithm

As an example of application of techniques from combinatorial optimization to
disordered systems, in this paragraph we will show the equivalence between the
problem of finding the ground state configuration in a RFIM and the minimum cut
problem, an combinatorial optimization problem belonging to the P computational
complexity class, also known as min-cut problem). To our knowledge this equivalence
is stated for the first time in Ref. [109]. Consider an instance of the RFIM on graph
G = (V, E). The Hamiltonian is given by

H[O’] = — Z Jijgiaj — Z hl g, (253)

(iJ)€E iev

with J;5 > 0. We want to find the spins configuration ¢* that minimizes the energy
of the system. We notice that a spin configuration o is specified by a partitioning
of V in two sets, VT and V=, VT UV~ =V, such that s; = 1 for i € VT and
s; = —1 for i € V~. The energy of a configuration is determined by the "unsatisfied"
bonds and fields. In fact, if we define the two sets HT = {i € V : h; > 0} and
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H™ ={i €V :h; <0}, we have

HVE VT =Eep+ ) 20+ > 2+ Y 2/hl, (2.54)
eVt ieVtnH- ieV-nH*
jeVv—

where for convenience we set J;; = 0 if (i,j) € E. The reference energy E,.; is

defined by
Epep=— > Jij— Y |hil (2.55)
(i,j)E€E eV
In order to transpose the energy minimization problem in a minimum cut problem,
we construct an auxiliary oriented graph G = (V, fl). The node set of the new
graph is the old one plus two additional nodes representing the positive and negative
field respectively, V = V U {+,—}. The arc set A is the union of three sets,
A = EUEtUE~. FE contains two arcs for each edge in E, E = {(i — j) :
(i,7) € E}. The other two sets are defined as B = {(+ — i) : i € H"} and
E~ ={(i — —):i € H }. We associate a weight J;; > 0 to each arc (i — j) € A
according to
Jij  (i—j)€E,
JZ']' = hj (Z — j) € E+, (2.56)
—h; (Z —>]) e E~.

For convenience we also set jij =0if (i » j) ¢ A. It is now easy to see that we
can rewrite each configuration’s energy in terms of the non-asymmetric matrix J,
and that minimization of the energy given in Eqs. (2.53)) and (2.54]) is equivalent to
finding

VEVT v+
JEV ™

Minimization is over all the partition of V in two sets, V*+ and V—, such that
+ eVt and — € V. This the exact definition of the minimum cut problem for G
with source 4+ and sink —. Its connection to the ground state of the RFIM is thus
established.

Therefore, in order to find the ground state configuration of the RFIM, we can
go trough the construction of the auxiliary graph depicted above and then use one
of the many algorithms available to solve the corresponding minimum cut problem.
In particular the maxz-flow min-cut theorem, establishes the equivalence through
duality of the minimum cut problem with another celebrated optimization problem
on graphs, the maximum flow problem [84]. Therefore many algorithm used to
solve for the min-cut exploit this connection with the max-flow. In this thesis we
make use of the solver implemented in the LEMON GRAPH LIBRARY [107] based on
a push-relabel maximum flow algorithm [110]. The computational complexity of
this algorithm is ©(|V'|2y/[E]). For finite connectivity systems the computational
complexity is therefore ©(N??). Average computational complexity is significantly
inferior, as discussed in Figure

Unfortunately minimum cut algorithms work only for positive weights jij, there-
fore they cannot be us find the ground state of Ising spin glasses. Energy minimization
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Fig. 2.2. Timing of the push-relabel minimum cut / maximum flow algorithm implemented
in the Lemon graph library. Simulations were performed on a Core i5 2500k processor.
(Left) RFIM on random regular graphs with conectivity z = 4. (Right) RFIM on a
cubic lattice in dimension d = 3. Averages are taken over 10000 samples. The error
bar is the standard deviation of the population. Quite interestingly the computational
time remains constant in the whole paramagnetic phase up to the transition point and
decreases only in the ferromagnetic phase. Average computational complexity varies
approximately between ©(N1%) and ©(N?) in the range considered.

in spin glass can be stated as a maximum cut problem, and it belongs to the NP
computational complexity class [111]. Best exact solver for spin glasses are usually
based on brunch-and-bound approaches |111].

On the other hand many heuristic solver have been proposed to find spin glass
ground states [111,[112]. Noticeably for the present discussion, one of these heuristics,
the Cluster-Exact Approximation (CEA) | is a zero temperature Markov Chain
Monte Carlo algorithm where the standard single spin flip is replaced with the exact
minimization of the energy on a unfrustrated subgraph of the original graph [113].
In fact any unfrustrated Ising system can be gauge transformed in a ferromagnetic
system, therefore the min-cut algorithm can be (locally) applied. Also combination
of genetic algorithms [114] and CEA have been recently proposed and showed to be
highly effective [115].

2.6 Finite size corrections

In finite dimensional systems with periodic boundary conditions one would expect
exponentially decaying finite size corrections, due to arguments somewhat related
to the Euler-McLaurin formula. The system in fact feels its finiteness, as far as
observables are concerned, only through diagrams involving rewiring around the torus.
This implies, for non-critical systems, an additive correction which is exponentially
decaying in the length L of the lattice, or some power of it. Divergence from this
standard behaviour is an interesting phenomena and points towards criticality. The
Euclidean monopartite and bipartite matching problems belong to this class, as we
will investigate in Chapters [6] and [7}

Finite size corrections have been computed in the SK model, on the Almeda-
Thouless line, by Parisi, Ritort and Slanina [116,|117]. Their approach is based on a
replicated field theory. Due to the divergence of all the terms in the diagrammatic
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expansion around the saddle point, at the critical point and in the whole spin glass
phase, they have to resum an infinite class of diagrams. They found a O(%)

correction to the free energy and a O(N 75) to the energy. There is some evidence

from numerical simulation of a O(N 7%) correction for both the energy and the free
energy in the spin glass phase |[118]. Understanding finite size corrections in finite
dimensional spin glasses, a much difficult analytical and numerical (due to long
equilibrating times) task, is of fundamental importance to asses the validity of any
theory competing for the explanation of the glass transition [75,(119)].

Regarding the deep spin glass phase, the zero temperature point has a special
place. The search of ground state of spin glasses, a minimum cut problem with
positive and negatives capacities, is a computationally hard problem. Nonetheless
many successful heuristic algorithms, such as Cluster Exact Approximation (CEA)
[113], Hierarchical Bayesan Optimization Algorithm (hBOA) [120,121] and Extremal
Optimization (EO) [122], have been developed to deal with large instances of the
problem. In particular, using EO, the finite scaling behaviour of zero temperature
mean field and finite dimensional spin glasses was deeply investigated in Refs.
[123H125].

Finite size corrections in the glassy phase are outside the scope of this thesis
though. In Chapter @] we will discuss topology related corrections, since in diluted
random graphs simple combinatorial arguments give the scaling of the average
number of loopy subgraphs as powers of 1/N. In Chapter |5 instead, O(1/+/N) finite
size correction in the RFIM are induced by fluctuations of the total random external
field. Lastly, in the Euclidean Assignment problem investigate in Chapter [6] an
anomalous subleading scaling for the average cost is also due to fluctuations in the
disorder, namely to the differences in local densities among the two sets of points .
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Chapter 3

The Replicated Transfer Matrix

3.1 Introduction

The study of one-dimensional Ising chain with random bonds and/or fields has a
long tradition in the context of disordered systems. Over the years this field has
experienced an interesting change in perspective. Earlier studies were essentially
motivated by the need to obtain solvable version of three-dimensional models [126-
129] and this line of research culminated with the introduction of specific random
Hamiltonians that are actually solvable analytically [130H133]. In the last twenty
years dynamical approaches have also been considered as alternatives to equilibrium
approaches [134-137] while developments in the context of static studies [138,|139]
have been mainly motivated by the connection between one dimensional systems
and models defined on sparse random graphs. Random graphs in turn have many
important applications in the context of computer science, artificial intelligence and
information theory [13,/15]. In this broader context one is more interested in having
a general formalism that can be applied to any given distribution of the quenched
Hamiltonians at the price of obtaining the result through numerical solution of
implicit equations.

In the general case one would like to study an Ising chain, either open or closed,
of arbitrary length L were the fields and couplings are i.i.d. random variables.
Quantities of interest include the free energy but also all sort of averaged correlation
functions. Indeed, at variance with pure systems, correlations can be averaged
in two different ways: over thermal noise (conventionally referred as connected
correlations) and over the quenched Hamiltonians (disconnected correlations). This
difference is important both at the theoretical and the practical level. Indeed
disconnected correlations happen to be much larger in random field systems (but
not in Spin-Glasses) and lead to a very complex phenomenology, e.g. the increase
in the critical dimension from D = 4 of the pure ferromagnet to D = 6 [80]. In this
chapter we show how to complete this program by means of the replica method,
more precisely by means of the replicated transfer matrix (RTM) approach. As long
as the sources of disorder are independently distributed, one can express the integer
moments of the partition function through traces of powers of the 2™ x 2" transfer
matrix of a system of n replicated spins. Then, as usual with replica calculations,
the analytic continuation to n = 0 is performed. We will derive expressions for
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the aforementioned quantities in terms of the solutions of integral equations that
can be solved for instance through population dynamics algorithms. In order to
do so we build on the crucial contribution of Monasson and Weigt [138], who first
characterized the spectral properties of the RT'M. The motivation is not only to have
a compilation of useful formulas but also to present some non-trivial features of their
derivation. The most important is connected with the fact that in the limit n — 0
two families of eigenvalues (corresponding to the Longitudinal and Anomalous sectors
in the Spin-Glass jargon) become degenerate. From the theoretical perspective, this
determines an anomalous behaviour of the disconnected correlation functions and
of corrections to the free energy of closed chains. On a practical side this implies
that one has to determine not only the eigenvalues and eigenvectors of the integral
equations at n = 0 limit but also their first O(n) correction.

While the replica method is at present the only way to derive expressions for all
quantities of interest in a compact form, its well-known drawback is the assumption
that one can make the analytical continuation n — 0 of expressions whose derivation
makes sense only for positive integer n. One is therefore interested in deriving the
same expressions in a more direct way. Unfortunately there are no general results or
strategies on how to do this and one has to proceed case by case. We will present
a direct probabilistic derivation of many of the expressions obtained through the
replica method. A particularly non-trivial result is the derivation of the formula for
disconnected correlation functions that has been long sought for. Such a derivation is
based on the fact that a direct physical meaning can be attributed to the continuation
of replica expressions to real n, at variance with other classic analytical continuation
tricks ( e.g. dimensional continuation in field theory). Therefore one can first derive
rigorously an expression at any real n and then safely take the limit n — 0. The
only replica expression whose derivation is left as an open problem is the free energy
of closed chains. We recall that closed chains are rather important objects that
appears in perturbative computations developed around the tree approximation [2].

We conclude this introduction by briefly discussing the connection between our
results and the extensive literature on disordered Ising chains. As we said already
earlier studies, appeared in the context of the random field Ising model (RFIM), were
motivated essentially by the possibility of obtaining exact solutions when dealing
with one-dimensional models. It was immediately recognized [126-128] that the
free energy of an infinite chain can be expressed in terms of an iterative equation
which corresponds to the Longitudinal sector in the terminology of RTM. Exact
results can be obtained at zero temperature, where the equation can be solved
explicitly [127] or by enumeration in the special case in which the random fields
are either zero or infinity [129]. Finally it was discovered that some models with
specific distributions of the disorder can be solved analytically [130-133]. Much
effort has been put in the study of the iterative equation relevant to the free energy
of the infinite chain, starting from the observation that when the random fields
and couplings take a discrete number of values ( e.g. H = £1) the solutions of
the equations may display a multi-fractal structure [140H143]. The approaches
taken to characterize the correlation functions have been less successful. Connected
correlations where computed exactly for the aforementioned solvable models but the
disconnected correlations resisted all efforts [131] to capture their expected peculiar
features (the double pole) [80] up to this work. Later on correlations functions were
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Fig. 3.1. Pictorial representation of the matrix T}, (left), its powers T (center) and the
matrix 7" (right).

also studied in a more general framework at zero temperature [144], but again non
considered the disconnected correlations. The results of [131] are system-specific and
not based on iterative methods, only recently [145-147] it has been recognized that
general iterative expressions for connected correlations can be obtained by means of
cavity arguments like those we will present in the following.

The chapter is organized as follows: in Section [3.2] we define the model we are
considering and expose the main results of this chapter; in Section we develop all
the spectral formalism of the RTM and we apply it in Section to the computation
of free energies and correlation functions. Most of the results obtained with the
RTM are then rederived with a purely probabilistic approach in Section

3.2 Definitions and main results

In this chapter we consider one-dimensional Ising spin system with i.i.d. random
fields and couplings , e.g. an isolated chain or a chain embedded in a locally tree-like
graph, therefore described by the product of uncorrelated 2 x 2 random transfer
matrices M; defined by

Mi(0i41,07) = ePhowsoithion, (3.1)

The partition function of a closed chain of length ¢ is then a random variable given
by

/-1
Zpe="Tr [[ M;. (3.2)
i=0

A powerful technique to compute the statistical properties of this kind of objects is
the well known replica method [13]. As we shall see, as long as the system stays
in a replica symmetric phase, its statistical properties are encoded in the (replica
symmetric) replicated transfer matrix T,, the 2" x 2™ matrix defined by

To(0,7) = Egp 7 2ama 07 HPR 0 7, (3:3)

Here and in the following we denote with o the vector (o!,... ¢"), with the n
replicated spins o taking values in Zy = {—1,1}. A similar definition holds for .
As usual in the replica method [13] we shall work at integer value of n and perform
the analytic continuation for n | 0 at the end of the computations. We shall assume
in the following that the field h is an arbitrary distributed external random field, if
we are considering an isolated chain, or, if we are considering a chain embedded in a
locally tree-like graph, to be a random cavity field conditioned to act on a spin that
is already connected to two other spins (its neighbours on the chain). See Figure
for a representation of T}, and its powers T,
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A first spectral analysis of T, was conducted by Weigt and Monasson [13§].
Following their lead we take advantage of the replica index permutation symmetry
of T,, to choose an appropriate bases to express its right eigenvectors. There are
n + 1 non-equivalent irreducible representation of the permutation group, which
can be glued together to form the sectors D9, ¢ =0,1,...,| %], partitioning Z5".
In the following, with some abuse of notation, we will denote with D@ the set of
eigenvalues of T,, with eigenvector in that sector. The eigenvectors of T}, in the
sector D@ can be parametrized by functions gé‘ (u) that, in the limit n | 0, satisfy
the eigenvalue equation

Ag(u) = Ej,h/dv gMNv) 6 (u—a(J,v+ h) <gi)q , (3.4)

where 4(J, h) = %atanh (tanh(5J) tanh(Bh)) is the cavity iteration rule.

In this chapter we extend the analysis of the spectral properties of T;, to achieve
a complete description of the n | 0 limit, derive exact expressions for correlation
functions and free energies of chains. Since T}, is the product of two non-singular
symmetric matrices, it possess a complete orthonormal (in the left-right sense) basis
of left and right eigenvectors with real eigenvalue. The left eigenvector corresponding
to a certain right ¢p is simply Eje”" 2 “r(0) = pn(o)r(c). Therefore the
spectral decomposition of 7T}, into the subspaces D@ is given by

[5]
Tn(av T) = Z Z A p;‘(a)ph(T)p;‘(T) Z Qa1...aq;b1...bq o .. gt b

4=0 \e D@ a1<--<aq
b1<"‘<bq

(3.5)
Here we have denoted with p(;‘(T) the replica symmetric part of the eigenvector
in the sectorD@ with eigenvalue X\. The second sum is over all the eigenvalues
of T}, in the sector D@, given in the n | 0 limit by the solutions of Eq. .
The coeflicients Qal...aq;bl...bq have simple algebraic expressions in each sector (see
Eqgs. and ) and are invariant under permutations of any of their two
sets of indices. While a different left-right decomposition of T, has already been
attempted [139], an unfortunate choice in the parametrization of the eigenvectors in
terms of function of two variables led to an unmanageable formalism. Thanks to the
spectral representation we can easily take the powers of 7,, and contract the
matrix with the quantities we want to average. In Section we derive Egs. (3.4)
and , and discuss the non-trivial aspects of the small n limit.

One of the applications of the spectral formalism is the computation of the
average free energy of open and closed chains, as exposed in Section Recently
it has been shown [2] that the first finite size correction to thermodynamic free
energy of systems on diluted graphs can be expressed as a linear combination of
the free energies of closed and open chains. It has also been argued [148] [2] that a
perturbative expansion around the Bethe approximation towards finite dimensional
lattices, shall account for the presence of loops (closed chains) and will contain the
free energies and the correlation function of one-dimensional objects, motivating the
importance of exact and easily approximable expressions for their free energies.

Taking the trace of T and performing the n | 0 limit one obtains the average
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free energy of a closed chain of size ¢:

LGS = —Btho+ Y A3 d, Y A (3.6)

AeD®) q=1 xeD(

The non-trivial features of this expression is the presence of a term O(¢ AX‘~1). This is
typically not present in a ordinary eigenvalue decomposition that contains only O()\E ).
Its presence is due to the n — 0 limit combined with the fact that the longitudinal
and anomalous eigenvalues become degenerate. As we said in the introduction this
is a phenomenon that has dramatic physical consequences in the RFIM context [80].

The terms Ay, due to the degeneracy between the eigenvalues of the sectors D)
and DM at n = 0, are expressed in Eq. - The coefficients d are the analytic
continuation of the degeneracies of the eigenvalues, and are given in Eq. @ We
note that the correction to the intensive free energy fy (expressed in Eq. @) is
given by a linear combination of exponential and ¢ times exponential terms. The
decaying part of f; is dominated by the largest eigenvalue among the various sectors.

In the computation of the free energy of an open chain, we allow for the incoming
fields at the extremities of the chain to be distributed differently from the fields A
acting on the internal spins, and denote them by h. This is in fact what happens in
general when considering an open chain embedded in a sparse graph. The expression
we derived for the average free energy of an open chain of length ¢ is

—Bf; =—4Bfo+ E;L/du P(u) 2log cosh (B(u + ﬁ))

—E, / dudv P(u)P(v)logcosh (B(u+ v+ h)) (3.7)

+log2 + Z aio A\ ,
xeD@)

where P(u) is the distribution of cavity messages along the chain and the coefficients
ay o are related to the left eigenvectors of the sector D and given in Eq. .

Another result we will present is the expression of the connected correlation
functions of two spin at distance ¢, in a form that is both analytically exact and
easy to approximate numerically with high precision. In Section we derive the
formula

(ogop)d = Z aiq A (3.8)
AeD(@)

where ay j can be computed through the eigenfunction gé‘ using Eq. . We
indicate with @ the average over all kinds of disorder in the model considered. For
Ising model on sparse random graphs with mean residual degree z, the susceptibility
Xg = 2icj %]E(aiaﬁg diverges when the greatest eigenvalue of D@ reaches the value
1/z. Therefore the sectors D) and D) are the relevant ones to the ferromagnetic
and the spin-glass transitions respectively (see Figures (3.2] - 2| and |3 .

The computation of the thermally disconnected correlation function, {(og){o¢) —
{00) (o), particularly relevant to the RFIM [73], requires a careful treatment of the
analytic continuation to n = 0. The final expression we obtained, Eq. -,
not a linear combination of terms involving only one eigenvalue, as in the previous
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formulas. The leading term for large ¢ is easily extracted though: let A\; be the
greatest eigenvalue of the sector D), then

(00){00) — (00) (00) = A, a3, LAT +O(N])  for £ — +oo,  (3.9)

with Ay and ay; given in Eq. and Eq. respectively. Therefore, on
one-dimensional chains and sparse graphs, the susceptibility corresponding to the
thermally disconnected correlation function present the characteristic double pole
behaviour near the transition point, whose prefactor can also be computed by Eq.
B9)-

The expressions we found for free energies of chains, Eqs. and , and
the correlation function Egs. and , are exact for every value of the length
¢ of the chain but involve the computation of infinitely many terms. Fortunately it
turns out from our numerical simulations that the spectrum of the integral operator
in Eq. is discrete and the eigenvalues are well spaced. Therefore considering
only the first few highest eigenvalues one obtains very good approximations already
at small values of ¢. They can be computed numerically, discretizing the kernel of
the integral operator of Eq. and directly computing the eigenvalues of the
associated matrix. Moreover the leading eigenvector and eigenvalue of each sector
can be efficiently selected with multiple applications of the discretized operator on
an arbitrarily chosen vector (as it was done to obtain Figures and .

All the results we obtained using the replicated partition function formalism,
with the noticeable exception of the formula for the average free energies of closed
chains Eq. , can be recovered using a purely probabilistic approach in the same
spirit of the usual cavity method [13] [15].

In Section we devise two alternative probabilistic derivation for the average
free energies of open chains . The first is based on a recursive equation involving
the moments of the partition function, which leads to an expression for the moment
of the random partition function Z}' of an asymmetric open chain in terms of the
left and right eigenvector of an integral operator we also encountered in the RTM
formalism:

77 (u; ) Z M(n) g9 (u;n) Sy (z; 1) [2 cosh(Bx)]™. (3.10)
AeD(0)

Here n is not related to the number of replicas, since replicas are not present in
this approach, but is an arbitrarily chosen real positive number. The other method
presented in Section the iteration of the average free energy itself during the
construction of the chain, which requires to keep track of the message of u, the cavity
message propagating through a chain at distance ¢ from one of the extremities, at
each iteration. The two approaches are deeply related and obviously lead to the
same result.

Crucial to the probabilistic computation of the connected correlation functions,
ah has been noted recently [146] is the random variable X, defined by X, = g—%,
whereH| field acting on the same extremity. It turns out that the connected
correlation function of Eq. is encoded in the ¢-the moments of the joint law of
up and Xy at fixed up. This object, the function

GO (u) = /dX Py(u, X) X, (3.11)
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obeys a recursion rule, Eq. , containing the integral operator of Eq. .
Expressing G,(f) (u) in the basis of the eigenvalues of D(@ leads then straightforwardly
to the expression we obtained using replicas. Moreover in Section a more
general result is presented in Eq. .

The thermally disconnected correlation function ogoy). is computed in Section
using some results we obtained for the connected correlation function and for
the moments of the partition function of an open chain, thanks to the relation

o 0 .. n n
37%87}142570 = n(0000)e Zi'o +n° (00)(00) 2}, (3.12)

An alternative approach, technically more difficult, outlined in Section [3.5.3] in-

volves the resolution of an iterative equation for the function R (u) = §(u — ug)(oo)®,
which takes into account the shift in the magnetization of the (initial) spin at the
other side of the chain with respect to the spin where a new spin is attached to
increase the length of the chain.

In the following Sections we fill-in all the technical details associated to the
previous claims.

3.3 Spectral decomposition

We present an in-depth treatment of the spectral theory of the replica symmetric
RTM. In Section [3.3.1] we discuss the spectral decomposition of the matrix for
integer values of the number of replicas n. We introduce in Section [3.3.2] an integral
representations of the eigenvectors, in order to discuss the main features of the
analytic continuation to small values of n in Section [3.3.3] In Section [3.3.4] we discuss
some technicalities related to a peculiar aspect of the n | 0 limit, the degeneracy
between the Longitudinal and the Anomalous sectors.

3.3.1 The Permutation Group

The 2™ x 2™ matrix T;, defined by Eq. is invariant under the action of the group
of permutations among the replicated spins: for each permutation 7 acting on the n
spin, we have the equivalence T, (7 (o), n (7)) = T),(0, 7). This symmetry allows us to
block-diagonalize T, according to the irreducible representations of the permutation
group. This idea has been first introduced by Weigt and Monasson [13§] in order to
compute the eigenvalue spectrum of T,.

For the sake of completeness we now review Weigt and Monasson’s method, then
we extend it further, in order to achieve the decomposition of the transfer matrix
in terms of left and right eigenvectors. The replicated space is ZSM. Let’s call Ay,
with m =0, ..., n, the subspace of configurations having exactly m spins up. These
subspaces are clearly invariant under any permutation of the replicas, therefore we
can consider the representation of the permutation group in the n + 1 subspaces A,,
and look for the irreducible ones. The complete decomposition of A, into irreducible
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subspaces D(™% has been done by Wigner [149]. It reads:
Ag = D(O’O) y
A = D(I’O) @ D(Ll) )

Am — D(m,o) o D(m, min(m,n—m))
v s ’ (3.13)

Anfl _ D(n—l,O) @D(n—l,l) ’
A, = DO

Representations D™ at fixed ¢, are isomorphic and have dimension

dy = dim (D) = (”) - < " ) q=0,..,|n/2] (3.14)

q q—1

where |z] is the smallest integer part of z. Notice that by definition dy = 0. As we
have (n+1—2¢q) subspaces D9 the g-sector of our matrix 7}, will contain (n+1—2q)

eigenvalues with degeneracy d,. One can check that ZSZ/OQJ dg (n+1—2q) =2".

A vector of the space D™ can be constructed using Young tableaux [145], and
has the form

Im,q) = (IF)|=) — [ +)TSYM ([+)™ 74 =)"7"79) (3.15)

where the operation SYM means a complete symmetrization with respect to the
n — 2q last entries (the first 2¢q entries are, instead, anti-symmetrized). A basis
of the subspace D™ can be constructed by applying all the transformations of
the permutation group to the vector |m,¢q) in Eq. and choosing a maximal
linearly independent subset.

We look for the eigenvectors of 7T;, in the subspaces

n—q
D@ — P Dmo  g=o,..., m (3.16)
m=q

of dimension dy(n + 1 — 2¢). Since T, has no symmetries beside the replicas
permutation one, it has n+ 1 — 2q different eigenvalues in D@ each with multiplicity
dq. In the following we will refer to the subspaces D@ as to sectors. Moreover,
with some abuse of notation, we shall use the symbol D@ for the set of eigenvalues
corresponding to eigenvectors in that sector.

Of particular relevance are the sectors D@, DM and D(()z) since they are as-
sociated to the Longitudinal, Anomalous and Replicon modes respectively from
mean-field spin-glass theory [150], as we will later show when discussing correlation
functions in Section [3.4.2]

By Egs. (3.15)) and ([3.16]) it is possible to factorize the replica symmetric part in
the eigenvectors w&\(a) of the transfer matrix in the sector D@, that is we can write

(o) = p) (z aa) S Cureag 0™ 0% (3.17)

a1 <--<agqg
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where the replica symmetric part p(’z\ of the eigenvectors is the one relevant to the
computation of the eigenvalues. By last equation the eigenvectors of the sector
DO are completely replica symmetric. The coefficients Ca,...a, are invariant for any
permutation of the indices and are equal to zero if any two of the indices are equal.
Moreover they have to satisfy the constraint

n

> Cayay =0, (3.18)

a1=1

which is a necessary and sufficient condition for any vector of the form of Eq.
to belong to the subspace D@ . Any set of d, linearly independent coefficient vectors
C' can be chosen as an appropriate basis for the subspace. It is easy to prove that
the product of two non-singular symmetric matrices possess a complete orthonormal
(in the left-right sense) basis of left and right eigenvectors with real eigenvalues, and
this is indeed case for T},. In fact if we define, with a little abuse of notation, the
vector

pn(0) = Epefh2ao (3.19)

than T),(0,7) = Y, E; 5797 x 6, pp (). Moreover the left eigenvector 7, corre-
sponding to a certain right ¥g(o; A, k) is simply given by

V(o3 N k) = pr(o)Yr(o; A k), (3.20)

where k denotes one choice of the coefficients Cy, . 4 , among the d, possible. Imposing
the orthonormality condition

> wn(os A k) Yr(os N ) = 0w O (3.21)

with the sum ranging over all the 2" configuration of the replicated spin, and after
successive application of Eq. (3.18]), we obtain

q
Zpg(a)ph(o)pg (0) H(l — g2 1p2) = g\ (3.22)
g a=1
along with
Y Cha,Cayay = ki (3.23)
a1<---<aq

We are now able to write down the transfer matrix in the spectral form

5]

T.(o,T) = Z T q(0,T) (3.24)
q=0

where T;, 4 is the restriction of 7}, to the subspace D@, defined by

Tnglo,7) = > Ap(@)pn(M)py(T) D" Qay.agby.by 0™ - 0% 7

xeD(@) a1<--<aq
b1 <---<by

(3.25)
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The coefficients ) appearing in last expression are invariant for any permutation
of the set of indices a or b, therefore they depended only on the number of equal
indexes in the sets {a1,...,a4} and {b1,...,b,}. They are defined by

Qal...aq;bl..‘bq Z ai.. anll;:l,_,bq ’ (326)

and their (¢ + 1) different values can be computed applying recursively Egs.
and If we denote QZ(,q) the coefficient in the sector D@ with p pairs of different
indexes, for the first sectors we have

1 n—1 1 1
Q=" = (3.27)
2) (2)
2_ n-3 @ _ _ Qo 2 _ 203
@’ = 2(n —1) ! n—2 @ = n—3 (3.28)

3.3.2 Integral representations

In order to perform the limit n | 0 it is convenient to find a suitable parametrization
for the eigenvectors of the form (3.17). For the replica symmetric part of the
eigenvectors 1,/}2‘, see Eq. (3.17), we employ the standard parametrization

ﬂuz o?
/du g (u;n) Deosh(Bu)" (3.29)

in terms of the functions 93\ (u;n). Turns out that all the functions gé parameterizing

the eigenvectors of the sector D(©), are by themselves the eigenfunctions of an integral
operator associated to that sector. In fact, expressing the linear terms in Eq. (3.17)
through the identity

0 0

— D €a0” 3.30
9 86(11'“86% € (3-30)

Oay ---0q

e=0

and plugging Eq. (3.29) into the eigenvalue equation T,,1, = A1)y, we obtain, after
some manipulations, the new eigenvalue equation

A~

A g[l\(u; n) = }E(]yh/d'l) §(u—a(J,h+v)) <gZ)qZ"(J, h,v) g;‘(v;n). (3.31)

The function 4(J, x), defined by

u(J,x) = ; atanh (tanh(8.J) tanh(fx)), (3.32)

will be recognized by the learned reader as the update rule for cavity messages. As
we shall see, the function

2 cosh(BJ) cosh (5(v + h))

2(J hsv) = cosh(fv)

(3.33)
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is related to the intensive free energy of an chain. Notice that in writing down Eq.
we have shifted the problem of finding a complete bases of eigenvectors for the
matrix 7}, to the equivalent problem of the spectral decomposition of the integral
operators of Eq. , for ¢ =0,...,[5]. Turns out that, for a given sector D@,
the integral operator has a set of left eigenfunctions in the form

cosh (B(u +v + h
S)(v;n) = Ey / du g, (u;n) [2 cos}(fﬁ(u)toslir(ﬂi))

]n [1— tank? (Bu+ v+ 1)),

(3.34)
as can be inferred from Eq. (3.20) and can be directly verified. In the rest of the
chapter we will assume that the left and right eigenfunctions of the sector D@
satisfy the normalization condition

/du S(;\(u; n) g?l (u;n) = S (3.35)

derived from Eq. (3.22). We are now ready to take the n | 0 limit and discuss its
non trivial aspects.

3.3.3 The small n limit

In the limit n | 0 we obtain an infinite number of sectors D@, ¢ = 0,1,..., in a
fashion that is characteristic to replicas computations. Setting n = 0 in Eq. (3.31))
we obtain Eq. (3.4), which we rewrite for convenience:

A gu) =Egp / dv § (u—a(J, h + v)) (g"j)q aNw) . (3.36)

From now on we shall refer to gé\ (v) as a solution of last equation and shall explicitly
express the n dependence for the solutions of at finite n. In Figure and
Figure [3.3] we show two examples of eigenvalues and eigenfunctions in the sector
DW and D@ respectively.

For ¢ = 0, i.e. in the sector D Eq. admits a unique maximum
eigenvalue A = 1 by Perron-Frobenius theorem. The corresponding eigenfunction is
the probability distribution of cavity biases, which we call P(u) [15]. We have thus
established a first connection between the cavity method and the RTM formalism,
and we shall enforce this connection in Section The other eigenfunctions of D)
are characterized by [du g{(u) =0 at n = 0. It is convenient, to held compatibility
with the normalization condition Eq. as we will see, to impose a diverging
scaling for all the eigenfunctions of D except for the first one:

um) ~ 2= (@) +n ). (3.37)

The symbol ~ denotes equivalence between the r.h.s. ad L.h.s. up to higher order
correction in n, and g} is the first correction to the leading order of the eigenfunction
in DO, Using Eq. (3.37) for the right eigenfunctions and considering also the

correction in n to the eigenvalues, we can compute the left eigenfunctions of DO
from Eq. (3.34)). In fact we obtain at the leading order

S3(win) ~ Vi S3(0) = Vit ex + Bn [ du gi(w) log (

cosh (B(u+v+ h)))]
cosh(Bu) ’
(3.38)
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LONGITUDINAL

A‘ /ff 7 /////f//
///ﬁ’/;}’ /f%
W///////ff// ;.

Eigenvalue

0.25

Fig. 3.2. (Top) The leading eigenvalue \; of the sector D) in the RFIM as a function
of the temperature and of the gaussian external field with variance o%. (Bottom) The
corresponding right eigenfunction ¢; (u) at oy = 0.8 . The random fields A and h are
distributed as the cavity fields arriving on a chain embedded in a RRG with connectivity

z = 3, therefore the transition point is localized at A1 = %
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where c) is the normalization of the first order correction to the eigenfunction gé‘,
that is

cy = /du 3o (u) = ﬁ Eh/du 90 (u) log (Cosgéi((%z)h))> :

In all calculations involving the sector D we will express the eigenvectors using

Eqgs. (3.37) and (3.38)), then proceed carefully to take the n | 0 limit.
To find an expression for the left eigenfunctions in the other sectors no such care

is needed to take the n | 0 limit in Eq. (3.34]), therefore we straightly obtain

(3.39)

S;\(’U) = Eh/du g;\(u) [1 — tanh? (B(u +v + h))}q forg>1. (3.40)

The degeneracy between D@ and DM corresponds to the degeneracy between
the Longitudinal and Anomalous eigenvalues in the Hessian of the Sherrington-
Kirkpatrick model [150}/151]. The multiplicity of the eigenvalues in the two sectors,
dp =1 and d; =n — 1, sum up to give an O(n) contribution as should be expected,
while from Eq. the other sectors have degeneracies of order O(n) without the
need of further elisions. Therefore it is convenient to define

(3.41)

g 1 forg=1,
e =\ d 2¢—1
lim,, 0 5% = (—l)q“q(g_l) for ¢ > 2.
The first eigenvalue of DO requires separate considerations. We define the
coefficient fy from its n expansion:

A(n) ~ 1 — B fon. (3.42)

As we already noted, the cavity messages distribution P(u) is the eigenvector
associated to the largest eigenvalue of the sector D for n = 0. The corresponding
left eigenvalue is S(u) = 1. In Section we shall see that fj is the intensive free
energy of a chain. From Eq. we obtain

— Bfo=Ey / dv log [Z(J, b, v)] P(v) . (3.43)

3.3.4 The degeneracy between D® and D™

A close inspection of the eigenvalue equation reveals a surprising relation
between the sectors D and DM at n = 0. It can be shown, respectively deriving
or integrating both members of Eq. for ¢ = 1 and ¢ = 0, that all the
eigenfunctions of D) have a corresponding eigenfunction in D) with the same
eigenvalue. On the other hand, all the eigenfunctions of D), except for the first one,
i.e. the ones having zero sum, have a corresponding eigenfunction in D) with the
same eigenvalue. We have thus established a degeneracy between the Longitudinal
and the Anomalous sectors. The following relations hold:

g0 (u) = ; 97 (w);

1

58“ S5 (u) = =S (u). (3.44)
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REPLICON

Eigenvalue
0.5

0.25

Fig. 3.3. (Top) The leading eigenvalue Ay of the sector D) in a J = +1 spin-glass, as a
function of the temperature and of the uniform external field H. The phase diagram is
also shown in the H — T plane. (Bottom) The corresponding right eigenfunctions ga(u)
along the orange line of the top picture. The random fields h and h are distributed
as the cavity fields arriving on a chain embedded in a RRG with connectivity z = 3,
therefore the transition point is localized at Ay = %
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Particular attention has to be taken in the limits involving these two sectors,
keeping track of the O(n) corrections both to eigenvalues and eigenvectors. A double
pole contribution to some observables, as we shall later see, stems from the first
correction in n to the paired eigenvalues in D and D, In fact if we define the
eigenvalue shifts 6\g and d\; by

)\o(n) ~ A+n dAo, (3.45)

and consider the expansion to the first order in n of the eigenvalue equation (|3.31]
for ¢ =, from standard perturbation theory we have

A

SNy = Ej,h/dudv S (u)log [Z(J, h,v)] 6 (u — a(J, h + v)) (gz)qgg(u). (3.47)

The shift difference Ay = d\g — )\ is the relevant quantity we are looking after,
since it arises in the calculation of the free energies of closed chains and of the
thermally disconnecter correlation function, see Section Using Eq. and
the relation between the eigenfunctions in the two sectors, we obtain the
expression

Ay=-Ejy / dudv S (u)d (u — @(J,v + h)) [tanh (B(v + h)) — tanh(Bv)] g7 (v)

If we call (e, ®) the scalar product in L? and define the kernel 249
Q(u,v) =Ejp0 (u—1u(J,v+ h))tanh (B(v + h)) — tanh(Bv)], (3.49)

then Eq. can be rewritten as
Ay =—(5,Qa). (3.50)

In the next Section we shall apply the formalism we have developed to the computa-
tion of some physically relevant quantities.

3.4 Some Applications of the formalism

3.4.1 Free energy of chains

Let us first consider the average free energy of a closed chain of length ¢, each node
receiving i.i.d. random fields h, and call it f§. If the chain considered is embedded
in a locally tree-like graph, the random fields h are distributed according to the
cavity messages distribution on that graph ensemble. Since TrTY is the replicated
partition function of this system, the free energy is given by

— Bfi = lim 0, Tx Ty, , (3.51)

where, thanks the orthonormal decomposition of T},, the trace can be written in the
form

Tr T = idq dOX (3.52)

q=0  X\eD()
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In last equation the eigenvalue degeneracies d, are given in Eq. , and the
eigenvalues A depends implicitly on n. In the small n limit the sum over ¢ can be
extended to infinity. The considerations over the eigenvalues’ shifts and degeneracies
of last Section lead to the final expression

—Bff ==Blfo+ Y AN+ iciq dOX (3.53)

AeD®) =1  xeD()

The coefficients qu are given by Eq. (3.41]), the shift differences Ay given by Eq.

and an expression for the intensive free energy fy is found in Eq. . We
notice that all the quantities entering Eq. can be expressed in terms of the
eigenvalues and eigenfunctions of Eq. .

The computation of the average free energy of open chains is a little more
involved. In the definition of open chains, we allow the spins at the extremities to
receive a random field A that could have a distribution different from the one of the
fields acting on the internal spins of the chain. We introduce this relaxation of the
model in order to apply our formalism to the case of open chains embedded in a
generic tree-like random graph.

It is convenient to define the replicated partition function of an open chain of
length ¢, conditioned on the configuration of the replicated spins at its extrema in the
following way: starting from T, we remove the field h on the right and substitute it
with a field &, then we add the other field A on the left (see Figure . Therefore
we define

T\ (0,7) = pj(0) Tu(o,7) o3, (7)pj (7), (3.54)
where, with a little abuse of notation, the vector pj is defined by

pi(0) = Ej P20 (3.55)

By definition the matrix TT(LK) is symmetric (see Figure for a pictorial representa-
tion). From Eq. (3.54]) and Eq. (3.24) we obtain the spectral decomposition

L5)
T, 1) =3 3 X @) (@)pp(Meg(r) 30 Quragbr.n 0 - 0™

q=0 \eD(@) a1<--<aq
bi<-<by
(3.56)
The average free energy of an open chain of length ¢ is then given by
_ N (e
—Bf¢ = lim 9, ;Té J(o,7) . (3.57)

From Eq. it easy to see that only the D sector of TT(LZ) contributes to last
equation.

A different behaviour characterize the terms corresponding to the leading eigen-
value at n = 0 (the cavity one) from the others. As in the case of the closed chain,
the extensive contribution to the free energy comes from the leading eigenvalue of
DO X ~1—npBfy. An O(1) contribution comes from the leading eigenfunction
g3 (u;n) = P(u) + O(n), while each other eigenvalue, the ones degenerate with D),
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gives an exponential term. Therefore, after a careful treatment of the small n limit,
we arrive to the expression

—Bff =—10B8fo + Eﬁ/du P(u) 2log cosh (ﬁ(u + iL))
—E, / dudv P(u)P(v)logcosh (B(u + v + h)) (3.58)

+log 2 + Z a?\jo)\z,
AeD)

with

1 cosh (B(u + h))
axo ST Eh/du gé‘(u) log [ cosh(Bu) }

+ Eﬁ/du 9 (u) log lw

In Eq. (3.58)) it is clearly expressed at the order O(1) in ¢ the free energy shift, with
respect to the free energy of a closed chain, due to the addition of two extremal
spins and the removal of an internal one.

(3.59)

The coefficients a) o are strictly related to the left eigenfunctions 5’3‘ defined in
Eq. (3.38). In fact if the random field at the extremities of the chain are distributed

as the one on the internal spins, i.e. AL} as in the case of a chain embedded in
a Poissonian random graph, then ayo = Sé‘(O). More generally if a probability
distribution G(©)(u) exists such that

P(h) = Es / du GO (u) §(h — (u + h)) (3.60)

holds, then Eq. (3.59) can be written in the compact form ayo = (SS‘,G(O)).

Obviously if A2 h we have G (u) = d(u). For a chain embedded in a random
regular graphs ensemble instead, G(¥) (u) is given by the distribution of cavity biases
P.oy(u) |15, which corresponds to the first eigenvector of the Longitudinal Sector.
Therefore in the random regular graph ensemble (SS, G(O)) = 0 and no exponential
decays are present in the expression for the free energy of open chains.

3.4.2 Correlation functions

We take advantage of the spectral representation of the RTM to find some analytical
expressions for the two-point correlation functions. We consider two spins, og
and oy, at distance ¢ along a chain. As in the previous paragraph, we admit the
possibility for the chain to be embedded in a locally tree-like graph, therefore
the random fields A acting on oy and oy can be distributed differently from the
fields h on the internal spin of the chain. The decomposition of TT(LZ) (o,7) in Eq.
(3.56|) can be exploited to obtain the correlation functions. In fact contracting

T, (o,7) with two spins having the same replica index constrains them to be
in the same thermal state, as in (0goy) = limp—0>.,, ol Tﬁ‘) (o,7) 7. Choosing
different replica indexes instead corresponds to choosing different thermal states, e.g.
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(00)(0¢) =limp 0>, , 0! T,SE)(U, 7) 72. Generalizing this considerations is easy to
obtain
(ogop)k = lim Z ot o TO(o,7) 7. TR (3.61)

n
n—0
o,T

1

Since vectors of the form o' ...c* have non-zero projections in D@ only for ¢ < k,

only these sectors of the spectral representation of T,ﬁf) contribute to Eq. (3.61)).

The expression for (ogoy)¥ is quite complicated and it involves also the correction
for small n to the eigenfunction of D and DWW, as in the case of the thermally
disconnected correlation function we shall later see. Therefore, since this kind of
correlation function has little physical relevance, we won’t report its expression in
terms of the transfer matrix eigenvalues and eigenfunctions.

Far more interesting from the physical viewpoint are the connected correlation
functions. The ferromagnetic connected correlation functions can be expressed as
(o00¢0)c = limy, 0 %ZJJ (o1 —o?) f}g) (o,7) (! — 72), as one can rapidly check,
and this expression can be easily generalized to

m = %11)% 2% ; (01 - 02> (0%_1 - a%) j}(f)(a, T) (7‘1 - 72> (TQk_l -

’ (3.62)
It is worth noticing that the vector v = (0'1 — 02) e (02’“_1 — O'Qk) belongs to the
subspace D) therefore we can choose a basis for the spectral representation of

T,(f) such that all but one vectors are orthogonal to v. This leads to the following
compact expression for the connected correlation functions:

(oo = 3 ad A, (3.63)
XeD(k)

with the coefficients ay j given by
~\1k
g = Eﬁ/du g u) [1— tanh? (B(u+ B))]". (3.64)

As in the case of the coefficient ay o defined in Eq. , if a solution G of
exist then a)j is simply given by the projection of GO on S’,;\, that is
axk = (S]?,G(O))

The susceptibilities x; = limy_y00 % > (Tioj) k can be easily computed through
equation in a random graph with mean degree and mean residual degree zg
and z respectively. In fact in thermodynamic limit we have

Xt = (1 —m2)k + Z 202 7 (opoy)k
=t \ (3.65)

= (1—m?2)k + 2 Z aik T
AxeD(k)

At a transition point the largest eigenvalue of one of the sectors D@ reaches the value
% and the corresponding susceptibility diverges. Assuming a smooth behavior for the

=
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eigenvalue in the high temperature region before the transition, A(T") = %—FO(T—TC)
for T — T, we obtain the mean-field critical exponent v = 1.

The computation of the thermal disconnected correlation function (og){oy),
relevant to the RFIM transition, is more complicated, since it involves the sub-
leading corrections in n to the eigenvectors of T,,. Great care has to be taken in
the limit lim, 0, . o 7 (0,7) 7% = (00){0¢). As in Eq. (3:37), let us call 3 (u)
the correction to the eigenfunction gé‘(u). We denote with (e), the expectation over
T,(Lg) (0, 7) restricted to the sector D@, Than in D(®) we obtain

o 1
(01720 ~ (00e) + > —ad X +ad  Lor A
xeD®)

— a1 Af[/du 0 (u) tanh(B(u + h)) (3.66)

cosh(B(u + h))

i /du gé\(u) tanh(S(u + il)) log cosh(fu) ’

where the contribution (0,,) comes from the cavity eigenvector and is the average
magnetization of a spin at the end of an infinite chain.

Similarly, if we define g7 (u) by g1 (u;n) ~ g3 (u) +n g7 (u), in the sector D) we
have

-1

(@'~ > —ai N —a} oA
xeD®)
—2ay1 N Udu ) (1 — tanh?(8(u + B))) (3.67)
+ /du g7 (u) (1 — tanh?(6(u + ﬁ))) log W}

Summing the two contributions, the final result for the disconnected correlation
function is

(00 (00) = 0oy + 3 Anad LA +an Al (3.68)
AeDM)
Therefore each eigenvalue of the Anomalous sector contributes to (o¢){oy) with an
simple exponential term and with a term that leads to a double pole behaviour in the
associated susceptibility, with coefficients Ay given in Eq. . The coefficients
a, of the exponential decays instead are given by

ay=2ay; [/du g7 (u) tanh(B(u + h)) (tanh(ﬁ(u +h)) — tanh(ﬁu))
(3.69)

- / du g (u) (1 - tank?(3(u + 7)) - / du G2 (u) tanh(B(u + B))}

Since the magnetization of a spin conditioned to be to be the extremity of a
chain of size £ is given by
(o)) =lm > o' TP (0,7) = (00e) — D ariarg N, (3.70)

n—0
o,T AeD®)
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if we call A the highest eigenvalue of the sector DY), the most relevant contributions
to the thermally-disconnected disorder-connected correlation function is given, for
{ — +00, by

(o0){oe) — (00) (00) = Anp ail (A4 (aA — 2@@1\71@/\70) AL (3.71)

We notice that, while the coefficient of the exponential term is quite hard to compute,
the coefficient a3 A 1An, Wthh regulates the leading behaviour, has a much simpler

expression given in Eq. and Eq. - From Eq. - 3.71) turns out that near a
ferromagnetic tran51t10n pomt ie. A= %, as long as A, is not zero, the leading

behavior of the disconnected susceptibility xqisc = >_; j (00)(0¢) — (00) (0¢) Teads

1
Xdise = 20 Ap a?\@m- (3.72)

The expected double-pole behavior of the disconnected susceptibility is thus recov-
ered.

3.5 Cavity derivation

In this section we present the derivation of several of the results of last Section using
a probabilistic approach, in the same spirit of the usual cavity method calculations
[13.|15]. While this approach is more physically intuitive than the RTM formalism,
it requires the set up of an ad-hoc recursion rule for each observable. Noticeably we
could not recover Eq. for the free energy of closed chains.

3.5.1 Open chains

We want to study the statistical properties of a random Ising open chain without
the use of replicas. We start with an asymmetric chain of length ¢, whose random
partition function we denote with Z,, constructed iteratively according to the
following procedure: Zj is the partition function of a single spin receiving a random
field wg, i.e. Zy = 2cosh(Bug); at the i-th step of the construction we add a spin
0, a random coupling J; between o; and o;_1 and a random field h;_1 on o;_1; the
random variable Z, is the partition function of the system obtained after the ¢-th
step of the procedure. Note that the last spin added to the chain has no external
fields acting on it. The following distributional identity can be easily derived:

2 cosh(Jy) cosh(B(ug + he))

Zoy=Z(Jp. h Zy. 3.73
cosh(Bug) X Zg (Je, heyug) X Zy (3.73)

Zpg1 =

It is convenient to introduce the quantity Z}'(u) = 6(u — ug) Z}, which corresponds
to the expectation of Z;' along with the indicator function of the event u, = u. Here
n is an arbitrary chosen positive real number, the symbol being chosen to stress the
analogy with the replica formalism where the quantity n (integer in this case) is the
number of replicated systems. Using this definition from Eq. follows readily

Zi ) EJh/dv § (u—a(J, v+ h)) Z"(J, h,v) Z0(0), (3.74)
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where a(J,z) = %atanh(tanh(ﬁJ) tanh(fx)) is the usual message passing rule. The
integral operator of Eq. is the same we found in the RTM formalism in Eq.
for the sector D(?), therefore we can make use of the spectral analysis result
from those paragraphs, in particular of the completeness relation

Ejp d(u—a(J,v+h)) Z"(J, h,v) Z An) gi(u;n) S5 (vin), (3.75)
AeDO)

between left and right eigenvectors. The definition of the left eigenfunctions of D)
was already given in Eq. (3.34)), but we rewrite it for convenience:

(3.76)

) [cosh Blu+v+h)"

Aoy — o
SO (1)7 n) =E, / du g (uv n D) Cosh(ﬂu) COSh(,B’U)

Let us define another random partition function, Zy(u; x), obtained from Z;(u)
conditioning on the value of the message ug on the first spin, that is Z;(u;z) =
Zi(u)|(uo = x). Since also Z}'(u; z) as a function of u obeys equation (3.74)), using
the decomposition Eq. and the initial condition Zy = 2 cosh(fug) we arrive
to the important result

Z7(u; ) Z A (n) g3 (u;n) S3 (3 1) [2 cosh(Bz)]™. (3.77)
AeD(0)

Using last equation it is easy to compute any moment 7?, n not necessarily integer,
of the partition function of a random asymmetric Ising chain of length ¢. More
interesting is the computation of the properties of a symmetric Ising open chain, the
one considered in Section [3.4.1] which receives on each extremity an external field
distributed according to a certain probability distribution P(h). As already stated,
this is definition stems from the need to cover the important case of a chain embedded
in a locally tree-like graph. Let us call Z;, the random partition function of this
open chain. It is related to the random partition function Z, of the asymmetric
open chain by

2 cosh(B.Jy) cosh(Bhg)

7, cosh(f(ug + ilg))
bo = cosh(fuy)

’ cosh(Suy)

X Zg,l(Ug; ul) X

(3.78)

where u; is distributed as @(Jy, k). From Eq. (3.78) along with Eq. (3.77) and Eq.
(3.76|), we derive the main result of this paragraph:

Zi,= > A(n) a3 o(n). (3.79)
AeD(0)

where a) o(n) is defined by

cosh(B(u+ h))|"
axo(n) =By /d [ cosh(fu)

g()\(u; n). (3.80)

In the RTM formalism of Section [3.3] and [3.4] last expression could be derived
from 7.\" defined in Eq. (3.56) by analytic continuation of Zj, =3, TT(LZ)(O', 7) to
non-integer n.
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The average free energy of an open chain of length ¢ can then be obtained by
~ B¢ = lim 0, 7, (3.81)

The computation involves computing the order n of all the quantities present in Eq.
, as it was done in Section . In this paragraph however, without any use
of replicas, we gave a purely probabilistic argument valid for any real value of n. We
refer therefore to Section for the successive step of the computation of f7,
leading to the final result Eq. (3.58]). Notice that in the notation of that paragraph
ayo is related to ayo(n) defined in Eq. by axo(n) ~ /1 ayo.

The expression for f7 could also be obtained by a different approach that
does not involve any limit n | 0 but is technically more difficult. We define the
function ¢ (u) by

o (u) = 5(u — ug) log Zu, (3.82)

and observe that given the distribution of the cavity message at distance ¢ along the
chain, uy, which we call G((f)(u), it obeys the iterative rule

A w) = By [ dv 6 (u=a(gh+v) ¢O0)

2 cosh(BJ) cosh(B(v + h))
cosh(fv)

G (w)

(3.83)
Last equation can be solved decomposing ) (1) and Géﬁ) (v) along the eigenfunctions

of D at n =0, then ¢(Y)(u) can be used to obtain f.

+Eyp, / dv 6 (u— a(J, h + v)) log

3.5.2 Connected correlation functions

Let us derive the eigenvalue equation and the expression for the connected
correlation functions Eq. , without making any use of replicas. Here we consider
straightly the random open chain with partition function Z,, characterized by
independent random external field distributes a h on the internal spins and as h on
the extremities. The connected correlation function (ogoy). = %‘gﬂ?, where Hy is
an auxiliary field acting on oy, can be expressed as a function of the message uy,
coming through the chain to the spin gy, and its derivative with respect to Hy. In

fact we have

Ouy

(0000)e = (1 — tanh*(B(hy + W))) oH, (3.84)

where hy, as usual, is the random effective field acting on oy and coming eventually
_ Ouy

from the rest of the graph. Let us define the random variable X, by X, = S The

average over disorder of Eq. (3.84) and its moments (ogoy)d can then be computed
once we know the joint law of the random variables u, and X, , which we call
Py(u, X). Since X; obeys the chain rule X, = agf;ng the recursion rule for

reads

Pei(w,X) = Egy [dvdy s (X - % Y) 5 (u—a(J,h+v)) B(v,Y), (3.85)
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where 4 is the message passing rule defined in Eq. (3.32)). From last expression it
turns out we can write an iteration rule for the momenta of X, at fixed wuy,

GO (u / dX Py(u, X) X9 (3.86)

which reads

G (u) = Eyp, / dv & (u — a(J, h +v)) (gZ) GO (v). (3.87)
Equations and with ¢ = 2 have been recently introduced in literature
[146] in order to derive an analytical expression for the spin-glass susceptibility.
We note that the knowledge of the maximum eigenvalue of the integral operator
of Eq. for a generic ¢ allows one to reconstruct the full distribution of the
connected correlation function at large distance |152].

From last equation it is clear the relation of GEf) with the eigenfunctions gé\ of

Eq. ED In fact, decomposing Gée) (u) along the eigenfunctions of DO projecting
Eq. (3.87) on the left eigenvectors S;‘(u) and with some computations analogue to
the ones leading from Eq. (3.79)) to Eq. (3.80)), we arrive to

= Y axgNg) (3.88)

AeD(@)

where a) 4 is defined in Eq. (3.64). Equation (3.88)), along with Eq. (3.84]), gives the
expression (3.63) obtained with the RTM formalism for the connected correlation

functions.

Following the lead of the previous paragraph, we can extend the above derivation
to compute the disorder averages (ogoy)? along with an arbitrary power of Z;,. The
generalization of Eq. (3.87)) in fact becomes

S\ 4
GE D (uzn) = By, / dv 6 (u—a(J,h+v)) (gu) Z(J.h,v) GP(vin), (3.89)

and Eq. (3.88) generalizes trivially as well. The final result is

(o000l Zp, = > M(n (n), (3.90)
AeD(@)

which extrapolates smoothly to the result we obtained for n = 0, i.e. Eq. (3.63)). In
last equation the coefficients ay 4(n) are defined by

cosh(B(u+ h))|"
=F; it U B4
@r(n /d [ cosh(fu)

[1— tanh2(B(u+ 0))| " g) (i), (3.91)

such that ay 4(0) = ay 4.
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3.5.3 The disconnected correlation function

The computations of the thermally disconnected correlation function (o) (o) is
straightforward once we use the results we obtained in the two preceding paragraphs.
In fact, calling Hy and Hy two auxiliary fields we add to the first and the last spin of
the chain respectively and set to zero after the computation, the following relation

holds:
o 0

OHy 0H,
Using Eqs. (3.79)) and (3.90)) last expression leads to the main result of this paragraph,
that is

21, = noord)e 2, +n loo)(oe) 22y (3.92)

o) (o0) 27, = ~ [z X (n — Y M) ). (3.93)

xeD(0) AeD)

where the coefficient by o(n) = agﬁg/(:) reads

cosh(B(u+h)) 1"
broln) =By /d [ cosh(fu)

tanh(B(u + h)) vn gg (u; n). (3.94)

We included a factor y/n in the definition of by g(n) to facilitate the extrapolation
of Eq. to small n. In fact for all but the first eigenfunctions of D the
normalization condition imposes the scaling g3 (u;n) ~ ﬁ[gé‘(u) + 1 g3 (u)].

We could derive Eq. also in the RTM formalism for integer values of n
and then perform an analytic continuation to arbitrary real n. In the limit n | 0 it
is easy to see that the contribution to (o¢)(oy) from the first and the second sums
of Eq. are given in Eqgs. and of Section [3.4.2] respectively.

An alternative probabilistic derivation of the formula (3.68) for (oo)(o¢), which
does not require the knowledge of the moments of the partition function and of
(0000)c Z}',, goes through the definition of

RO (u) = 6(u — ug){og)®. (3.95)

We used the symbol (09)®) to denote the magnetization of the first spin at the ¢-th
iteration of the construction of the asymmetric chain described in Section [3.5.1]
It can be easily shown that the knowledge of R()(u) allows the computation of
(00){(0y). Since (50) is given by the derivative of the free energy of the chain at
the step ¢ with respect to a field on the the first spin, considering the free energy
difference after an iteration it is easy to arrive to the relation

Ouy

(00)(“*) = {00) ) + [tam(B(ue + h)) — tanh(Bug)] 7.

(3.96)
Therefore the recursion rule for R (u) is given by
RED () =Eyp, / dv BO(v) & (u— a(J, b+ v))

+Ey / dv G\ (v) § (u — @(J, h + v)) [tanh(B(v + h)) — tanh(Bv)],
(3.97)
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where Ggé) (v) was defined in Eq. (3.88) in last paragraph. Last equation can be
solved decomposing R (u) along the eigenfunctions of DO at n = 0, and using

Eq. for Gge) (v). The computation is lengthy and not trivial, since it involves
expressing §) and g3 (defined in Section respectively in terms of the basis of
D© and DM at n = 0. In the end though one arrives at the expression for
the disconnected correlation function.

3.6 Conclusions

In the present chapter we presented a thorough analysis of the spectral properties of
the RTM. We have developed a formalism that is suitable to compute many different
types of connected and disconnected correlation functions and can be applied both
to one-dimensional systems and to locally tree-like graphs. The expressions we found
are exact for any value £ of the spin distance and can be approximated numerically
considering only the top eigenvalues of certain integral operators. Also the formalism
can be trivially adapted to perform the same computations in diluted p-spin models.

We also managed to obtain exact formulas for the moments of the partition
function and of the average free energies of open and closed chains of finite length.
It has been recently found that short chains have an important role in the finite
size corrections to disordered models on diluted graphs [2] and in perturbative
expansions around the Bethe approximation on Euclidean systems [148]. Therefore
the analytical tools we have developed also apply to these contexts.

Most of the results have also been derived using rigorous probabilistic arguments.
This approach has the merits of avoiding the complication of the decomposition of
the replicated space Z35" and of being more physically intuitive than the replica one.
The advantage of the replica method instead is that once the spectral representation
of the RTM is obtained all the observables can be computed just with opportune
contraction. In the cavity analysis an ad-hoc iterative function or a computation
strategy has to be devised for each observable.

Noticeably we did not manage to derive Eq. for the free energy of closed
chains using a cavity argument. This is the only point withstanding the proof of the
complete equivalence between the two methods.

A limitation of both the RT'M formalism and of its cavity counterpart, is the fact
that it is applicable to the analysis of disordered Ising models only in their replica
symmetric phase. This includes all isolated one-dimensional systems but not diluted
models in the spin glass phase. Therefore an investigation of the spectral properties
of the 1RSB replicated transfer matrix, extending Wigner’s decomposition [149]
to the 1RSB symmetry group, is desirable. Another direction for the extension of
our results, which should not require too much analytical effort [153], is toward the
investigation of Potts models.
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Chapter 4

Finite Size Corrections On
Random Graphs

4.1 Introduction

Finite size corrections to the thermodinamic free energy have been investigated in
fully connected systems [116,/117,/154], mean field optimization problems [93}95]
and some simple disorder system [155], sometimes as a byproduct of the Hessian
diagonalization [156]. However, to our knowledge, only a solution in zero external
field has been derived for sparse random graphs [157}/158] in the replica symmetric
phase.

In the domain of physical spin systems, diluted models represent a class of
mean-field like systems sharing an essential feature of the finite-dimensional ones,
that is the finite coordination number. By consequence diluted models should mimic
the physics of real systems better than the fully-connected ones (we have already
remarked that this is what happens for zero temperature ferromagnets in random
magnetic fields). Moreover when dealing with finite systems, the peculiar structure
of diluted networks should give a first insight on how the topology can modify
thermodynamic quantities. Indeed diluted models are defined on random graphs
which are locally tree-like and have typical loops of size O(log N'). However for finite
(and small) sizes these loops become short and much more similar to the short loops
which are abundant in any finite-dimensional network (think e.g. to lattice models).
In this sense we can interpret the 1/N corrections in diluted models as a way to
expand towards finite dimensional models.

In the thermodynamic limit the free energy of diluted systems is exactly the
Bethe free energy. When the number of vertices IV in the graph is finite though, the
average free energy density f(IV) resents the presence of loops. If f(IV) has a regular
expansion around N = oo, each term of the 1/N expansion f(N) = fo+f1/N+o(1/N)
would account for the contribution of a certain class of loopy structures. We see
that in the context of diluted systems, finite size corrections and loop expansions
are strictly related concepts. In this Cshapter we set up a formalism, based on
a replicated action, apt to the systematic computation of the f(N) expansion for
diluted disordered Ising systems in the replica symmetric phase. We calculate
explicitly the first correction f; to the thermodynamic free energy. It is simple
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combinatorics to show that only simple (i.e. non-intersecting) loops can participate
to the O(1/N) correction fi. In fact more complicated loopy subgraphs, with
no dangling edges, typically involve only a fraction O(1/N?) of the total number
of nodes, therefore can only contribute to higher order terms in the free energy
expansion. Obviously this fact naturally emerges from the analytic computation as
well.

In the following we will use the replica method in order to compute disorder-
averaged corrections to the free energy. Then we will rederive the same results using
a probabilistic approach.

We will deal with random regular graphs (RRG) and Erdés-Rényi (ER) graphs
topologies. The replica procedure used is very similar, but is more involved in
the RRG case, so we will describe in greater detail in the ER case, and leave
most details of the RRG computations to Appendix On the other hand the
combinatorial /probabilistic arguments are very different instead, the one for RRGs
much shorter since it relies on the expression for the free energies of open and closed
chains obtained in Chapter In both ensembles we corroborate the analytical
results with numerical simulations, conducted on RFIMs and spin-glass systems.

The results obtained and the method used in this Chapter, in particular for the
RRG ensemble, are the foundations for the large M expansion for finite dimensional
systems presented in Chapter

4.2 Erdos-Rényi
4.2.1 The model

We consider a model of N interacting Ising spins {o; = +1}, defined by the
following Hamiltonian:

H=— Z Cz‘j Jijoio; — Z h;o; | (4.1)

1<j

where we have decoupled the topology of the underlying graph, encoded in the
symmetric adjacency matrix {Cj;}, from the exchange interactions {.J;;}. The
numbers Cj; specify the particular graph considered and take values Cj; = 1 or 0
whether the sites ¢ and j are connected or not. In the case of Erdés-Rényi random
graphs [159], the matrix C' has the following distribution [160]:

PUCY) =1 [;5(0, 1+ (1 - ;) 5(0”-)} . (4.2)

1<j

The spins interact among each other via quenched random couplings .J;;, which
are assumed to be identically independently distributed (or fixed to a single value
J). Moreover we allow the spins to interact with a local magnetic field (random
or non-random). The disorder averaged free energy density of the system, at the
temperature T = 71, is defined as

F(B.N) = ~(3N) ™ log Zn(B))y = () + 1i(B) 40 (7). (43
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where the average has to be performed over the topological disorder and the quenched
randomness. The main part of this work is devoted to the analytical computation
of the f1(B) term, the finite size correction to the free energy. The calculation can
be performed in two different ways, known as the replica method and the cavity
method. The latter derivation is particularly useful in order to better understand
the physical meaning of the results, which is less clear in the replica picture.

4.2.2 Computing the free energy density with replicas

The replica calculation of the free energy density starts from the well known identity:

Y .
[lOg ZN(B)LW - 711% % lOg [(ZN(B)) ]av : (44)
The moments of the partition function [(Zn(3))"],, are then evaluated for integer
values of number of replicas n. At the end of the calculation, the analytical continu-
ation to real values of n allows us to take the limit n — 0. The replicated averaged
partition function reads (from now on we drop the dependence of Zy on f3):

[(ZN)"]ay =

Tr (H exXp (ﬁj@jcijzn:dgdg) Hexp (Bhlzn:a'za)):| . (4.5)
1<j a i a av

Performing the average over the topological disorder using the distribution (4.2)),
and setting

V(o,7) = Nlog

1+ % (exp (Wzaja%a)J - 1)] :

B(o) = log [exp (BhZJ“)h] - %V(a, o),

eq. (4.5) takes the following form:

[(ZN)"]ay = Tr

1,J

1
exp{mZV(Ji,aj) —G—ZB(O'Z')}] : (4.7)
i
We can achieve the site factorization of eq. (4.7) by means of the order parameter
po) = NS [ 560"~ o). (48)
1 a

Enforcing Eq. (4.8) with a 0 functional in Eq. (4.7), we trace over the decoupled
sites and then integrate out p(o) which appears in Gaussian form. We arrive at an
expression for the auxiliary fields p(o) suitable for saddle-point evaluation: EI

(Zx)"],, = y/det(V) / [Dple NSl (4.9)

!The functional measure is [Dp] = IL, v Xdp(o)
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The replicated action S|p] is given by

= ;/deT p(o) V(o,7)p(T) — log/da exp [/ dr V(o,7)p(T) + B(J)] ,
(4.10)
where the symbol “[do” is a proxy for the more cumbersome notation [do =
u—1 2ga—t1 - Let us now extract the leading order contribution in the replicated
action S[p]. We define the matrix U(o, ) and the vector H (o) from the first order
expansion in N of eq. to be

J

U(o,7) = exp (BJZ U“T“) ,

H(o)=1lo [exp (BhZa“)LL] ,

and write the thermodynamically relevant part of the action (4.10) as S[p] =
Solp] + o(1), where

= %/dadT p(o) (U(ajT)—l)p(T)—log/da exp [z/dT (U(o,7) —1)p(T) + H(0)
(4.12)
The leading order free energy fo comes from the saddle point of eq. (4.12)), followed

(4.11)

by the limit n — 0, as we will see in the next section. A first O (%) correction to

the free energy comes from the O (1/N) term in eq. (4.10) evaluated at the saddle
point.

Leading free energy

We now evaluate the functional integral by the steepest descent method:
Jim - Tog[(Zy)"],, = Solpa]. (4.13)
where p,(0) is the solution of the the saddle-point equation:
5S0l6] expz [ d o'U(0,0)p.(0") + H(0)]
5p(0) Jdoexp = [ do'U (o, ") p (o) + H(0)]
In order to take the small n limit we have to use an appropriate parametrization

for the order parameter p,(o). If we assume a Replica Symmetric (RS) ansatz, a
convenient parametrization for p.(o) is given by

/ dhP(h [exlchl’(l gh:))" )} . (4.15)

Inserting this parametrization in eq. (4.14]) and taking the limit n — 0 we obtain the
usual self-consistent Cavity equations for the distribution P(h) and Q(u) of cavity
fields and bias respectively:

=0 — pulo)=

(4.14)

hr

P(h):zzk /[ﬁ u] (h—hR—gu,) ,

(4.16)

J

k=0
Qu) = / dP(h) § {u _ ;th_l [th(ﬁj)th(ﬁh)]}
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The RS free energy density can then be estimated as

fo(B) = 7t lim aanso[p*] (4.17)

n—0

and can be explicitly written in term of the distributions P(h) and Q(u) |15].

Fluctuations around the RS saddle point

The Gaussian integral obtained by expanding eq.(4.10) around the saddle point
generates the order 1/N corrections. We set

o
plo) = (o) + 2.
N (4.18)
Y, 5%50lp] .
SO (0,0 p) = 0L
dp(a)dp(a’)
Expanding the action in powers of 1/N we find
Spl = Solp«] + 51 [ps] + 7/dadax ®)(o,0"; p)x(0') +o(N 1), (4.19)

where S1[p«] is given by the following expression:

/da — 1] pu(o) + —/dada p«(0) [U(o,0") — 1]2p*(0/) .

(4.20)
The functional integral (4.9) at this order evaluates:
1 n _ 1 —1
108 [(Z8)y = Solpa] + 1-Silpa] + 5 Togdet (1 T) 4+ o(N) o
B 1 1 & Tr[Th] . :
_SO[p*]—i_NSl[p*]_ﬁL:l L +0(N )7

where the matrix T'(c, ¢’) reads

T(0,0') = 2 |U(0,0')pu(c ( / drU (o, 7)pa (7 )) p*(a’)} L (22)

Using the RS parametrization (4.15)), it turns out that in the limit n | 0 the trace
Tr (TL) can be arranged in a linear combination of free energies of closed and open

chains. It all comes down to the fact that the term U(o, 0”)p«(c”), present in T'(o, o),
can be linked to the replicated transfer matrix of an edge receiving a cavity field at
one of its extremities. In Appendix we prove the following formula:

LAYy = 5 [0, — L (6~ 61)] + O(n). (1.23)

where ¢z/ “ are free energies of closed and open spin chains in the graph of length
L > 1, with ¢2 defined as ¢¢ = —3'Ej, log 2 cosh(Bh). Writing the RS free energy
density as:

0 1 .a _
frs = I + i +o (N7 (4.24)
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and observing that the term Si[p.|/N [viz. eq. (4.20)] cancels out with part of the
first two terms in the sum > 7> ; Tr (T L) /(2N L), the finite size correction of the

RS free energy density ff({ls) can be evaluated as:

(1) 2 o R ZL c 0 o
fRs = |2— 5 | 90 — ¢ (¢2 2¢7) + 5 Z A (67 — L(¢7, — 97_1)] |-
L=3

(4.25)
The sum entering the previous formula can be considered as a sum over indepen-
dent loops weighted with the factor [qf)‘i L(¢} — 99, )}, by noticing that, in the

thermodynamic limit, 2% /(2L) is exactly the average number of loops of length L in
a Erdos-Rényi random graph of mean connectivity z. The same formula holds true
also on the Erdos-Rényi ensemble G(N, M), where M = zN/2 is the fixed number
of edges, since the distribution of topological structures such as the number of finite
loops remains the same at the 1/N order.

In the limit of vanishing external field, eq., evaluated in the paramagnetic
phase, takes the following simpler form:

) = ZE,logch(8J) — 252 E{J}log

28 1+ Zl_llth BJ; ] (4.26)
where the first term takes into account the fact that the average number of links is
z(N —1)/2 and the second one is the contribution of all the loops of length L > 3.
The loops we are talking about are topologically defined as non-self-intersecting
closed paths. Self-intersecting closed paths would give contributions proportional to
N2, since the self-intersection is observed, on average, in a fraction N2 of the total
number of vertices. While eq. is an original contribution to the literature,
its zero field counterpart eq. has been already presented [157]. Moreover the
full distribution of f(!) in the absence of external field and in the RS phase has
been rigorously computed [158] an it is consistent with the mean value given by eq.
(14.26)).

4.2.3 Computing the free energy density with cavity method

We now show how to compute the finite size corrections to the free energy density
using the cavity method. The reason to be interested in such a kind of calculation is
twofold. Firstly we have to corroborate the physical insight gained from replicas;
secondly we want to establish the equivalence of the two methods beyond the leading
order, showing how both procedures give the same result also at order 1/N.

The cavity method is well defined only in thermodynamic limit. In order to
study 1/N corrections to the free energy density of a model defined on a Erdos-Rényi
random graph (ERRG), we need to define a new ensemble of random graphs of N/
vertices, such that in the limit /' — oo any topological structure appears with the
same density it has in the ERRG of N vertices. Here we are assuming that the free
energy of a model of N variables can be written as Fx = N f({d;}), where f({d;}) is
the free energy density computed in the thermodynamic limit on a model having the
same densities d; of topological structures appearing in the finite N model. The new
ensemble we are going to define is required to compute such a free energy density.
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The topological structures we are interested in are the only ones that give
contributions up to order O (1/N), i.e linear chains of length L (i.e. with L edges
and L + 1 vertices) and loops of length L. Let us start by computing their densities
in a ERRG of N sites, where each link is present with probability z/N. The density
of linear chains of size L (i.e. the number of linear chains per node) is

, 1 /z\"1 2L L(L+1)
dshain — —(Z) N(N—-1)...(N—L)~"(1-—""_—~ 4.2
gon =+ (£) N - = 5 (1-HE) @
and the density of loops of length L is
1 /z\F1 12t
loop _ + [ <~ L N B ~ T
d; _N<N> 2LN(N 1)...(N L+1)_N2L. (4.28)

In the new ensemble a random graph of N nodes can be viewed as the union
of basic topological structures (BTS), that, for the present purposes, are chains
and loops. The graph can be build in the following way. For each L > 1, consider
all sequences of L + 1 different indices (ig,1,...,7r) with the condition iy < i,
that avoids double counting of a chain; for each sequence of indices draw the
edges (io,i1), (i1,%2), ..., (ir_1,4r) with probability ar/N*. Then, for each L > 3,
consider all sequences of L different indices (i1,1i2,...,7r) with the conditions that
i1 is the smallest among the L indices and iy < i1, (these two conditions ensure
that each loop is counted only once); for each sequence of indices draw the edges
(il, ig), (i2, i3), RN (iL_l, iL), (iL, il) with probability CL/NLil.

A useful representation of this graph is in terms of a factor graph, where the
variable nodes are the graph nodes and the factor nodes are the BTS. Thanks to
the scaling of the probabilities used in the building of the graph, the corresponding
factor graph is sparse, since the total number of BTS (i.e., of factor nodes) is given
by

SNN=-1)..\N=L)ap, SNWN-1)....N—-L+1) c = a
2 2 /\/LLJFLZ3 2L /\/LL—lgN(LlL

L=1
(4.29)

and the coefficients a;, and ¢y, are constants.

The sparsity of the factor graph ensures that the whole construction is consistent
in the N’ — oo limit. Indeed the probability that any pair of graph nodes enters
in more than one BTS is O(1/N). Since in the new ensemble we are interested
in computing the free energy density to leading order, we can safely assume that
any two graph nodes interact through at most one BTS; and this BTS uniquely
determines whether the edge between the two graph nodes is present or not.

The factor graph representation also allows us to write down the free energy
density in a standard way by summing factor nodes and variable nodes contributions

1 & a 1 © Ci c
f = 5 Z akqsk + 5 Z ?st + ¢site ) (4.30)
k=1 k=3

where ¢ and ¢f, are respectively the free energies of chains and loops of length £
and

bute = 37 S0 =) X o) log () (4.31)

2+7
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with p;(0;) being the single spin marginal and n; the number of BTS where the
variable ¢ enters.

We should now determine the values of the coefficients a; and ¢ such that the
densities of chains and loops in a typical graph of the new ensemble match those in
eqs. (4.27) and (4.28)) in the large A/ limit. When computing the actual density of a
given topological structure (e.g. a chain or a loop) one should consider that such a
topological structure can coincide with a BTS, or be part of a BST or involve more
than one BST.

As a warm-up, let us compute the density of links (chains of length L = 1) in
the limit N' — oo:

’ a c 1| >
dshain = 1gnooﬁ . Zk/\/k R ZN’“ QN,C’“_I] =3 Lz_jl/mk + Zsck] ,
(4.32)
where kA*~1 in the first sum and A*~2 in the second sum are respectively the
number of chains and loops of length & passing trough a given link, i.e., the number
of possible BTS containing the two variables connected by a given link.
When computing the density of topological structures made of more than one
link, we need to consider that such structures can overlap with more than one BTS.
In order to be concrete let us consider the density of chains of length L = 2:

chain __ 1 N3 2dchazn o k—2 Ok - k—3 Ck
o~ Jim LA [( +z DN S i
(4.33)

where 2d§"*" /N = p, is the probability of having a lin The general expression
for densities of linear chains of length L > 3 is the following

hai NL—I—I 2d§hain dchazn

chain __ 71:

dr _lﬁoo./\/’ 2 SL( N ’“"./\/L1>+Zk L1 NL+kZL;L1NL
(4.34)

where the function Sj gives the probability that the L consecutive links comes

from more than one BTS and can be written (see Appendix A) in terms of the

probabilities of having k(< L) consecutive links: pj, = 2d$"*™ /A*. Since each term

in function Sy, is of order N ™F, in the limit N' — oo we have

(o) (o]
247" = NFSp(pr,..pp—1) + D (k—L+Dap+ Y cp=
k=L k=L+1

: ; = > L(L+1
Spdshem, L 2dP Yy + 3 (k= L+ Dag+ Y cp = 2" (1 — (2N)> .
k=L k=L+1
(4.35)

Note that eq.(4.35)) is valid for any L > 1 since S; =0 and ¢; = 0.
A similar expression can be written for the densities of loops of length L:

L

1N c
loop __ — 1 = L 4
A = i 5 [RL(pl,...,pL_l)—i-N,L_l] , (4.36)

2In principle in p; there are already some contributions entering the sums, but this over-counting
effect is irrelevant in the A" — oo limit.
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where again the function Ry, represents the probability of generating a loop of size
L by more than one BTS. Since the probability of having k consecutive links is
O(N~*) the function Ry, is O(N ™) and then

1 2L L

door = L — cp = ZN for L > 3. (4.37)

L 79oL N2L
In other words, making a loop by randomly choosing smaller structures is more
improbable than randomly generating directly such a loop.
The detailed computation of the coefficients aj from Eq. (4.35)) is made in
Appendix A. Here we just quote the result

1
a; =z + N(QZQ —2), (4.38)
1
ar = N(ZL+1 — 2l for L >2. (4.39)

Plugging these coefficients in Eq. (4.30]) we finally get

2 o L
=5 (1 ) o+ gy 268 =09+ 5 3 57 165~ 26~ 04 )] + e

(4.40)
We observe that the sum on the r.h.s matches the sum over loops entering eq..
Moreover, if the term ¢z is expressed by means of cavity fields, one finds exactly
eq.(4.25). This can be immediately seen in the case of zero external field in all the
paramagnetic phase, where variables are unbiased and we have ¢g;te = —T'(1—¢) log 2
with £ = z + (22/2 — 2)/N being the density of edges in the factor graph (i.e., the
number of edges in the factor graph per variable node). Substituting this expression
for ¢gite in Eq. , simply gives:

S

z z T X 2L L
f:—T(logQ—QEJlogch(,BJ))—i—mTEJ10gch(BJ)—2NLE:SLE{Ji}log 1+i_1_[1th(ﬁji)] ,

(4.41)
thus recovering the simplified replica result of Eq. .

We can conclude that the replica calculation reproduces correctly all the topologi-
cal structures involved in the 1/N corrections to the free energy density. Incidentally
we note that self intersecting loops occur only with probability N=2 and they do
not contribute to 1/N corrections.

Let us finish this section by giving a different interpretation to the present
results. We have seen that under the assumption that finite size corrections can be
computed by the cavity method in a graph with finite densities of certain topological
structures, we have been able to reproduce the replica result (and give to it a more
physical intuition). However, we could assume that replica and cavity methods
should provide the correct free-energy for a very large, but finite, system, and then
conclude that the free-energy of a model only depends on the densities of certain
topological structures. This alternative view can be useful if one aims at computing
the free-energy of a model defined on a finite dimensional lattice, by considering
a lattice as a random graph with strong topological correlations, and making an
expansion in these topological correlations (e.g., number of loops, but not only that).



70 4. Finite Size Corrections On Random Graphs

4.2.4 Numerical Analysis

In this Section we check the validity of our analytical expressions for the free energy
corrections, eq. , against numerical simulations. Since from Monte Carlo
simulations one obtains the energy of the systems, in order to avoid an integration
in temperature we decided to work perform the simulations at zero temperature,
where energy and free energy coincides. Moreover since eq. holds for arbitrary
disorder in the interaction and in the external field, we choose to keep the former
deterministic and the latter randomly distributed. In this case in fact an exact
polynomial algorithm is available to calculate the ground state. Therefore we apply
eq. to compute the finite size corrections to the energy density of the zero-
temperature Random Field Ising Model (zt-RFIM) and compare with numerical
simulations. The model is defined by the following Hamiltonian:

H= —JZ Cijoioj — Z hio; , (4.42)

i’j

where the random magnetic fields are Gaussian random variables of zero mean and
variance h? = 1 and the ferromagnetic exchange coupling J take values in the interval
[0,00). The underlying graph topology is that of a Erdés-Rényi random graph. Due to
the FKG [161] inequality the model does not undergo replica-symmetry-breaking [78§]
at any value of the ferromagnetic interaction strength J, so that our formulae for
the finite size (free) energy density corrections remain valid also below the critical
point, provided that a single pure state is selected. In the ferromagnetic phase the
existence of two energy minima generates additional finite size fluctuations, which
are proportional to N~1/2. These kind of interstate fluctuations overcomes the 1 /N
intrastate contribution, which becomes practically invisible in numerical experiments.
In this work we compare analytical predictions and numerical results only in the
paramagnetic phase J < J..

The uniqueness of the ground state of the model allows to translate the formula
for the free energy density corrections into the corresponding expression for
the ground state energy density corrections. We write the ground state energy
density as the leading term plus the O (1/N) correction:

1 1
as _ GS (1)
e (N) =ey” + N —i—o(N) , (4.43)

where e(!) reads:

22 z 22 1 X 2k
e = - (Z - 2) |hc|—§€?—5(eg—2€?)+§ > T lef, — L(eg —e7_1)] . (4.44)
L=3
The random variable h¢ is the cavity field, distributed according to the zero temper-
ature solution of eq. , while e‘z/ “ are the energies of open and closed chains in
the graph. The computational time cost of computing the energy density of a chain
of size L by enumeration is exponentially increasing in N, therefore only partial
sums up to L = 7 in eq. have been considered in Figure To accurately
compute the whole L series, especially near the critical point, some assumptions has
to be made about the large L behaviour of its term. Some of the authors have been
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developing a formalism through which a spectral representation of the replicated
transfer matrix [1] [138}/145] can be obtained. Using this result the leading behaviour

€5 — L(e9 —e9 1) ~ ALN (4.45)

has been established for the zero temperature RFIM, which allows to analytically
sum the remaining terms of the series (from L = 8 to infinity). The coefficient X is
given by the first eigenvalue of the replicated transfer matrix and gives the decay rate
of ferromagnetic correlation functions. It can be computed to high precision with
population dynamics techniques or as the first eigenvalue of an integral operator.
The coefficient A instead has been obtain from a fit of the first five point of the
series. As an alternative approach assuming the validity of the ALAY behaviour
(which fares much better then a simple exponential decay assumptions) both A and
A could be inferred from a fit of the first terms of the sum. The finite size corrections
of the energy in the RFIM at zero temperature diverges as e ﬁ, at odds with

the double pole divergence ) ﬁ which can be found at finite temperature.
This matter has been elucidated in Chapter

At the critical point a scaling analysis of the correction e") can be performed.
Calling 7 = |J — J.| the distance from the critical point, mean field theory [80]

predicts the following finite size scaling for 7 and e(!) in the critical region:

-
e = g N1/3 (4.47)

The leading correction to the thermodynamic ground state energy density is of order
O(N~2%/3) in the whole critical region:

eSS (N) =55 +

~ 1
6(1) + o0 (W) for J— JC . (448)

1
N2/3
Furthermore eq. (4.43) is not valid in the ferromagnetic phase (for reasons mentioned
in the beginning of this Section), where the leading correction happens to be of

order O(N~1/2):

1

1
eGSW):e‘?S*We'(”*O(W

) for J > J.. (4.49)
The numerical experiment is performed on a Erdos-Rényi random graph with average
connectivity z = 4.We compute the ground state energy with the Minimum-cut
algorithm [162,(163|, using the Lemon Library [107]. To draw the profiles of the
energy density corrections in Figure We took the average over 10® samples for each
system size. In the same figure we compare the numerical data with the analytical
prediction given by eq. and check the finite size scaling relation given by
equation . In Figure we report the Binder cumulant:

ma
Bi = % - (4.50)

3(m2)’|
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Fig. 4.1. Finite size corrections of the ground state energy density in the 7'= 0 RFIM on
Erdés-Rényi random graphs with mean connectivity z = 4. In the upper panel we plot
numerical data for different system sizes and the analytical formula given by eq. .
Close to the critical point (which is J. = 0.395) the scaling of the energy corrections is
given by the mean field prediction as confirmed by the data collapse shown in
the inset. In the lower panel we show the estimates of the formula , truncating
the sum over loops with a cutoff L = 3,4,5,6,7 and extrapolating the whole series as
explained in the main text.

for system sizes ranging from N = 256 to N = 2048. From the intersection of the
curves we identify the critical point, obtaining J. ~ 0.395(1).

Figure m shows the behaviour of the averaged squared magnetization m?2. The
finite size scaling of m?2 in the critical region is given by the following scaling relation:

m2=0(N"3) =0(r) for 7 —0. (4.51)

This scaling form is confirmed by the data collapse shown in the inset of Figure [£.2b]

4.3 Random Regular Graphs

4.3.1 Replica formalism for random regular graphs

Let us turn now to the computation of the first finite size correction to the free
energy in RRGs. As usual the Hamiltonian is given by

H=- Z CijUiJijUj — Z HiUi7 (4.52)

i<j
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Binder Cumulant

T
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Binder cumulant for the T'= 0 RFIM on Erdés-Rényi
random graphs with mean connectivity z = 4 for differ-
ent system sizes as a function of the exchange interaction
J. A vertical dashed line is drawn in correspondence of
the critical point J, ~ 0.395. In the inset it is shown
the data collapse in the critical region using the scaling
variable (J — J.)N'/3 for the reduced interaction.
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(b) Average squared magnetization for the ' = 0 RFIM
on Erdos-Rényi random graphs with mean connectivity
z = 4 for different system sizes as a function of the
exchange interaction J. In the inset it is shown the
data collapse in the critical region using the scaling N 3
both for the reduced interaction and for the squared
magnetization.
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where the exchange couplings J;; and/or the local magnetic fields H; are quenched
independent random variables. The matrix Cj; represent the entries of the adjacency
matrix of a graph G extracted from the RRG ensemble. They take the values
C;; = 1,0 depending on whether or not the vertices ¢ and j are connected. Here
we study c-RRGs, i.e., random graphs with vertices having uniform degree c. The
probability measure of the c-RRG ensemble is uniform over all the regular graphs of
degree c.

To solve the model in the thermodynamic limit (i.e. N — oo) and to obtain the
finite size correction to this limit, we have to cast the averaged replicated partition
function [Z"],y into an integral form suited to steepest descent evaluation, as we
did for ER ensemble. This procedure uses standard techniques [160}164-{166] and is
reported in detail in the Appendix [B.I] Here we quote only the final result, which
reads

[Z™)ay = [det(cU)]/2eANC) /Dp e~ NSl (4.53)

In the last equation the integral is performed over the space of all possible functions
p(o) = p(o1,...,0p) of a n-replicated spin, taking 2" different values. The action
S[p, N] is a functional of p(o) and N, and at the leading order in N can be written
as

Solp) =3 [ dodr p(e)U (o, 7)o(r)

— log/da eB(2) [/ drU (o, T)p(T):|C

The action Sy will be optimized through the steepest-descent method. After
that, we will integrate the Gaussian fluctuations around the optimal saddle point,
thus obtaining the desired finite size corrections. The quantities U(o, 7) and B(o)

appearing in Eq. (4.54)) are defined by

U(o,7)=E; [exp (BJETL: o“7“>] (4.55)

a=1

(4.54)

and
B(o) =logEy [exp (51{ > a“ﬂ (4.56)
a=1

The explicit expression for the constant A(N,c) appearing in Eq. (4.53) can be
found in the Appendix

Saddle point evaluation of Sy leads to the following self-consistence equation for
the order parameter p:

_ PO [[do'U(0,0)pu(e))
- f doeB(a") U dU’U(G”, U’)p* (O./)]C'

p«(0) (4.57)

Once a solution of Eq. has been found, using Eq. one gets the
thermodynamic free energy density fo = limy_o f(IV). The difficulties of the
problem are all hidden in the solution p.(c) of the saddle point equation. The
function p. (o) depends on the replicated spin (o1, ...,0,), and hence, it is uniquely
determined by the set of the 2™ possible values it can take. The most general solution
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should specify all these 2" values. Here we limit ourselves to the simplest solution,
i.e., the replica symmetric one. This solution has the property to be invariant under
the group of permutations of the replica indexes, therefore p,(o) can depend only
on the sum Y., _; 0,. The number of parameters necessary to fully specify a replica
symmetric function is n 4+ 1 (and hence much smaller than 2"). The most general
replica symmetric parametrization of p,(o) can be written in the form:

LD
/dh 2cosh(5h)] (4.58)

where the function P(h) depends implicitly on n and is non-negative and normalized
to one in the limit n — 0.

Inserting the parametrization (4.58]) into the saddle point equation (4.57)), and
performing the limit n — 0, we obtain a self consistent equation for the density

P(h):

c—1 c—1
P(h) = IEJ,H/ 11 dhw P(ni) 6 [h —H =Y B, J )| (4.59)
P =1

where @(8, z,y) = 7" tanh~![tanh(Bx) tanh(By)]. We recognize Eq. as the
self-consistent equation for the probability distribution P(h) of the cavity field on
a RRG of connectivity c. Solving the last equation for P(h) one can eventually
evaluate the n = 0 limit of Eq. and recover the thermodynamic free energy

fo=limy_ o0 w, given by the Bethe free energy approximation [15].

4.3.2 Finite size corrections

In this section we present the analytical expression of the first finite size corrections
to the free energy density of disordered Ising models on the RRG ensemble. As we
anticipated in the introduction, we assume the leading correction to the thermody-
namical free energy density to be proportional to 1/N. Therefore, we split f(N)
into the sum of the leading term plus the 1/N correction, that is

f(N) = fo+ ho, () . (4.60)

The detailed calculation of the coefficient f1, the main result of this Section, is
given in the Appendices and The derivation is based on the expansion of
the contributions of the Gaussian fluctuations of the replicated action around the
saddle point, given by

1 025,
— —logdet | —————
2 % (ap(cf)apm ,

as a power series containing the replicated transfer matrix of the system [138] [1].
The final result reads

> , (4.61)

© (o 1)\
flzz( 2;) Agy. (4.62)

=3
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Fig. 4.3. Pictorial representation of the argument, given in Section to compute the
free energy shift due to the addition of a loop to a large tree graph. It is shown an
open chain embedded in a tree graph (left), its removal from the tree (center) and the
addition of a loop (right).

The terms appearing in last equation and computed in the replica formalism have a
clear physical meaning, as we will readily explain. We call A¢, the quantity defined
by
Ady = g5 — L. (4.63)
where ¢ is the average free energy of a closed chain (loop) of length ¢ embedded in
the graph, that is
1
) = ~5 [log Z§] . (4.64)

with

ZZC Z 65(7’101+J10102+~-~+7’z02+J40101)'

(4.65)

01,508

The cavity fields r; are i.i.d. random variables sampled from the distribution

c—2 c—2
R(r) = Ew/ 11 dhe P(ny) 6 [r —H = a(B,J, hy)| - (4.66)
k=1 k=1

In other words, the cavity fields r; represent the effective fields coming from the
rest of the graph on the nodes in a loop. The quantity ¢ is the intensive average
free energy of a closed chain with random couplings J;, and random fields r;, i.e.
¢ = limy_,oo %, and can be easily computed through cavity method [138] [1].

The fact that the fields r; are independently distributed and that they obey Eq.
containing the fixed point distribution P(h), indicates that the contribution
of each loop can be considered independently from the others. In fact the factor
(c —1)¢/2¢ in Eq. is exactly the average number of loops of length ¢ in a
RRG of connectivity c. Therefore, the coefficient f; of the O (1/N) correction can
be expressed as a sum over all the loops in a graph, each one contributing with the
amount Ag¢y to the free energy. We call A¢y a free energy shift since it is the free
energy difference observes in a infinite tree after the addition of a single loop of size
£, as we will argue in the next Section.

It is yet to be investigated the relation between for f1 and an analogous
result that one could derive using the loop calculus formalism |167}/168].

We notice that the loops considered here are defined as non-self intersecting
closed paths. In fact, self-intersecting loops would give a contribution of order
O(1/N?) to the average free energy for simple combinatorial arguments.

4.3.3 Probabilistic argument

The computation of the O(1/N) correction to the free energy in the RRG ensemble
can be easily done through simple probabilistic arguments, as one realizes a posteriori
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analysing the final result Eq. obtained with the replica formalism. In fact, as
already discussed at the end of the previous Section, at the O(1/N) order loops are
sparsely distributed in the graph and do not interact with each other. Therefore
their contributions to the free energy can be summed up separately and each one of
them can be considered as embedded in an infinite tree. In order to compute the
free energy shift due to the presence of a loop of length ¢, we consider a very large
random tree, with partition function Zr, and remove the £ + 1 edges of an open
chain of length ¢+ 1, as showed in Figure We call 0, ...,0+ 1 the cavity spins
of the new graph, that is the ones who lost one (this is the case of og and oy41)
or two (o1, ...,0¢) of their adjacent edges. We call Z.4, (00, .. .,0p+1) the partition
function of this new system, conditioned on the values of the cavity spins. Since we
assumed to start from a tree graph, the partition function Z.,, takes the form
anv(UOa o 7U€+1) — Z€h000+7’10'1+u-+7'20'£+hl+10'2+17 (4.67)
where Z > 0 and the cavity fields h; and To/e+1 are independently distributed
according to P(h) from and R(r) from Eq. respectively. We recover
the partition function of the original tree adding back the missing links, therefore

we establish the relation
Zr =7 X 7}, 4, (4.68)

where Z7 _, is the partition function of an open chain of length ¢ + 1 with incoming
fields hg,r1,...,7¢, her1. On the other hand, starting from the cavity graph, we can
create another graph G containing exactly one loop. This can be achieved adding an
edge between the spin o¢ and o411, and adding other ¢ edges to form a loop among
the ¢ internal cavity spins (see Figure . Notice that with this construction all the
spins retain the same degree that they had in the original graph T'. The partition
function of the system defined on G is then given by

Zag=AXZ{ X Zj. (4.69)

We are interested in the difference of the average free energy between the system G
an T in the large graph limit. Let us call N the number of nodes in 7' and G. The
free energy shift is then given by

1
Apr=——

5 1\111_{1(1)O [log Za — log Z1]ay- (4.70)

For the average free energy ¢7 of an open chain of length L embedded in a RRG
the following relation holds [1]:

qb% =Lo¢+ ¢s, (4.71)

where ¢ is a site term that does not depend on L [1]. It is therefore easy to derive
the expected result:

Ady = ¢ — 6. (4.72)

We have proven that the free energy difference A¢, as defined by Eq. (4.70)
corresponds to the quantity ¢j — ¢¢, as it was defined in the last Section. Taking
into account that the average number of loops of length ¢ in a graph of the RRG



78 4. Finite Size Corrections On Random Graphs

Ae

Ae

045 06 075 09 105 1.2

B

w
(&3]

Fig. 4.4. Finite size corrections to the energy density of a spin glass model on a RRG with
connectivity ¢ = 4 and bimodal random couplings J = £1. The various panels refer to
different values of the external uniform magnetic field. The results obtained from Monte
Carlo simulations are compared with the analytical values predicted from Eqs. (4.62)
and . The vertical dashed lines mark the positions of the critical temperatures.

ensemble is ;—2 in the thermodynamic limit, we re-obtain Eq. without making
any resort to replicas.

The argument we gave in this Section to compute the first finite size correction to
the free energy is strictly limited to the RRG ensemble. In fact it relies heavily on the
homogeneity of the graphs. On different graph ensembles more refined combinatorial
arguments, as the one given in [2] for Erdés-Rényi random graphs, have to be used.

4.3.4 Numerical Experiment: Spin Glass in a Magnetic Field

In this Section we test our analytical prediction for the finite size correction to
the free energy, Eq. , on the spin glass in a uniform magnetic field. The
connectivity of the graph is ¢ = 4. In the experiment the couplings .J;; are bimodal
random variables, taking value J;; = £1 with equal probability. We simulate the
model using a parallel tempering Monte Carlo algorithm and three different values
of the external field H = 0.3,0.5 and 0.7. For each value of the magnetic field H we
simulate systems of three different sizes: N = 26,28 and 21'°.

In order to compute the analytical estimate of f; we proceed in two steps: we
explicitly calculate the first terms of the sum. We computed by transfer matrix
multiplication the partition function and the free energy of closed chain of length
£, for many realizations of the disorder and up to £ = 7. We then resummed the
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remaining terms of the series using the criterion explained in Ref. [2], that we briefly
recap. Using the formalism of the replicated transfer matrix developed in Ref. [1],
one can show that, in a spin glass, the dominant contribution to f; comes from
the replicon eigenvalue. Therefore, we use only the knowledge of this eigenvalue to
analytically resum the remaining terms of the series (from ¢ = 8 to oo). The large ¢
behaviour of the shift A¢, is given by the expression

Agy~ AN for 0> 1, (4.73)

where X is the replicon eigenvalue, the largest eigenvalue satisfying the following
integral equation:

ol
Aga(u) = Ejm/du’ gx(u')o[u — a(BJ,r + u')] <8u) . (4.74)
Here r is distributed as R(r) defined in Eq. (4.66). The maximum eigenvalue of
the integral operator in last equation can be obtained numerically by population
dynamics techniques. The coefficient A instead can be computed analytically, as
shown in Ref. [1], and takes value A = 3/(2/3). We can split the quantity fi in two
pieces:

fi ~ S(L) - fﬁcogm [1— (c— 1)), (4.75)

where S(L) is the partial sum over the loops up to £ = L, and the second term is the
resummation of the remaining series from ¢ = L 4+ 1 to £ = oo, which we represented
via the function Log,(1 — z), defined as:

Log, (1 —x) Z 7 (4.76)

In our concrete case we can compute explicitly the first L = 7 terms of the series,
and so, the approximated analytic form of fi is

iEogg [1—3)\] for c¢=4. (4.77)
4B

In a numerical simulation, measuring the energy is, actually, much simpler than
the free energy (since the last one involves an estimate of the entropy). As a
consequence we preferred to compare analytical and numerical results for the finite
size corrections to the energy density e;. Analytically , the quantity e; is given by
the usual formula relating energy and free energy:

of
B

In Figure[£.4 we show the comparison between the experiments and our theoretical
result. The agreement is good at high temperatures, while it deteriorates close to
the critical point. At the critical point in fact every order of the O(1/N) expansion
of the free energy diverges, therefore near the critical point subleading finite size
corrections become increasingly important and extrapolation of e; obtained from
numerical simulations to its large N limit, that can be derived by our analytical
expression (4.62)), is difficult to achieve.

fi~S(7) -

=fi+B=5 (4.78)
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4.4 Conclusions

In this Chapter we performed a thorough analysis of the O (1/N) correction to the
free energy density in disordered Ising models defined on Erdés-Rényi and random
regular graphs. We derived an analytical formula which can be easily used to quantify
finite size effects, avoiding the subtleties associated with the diagonalization of the
Hessian. We also checked the correctness of our results through a numerical study
of the RFIM at zero temperature in the ER case and of a a spin glass at finite
temperature in the RRG case. In both case we found excellent agreement with the
analytic prediction. Using this formalism though we could not compute the finite
size corrections in the ferromagnetic ordered phase of the RFIM. In this phase in fact
the O (1/N) correction is overshadowed by a O (N ? correction. This anomalous
correction will be addressed analytically in Chapter

A much more serious problem arises in the glassy phase of thespin glass model,
where exponentially many pure states are involved. The leading finite size correction
are much bigger than O (1/N), in fact numerical results for the ground state of

spin glasses on RRGs suggest that they are order O (N 7%> or O (N 7%), depending

(surprisingly) on the bond distribution [124]. The question if our formalism can be
adapted to cover the fullRSB case remains open.

In the ER ensemble we showed how replica results for the 1/N corrections to
the free energy density can be derived also in the cavity formalism, resorting to an
auxiliary graph ensemble which in some sense lifts the O (1/N) contributions to the
leading order. It would be interesting to see if this combinatorial derivation could
be transposed to other graph ensembles.

Our results seems to hold some degree of universality, in fact the free energy
contribution from simple loops at the order O(1/N), can expressed in both ensembles
as

> Ny Ay, (4.79)

£>3

where N is the mean number of simple loops of length ¢, and Agy is the free energy
shift due to the addition of a loop to an infinite tree, defined as

Ade = ¢ — U(P] — Pf-1)- (4.80)

Moreover using the replicated transfer matrix formalism of the previous Chapter we
can approximate A¢y, with the leading eigenvalue and corresponding coefficients of
the Longitudinal or the Replicon sector, with good accuracy even for small ¢. We
will show in Chapter [§| how to make use of these results to compute the first order
term in the perturbation theory around the Bethe free energy for finite dimensional
systems. It is given also in that case by Eq. , with only a simple redefinition
of the coefficients N,.
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In the last Chapter we computed the first finite size correction to the free
energy in diluted random graphs. The computation was done in a (replicated)
field theoretical frameworks, examining the Gaussian fluctuation around the
saddle point. Eventually higher order terms in the 1/N can be computed in this
framework by standard perturbation theory, and all the terms in this expansion
would have a direct topological interpretation in terms of free energy shifts due
to the presence of loopy structures in the graph.

In same cases though, when there are other competing sources of finite size
corrections or multiplicity of saddle points, this approach fails to capture the
most relevant contributions. Problem specific techniques have to be devised
to deal with them. Here we examine two such cases, where leading finite size
correction are ultimately due to non-perturbative effects.

The first case is the RFIM in the ferromagnetic phase, that, as we mentioned in
last Chapter, presents O(1/v/N) corrections to the free energy. This phenomena
is present both mean field and finite dimensional systems. We set up a formalism
based on replica theory in order to compute such corrections. While the
approach is general to any random field model, only in mean field topologies
the computations can be carried on exactly.

In the second part of the Chapter we investigate the scaling behaviour of the
average cost in the Euclidean Assignment Problem. We show how the difference
in the number of blue and red points in a small region of space is a source for
the transport field. This is formalized in a Poisson-like equations that yields a
surprisingly ample set of predictions for the leading and subleading behaviour
and coeflicients of the average cost for each dimension d.
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Chapter 5

The Random Field Ising Model

5.1 Introduction

We consider for concreteness a system of N Ising spins, o; = +1, and external
random fields. The following arguments though apply to a general class of models
possessing O(m) symmetry (once the average over disorder is taken). On a given
graph G, the Hamiltonian of the RFIM is

N
H = —JZJiGj —Zhiai, (5.1)
(4,9) =1
where the first sum is over adjacent spins, J > 0 is a ferromagnetic coupling and the
the fields h; are quenched i.i.d. random variables with zero mean and unit variance,
It takes a simple argument to show that, at least at zero temperature and for
J large enough, the subleading term in N to the average energy F(N) is of order
O(VN). In fact in this case, for a given realization of the external fields {h;},
the Gibbs measure is concentrated on the configuration with minimum energy, the
candidates being the one with all the spins up and the one with all the spins down.
For a given graph with M = O(N) edges, the energies of the two states, let us call
them F, and are E_ respectively, are given by

N
Ei=—-MJFY h for J > 1. (5.2)
i=1
The sum in the r.h.s. is a random variable of variance N, converging to a Gaussian

variable in the thermodynamic limit. Therefore it is easy to see that for the average
energy E(N) = E[min(Ey, E_)| we have

E(N)=—-MJ — \/z\/NJr o(VN)  for J>>1. (5.3)

It turns out that the v N subleading behaviour we found in this limit case is present
in the whole ferromagnetic region in the J — T' (coupling-temperature) plane.

In fact in the ferromagnetic phase the statistical weight is concentrated on
two disconnected regions of the configuration space, having positive and negative
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magnetization respectively, separated by a free energy barrier exponentially increasing
in N. While the two regions are completely equivalent in the pure ferromagnetic
system, once the disordered external field is turned on their free energies start to
differ of a random quantity of order O(v/N). The total free energy of the system is
then simply given by the minimum among the two, except for some exponentially
decaying terms. Let us first define, for a given realization of the disorder, the
free-energies F; and F_ as the ones corresponding to configurations having positive
and negative magnetization respectively (for simplicity we assume N to be odd). We
assume, and verify a posteriori for the RFIM, that in the ferromagnetic phase the
difference between the free energies of the two states, F, — F_, is of order O(v/N).
Then the average free energy of the system is given by

F(N) = —; E [log (ff_ﬁF+ - G_BR)} (5.4)

= E[min(F}, F_)] + exp. vanish. terms.

From these premises it follows simply that the average free energy has an
expansion in N of the form

F(N) = foN + fiv'N + o(V'N), (5.5)
where the coefficients fy and f; of the expansion are defined by
. 1 ) 1
fO_NLHEooNE[F—F} _NLHEOONE[F_], (5'6)
-1 E[|F} — F ]
o= tm % S (5:7)

To compute f; we extend a method developed in Refs. [169] and [170H172]. At fixed
N and for a given realization of the disorder, let us call Z; and Z_, the partition
function constrained to the configurations with positive and negative magnetization.
Considering n and m replicated systems respectively, one can easily see that for
small n and m we have
1 n?
3 log E[Z} Z"] ~ nE[F}] + mE[F_] — 5B Var(F,)

) (5.8)

— %B Var(F_) — nmf Covar(Fy, F_).

Obviously, for symmetry reasons, E[F'y]| = E[F_] and Var[Fy| = Var[F_]. The free
energies Fy and F_ are jointly distributed random variables. If the limit

1
2 _
AT= lim oN [Var(F) — Covar(Fy, )] (5.9)
= lim LE[(F# —F—)Q]

is non-zero, the rescaled variables f; and f_, defined by

_ Fe— foN

f+ N

(5.10)
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become non-trivially jointly distributed Gaussian random variables for large N. In
fact, while higher orders cumulants in the n and m expansion of Eq. are of
order O(N), with this rescaling they give vanishing contributions.

Since asymptotically % is itself a Gaussian random variable of zero mean
and variance A?, it follows that the coefficient f; of Egs. and is given by

fi= /\/W 2] e~ 57 — _A\f (5.11)

The computation of the n and m expansions in Eq. can be performed using
the standard replica techniques. Since it is impractical to work with the partial
partition functions Z; and Z_, we define the partition function Zg of the system
having an additional deterministic external field H acting on all the spins. Then we
define the replicated free energy ¢(n,m) as

d(n,m) = Hh_)rré+ A}gnoo—ﬁ—Nlog E[ZF Z™y]. (5.12)
This definition is completely consistent with the [.h.s. of Eq. in the ferromag-
netic region, and is even more physically sound in the paramagnetic region, allowing
to treat with a unified formalism the whole phase space.

We compute ¢(n,m) for integer values of n and m using the saddle point
technique for N — oco. Then we make an analytic continuation of the solution to
real value of n and m. By definition the 0 — th order term of the expansion is
zero. Since we are interested only in the quadratic terms of the ¢(n,m) expansion,
and since the ¢(n, m) is variational in some order parameter, our calculations will
involve only the order parameter computed at n = m = 0 and we do not have to
consider its n and m dependence. As always happens with calculations involving
replicas, the exchange of the n and N limits will be done without particular care.

In the following Sections we will explicitly compute ¢(n, m) given by Eq.
in two mean field models.

5.2 Fully connected

The first case we consider is that of the RFIM on the fully connected graph. Here
the first sum in the Hamiltonian runs over N(N —1)/2 edges, and the coupling
J has to be rescaled by a factor N~! in order to obtain an extensive thermodynamic
behaviour. It is then easy to compute the replicated free energy of the system,
defined in Eq. , through standard Hubbard-Stratonovich transformation is
given by

1
¢rc(n,m) = min {J(n +m) x?
x>0 (2
1 (5.13)
-3 log Ej, [(2 cosh B(Jz + h))" (2 cosh B(—Jx + h))m} }
Notice that the order parameter x, the magnetization of the up-state, enters in the
last term of Eq. (5.13)) both with a plus and a minus sign. As a technical note, in Eq.
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the minimization condition does not ever turn to a maximization when the
number of replicas is small, as it happens in glassy models [13], since the dimension
of the order parameter in the full replica space is n + m and is always greater than
zero in our calculations.

To obtain the O(v/N) contribution to the free energy we have to compute the
small and n and m expansion of ¢rpc(n,m). As already discussed at the end of the
previous section, only the n = m = 0 saddle point solution, given by the non-negative
solution of

x = Ep tanh 5(Jx + h), (5.14)

appears in the second order expansion of the replicated action. Therefore the
coefficient A, defined in Eq. (5.9) and characterizing the O(v/N) correction though

(5.11)), is given by
1
A%, = 2—/82{1&1[(105; cosh B(Jz + h))?]

— Ep[log cosh B(Jx + h)log cosh f(Jx — h)]}.

(5.15)

Last expression can be easily computed for any value of J and . In order to
compare the analytic prediction with exact results, it is easier to consider the zero
temperature limit of ([5.15). This is given by

1
Jim Ao = 3 Eq(| o+ bl - |Jz — h|)? (5.16)

with & non-negative solution of
x = Eysign(Jz + h). (5.17)

We focus on the zero temperature limit for two reason: the zero temperature fixed
point is the one controlling the flow of the renormalization group also starting from
finite temperature [53|; the ground state of the RFIM can be computed efficiently
using exact numerical algorithms.

We implemented an exact and very efficient algorithm to compute the ground
state of a fully connected RFIM, that takes advantage of the topological equivalence
of all the spins. In fact it is easy to realize that among all the configurations having
a certain total magnetization M = } . 0;, the one with lowest energy is the one
where only the first & EM spins with the lowest external field are down.

Therefore, once the spins are sorted according to their external fields (an operation
of time complexity O(N log N)), we have to look only to these N + 1 configurations
characterized by M = —N,—N + 2,...,N to find the ground state (an ©(N)
operation). We have thus produced an algorithm of time complexity ©(N log N)
and with ©(/N) memory requirements. This is a great improvement over the min-cut
algorithm that we used on diluted graphs (as we shall explain in next Section),
that has time and memory complexity ©(N?3) for fully connected graphs. With this
algorithm we where able to perform highly precise averages of systems up to ~ 10°
spins. We then subtract the leading order (in N) term fyN, that can be computed
exactly, to obtain the numeric estimate of the coefficient fi; up to subleading finite
size effects. In Fig. [5.1] we show the perfect agreement between the results of our

exact algorithm and the analytic prediction f; = —A\/g , with A given by Eq.
(5.16]), for the RFIM at T' = 0.
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Fig. 5.1. The numerical estimates, obtained through the algorithm described in the text,
of the coefficient of the O(v/N) correction to the average free energy in the RFIM at
zero temperature on the Fully Connected Graph, for many sizes of the system (orange
lines). The numerical curves extrapolate to the analytical prediction of Egs. (5.11)) and

(5.16)) for large N (black line). The dashed black line is the asymptotic value \/% .
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5.3 Random regular graphs

The analytic computation of the O(\/ﬁ ) correction to the average free energy in
diluted models is slightly more involved. Here we focus on the random regular graph
(RRG) ensemble. Each element of the ensemble is chosen uniformly at random
among all the graphs where each node has fixed connectivity z. The RRG and other
diluted graph ensembles have the property of being locally tree-like, in the sense
that each finite neighborhood of a randomly chosen node is with high probability
a tree in the large N limit, and the density of finite loops goes to zero [15]. This
property allows for the analytical tractation of such models, at list at the leading
order in N.

Following the lead of Ref. [172], we apply the replica technique to Eq. , to
obtain the replicated free energy

(2
¢RRG(”5 m) = mﬁ}n {5 ¢edge [p] - (Z - 1) ¢site[p]}v (5'18)
where
Pedgelp] = log [Em,m > p7 o)
01,02 (5.19)
x oH0 oI T, et T 7))
and

buirelp] = log [E 3 % L' (o) (5.20)

A similar expression, for the replicated free energy of spin glasses on RRG, was
derived in Ref. [173] (see also Eq. (7) of Ref. [174] for a more general formulation)
and relies on the hypothesis that the graph contains few short loops.

Eq. is a straightforward generalization of these results, the difference
being that the replicas are divided into two blocks of size n and m respectively.
The minimization condition in Eq. is imposed over all the functions p(o) =
p(al,...,a™™) of a n + m replicated Ising spin, taking particular attention to
constrain the first n and last m replicas to be in the up and down state respectively.
Here as in the fully connected case, the dimension of the order parameter, 2™, is
always positive, and we do not incur in the usual peculiarity of replica calculations,
the exchange between minimum and maximum conditions.

Under replica symmetry assumptions the order parameter p(o) can be parametrized
in the form

dP(ut,u™) Bt S ot o)
— a= a=n . 21
plo) / (2 cosh fu™)™(2 cosh fu=)™ c 1 - (5:21)

In the small n and m limit the minimum condition gives
z—1
Pt u™) = Eh/ H dP(uf,uy) 5<u+ —g(h+ Zu,j)) (5(u —g(h+ Zu;)),
k=1 k

k
(5.22)
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where the function g(x) is the usual cavity iteration rule g(z) = % atanh(tanh(5J) tanh(fx)).
The vanishing auxiliary external field H of Eq. (5.12]) selects the solution of Eq.
, supposed to be unique, such that u™ > 0 > u~ (denoting with ® the expecta-
tion over P(u™,u™)).

Expanding the replicated free energy ¢rrc(n, m) to the second order in n and
m we can than derive the O(v/N) coefficient of the free energy according to Egs.
and . We note that only the fixed point distribution P(u™*, ™) computed
at n = m = 0, that is the solution of , contributes to the quadratic order of
é(n,m). The coefficient A appearing in f; = —A\/2/7 than reads

Mo = 355 5 E1A2) ~ E[4.4.) -

- (- (BB - BB, B-)

The terms A1 and By stem from the edge and site replicated free energies (@site

and ¢eqge) respectively. The expectations E[e] are over both the distribution of the

external random field and of the cavity fields. The site terms B4 and B_ are defined

by

2cosh B(h+ i uj)
[T 2 cosh ﬁuf '

By =log (5.24)

Here the fields uZ and v, are distributed according to P(uz, uy, ), solution of Eq.
(5.22), and h is distributed as the external random fields. The edge terms A, and
A_, appearing in Eq. (5.23]), are defined by

AL = log Z exp ﬁ(hfcal + Joioo + h;tag)
HZ;% 4 cosh Bulik cosh Bufk

(5.25)

01,02

The random field ki is distributed as h + 37} u,, where h is an external random
fields, and analogous definitions follows for the other cavity fields.

We notice that only in the terms E[A4 A_] and E[B4B_] of Eq. the full
joint distribution P(u™,u™) is needed, not only its marginals.

The computation of A2, and therefore of the analytic finite size correction fi, to a
high level of precision through Eq. , is a computationally easy task. We solved
numerically the fixed point condition Eq. through a population dynamic
algorithm. In this case each element of the population is a couple of cavity messages,
ut and v, each of them encountering the same external random fields h during the
iterations of the algorithm. As initial condition, in each couple the message u™ is
set to a high positive value, while the message u™~ is set to a low negative value.

In the paramagnetic phase the stable solution of Eq. takes the trivial
form P(ut,u”) = P(uT)6(ut —u~). The O(v/N) finite size correction is thus zero.
In the ferromagnetic phase instead, the messages u™ and u~ become non-trivially
correlated.

We computed with the population dynamics algorithm the solution of the fixed
point Eq. at temperature T = 0, for many values of the coupling J and for
connectivity z = 4. The expectations we find in the expression of A? given Eq.
are then computed sampling from the population.
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As in the case of the fully connected model, it is easier to verify the analytic
predictions working at zero temperature, since the free energy and the energy coin-
cides and the ground state of the system can be obtained through exact polynomial
algorithms.

Therefore the analytical result is compared with an exact numerical algorithm that
exploit the equivalence between the problem of finding the ground state of the RFIM
on an arbitrary graph and the minimum cut optimization problem [109]. We used the
implementation of the Goldberg-Tarjan’s preflow push-relabel algorithm provided by
the open source Lemon Graph Library [107], whose worst case complexity is ©(N %)
for instances of the RRG ensemble. The numerical estimate of the O(v/N) coefficient
is obtained from a linear combinations of the free energy of systems of different sizes,
and it is given by

~ E[F(2N) —2F(N)]

A(N) = e (5.26)

with ¢ = % — 1. The value of f;(N), obtained averaging the minimum cut results

over many samples of the system, should converge for large IV to the analytical
value computed trough the population dynamic algorithm applied to Eq. .
The data plotted in Fig. show a very good agreement between experiments
and predictions, although the convergence is slow due to the presence of subleading

O(ﬁ) finite size effects.

5.4 Conclusions

We argued for the existence of an anomalous O(y/N) subleading correction to the
thermodynamic average free energy fy of systems with a zero-mean external random
field. This correction is limited to the ferromagnetic phase, since it is caused by
the difference of free energy among the two pure states. If one is interested only in
asymptotic quantities such as fy , the slowing down of the convergence can be avoided
in numerical simulations such as Markov Chain Monte Carlo methods choosing an
initial condition uncorrelated to the realization of the disorder (as is indeed usually
done), such that the dynamics gets trapped with equal probability in the state with
lowest free energy or in the other one. Estimations of observables on systems of
finite size through exact algorithms though are bound to follow a behaviour of the
type a(N) ~ ap+ %, therefore the convergence is much slower then the usual O(%;)
behaviour one finds in the paramagnetic phase or in pure systems. On the other
hand when the focus is on the finite size average value of some observable, particular
care has to be taken for the definition used for the finite size free energy and for the
method chosen to equilibrate the system.

Using a formalism inspired by some recent works [169] [170-172] we present a
general framework to compute the coefficient f; of the O(\/N ) term in the average
free energy. The computation has been carried out, using a variant of the replica
trick, in two solvable mean field systems, the RFIM on the fully connected graph
and on the RRG ensemble. The analytic results obtained, Eqs. (5.11])(5.15)(5.23)),
are found to be in strong agreement with the numerical simulations.

A different but equivalent approach to the problem, also based on the replica
trick, can be taken using the techniques of Refs. [175/176|. Instead of computing the
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Fig. 5.2. The numerical estimates, obtained through the min-cut algorithm, of the
coefficient of the O(v/N) correction to the average free energy in the RFIM at zero
temperature on Random Regular Graphs of connectivity z = 4, for many sizes of
the systems (orange lines). The numerical curves (see Eq. for their definition)
extrapolate to the analytical prediction of Eqs. and (5.23)) for large N (black line).

The dashed black line is the asymptotic value \/% .
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large deviation function ¢(n,m), where n and m replicas are constrained to be in
the up and down state respectively, and expanding to small values of n and m, the
same conclusions could be obtained summing over all the saddle point contributions
obtained from the partitioning of a the replicas in the two sets. We preferred
the approach of Refs. [169] [170-172] because it is conceptually more clear and
analytically less involving (although they share many similarities).

While the formalism we have developed in Section [5.1] is completely general, the
exact computation of the coefficient A2 (thus of f;) can be achieved only in mean
field models. In finite dimension one has to resort to a perturbative diagrammatic
expansion of a replicated field theory. We did not take this path, but our numerical
simulations with a min-cut algorithm, using the same procedure described in Section
for the RRG ensemble, show, qualitatively and also quantitatively, the scenario
depicted in Fig. 5.2l Summing it up, as a general feature of models with zero-mean
random external field, the average free energy density as a first finite size correction
of order O(+) in the paramagnetic phase, and of order O(ﬁ) in the ferromagnetic
phase.
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Chapter 6

The Euclidean Assignment
Problem

6.1 Introduction and Main Results

In this Section we focus on a restricted version of the matching problem, the complete
bipartite matching problem, also known as the assignment problem, that has a long
standing tradition among the scholars [15}/18,84]. In this problem we have two sets
having the same cardinality N, let us call them R and B, and we want to find a
one-to-one correspondence between the elements of R and the elements of B in such
a way that all the elements are paired and a certain global function of this matching
(called the cost function) is minimized. An instance of the assignment problem is
a N x N matrix w: each element w;; gives the partial cost of the assignment of
the element ¢ € B to the element j € R. From a combinatorial point of view, an
assignment is a permutation m € Sy, where Sy is the set of permutations of N
elements. Its cost is defined by

T
Ey[mw] = N Zwm(i)- (6.1)
i=1

The optimization problem consists in finding the optimal assignment 7*, i.e., the
assignment 7* that satisfies the property En[7*, w] = minzcs, En[m;w].

Some interesting questions arise when random instances of the problem are
considered, that is, when the elements of the cost matrix w are chosen accordingly to
a certain probability law. We will discuss the properties of the system for different
choices of the disorder, i.e., of the distribution of w. Let us consider the average
optimal cost Exy = En|[m*; w], where ® denotes the expectation over the instances
w of the problem. If we choose the problem ensemble such that the matrix elements
wj; are i.i.d. random variables, we obtain the so-called random assignment problem.
This version of the problem was largely investigated in a set of papers in which
both the distribution of the optimal weights in the large N limit [18,/104] and
the finite sizes corrections [95] were derived using different approaches. In this
context, the celebrated replica approach, directly borrowed from the theory of spin
glasses and disordered systems, proved to be an excellent tool to investigate the
properties of these random optimization problems, and led to the celebrated formula
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limy_oo En = %2 under certain assumptions over the distribution of w;; [18]. Quite
interestingly the average optimal cost Fy for the random assignment problem is
known exactly for every value of N. It is given by the simple formula En = Zévzl 1%2’

as has been first conjectured in [177] and independently proven in [105] and [178].

From an analytical point of view, a much more difficult problem arises when the
elements of the cost matrix w are correlated. This is indeed the case of the Fuclidean
assignment problem, also known as Fuclidean bipartite matching problem (EBMP).
The EBMP is an assignment problem in which a set of N “blue” points B = {b;}¥,
and a set of N “red” points R = {r;}\, are given on the hypercube [0, 1]¢. Each
point is supposed to be generated independently and uniformly at random in the
hypercube. Periodic boundary conditions are imposed (in other words, to avoid
scaling corrections due to border effects, we consider the sets of points on the torus
T4 = R?/Z%). The cost of the matching between two points is then given by a
function of their distance on the torus. We will generalize the Euclidean flat distance
on the torus to a family of functions characterized by a cost exponent p, assuming
that

wij = |[b; — ;" (6.2)

where ||b; —rj|| = \/Zzzl (min {‘bf — il 1= |bF - rﬂ})Q is the Euclidean norm

on the torus. Due to the underlying Euclidean structure, the elements of w present

very strong correlations. We shall denote with E](\I;) (d) the average cost of the optimal
assignment between N red points and N blue points on T¢ with cost exponent p,
that is

EQ(d) = BY (7 {ri, b}, (6.3)

where the average is intended over the positions of the points and 7* is the optimal
permutation. In the following we will sometimes drop the dependence on p and on d
of the optimal cost, and write simply E.

The scaling behaviour of the leading order of the optimal cost is well known
for p > 1 and all values of d and has been confirmed also by the investigations
conducted by means of statistical physics methods. In fact, from a simple heuristic
argument [58], we expect that, given a red point, the nearest blue points can be

found approximately in a volume of order O (%) around it: their distances from the

red point is, for this reason, of order N -a. Supposing that each red point is matched
to one of its nearest blue points, the expected total cost scales as Ey = O (N_g)

for large N. It turns out that this asymptotic estimation is correct only for d > 3
as it can be rigorously proved [179]. In a fundamental paper on this subject,
published in 1984, [180] proved that for d = 2 a logarithmic correction appears,

ya
En=0 <<h}\fv) : ) In dimension d = 1 instead, the divergence from the expected

result is even greater, in fact it is informally known to the literature [96}/180] (even
if to our knowledge nowhere formally stated), that Ex = O (N —%) in this case. We

can resume the state of the art of knowledge regarding the asymptotic behaviour of
the average optimal cost in the EBMP, with the following formula:
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£0) O(N%) d=1,
8P (d) = =10 (logN)%)  d=2, (6.4)
Py Oo(N1) d> 2.

s

The determination of the exponents v, is one of the original contributions we present
in this Section and it will be discussed in the following. The coefficients eglp ) are not
known to the literature and could not be derived using our approach either, even
though we give accurate numerical estimates in Table [6.2] The rescaled average
optimal cost, 5](\1;) (d), is what a physicist would call the intensive energy, and will be
used in the rest of the Section. As with Ey, we will sometimes drop the p and d
dependence from it and write simply Sy

The scenario depicted in Eq. has to be compared with the one arising in
the Euclidean monopartite matching problem (EMMP). [58] studied analytically this
problem considering the correlations among the costs as perturbations around the
case with random independent entries w;;. In the EMMP there is a unique set of
2N points to be matched among themselves. It has been proven [181,/182] that,

in the EMMP, the rescaled average optimal cost 6](\1;)(d) has a finite limit and is a
self-averaging quantity in every dimension d. The odd behaviour noticed in the
bipartite case in low dimensions is due to the presence of differences, in small regions
of space, between the number of red and blue points, that imply the presence of
“long distance” pairings and the failure of arguments based on subadditivity [59].
Obviously, in the monoportite cases such problems do not exist, since a partial
matching between the points in an arbitrary subregion of [0, 1]d leaves only one point
at most unpaired.

Moreover numeric and analytic arguments [59] show that in the EMMP the first
subleading correction to the large N limit of By is of order O(N 1) in any dimension.
This assumptions though was also been improperly used in the EBMP to numerically
extrapolate the value el(ip ) = lim N—oo B](\Z;) (d) for d > 2 in the case of flat distances [59]

(i.e. p=1). This led to some inaccurate estimations of 621) that we address in Table
[6.2] In fact in Section [6.3 we give numerical evidence that the appropriate value for
the exponent 74 of the subleading correction to Sy in dimension d > 2, as defined
in Eq. , is

d—2
=" (65)

for any value of p. Notice that in the mean-field limit d — oo one recovers the
subleading scaling O(N 1) of the random assignment problem [95,/156].

The main focus of this work is the EBMP with quadratic costs, i.e. the case
p=2in Eq. . In Section inspired by some considerations on the continuum
equivalent of the matching problem, the so called Monge—Kantorovi¢ problem, we
present a powerful ansatz, Eq. , for the asymptotic dependence of the optimal
cost from the realization of the disorder. After a careful treatment of the diverging
quantities, through an appropriate renormalization procedure, we obtain a whole
new set of analytic predictions for Sy. In fact we recover the whole scenario given

in Eq. (6.4) for p = 2, deriving the proposed expression Eq. (6.5) for v4 as well.
Moreover we refine the classification given in Eq. (6.4), with
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%N + 652) d=1,
2) ! (2)
BP) ~{ LIn N+ ¢ d=2, (6.6)
) + 4N g2,

where (4(z) is the Epstein zeta function. Here and in the following the symbol ~
means that the term on the [.h.s. is asymptotically equal to the r.h.s. except for
some additional term decaying faster than each term in the r.h.s. (e.g. ﬁ](\l;)(l) =
%N + 652) + 0(1)). While the coefficients e((f) have to be determined numerically, we
managed to obtain analytically the coefficients of the leading order expansion of Sy
for d = 1,2 and of the subleading order for d > 2. In the following Sections we give
a detailed derivation of these results.

6.2 A scaling hypothesis for the quadratic cost

6.2.1 The Monge—Kantorovi¢ problem and Monge-Ampeére Equa-
tion

Let us now briefly introduce the so called Monge—Kantorovi¢ problem, as the
conclusions of this paragraph have a crucial role in the following discussion. Given
two measure densities p;: T? — RT and py: T¢ — RT, T¢ = R?/Z? being the
d-dimensional flat torus, [ p1(x)d%> = [1a p2(x)d?z = 1, we define M as the set
of measure preserving maps p: T¢ — T¢ i.e. the set of all maps p such that:

p1(x) = pa(p(x)) det Ju(x)  VxeT?, (6.7)
where Jy,(x) is the Jacobian matrix of p, (Ju(x)),; = ggj (x). Given a transportation

cost function w: T? x T? — R*, we introduce the cost functional
Elpai] = [ wix u(x))pr ()%, (6.8)

We ask for the map M € M that minimizes the cost functional (6.8), i.e., such
that E[M;w] = mingen E{p; w]. This problem is known in Measure Theory as
the Monge transport problem [183,/184] and a lot of results have been obtained
regarding the existence of the optimal map and its properties [185]. One of the
most interesting cases is the quadratic one, in which the cost is given by the convex
function w(x,y) = ||x — y||?, and we have to minimize the functional

ED ) = [ Ix = 100 o1 (x)d%. (6.9)

In the case of quadratic cost it can be proved that the optimal map can be expressed
as the gradient of a certain function ¢ [184], i.e. M(x) = grad p(x). Eq. (6.7)) can
be than rewritten in terms of ¢, obtaining the so called Monge—Ampére equation

p1(x) = p2(grad p(x)) det Hess p(x), (6.10)

_ 0%p(%)
j = Om0x;

where (Hess ¢(x)), is the Hessian matrix of ¢.
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Suppose now that p1(x) = 1+9p1(x) and pa(x) = 1+p2(x) , being [dp1(x)] < 1
and |dp2(x)| < 1 Vx € T¢. We expect that, under these hypothesis, we can write
M(x) = x + m(x) with [|m(x)|| < 1 ¥x € T% in the first order approximation,
det Jap(x) =~ 1 + divm(x), so Eq. becomes:

divm(x) = p1(x) — p2(x) = dp(x). (6.11)

In particular, if w(x,y) has the form as in Eq. we can introduce m(x) =
grad ¢(x), obtaining the simple Poisson equation

A = 6p. (6.12)

—2min-x dd

Denoting by 0pn = [14 dp(x)e x, in this case the total cost of the transport

is given at the first order by
2 2 4d 07/’
E@[M] ~ / gradg(Pdle = Y Lol (6.13)
Td nezd\{0} 4m?|n||
Although the last equation has been derived under assumptions difficult to justify
in the discrete and random version of the Monge-Kantorovi¢ problem, that is in the
EBmP, we will see how Eq. (6.13)) retains its validity also in that case.

6.2.2 The scaling ansatz

Inspired by the previous considerations, we made an ansatz about the functional
dependence of the optimal cost of the Euclidean bipartite matching problem with
quadratic cost from the density of the two sets of points. The ansatz is simple, yet
it is surprisingly predictive.

We denote with ps(x) = & S, 6 (x — b;) = p1(x) and with pr(x) = & SN, 5 (x —1;) =
p2(x) the random densities in [0,1]? of the N B-points and R-points respectively.
We suppose that periodic boundary conditions are imposed, so we work on the
torus T¢, as explained in the introduction. Let us call §p(x) = pg(x) — pr(x) the
difference between the two densities and

1
A —2min-b; _ | —2min-r; d
0pn = Niz:1<e e ) nez°, (6.14)
its Fourier modes. Following the hint given by the continuous problem, Eq. (6.13]),
we introduce the following functional
S5l
S %. (6.15)
nezd\{0} am ”nH

Enlop]

Our hypothesis is that the functional Ex[0p] at large N captures the leading terms
of the exact optimal cost E](\?) [7*; {r;, b;}], i.e. asymptotically E](\?) [ {r;, bi}] ~
En[0p], in the notation of Section Note that we are using only to evaluate
the scaling of the optimal cost, without any reference to the optimality conditions

itself. However, this is sufficient to reproduce the correct average behaviour: in
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fact, in the limit of validity of our linearisation of the Monge—Ampere equation, the
solution of on the torus is unique and therefore determines automatically the
optimal map. It can be shown by direct calculation that léﬁn\Z = % for each n # 0.
Therefore we have

2—d
2) —= 1 1 2) 25— N
EY (d)~5N[5p]—27TTN > Wiﬂzv (d) ~ Na&y[op] = PYCTES
nezd\ {0} nezd\ {0}
(6.16)

For d > 2 the sum in the previous relation is divergent. However, by means of a
proper regularisation of the sum, we can still extract useful informations on the
scaling of By. For d = 2 Eq. provides, after the regularization procedure, the
leading scaling behaviour with the correct prefactor, whilst for d > 2 the procedure
gives the leading scaling and the prefactor of the subleading behaviour. Sadly, in
no case for d > 2 the coefficient, which we name eg), of the leading term in the Sy
expansion can be computed using our formalism.

6.2.3 Cased=1
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Fig. 6.1. Numerical simulations for d = 1; the fit was performed using the three parameters

)
fit function fl(Q)(N) = agz) + 9+ 2%

Let us consider the EBMP in dimension d = 1. In low dimensions, that is for
d =1, 2, the optimal cost is no longer a subadditive quantity and the fluctuations of
the density of points are dominant [59]. Moreover for d = 1 the optimal cost is also
not self-averaging [59], while for d = 2 this is still an open question.

In one dimension the structure of the optimal matching is known [59,/96]: for
any p > 1 and using open boundary conditions, the optimal matching is the one
associating the k-th blue point to the k-th red point, ordering the points from left to
right along the line. This consideration leads to the prediction ﬁ](\?)(l) = O(N?%) for
the leading behaviour with generic cost exponent p. For closed periodic boundary
conditions, the case we are considering, a similar scenario holds: enumerating the red
points and the blue points clockwise or anticlockwise, the optimal matching is given
by a cyclic permutation, with offset to be determined by the optimality condition.

The one-dimensional case constitutes the simplest application of our formula,
Eq. , since this is the only where the sum is not divergent. We obtain
straightforwardly

+o0
@Ay N LN 6.17
N() ﬂ_gnglng 6' ( )
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This is indeed the exact asymptotic behaviour of Sy [96], and it is a first validation
of our very simple ansatz, Eq. (6.15): we were able to catch both the anomalous
scaling O (V) and its correct prefactor.

We checked the validity of Eq. (6.17]) averaging the optimal cost of the EBMP given
by an exact algorithm [107] for system sizes up to N = 2048. We found the numerical

data for %BN to be well approximated by a three parameters fitting function of the
form f1(2)(N ) = 0452) + % + ~z, where an additional correction of higher order is
included. From a least square fit we obtained the coefficient a§2) = 0.166668(3), in
perfect agreement with our analytical prediction (see Figure .

Once verified the validity of Eq. , we used it to extrapolate the subleading
coefficient 652), fixing agz) = % and using the fitting function fl(z)(N ) with two free

parameters (see Figure and Table .

6.2.4 Cased=2
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Fig. 6.2. Numerical simulations for d = 2. We fitted our numerical data for ﬂ](\?)(Q) using

the function f2(2)(N) =alnN + 6&2) + lnbN. The ﬁ correction was suggested by the
right hand plot.

As already stated in the introduction, in dimension two we have that Sy =
O (In N). In this paragraph we will show how to derive this scaling from our ansatz,
Eq. , and we will also obtain the corresponding prefactor. The sum appearing in
Eq. diverges in dimension two and above, therefore we have to find a suitable
regularization to give meaning to the expression. The regularization procedure
presents some peculiarities at d = 2 from which the anomalous scaling arises.

We choose a regularizing smooth function F'(z) such that F/(0) = 1 and F(z) — 0
for x+ — 400. The function has to decrease rapidly enough to make the series

> nez2\{0} ”nl”2F (giﬂﬂl) converge: here we introduced a cut-off in momentum
space, 27~ !, where ¢ = LN is the characteristic length for the system, being

£ of the order of the average distance between a blue point and the nearest red
point. Clearly 27/~! — +00 for N — +oo. Finally, let us denote by Ny(r) =

|{x € 22\ {0}]|}x]| < r}
in a ball of radius r centred in the origin in dimension d. Then, for arbitrary

, the number of lattice points (excluded the origin) included
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d=1 d=2 d=3 d=4 d=5
L) I - T0.45157...  —0.28091... —0.21423...
a? 0.166668(3) - —0.4489(16)  —0.282(4)  —0.2139(13)
e —0.1645(13) 0.1332(5)  0.66251(2)  0.571284(6)  0.584786(2)

Table 6.1. Results of numerical simulations for p = 2. In the first line the analytical
prediction for o, 2) for d # 2 is presented.

€ (0,1), we can write

neZ?\{0}

/ 1 {8/\/2 — 2717’} dr + 27 /OO F(T)dr,
R—>oo _a_ r
VN

(6.18)
where we have isolated in the last term the singular part of the series. The first

integral in the right hand side is well behaved: indeed, [, - R 1 {aj\g(r) - 27r7“} dr =
Na(r)—mr?

r2

R 2
+ R NQ(;# Both the first and the second term are finite in the

R — oo limit due to the fact that [186] Na(r) — 7r? < 1+ 2v/27r. Therefore we
have

1 too ]
Y —F (HHH) z/ — |:N2( )—mr } dr+27rlog£+2 / dr.
nez2\{0} [l VN a 2r
(6.19)
Eq. (6.16]) for the case d = 2 can then be rewritten as
(2) In N @)
2 6.20
BN (2) ~ on € (6.20)
(2)
where eg) is some constant. To our knowledge the result limy oo - 1(\,) = % is

new to the literature.

The validity of Eq. has been confirmed by numerical simulation with
system sizes up to N = 4 - 10*. We found a three parameter function of the form
f2(2) (N)=aln N + eé2) + 2 to be the best suited to fit the data for By. From a
least square fit we obtain the coefficient 2ra = 1.0004(6), in perfect agreement with
our analytical prediction (see Figure [6.2]). Once verified the validity of Eq. (6.20)),

(2)

we used it to extrapolate the subleading coefficient 62 , fixing a = % and fitting
the other two parameters (see Figure and Table

6.2.5 Case d > 2

In dimensions greater than two the average optimal cost has the leading scaling
E](\?) (d) = O(N_%) that one could expect from very simple arguments [18], as
already stated in the introduction. This is in fact the scaling obtained if each point
is matched to one of its nearest points of different type, being their distance of order

r

2 HJHQF(\HH) R%/ (N) [aAgT<>_2ﬂr]dr+2WL“F<m

dr

)

r
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Fig. 6.3. Numerical simulations for d > 2. We fitted our numerical data for ﬁj(\?)( ) using
the function f¢(12) (N) = eff) + oz((f)N*W + - The expected value for a((i ) was 25 Ca(1).

O(N _5). Moreover it has been proven, using standard sub-additivity arguments,
that Sy is a self-averaging quantity and has a finite limit for d > 2 [59]. We will
show that our ansatz Eq. accounts for the subleading corrections to Sy .

For d > 2 the series }_,,c7a\ {0 W is divergent. As in the previous paragraph,

we use a sufficiently rapidly decaying function F(z), with lim, . F(x) = 0 and
limx_>0 F(x) =1, to regularize it. The characteristic length of the system is given by

= W Denoting as before by Ny(r) the number of lattice points inside a sphere
centred in the origin and of radius r, with the exclusion of the origin itself, we can
write

1 IInII) e ( r ){8./\/21(7“)_ dl} Ly [ .
Z ”11H2F<{1/N _/0 rzF TN o Sar dr+ N Sd/o F(r)r®3dr

nez4\{0}
—+00 _ [e’]
N/ 1 [aNd r) Sdrd_l} dT—{—N%Sd/ F (r) rd=3dr,
0
(6.21)

is the unit sphere surface in d dimensions. The last term in

where Sy = ﬁg—j)
2

Eq. (6.21)) gives the leading order contribution to Sy, but in our formalism it cannot

be explicitly computed since it depends on the choice of the regularizing function

F(z). We name the other integral on the right hand side as
_ [t 1 [ONa(r) d—1
Yq= /0 = { ar —Sgr dr. (6.22)
>4 gives the first subleading correction to the leading scaling of Sy. Moreover it
can be shown (see appendix |C.1)) that X4 = (4(1), the analytic continuation to the
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point s = 1 of the function

Ca(s) = Z % for Res > ii (6.23)
s Tl 2

The previous function is a particular case of a more general class of zeta functions,
called Epstein zeta functions. Therefore we are able to compute analytically the
subleading behaviour of Sy for d > 2,

Ca(1) _d=2
e w=T= (6.24)

AR ) ~ e +

The expression for (4(1) is given by Eq. (C.6]), while the intensive costs e((f) have to
be determined numerically. Note that for d — 400 we recover the correct meanfield
scaling behaviour already analysed by [59] for the random assignment problem, i.e.
vq4 — 1. However, for finite d, the scaling behaviour can be very different from the
mean field one.

We verified the validity of Eq. with numerical simulation on systems with
sizes up to N = 10648 in dimension d = 3, N = 14641 in dimension d = 4 and
N = 32768 in dimension d = 5. We used three parameter functions of the form

(2)
ff) (N) = 622) + K;@d + & to fit our data for Bﬁ)(d). The scaling exponents 74 are
readily confirmed to be the right ones (see Figure [6.3]) and the fitted coefficients

0451/2) are in strong agreement with the analytical prediction Cg(l) (Table . Then

2
we fixed the oz((iz) = Céi?g) in ff) (N) to extrapolate the extensive coefficients 6((12)7

reported in Table [6.1]

6.3 Results for generic p

The asymptotic form we proposed for the average optimal cost E](\?)(d) in the EBMP
with quadratic costs and periodic boundary conditions, Eq. , could not be
extended to cover the case of generic cost exponent p. Nonetheless, our numerical
simulations give strong evidence that, for d > 2 and any p > 0, S has the asymptotic
form

(p)
« d—2
%))(d) ~ e((ip) 4 Nd%z’ Vg = — (6.25)

We thus find the same scaling exponent 74 analytically predicted only for the case
p = 2. The non-trivial scaling exponent -4 differs from the mean-field exponent
Yoo = 1 of the random link matching problem [95] and of the Eucliden monopartite
matching [59]. The identification of the correct exponent -y, is crucial to the

extrapolation of eglp ) from numerical data. Since in the literature a mean-field like

scaling has been considered [59], we report in Table the values of efjp ) and ozglp )

for different values of p. They were obtained fitting Sy with functions of the form
(p)

ftgp) (N) = e((ip) + ?\[f%d + & In Figure we plot ﬁ](\}), ﬁ](\?;) and ﬁ](é) for d = 3,4, 5,

along with the data already presented for p = 2 for comparison. The scaling exponent

Vi = % is confirmed by our simulations. Generalizing the case p = 2, we therefore
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Fig. 6.4. Numerical simulations for d > 2. We fitted our numerical data for B](\’;)(d)

using the function f ;p )(N )= eff )+ oz((f IN—va + ~- We plotted the results obtained for
p = 1,3, 4. Fit results are presented in Table

conjecture that the optimal cost as a function of the difference of the density of
point dp(x), for |dp(x)| < 1 and in dimension d > 2, can be approximated by

~ 12
P sA — 4P 3 |6 pn|
nezZd\{0}

where A&p ) are unknown parameters. From last equation, the asymptotic form Eq.

(6.25) for By can be derived, but at odds with the case p = 2 where Ag) =1 for

any d, the lack of knowledge of the value of the parameters A&p ) forbids the analytic

prediction of the subleading coefficients ozép ). We also notice that Eq. cannot
be extended to dimensions d = 1, 2, since it is incompatible with the scaling scenario
depicted in Eq. .

The ansatz given in Eq. for p = 2 has been a posteriori confirmed by the
correct prediction of both the exponents 4 and the subleading coefficients aglz). On
the other hand, for generic p, the ansatz is only supported by the fact that
it gives the correct exponents 4, which is the reason itself why it was introduced.
Therefore we tried to verify the internal consistence of Eq. . In fact after some
algebraic manipulations and averaging over the disorder one can derive

A(P) ~ HIIH27TN2
d 2

where we used the notation introduced in Eq. (6.3). We computed numerically
the r.h.s of the previous equation for d = 3 and sizes up to N = 10648. The

(ER s {ri. b)) = B ) 107wl (6.27)
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p=1
a? _0233(2) —0.152(17) —0.127(16)
e\ 07472(2)  0.7181(2)  0.73905(5)
p=3
d=3 d=14 d=5
o _0652(3)  —0.36(1)  —0.28(4)
P 06313(2)  0.4804(1)  0.4830(1)
p=4
o) 0863(3) —0.44(2)  —0.34(1)

e 0.6286(2)  0.4183(2)  0.41043(4)
Table 6.2. Results of the fit of numerical data for ](\’,)) (d) by a function of the form
o®
10N =P+ 3+ 5

p=1 p=2 p=3 p=4
AP from Eq. 0.516(5) 1  1.44(1) 1.908(4)
AP from Eq. 0.51(3) 0.99(2) 1.46(3) 1.96(2)
Table 6.3. Values of Aff ) for d = 3, extrapolated from Egs. and respectively,
as explained in the main text. The error in the second row are upscaled by a factor ten

from those given by our fitting program (gnuplot), to assure the compatibility with the
case p = 2.

computation is numerically quite heavy since the density fluctuation are small.
While the I.h.s. of equation (6.27) is independent of the mode n in the large N limit,

we observed a finite size effect that seemed to be best accounted for by the scaling
( ) 1 2 : : :
form Agp) (n,N) ~ Agp + bg—\/ﬁ +c (%) . Using this three parameters function to
fit our whole set of data (|[n| < 10) at fixed p, we extrapolate the values of Agp)
that we report in Table [6.3] In the same table we compare these extrapolations

(p)
with the predictions steaming from Eq. (6.26)), that is Aglp ) — % = ozép ) Cj(”l), where
g

the coefficients aglp ) where computed in Table . The agreement between the
two different sets of values is quantitatively and qualitatively good, even though
we cannot definitively affirm the validity of Eq. due to the complexity and
imprecision of the procedure utilized to test it. A more sound verification would
be to manually excite one of the modes through the addition a position dependent
shift of the form encos(27n - x) to each randomly generated point in one of the sets.
One should then observe a linear response of the totat cost to the variation of € as

predicted by Eq. (6.26]).
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6.4 Conclusions and perspectives

In the present work we proposed a simple form for the asymptotic behaviour of the
average optimal cost, E](\?)(d), in the Euclidean bipartite matching problem with
quadratic costs and periodic boundary conditions. This ansatz, Eq. (6.15]), contains

no free parameters and leads to a strong set of predictions in every dimension,

. @, _ EY . L
resumed in Eq. (6.6). The rescaled cost 8y’(d) = —25 for low dimensions is a
N~

diverging quantity in the EBMP, at odds with the monopartite case. We were able

(2) (2)

to prove that limy_,s NN(l) = % and limpy_ 12%5\2/) = % ford=1and d =2
respectively. Above the critical dimension of the system, d = 2, the rescaled cost
B](\?)(d) has a finite limit which is inaccessible to our formalism. We were able though

to determine analytically both the subleading scaling, O(N ) with v4 = %, and
its prefactor %‘T(é). All the above claims are overwhelmingly supported by numerical

simulations.

Finally, we provided numerical evidences that, in dimension d > 2, the subleading
scaling exponent 7, we predicted for the case of quadratic costs is the same for
arbitrary cost exponent p. This led us to extend the ansatz proposed for quadratic
costs, Eq. , to the general form Eq. for d > 2. We tested numerically
the validity of Eq. , obtaining good but not definitive results, therefore we
proposed another numerical procedure that could give a firmer validation to the
theory.

Although our scaling ansatz proved itself to be very powerful, as discussed above,
a deeper theoretical investigation is required to derive analytically the limit of 5 (p)(d)
at large IV, not computable in our framework. Moreover, a rigorous justification of
our simple ansatz is desirable, and could be inspired by the considerations we made
in Section [6.2.1] on the Monge—Kantorovi¢ problem.
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Part IV

Beyond the Bethe
approximation in finite
dimension
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Chapter 7

The Euclidean Matching
Problem

We consider in this Chapter the Euclidean matching problem (EMP), not to be
confused with the bipartite Euclidean matching problem we dealt in Chapter[6] Here
there is no local density fluctuation among the points belonging to different sets,
trivially since there is a unique set of points. As a consequence the source of the
anomalous scaling behaviour addressed in Chapter [6] here is not present, and the
leading cost is extensive in any dimension once rescaled according to a standard
prescription.

We will perform a first principle calculation for the average cost in the EMP
using the replica method, generalizing the computation of Parisi and Mézard [58].
Since the replicated action contains infinitely many diagrams, we will approximate
the result considering only the terms corresponding to polygons, something akin to
the HNC approximation for liquid systems.

We compute the contributions of polygons as a perturbation to the mean-field
(Bethe) term. We will show that this loop contributions are formally equivalent to
the terms appearing in the O (1/N) correction to the total cost in the random-link
matching problem, the one with independent random costs, as recently computed
by Ratiéville and Parisi [95]. In Ref. [95] the finite size correction was computed
according to the scheme we presented in Chapter [4] the only difference being that
the authors proceeded through the diagonalization of the Hessian, therefore leaving
uncovered the connection with the simple loops of the graphs. Here we establish
this connection, relating the random-link model with the Euclidean model, where
the terms in the action corresponding to loops appear explicitly since the beginning
of the calculation.

Ultimately both the first finite size correction in the mean-field system and the
polygons’ contributions in the Euclidean model are due to the presence of simple
loops of finite size in the interaction graph. The only difference is that the correlations
among the cost of the edges in the loops are present only in the Euclidean system.
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7.1 Replica calculation

Let’s consider the monopartite euclidean matching problem with N points uniformly
distributed in the [0,1]¢ box. The rescaled intensive energy ey, according to the
considerations of Chapter [6] is defined by

1 *
eN = = Z |zi — ;" n; (7.1)

i<j

where n; is the optimal matching and p > 0 is the cost exponent. Notice that we
choose to work with N points, as in Ref. [59], instead of the 2N points of Ref. |58].
This to compare our result with the more up to date numerical computations of
Houdayer.

We will give the details of the calculation since they are non-trivial and where
not specified in the original articles of Parisi and Mézard [18,58]. We denote with @
the average over the distribution the joint distribution of the lengths ¢;; = |z; — ;]|
as induced by the uniformly distributed displacement of the points in the box. The
replicated partition function for the model reads

n N Lop a
77 = 5 T ng — DI e e (72)

{ng;}a=li=1 i<j
_ /H dXE i 11 <1 + 6_1-@;“;)_5%1;) (7.3)
i,a 2m a i<j
dAY e TT 1 .
E/HT?';eZ ZH(l—i-uij), (7'4)
7,a 1<)
(7.5)
where in the last line we defined
n E ; a a
uz] — Z 6_7‘6Ndl'zijj Z e_zZaEa()\i +>\J ) (76)

r=1 a:la|=r

We can now expand the products of the u;; as a sum over all the subgraphs of the
complete graph. If we call K = {(i,7) : 4,7 =1,..., N} the set of the N(N —1)/2

edges, we then have
H (1 + uij) =1+ Z H Ue, (77)
i<j ECKecE

A scaling analysis of the lengths distribution shows that leading order contributions
in N are given by generalized loops, that is subgraphs with no dangling edges. We
keep only the terms corresponding to simple loops, so that our approximate partition
function takes the form

70~ /] [ d;‘z N o2 Z” u13+2423 20 Eil ,,,,, ip WirigWigig---Wipiy (7.8)
; T
1,a

(7.9)
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Introducing the order parameters

Z 0D aea M aC{l,....,n}, a £, (7.10)

=1

Qa:N

and Q, as the associated Lagrange multiplier, we can write

~ / H%e”‘? Han dQ,, ¢~ NiQaQa+iQa S e 2aea M
- 2T

5 ZT 197 Za |a|= Q2 +N Z[>3 27 271 ..... ) gri..ry Za:\a\:r QalLJaQU-QagUal .

(7.11)
Here the notation |a| = r stands for ay = 71, ag = 79, .... We have also defined
the averaged quantities
d—1 _—pIP F(%)Sd
0 Esd/dz a1 o = Zlw)o (7.12)
(Br)e
£
Gryomg = / AP(ly,. .. 1) e P X el (7.13)

with the spherical shell surface given by S; = Py is the joint distributions of

r(1+d)
the lengths in the polygon of ¢ edges. Now that we have decoupled the sites we can
perform the integration over the lambdas. We obtain

VARS /H dQa dQq ePNSIQQ), (7.14)

The action replicated free energy S[Q, Q] is defined by

S[Q, Q) =Sur(Q, Q) +Z (7.15)
z>3
with
—BSurlQ,Q] = ZlQaQaJr Zgr > @
alal=r
+log / H(Zbe@“%z“i@ae_iza@w (7.16)
and

_ﬁSK[Q] = Z ng..ATg Z Qa1Ua2 Xagﬂcn:@ LI Qagual ongﬂoq:@; (717)

T1yeT a:|lal=r

where x is the indicator function.
We will now compute the partition function ([7.14}) through saddle point evalua-
tion.



114 7. The Euclidean Matching Problem

7.2 RS saddle point

We restrict the saddle point analysis to the mean field action. Subsequently we will
consider the terms Sy as a perturbation to the the saddle point. Therefore the saddle
point equations read

iQa = Ir(a)Qa (7.18)
Qo =<< e et 5> (7.19)
Here r(«) is the cardinality of the set «, r(«) = |a| and the expectation << e >>

is over the (normalized) integrand in the logarithm of Eq. (7.16)
In order to compute the saddle point we make the Replica Symmetric assumption

Qa = Qr(a), iQa = 1Qr(a)- (7.20)

At the leading order in small n, after some manipulations [19], the replicated action
is given by
(=)t 4 L~ (=Dt
~BSur ~nd = 3 —iQuQr 4 5 Y Q2
= . (7.21)
u (*1)7‘_1 : A U
— /du (e7® — e~ 2 T iQre )}

It is now convenient to parametrize the variable @, Qr with the function

—_1)yr—1
Gu)=>" (12'@@ e, (7.22)

r>1

In the previous definition we inserted a factor 8 in the exponent to have a good
zero temperature limit, as we shall later see. From last two equation it follows
immediately

Smr = n{;/du G(u) e G — /du (efeﬂu — eG(“))} (7.23)

To write last equation we also exploited the saddle point equations

iQr = gr Qr (7.24)

and 5
Qr = B/du c ‘ re G (7.25)

7!

From last two equation and the definition of G(u) given in Eq. (7.22), we can write
a saddle-point self consistent equation for G(u):

G(u) = “jj /dv /()+Oo di i ;}I(ﬁ(u +v—1))e ¢W (7.26)
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with
+o0  1yr—1 -
()= <(:|))2em =1 Jp(2e%) (7.27)
r=1 ’

s=2 1. 7.28
. (7.28)

7.3 Corrections from polygons

Using the RS assumption and treating the term Sy as a first order perturbation to
the mean field saddle point, the correlation terms in the action due to the polygonal
graphs can be written as

Z /Hdd He rles)lei—zil? Qr(al Yr(is) lainaiy1=o- (7.29)

0417 12

. We see that in the spatial part we have a convolution, therefore we can apply a
Fourier transforms to deal with it. We define the function

d 1
Gr(k) = Sg / dr 4=t e= P By (2, 4k2l2) (7.30)
in order to write in the loop free energy in the compact form

1 S
Sp—— 2 2 / dk kLY HQHW anai=o Gr,(K),

a...op, 9=1 (731)
_ 1 Sd /dk KT [7(k)|

In the last line we have introduced the operator

Tozo/(k) = Qr+r’ lona=o gr(k)gr/(k)a (732)

which is the analogue for the Euclidean matching problem of the operator of Eq.
we encounter in Chapter 4| when dealing with diluted graphs. An import
difference here, is the presence of spatial correlations in the couplings on top of the
simple loop topology, due to the Euclidean structure of the ambient space. From
now on we shall omit the dependence on k. Following Ref. [156] we decompose
the matrix 7" in the irreducible representations of the replica permutation group.
The method is similar to the spectral formalism we employed in Chapter [3] for the
replicated Ising transfer matrix. The restriction of T' to the irreducible subspaces
D@, ¢=0,1,...,is given, in the mall n limit, by the matrices

@ _ gy (=D 1)
Ny =(=1) (r—=DIr" ="+ q—1)!

rr

Qr+r/ V GrGr (733)
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Still following Ref. [156] we can apply a transformation to the matrices N (@) that
does not alter the eigenvalues. We then consider the matrices

(4) _ g (r 7 +2¢—1)! i

Mrvs = O e gy — Ty Qs g (7.34)

The eigenvalue equation for M (@ reads
s (r+1"+2¢—1)! _
Ay = ZMﬁr’)CT = (_1) (’I" n 2(] _ 1 ! Z T 7 Qr+r’+2q Gr'+qCr’
o 66(7’+q . eBr'+a)v=G(v)
)8 / -2 T
Tl

(7.35)
We can then turn last eigenvalue equation in an integral eigenvalue equation noticing
that if {c,} satisfies last equation then

Blr+ayu—
flu) = Z(_l)r —a Cr Gr4q (7.36)
satisfies
AM(u) = (—1)q/dv A(Q)(u,v)f(v) (7.37)
with
(q) —M—M—i—ﬁq(u—kv) (_1)7‘ eﬁr(quv) }
AV (u,v) =pFe 2 2 3 mngrq(k) (7.38)

We notice that A@ depends implicitly on the mode & through Gr+q(k) defined in

Eq. (7.30).
Finally the contribute in the action of the polygons of length ¢ can be expressed
in terms of the traces of the operator A@ as

1 l
Sy = deZd /dk k- 1"[&" 1)%,@) . (7.39)

In last equation, as expected from the discussion of Chapter [3, the Sectors’ degen-

eracies are given by
n n
dg = — 7.40

and in particular dg =n and d; =n — 1.

7.4 The zero temperature limit

7.4.1 Mean Field term

Let us consider the limit 8 1 oo for the mean field part of the action. For the function
I(x) defined in Eq. (7.27) we have [1§]

Jim I(52) = 0(a). (7.41)
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The argument leading to the above equation involves the representation of the sum
in I(x) as a path in the complex plane. The saddle point equation ([7.26) becomes

G(u) = ‘5; /dv (u+v)°0(u+v) e W, (7.42)

We can then compute the average cost of the optimal matching in the mean field
approximation through the formula

— p g OMF
eEMF = 611_{1;0 %% - (7.43)

= ;/du G(u) e W — /du (9(—U) - e_G(u)) (7.44)

We now turn to the computation of the zero temperature limit for the polygonal
corrections to the free energy.

7.4.2 Longitudinal and Anomalous Sectors

Before considering the 7' | 0 (i.e. 8 1 oo) limit for the average free energy, some
considerations regarding the Longitudinal and Anomalous sectors, represented by
the matrices NST,, and err,, in the decomposition of T,,/. At finite n the two
representations read [95}/156]

N;S/)(n) = (n; T) Qi Gr Gy rr'=1,...,n (7.45)

whose n eigenvalues have to be counted multiplicity dy = 1, and
/
1 n—r 7
Nfr,)(n) = ( " )QT+T/\/grgT/M ror’'=1,...,n—1, (7.46)

which has n — 1 eigenvalues, each one contributing with a multiplicity dy =n—1. As
it can be readily seen the two matrices have the same limit at n = 0. At odds with
the replicated Ising transfer matrix considered in Chapter [3| though, the dimension
of N© is n and not n+ 1, and for n | 0 all its eigenvalues coincides with the one
of N, and the total multiplicity then becomes n, as expected. In the Ising RTM
case instead, the first eigenvalue A = 1 of the Longitudinal Sector does not appear
in the Anomalous Sector.

The correspondent continuous operators, according to definition and after
some manipulations, differ only by an overall minus sign, and are given by

A0 (4, v; k) = (—1)0/1‘%e—(}3’”—6;§’”/ AP oF (g,—ik%i) 9 Jo(ePluto=Dy
0

D Ov
(7.47)
The operators A(/D(u, v; k) are thus well defined in the zero temperature limit,
where we obtain

G(u) G(w)

2 2 @k(u+v). (7.48)

A(O/l)(u,v;k) = (71)1/0 e~
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with

Ok(h) = 2L hs 0(h) oFy (d, L hi> . (7.49)

P 2" 4
Therefore eigenvalues of A/ are finite and, due to the factor % in Eq. ,

do not contribute to the zero temperature limit of Sj.
A finite contribution is given by the first order correction to the eigenvalues for
small n though. Moving alone with the computation, in order to account correctly
for all the terms in the small n limit, the eigenvalue shifts can be computed using

the matrix

1
Ay = Tim — [NO(n) = N () (4

!
n—0mn rr

(=) e -1 —
N o (r— 1)!1"/!QT+T/ Gr (k)G (k)

along with ordinary perturbation theory. The contribution to the loop correction S
given by the degeneracy between the first two sectors is then given by

. Sd / d—1 AV
I'y=—1lm — | dk k ! —= A\ 7.51

(7.50)

where Ay is defined in term of the left and right eigenvectors eigenvectors, (Ly| and
IRy), of N (n =0) as

Ay = (Ly|A|Ry). (7.52)
While we expect the eigenvalues A of N to be finite in the large $ limit, as
discussed in the next paragraph. Moreover, according to result for the random link

case of Ref. [95], we also expect Ay = O(f) for large /3, therefore we have a non-null
contribution I'y from the first two Sectors to the zero temperature free energy.

7.4.3 Sectors g > 2

Following the same procedure of Parisi and Ratiéville [95] we compute the 8 1 co
limit of the operator A@ defined in Eq. (7.38). We will see that the limit is non
trivial only if ¢ is appropriately scaled with 5. In fact we can rewrite the operator
A a5
(W) Gw 1 5, o0 d 1 52
A(q)(u, v) = 5(%‘%%% /Cdz /0 dl SEhaB) s By (2, —4k2li) (7.53)
with
6B(u+'u—l)
S(z,0,q,8) =Pqlu+v—=1)—z+ — 2qlog(—=z) (7.54)

For large 3 the exponential term in the integrand becomes concentrated on the point
given by the saddle point conditions
as oS
dz al
while the other terms in the integrand do not depend on . The saddle point
conditions give

0; 0, (7.55)

log(q) (7.56)

¥ = —gq; F=u+v-—2 3
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It is easy to see that in the summation over ¢ the only terms giving a non zero
contribution are of order log ¢ ~ 3. Fixing § to 8 = log(q)/t we obtain I* = u+v—2t.

The computation of the saddle point contribution and of the Gaussian fluctuation
for the integral in Eq. is formally equivalent to the one performed in the
appendices of Ref. [95]. In the defining

Hyy(u,v) = lim A=) (y,0), (7.57)
B—00
we obtain
_G) _G)
Hpi(u,v)=e "2 72 Op(ut+v—2t) (7.58)
with
Sd s d 2
Ou(h) = ~1h*0(h) o ( —fk h (7.59)

We notice that Og(u + v) corresponds to the kernel of the integral operator of the
saddle point Eq. . Some considerations are now in order to proceed further.
Since in Eq. we have an alternating sign in ¢, we split the contribution in
odds and even sectors. As showed in Ref. [95] the sectors ¢ = 0 and ¢ = 1 do not
contribute to the zero temperature limit. For large 5 and small n we obtain, the
contribution to Sy from the irreducible sectors with ¢ > 2 is given by

n Sq / -1 29 —1 (@)* ¢ 29 —1 @)*
———— [ dkk — —Tr( A + (-1 —Tr (A
B (2m) q; g(q—1) (4 + (-1 q;q(q—l) (4")
q even q odd

(7.60)
Moreover, still for large 8 the sum over the sectors ¢ turns into an integral :

q=ePt +o0
Z — / dt (7.61)
0

q oddq

Finally, using the zero temperature limit of the operator A given in Eq. (7.58]),
we arrive to compute the contribution to the energy of small simple loops from the
sectors q > 2:

G [ dt dk k! Tx H ¢ odd
Q= | oo Jo” Tk ? (7.62)
{ even
7.4.4 Wrapping it up
The total average energy e in our approximation is thus given by
emenr+ Y ore (7.63)
>3
where s,
e¢ = lim lim — =Tp+ (7.64)

B—oon—0 N
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contains the contribution I'y from the degeneracy of the Longitudinal and Anomalous
sectors

. Sa d-15~ 7 BX -1
I'y=—1lm —— [ dk k — .
I} im (27T)d/d %\ 1 5 AT (7.65)

B—00

and the contribution form higher sectors

Q= (7.66)

G Jo dt dk k4 T H ¢ odd
{ even

The operator Hj; has eigenvalue A = 1 for k = t = 0. We show it taking
the derivative of saddle point equation (7.42)) for G(u) and integrating by parts,
obtaining the relation

&' (u) = / dv Op(u +v) G'(v) e GO, (7.67)
Then it is easy to prove that the function
h(u) = G'(u)e” "2 (7.68)

is eigenfunction of Hy o with eigenvalue A = 1.

We performed numerical simulations to compute the value of the eigenvalues
of Hy;. First we discretize the zero temperature saddle point equation for
G(u). Then we discretize the operator Hj; and compute its eigenvalues with the
linear algebra library Armadillo [187]. The result is shown in Fig. Hj ; has a
discrete spectrum, its eigenvalues continuously decreasing in both & and ¢. We focus
the analysis on the largest eigenvalue of Hj s, since it dominates the trace of H Ig,t
for large ¢. The largest eigenvalue A(k,t) is decreasing in ¢ and k and, moreover for
k =t =0 we have \(0,0) = 1, with eigenfunction h(u) as already stated. For large ¢
the dominant contribution in the integration over k and ¢ is given by the region of
small ¢t and k. In that region the leading behaviour is given by

Ak, t) ~ @0, (7.69)

as it can be seen in Fig.

Using the knowledge of the k = ¢ = 0 eigenfunction h(u) defined in Eq. ,
we can use perturbation theory to determine the coefficient a and b of Eq. .
Le us define the cavity message distribution

P(u) = G'(u) e"CW (7.70)
Perturbation theory in ¢ gives

_Q&I dudv P(u) (u +v)°0(u + v) P'(v)
p J du h?(u)

(7.71)

where in the second line we have used Eq. (7.67) along with an integration by parts.
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Fig. 7.1. Maximum eigenvalue of the operator Hy; of Eq. (7.58)) as a function of ¢ (left)
and k (right). Black lines are numerical fit of the form \ = exp(4 — Bx — Cx?).

Using the analytic formula for G(u)

S
G(u) =In (1 + edd“) for d=p, (7.72)
equation ([7.71]) gives
4
a=gz for d=np. (7.73)

This result is confirmed by numerical simulations.
The perturbation in k to Hyj, is obtained expanding to the first order in k? the
hypergeometric function in definition of g,(k) in Eq. (7.22). We have

,_ 154 [ dudv P(u)(u+ 0)** 5 O(u + v)P(v)
6 p [ du h2(u)

Some further progress can be made for p = 1,2. In fact a few integrations by parts,
along with [G'e™¢ = [ P =1, yield

s+1

(7.74)

b= =2 7.75
6 [ du G2(u) e G Jor p=2, (7.75)
and
(s4+2)(s+1) [du G(u)e ¢
b — =1 7.76
6 [ du G"2(u) e=G(w) for p=1, (7.76)
In the analytically solvable case d = p we have
2
= =d=1
b_{? b (7.77)

Once we assume the leading dependence on k? and t of the eigenvalues A(k,t), we
can perform separately the two integrations in §2,:

11
/wamzfﬁ (7.78)

la
1 (4

/dk#ihz%%zfd %X (7.79)
2 2



122 7. The Euclidean Matching Problem

Using these results to approximate {2y we obtain

¢ T(9) 1
PUE 0D o (7.80)
>3 ) 2ab? >3 772
¢ odd

The sum over ¢ can be expressed in term of the generalized Rienmann zeta
function ((z,y), thus giving

>~ 2 ; 2213 C( +g ;’) (7.81)

>3 26Lb

A similar approximation can be done for the terms I'y, at the present point we
did not make the computation though.

7.5 Finite size corrections

7.5.1 Connection with the random link problem

Let us take a step back from the Euclidean Matching Problem and consider the
random link model, where the elements w;; of the cost matrix are extracted inde-
pendently at random according to a certain distribution (after a proper rescaling of
the costs with N) p(w) = cw?, where ¢,y > 0 are some coefficients. According to
Parisi and Mézard [156], and as in the calculations we performed in Chapter [4] on
diluted graphs, there are two terms contributing to the O (1/N) correction to the
average cost. The first one, AF!, comes from the 1/N correction to the action itself.
The second one, AF?, is due to the Gaussian fluctuations around the saddle point.
This second correction, at finite temperature, can be written, using our notation, as

AF* = Tlllin 7 Indet(I—-T) (7.82)

with

Too = Qr(a)+r(a’) lona/=o VI9r(a)9r(a’) — Qr(a Qr(a (a)9r(a’)> (783)

and
= /dw p(w) e’ (7.84)

These last formulas differs from the ones presented in Refs. [156] and [95] due a
different notation: their @, is rescaled by a factor g, and the consider a matching
among 2N points instead than N. At this point we see that the matrix T corresponds
exactly to our transfer matrix for the polygonal correction T'(k) defined in Eq. (7.32),
except for wo reasons. One is the dependence on the mode k. This is natural since
in the random link model we loose the spatial correlation of the costs in the polygon
and the zero mode encodes all the relevant information. The second is the additional
term Q,(q)@r(ar)- In Ref. [95] this is shown to contribute only in the Anomalous
and Longitudinal sectors, and it has the effect of exactly counterbalancing the same
contributions of the term Q. (q)+r(a’) lanas, therefore O(1/N) Gaussian fluctuations
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in the random link problem are given only by the Sectors ¢ > 2 and contribute
positively to the free energy.
Expanding the logarithm in Eq. ((7.82), as we did in Chapter |4 with the Hessian

in random graphs, we obtain

AF? = lim —L

1 l
iy — > 5T (7.85)

>1

The structure of O (1/N) finite size correction, AF! + AF?, in the random link
problem, is similar to the one we found in Chapter [ for Ising models on Erd8s-Rényi
graphs. In fact, as clearly stated in Ref. [60], each nodes in the complete edge has
only a finite number of low cost edges relevant for the optimal matches. Therefore
the complete graph is well approximated with a Poissonian random graph with finite
connectivity. The £ = 2 term in Eq. is cancelled out by a corresponding term
in AF,. Therefore the total finite size correction AF = AF! + AF? is ultimately
due to two factors. The first, corresponding to the term ¢ =1 in Eq. , is due
to the fluctuation on the number of edges in the Poissonian graph. The second,
corresponding to the terms ¢ > 3, is given by the presence of simple loops of finite
length. Last proposition is confirmed by previous arguments and comparison of Eq.
and Egs. for the Euclidean matching problem.

We have thus established the connection between finite size correction in the mean
field matching model, i.e. the random link problem, and the polygonal correction to
the Bethe approximation of the leading cost in the Euclidean version of the problem.

7.5.2 Anomalous scaling behaviours

Let us consider again the random link problem. We will show how we can derive an
anomalous scaling for the second order correction to the thermodynamic free energy.
We express the average optimal cost as

1 1
er(N) = e + e1y +o (N) . (7.86)

For p(w) ~ 1, corresponding to the case d = p in the Euclidean matching, eo, = 7{—;
[18]. For simplicity we will stick to this case, the argument is general though.
Following the discussion of previous paragraph we approximate the e; with the
contribution given by loops. According to Ref. [95] we have

1
e~y ﬂ/dt Tr HY, (7.87)
>3
£ odd
where
_G) _G)
Hi(u,v)=e "2 "2 Out+v—2t) (7.88)

Once again we stress the equivalence between last equation and the operator Hj, ;
of Eq. . We approximate traces with powers of the leading eigenvalue of Hy
we arrive to the expression, as we did in Section [7.4] Since for large ¢ the integral
is dominated by the region of small ¢, we can use the asymptotic form A(t) ~ e~%.
Integration in ¢ in Eq. than yields
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Fig. 7.2. Average optimal cost in the monopartite random link matching as a fuction of
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N. The subsubleading scaling has an anomalous O(N~ %) behaviour.

1
eLrC Y 7 (7.89)

>3
£ odd

where c¢ is some constant.
Since the probability for a random path of length ¢ in the complete graph to
intersect itself is O(¢?/N) for large £ and N, therefore we expect a correction to last

formula that can be as expressed in terms of a regularizing function, 3 ¢>3 7 f(€2/N).
£ odd
Equivalently we can introduce a cutoff A = +/ N on the series, and write

A
1 1
c Z:el—i—O(). (7.90)
=N "

Therefore the asymptotic expansion of the average optimal cost in the random
link problem takes the form

1 1 1
GRL(N):GOO—FelN—'—eg]Vg—{—O(]\[g) . (791)
We have thus individuated a subleading correction with a non trivial fractional
exponent. This result is confirmed by numerical simulations as shown in Figure
Fit of numerical data give e; = 0.063(3) and es = 1.35(6) for exponentially

distributed costs, whereas the leading value, as computed in Ref. [18], is ex, = 7{—;
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Fig. 7.3. Average optimal cost in the Euclidean matching problem as a function of L = /N
for d = 2 (left) and d = 3 (right). Numerical data do not allow for a definitive validation
of the subsubleading scaling behaviour.

A similar argument can be used to compute a finite size correction in the
Euclidean matching. In this case the loops contribute to the leading order energy
approximately with

1
c —- 7.92
DZ% e (7.92)
¢odd

We now impose a cutoff A. Some simple considerations will allow us to find its
scaling with N. In fact from Eq. we see that dimensionally [k] = [¢~2. At finite
size the integration over k in Eq. is replaced by a sum over the Fourier modes
corresponding to the box [0, L]d, with L = N4 since we rescaled the original unit
box. Therefore the cutoff A has to scale as A ~ k-2 ~ L%, and we have

man

A

1 1 1
e = Y 0 (). (7.93)
>3 £2+§ >3 €2+§ Ld+2
£ odd £ odd

According to this argument the optimal cost in the Fuclidean matching problem
should scale as

1 1
ed(N):ed+Ade+2+0<Ld+2>' (7.94)

Unfortunately numerical simulations contradicts this scenario. In dimension d = 3
and with flat cost exponent , p = 1, we averaged the optimal cost over 10° to 107
samples for each size of the box L = 8,10,12,...,22 and with N = L points. The
results are clearly incompatible with the scaling 1/L° from of Eq. (7.94)). It turns out
our data is compatible both with a fitting function of the form e3(N) ~ a+b/L3+c/L®
and one with the form e;(IN) ~ a + b/L¢. This results are presented in Fig. and
Table [.11

The O(1/L%+2) correction we have highlighted is overshadowed by a slower
correction coming from some other mechanism, possibly O (1/N). In any case the
presence of non-exponential correction to the leading order energy is per se an
unusual feature for a finite dimensional system, denoting a critical behaviour.
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d=3 ‘ a b c
e(N)~a+b/L>+c/L° | 0.317010(1) 0.033(2) -0.5(1)
e(N) ~a+b/L° 0.317009(1) 0.009(2) 2.5(1)

Table 7.1. Fitted parameters from numerical simulations on the EMP with N = L? points
and flat distances (p = 1).

7.6 Conclusions

We performed a detailed replica calculations for the average cost in the Euclidean
matching problem. We expanded upon the work of Parisi and Mézard [58|, which
considered only correlation in the costs of links forming triangles, including all
the cost correlations on simple loops. The approach we took is based on the
diagonalization of a replicated transfer matrices in the irreducible subspaces of the
replica permutation group. This approach is the same used in Refs. [13] and [95]
to compute the O(1/N) finite size correction to the random link matching problem
trough the diagonalization of the Hessian. For the leading order in N of the EMP
our computations gives the result

1 1
ed ~ eyr + Z Q*EFZ + Z 2*6967 (7.95)
>3 >3
£ odd

where eyr is the mean field term computed in the random link (i.e. independent
weights) approximation, I'; is the contribution from the Longitudinal and Anomalous
Sectors degeneracy in the loops of length ¢, and €2y id the contribution from the other
Sectors, which is null for even lengths. Additionally we showed how to efficiently
compute the terms €y and I'y, although some analytical progress can still be done
for I'y. Finally we proved the equivalence, up to a simple Fourier mode dependence,
between the terms I'y, and the terms appearing in the 1/N computation in the
random link problem as computed by Parisi and Ratieville [95].

The work presented in this Chapter is incomplete, although the great part of
the expected results have been achieved. A more in-depth analysis of the term I’y
is needed, and also analytic results have to be confirmed by numerical simulations.
We will address these deficiencies in the following months.

In the long term perspective, we expect that the terms in the Euclidean replicated
action which are of higher order in the in the number of cycles are in one-to-one
correspondence to higher order terms in the O (1/N) expansion of the random link
matching problem.

The results of this Chapter nicely fit with the discussion of the O(1/N) finite
size corrections in diluted random graphs of Chapter [d] characterizing simple loops
contributions to the free energy, and with we present in the next Chapter on the
large M expansion.
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Chapter 8

The Large M Expansion

8.1 Introduction

Analytical investigation of finite dimensional disordered systems is a difficult challenge
for physicist, scholars relying on uncontrolled renormalization schemes [188-H190)]
and facing diverging (already at the first order) perturbative theories [191].

Fully-connected mean field models would constitute a solid starting point for
perturbative expansions, but they could fail to capture qualitative feature of finite
dimensional systems [192]. Another class of mean field models, possessing some of
the feature of real systems, is that of diluted random graphs. As already discussed
in Chapter [2| diluted graphs, being locally tree-like in the thermodynamic limit, can
be investigated through the use of Cavity Method, which we will also call Bethe
approximation (although generally this name indicates the Replica Symmetric Cavity
Method).

Many attempts to perform systematic expansion around the Bethe approximation
where produced in recent years, namely those of Parisi and Slanina [193], Chertkov
and Chernyak |167{168], Montanari and Rizzo [157,194] (can only compute corrections
to marginals), Mori and Tanaka [195,(196]. While some of this attempts are very
promising [167,196], they where conceived to be applied to single realizations of the
disorder, therefore it is difficult to see how to use them to compute disorder averages.
The other schemes are plagued by infrared divergences [193| or are algorithmically
oriented and limited to the computation of marginals and not free energies [157].

In this Chapter we contribute to the literature developing a formalism to system-
atically perform a perturbative expansion around the Bethe free energy for disorder
system in finite dimension, which we call large M expansion. We will employ a
combinatorial technique to interpolate between an arbitrary finite graph and a locally
tree-like graph infinite graph, for which the Bethe approximation holds true.

We will make use of both the Replica and the Cavity Method in our computation.
The replica computation is similar to the one performed in Chapter [ but it is
slightly more involved, since we have also to address an U(1) symmetry giving some
null modes. This work is at an early stage, therefore the results we presents are
incomplete. Some additional effort is required in the future to polish the formalism
and explore its applications. We will see though that the work we reported in
Chapter [4] on the the finite size correction in diluted random graph is a valuable
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= = =

Fig. 8.1. Pictorial representation of the M layer construction. The rightmost figure
outlines a simple loop in the M-graph, corresponding to a non-backtracking closed path
in the original lattice.

guide for the large M expansion.

8.2 The model

Here we introduce the general idea of our large M expansion. Let G = (V, F, E) be
an arbitrary factor graph, with V' and F' its variable and factor nodes set respectively,
and F its edge set. To each node i € V we associate a variable x; taking values
in a set X having finite or infinite cardinality. To each factor r € F' we associate
a random interaction ¢ (x; : i € Or; J,), where J, is some parameter encoding the
realization of the disorder. The partition function of the system is given by

ZH¢ cieor;Jy) (8.1)

X reF

We then create M copies of our system. We will refer to the different copies as
layers and label them with the Greek letters o, beta = 1,..., M. Each variable of
the new system is then labelled by a couple (i, «), with i € V,a € [M]. We consider
for each layer « a different realization of the disorder J,. The partition function of
the whole system is trivially

M
ZJ) x - xZT) = > [T Tl ¥(wia i € 0r; Jra). (8.2)

X1...XMp a=1reF

Now we introduce the main ingredient of the construction. For each link (r,7) € E
define a permutation m,¢ of the labels o = 1,..., M and rewire the links according
to these permutations. The partition function of the new system is thus given by

m{Ja}, Z HHw xig 11 € 0r,f =mp(a); Jra). (8.3)

{xa} a T

We refer to the M graph as to the factor graph underlying the partition function
Zyr- The free energy of the model is defined as

1
Fu = —WEJEnlogZM({Ja},ﬂ') (8.4)

Alternative definitions can be considered for Fjs, exchanging quenched averages
with annealed averages or sampling the same disorder for each of the M layers.
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Fig. 8.2. Average energy for the RFIM at zero temperature on the square lattice d = 2
and L = 16. The values extrapolate to the energy of an infinite random regular graph
with connectivity z = 4.

Setting M = 1 in Fs we trivially obtain the average free energy JF of the original
model. More thought is required to understand the M 1 oo limit.

The infinite computational tree of the graph is sort of "unfolded".

We resume the previous considerations in

Fi1=F, Ml—iglroo Fum = Fiethe- (8.5)

We now assume that F; has a regular 1/M expansion around the point M = +o0,
to write

+o0
1
-FM = fBethe + Z Ak m (86)
k=1

We have thus produce a perturbative expansion around the Bethe free energy for
any given factor graph (see Fig . Notice that we did not take a large graph limit
in order to produce it. Generally the limit N 1 oo and M 1 oo do not commute.

8.3 Replica Calculation

Here we discuss ho to apply the replica method to compute the large M expansion
for the Ising model on an arbitrary graph G = (V, E). The Hamiltonian appearing
in the random partition function Zj; is given by
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M
- Z Z C%BJZ-O;BO'iQO'jﬂ - ZZ h?am (87)
a,f=1 (i.j) > i
with ¢.7.d. couplings Jf]‘ﬂ and fields h{'. They elements of the adjacency matrix

C’f‘jﬁ of the M are induced by the uniformly chosen permutation of the links. Their
joint probability distribution is factorized on each edge (i,7), and is given by

= [[ P(Ci) (8:8)
(i-4)
with
PC)=-5 > I (anﬁ = 1) 119 <anﬁ = 1) (8.9)
{Caf=0,1} @

We notice that these are exactly the constrains defining a bipartite matching. In
order to perform the quenched average over coupling, fields and the realization of
the M graph, we have to replicate the system. The replicated Hamiltonian is then
given by Y7 Har[o?] and the replicated system will contain n x N x M spins of’,
As usual we will often suppress the replica index from now on.The computation of
the replicated partition function is very similar to the one performed for the RRG
in Appendix [B.1] therefore here we will skip some of the passages. After introducing
the Lagrange multiplicators A7, ; to open the Kronecker delta in P(C) we obtain

= d)‘za et & o;
Zi = Ml (M)IE Z/ 11 H[ - AH]] HeH( "

(i=j) @
< I ix8 ) (8'10)
log| 14+e 7123 U(04a,058) e I7%
< [T11e

(17]) avﬁ

The functions U(c,7) and H (o) are defined by

U(o,7) =Ege’ 2a=1 7™ (8.11)

n «

) =By eh2eam (8.12)

As we will later check we can expand the logarithm just to the first order around
one. In fact higher powers are suppressed by the A integrations. Therefore we have

Tn d)\?_)] —iA H(o;
Zy = MIIEIZ/HH[ ¢ He(m)

(=) , v (8.13)

TN . 2

X H BINL 3 Uloia,00) €01

(i.9)
Defining for each directed link the function p;—;(o) through

pinil0) =€ 8(0 — 0ia), (8.14)

«
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using the relation

equv — efi(qu'u (utv)— f(u v)U(u—v)

1
_ / dz dy e—fa:Uflx—f yU*1y+f u(z+iy)+ fv(z—z‘y) (8 5)
mdetU
and integrating out the lambdas we obtain
T dplﬁjdpjgn fﬁi—rU_lPA'—n'
Zh = (M) |E‘Z/H 2" det U S
(8.16)

X HPHJ' Cia H:Oj%i ip) HeH(om)
“ B 2,00

The integration variable p;_,; are complex and such that p,—,; = ﬁj» _;- We can
now sum over the spin configurations. We make the change of variables p;_,;(0) =
VM [U(0,7)pj—i(7). Notice that we inverted the site indexes, to obtain more
meaningful message passing equations at the saddle point, as we will later show.
The equation for the replicated partition function now reads

(MM p ges ] .
= [Wsz] J T oy dpyosl W, )

with the action S[p] defined by

= Z /dO’dT pi—ji (o) U(o,T) pjsi(T Zlog/da e /Upk_,z
(7’7]) k‘eal
(8.18)
We notice that the action is invariant under a complex rotation of the fields
pii(0) = pinsj(0)ei=i, (8.19)

with 0;_,; = 0;_;, since the two field a re complex conjugate. In order to integrate
over the orbits we can introduce for each edge the constraints

27r/d7"ij Tij 5<;pi_>j(a) — nj> (Zp]_n ng) (8.20)

rescaling the fields p by a factor r;; we can integrate out the 7;;. In fact after the
rescaling the r dependent part for each edge is given by

A2 [ al'(M +2™) _ P
27T/dm'j Tij(?”zgj)zn_le My [ picsiUpjmi 2M _ LM +2%) )e (M+2")1og [ pisjUpjsi

Tij = MM+2n
(8.21)
At this point we finally arrive to
e [7D(M +2") det U sy
- [ (o

The integration measure and the delta function in last equation stand for

dps (3 p-1)=1] [dpi—m'dpj—m‘ 3(Y_ pini(0) = 1) (D pjsi(o) — 1)] :

(i.4)
(8.23)
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The action S[p] is defined by
2n
Slp] :(1 + M) Z log/dadT pi—j(0)U(o,T) pj—i(T)
(.9)
— Zlog/da eH (@) /Upk_n

The learned reader will recognize at this point that S[p] has the form of the Bethe
free entropy. we will later see that at the saddle point the function p;_;(o) will
correspond to a distribution of cavity fields h;_,;.

(8.24)

keoi

8.4 RS Saddle Point

We proceed to the saddle point evaluation of the action, subject to the constraints
0(>°p —1). For the time being we ignore the constraints, we will later see that
there exist a set of p;_,; satisfying the unconstrained saddle point equation that is
compatible with them. Let us define

pii() = [ dr U(o,7)picss(7) (8.25)

The saddle point conditions for M — oo, apais(o‘) =0, give
j—1

JUpisj(o) JU e T canj Prsi(o)

~ =0 8.26
T pisj Upjsi J e Tkeoi Pr—si (8.26)
which can be otherwise stated as
pisj(o) ) [Tconj Pr—i(0)
. = 7 - . (8.27)
S pisi Upjsi J e Tleoi Pr—si

We see that given a solution {p;_;} of last equations, we can multiply each function
pj—i for a different arbitrary constant c;j_; and obtain a new solution. This scale
invariance is destroyed thanks to the constraints >°, pji(0) in Eq. -, which,
by the same scaling invariance property, can always be met by the unconstrained
saddle point. Here we consider the Replica Symmetric approximation. In this case
the value of p;;(c) depends only on the sum of the > ;_; 0% As usual we can
parametrize the order parameter at the saddle point with a function P(h):

th o
pizss (o /dh Ficsj(h 2005hﬁh) (8.28)

For each value of n the normalization condition implies [ dh P;_;(h) = 1. In the
n — 0 limit the saddle point equations (8.27) become the distributional cavity
equation

P;_;(h) =Eg / [T dQu—i(us) 5(h—(H+ > Uk))
kedi\j kedi\j (8.29)

Qioni(u) =By [ APj(h) 6 (u— a(J, 1))



8.5 The 1/M term 133

Inserting previous two equation in the action (8.24)), we finally obtain

lim Far = Fiethe (8.30)
M—o0
with
— BFpeme = Y $ij + »_(1—10i]) ¢i. (8.31)
(4,9) i
The edge and site free entropies are defined by
¢ij = << In[4cosh(hi_;) cosh(hj_;) cosh(J;;)(1 + tanh(h;— ;) tanh(h;;) tanh(J;;)]
(8.32)
and
¢ = <<In[2cosh(Hi+ Y upi)| >> (8.33)

keoi

8.5 The 1/M term

The computation in the replica formalism of the 1/M term, that is the Gaussian
contribution to the action, poses some technical difficulties that we did not manage
to overcome yet. The presence of the constraints in the partition function [8:22]
ultimately due to the gauge invariance, kill the corresponding directions in the
functional space, therefore we have to change accordingly the base in order to compute
only the relevant fluctuations. The presence of a Gauge invariance is common to
all the problems involving bipartite matching, therefore was not encountered in the
ER and RRG finite size corrections of Chapter 4l This problem was encountered
also in Ref. [156] and [95] when computing the 1/N correction to the random link
matching problem. In that case though, they could bypass the problem not including
the longitudinal sector contribution in the diagonalization of the Hessian, since
that sector is exactly the one suppressed by the constraints. Since we don’t want
to proceed to the direct diagonalization of the Hessian but we want to retain our
physical interpretation for the correction to the free energy in terms of closed and
open chains, that road cannot be taken. The approach we plan to take exploits the
formal limit

5 (ZU: pisj(0) — 1) = lim %me‘i(zaﬂw(">‘l)2. (8.34)
Therefore we add some extra Gaussian terms to the action to suppress longitudinal
fluctuations. Note that using the integral representation of 6 (3_, pi—;j(c) — 1) using
a Lagrange multiplier would give null modes in the Hessian as well.

We did not complete yet the replica calculation of the Hessian, therefore, for
the time being, we leverage the result obtained in the diluted graphs to obtain the
expression for the 1/M term we where looking for.

We assume that we deal with a regular lattice in dimension d with periodic
boundary conditions. In this case the solution to the saddle point equation is
homogeneous,

pisi(0) =plo)  Pisj(h) = P(h), (8.35)

>>
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and the asymptotic free energy is exactly the same of RRGs with connectivity 2d.
Writing the expansion of the free energy as

1 1
Far = Fuune + SF 1z +0 (57 (8.36)

the first sub-leading order term in the expansion has to take the form

AF =Y Ny Ay (8.37)

>3

The coefficients A¢y are exactly the same, qualitatively and quantitatively, as those
computed in random regular graphs in Chapter [4

Ade = ¢ — U(P} — Pf-1)- (8.38)

The coefficient Ny, accounting for the average number of loops in the graph, is not
(nggl)e, as one would expect in the RRG ensemble. In fact one convince himself
that the average number of loops at the order O(1/M) in the M —graph is given by
the number of non-backtracking paths of length ¢, both simple and non simple, on
the original lattice. If we define the 2|E| x 2|E| non-backtracking matrix B, indexed

by the directed edges i — j of the lattice, as

Byij—i = 015(1 — din,), (8.39)

then the coefficient Ny is given by

1
Ny = o T B* (8.40)

In order to compute Eq. we approximate the free energy shift A¢y, with
the highest eigenvalue in the relevant sector of the replicated transfer matrix (see
Chapter , that is

ciA{ for the RFIM

' ] (8.41)
c2Ay  for the spin-glass

AﬁbeN{

With this approximation, it turns out that the series in Eq. (8.37)) can be exactly
resummed, since we can compute the generating function for the number of non-
backtracking walks, as we show in the next paragraph.

8.6 Non-Backtracking Random Walks

Let us first establish some notations for the number of non-backtackig walks in the
infinite lattice Z%:
be(x) = # NBWs of length ¢ from 0 to =

~ _ z eikx -7 7Td
bg(k)_gzjdbe( ) k€ [-m,m] (8.42)

B.(k) = Z be(k) 2*

>0



8.7 Conclusions 135

Notice that since we are interested in closed paths we have to compute by(0). We
will use a result obtained in Ref. [197] for B.(k), the generating function of the
Fourier transform of by(x). The authors proved the relation

A 1—22

B.(k) = 5 5 .
14+ (2d —1)z2 — 22>, cosk,

We now show how to compute the generating function for Ny, that we call A,. This
is related to B, (k) by

(8.43)

d
A= [ (;’;Bz(m (8.44)

Using last two equations, some simple manipulations give

4k +oo —t 1+(2d—1)z2—222il: cosk,
A(Z) = / (27T)d(1 _22) /O dt e ( 1 )

_ (1 N 22) /OJroo dt eft(1+(2d71)z2) [10(2,215)}(1

(8.45)

where I, (z) is the modified Bessel function of the first kind of order a. In two
dimensions we have

1622
2 ((322+1)2>

where K (z) is the complete elliptic integral of the first kind.
More generally for every dimension d we have

1 f 0
A(z) = el (8.47)
+00 fOI' z — 5d—1

The analytic knowledge of the generating function A(z) through Eq. (8.45)),
along with the results from the replicated transfer matrix theory of Chapter [3] that
yield Eq. (8.41)), allow to approximate the infinite sum of Eq. (8.37)) to a high degree
of precision.

8.7 Conclusions

In this Chapter we proposed a new perturbative approach around the Bethe approx-
imation for finite dimensional disordered systems. The expansion parameter is the
number M of layers in a auxiliary random lattice models. For M = 400 we obtain
an infinite RRG graph, to which all the machineries of Cavity and Replica Methods
apply. The first contribution to the the free energy in a 1/M expansion is computed,
although the replica computations poses some problems yet to be addressed. The
result for the coefficient AF of the O(1/M) term

AF =Y Ny Ady, (8.48)
>3

appears to be sound, motivated by a cavity argument and by the results of Chapter
[l Hopefully we will soon address the difficulties in the replica computation and
investigate the analytical and numerical consequences of our approach.
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Part V

Conclusions
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Conclusions

Along this thesis I discussed many different topics, strictly or loosely related. Here 1
resume and discuss briefly the results we achieved, trying to underline their common
ground, and I invite the reader to refer to the conclusions of the various chapters for
more specific discussions.

One research line bridges the work on finite size corrections in diluted random
graphs of Chapter [4f and Refs. [2] [3], with the large M expansion around the Bethe
approximation that we proposed in Chapter [8 We can express the result we derived
for the coefficient Af of the 1/N and the 1/M terms in diluted random graphs and
lattice models respectively through the unique formula

Af =Y Ny Agy. (8.49)

£>3

This formula relates the first correction to the Bethe free energy to the presence of
simple (i.e. non-intersecting) loops. The factor ¢, here is the free energy difference
due to the addition of a closed chain of length ¢ to an infinite tree. The coeflicient
Ny is a combinatorial factor accounting for the average number of simple loops of
length £. Tt takes value 2¢/(2¢), with # the average residual degree, while in the large
M expansion for finite dimensional lattices is the number of closed non-backtracking
paths of length ¢ in the lattice. The infinite sum in last equation can be computed
with high degree of precision thanks to the replicated transfer matrix formalism we
developed in Chapter [3| and Ref. [1]. A short term goal is to fix some issues, due
to gauge symmetries, in the replica computation for the large M expansion, thus
supporting with the replica formalism the result obtained through the probabilistic
argument. In mid/long term perspective it would be desirable to find a general rule
to express the free energy shift of a loopy structure to an infinite graph. An accurate
comparison with Loop Calculus of Cherniak and Chertkov [167] is also needed.
Finally, the large M formalism could help to shed some light on phenomena, such
as the breaking of dimensional reduction in the RFIM [56], normally not captured
by perturbative theories [57].

Another line of research is dedicated to the Euclidean Matching Problem, both
in its monopartite (Chapter [7)) and bipartite versions (Chapter [6| and Ref. [5]). As
we discuss in depth in Chapter [6] bipartiteness as deep consequences for the optimal
matching and the scaling behaviour of its cost, therefore the two problems require
separate analysis.

In the bipartite case, through a continuous approximation for this discrete
optimization problem, we propose a (stochastic) Poisson equation relating a transport
field and the density differences among the two set of points. The average optimal
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cost can then be expressed as an infinite series, diverging for d > 2, that we manage
to regularize with an analytic continuation. In the end, in the case of quadratic
costs, the following original results:

%N + e d= 1,
ed(N) ~ ¢ =InN + ey d=2, (8.50)
eq+ LGN a2,

with 4 = d%‘l?. We see that the effects of set-to-set fluctuations captured by our
approximation is dominant for low dimension, while for d > 2 gives an anomalous
subleading scaling. Noticeably in our formalism the intensive O(1) term can not be
predicted in any dimension. We hope that similar techniques could be applied to
other optimization problems as well.

The approach to the monopartite problem in Chapter [7] is completely different.
It is based on a replica computation that goes beyond the simple mean field approx-
imation including the correlation among the weights of the link in simple loops. The
expression we obtain is similar to Eq. (8.49). In fact, in relation to the O(1/N) and
O(1/M) expansion discussed above, analyzing the O(1/N) finite size in the random
link matching problem we managed to show a one-to-one correspondence between
the terms appearing in the fully-connected model and the ones in Euclidean model,
ultimately relating all to the presence of small simple loops. This Chapter represent
another brick establishing the connection between finite size corrections in mean field
models and perturbative expansions in finite dimensional systems. The perspective
here as well is to compute the contribution of more complex loopy structures and to
extract from the series the scaling of finite size corrections.

Throughout these works the results for the Replicated Transfer Matrix of Chapter
and Ref. [1] proved to be valuable conceptual, analytical and numerical tools. It is
desirable to extend the formalism to the 1RSB scenario and to p-spin models.
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Appendix A

Appendix to Chapter 4.2

A.1 Coefficients ay,

The coefficients ay, can be determined by computing recursively all the functions Sy..
A little bit of thought should convince oneself that S, is given by the probability
of the event Fj, = {L consecutive links are present}, by splitting it in at least two
smaller events Er, and Er, with Ly + Ly = L. Since p;, = Prob[Ey] it should be
clear that qr, = pr, — S, is like a “connected” probability to obtain the L links from
a unique structure. It is not hard to derive a recursive equation for the functions
St, valid for any L > 2:

St = qpr—1+ @pr—2+ -+ qr-1p1, (A1)

from which we get, for any L > 1,

L
pr(l+q) =Y Gpr+, (A.2)
k=0

where go = 0 and py = 1 thanks to the fact that py, = z"[1 — L(L + 1)/2N]. The
above equation can be easily solved by introducing the generating functions:

o
p(x) =D ppa®,
k=0

- (A.3)
g(z) =Y qra®,
k=0
that must satisfy
1
(14 qo)[p(x) — po] = q(z)p(x) — gop0 = q(x) = po - @) (A4)
Keeping only terms up to order 1/N the result is
1
q(z) =z — — = (A.5)
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implying
(1oL — 2 ko (A.6)
QG =z N G =— fork=2. .
Rewriting eq.(A.2)) as
oo (o9}
qr = Z(k—L—i—l)ak—i— Z ck , <A7)
k=L k=L+1
we can obtain
[e's) 00 ZL
qL— Q1= Y Gk +crp1 = Y ap=qr=—-- VL>2, (A.8)
k=L k=L N

by noticing that ¢, = —qr, for L > 3. Moreover, for L = 1 we have

22—2

N

o0
Zaszh*QQZZJr
k=1

In conclusion the coefficients aj, are given by the following expressions
Lo
a1 =z+ —=(22°—z2),

N (A.10)
(I — 2By for L > 2.

A.2 Combinatorics of Tr (TL)

Here we prove eq. (4.23)), relating Tr (TL) in the small n limit to the free energies

of open and closed cavity chains. Let’s rewrite our 2" x 2" matrix as:

AN 1 J o‘aag h ao{l
T(U,U)ZE{WF 2a0a0ath)]

B [2ch(;h’)}” ([ arermarmmst ) rnt .

where expectation is taken over the coupling J and the cavity fields h, k', which are
distributed according to the solution of eq. (4.16). We immediatly note that the
factor [2ch(Bh)]™ reduces to 1 + nlog2ch(Bh) + o(n), in the small n limit, allowing
to rewrite T'(o,0’), with o(n) accuracy, as:

T(O', O_/) :ZE ejzao'ao'{l‘i‘hza 0'{1 _ </ dT eJZa O'aTa—‘,-hZa Ta) eh/ Za Uz/z:|

+ nzEyp log 2ch(Bh) + o(n) .

(A.11)

(A.12)

We recognize that the term E[e"za aoythy, 03] is the replicated transfer matrix of
a one-dimensional chain, and so when we take the trace of T'(o,0’) we simply get:

Tr[T] = —nB2[¢5 — (#1 + 5~ Enlog 2ch(Bh) )] + o(n) . (A.13)
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When computing the trace of TY, for L > 2, the term nzEj; log2ch(Bh) in eq.
(A.12) gives only contributions of order o(n) and thus can be completely ne-
glected in the following calculation. Let’s call A = E[e‘lza a0 thy ., %a] and
B = E[(f dr e’ Laoamath ), T“) "22.7%]. The product T is formed of a linear
combination of all the possible products of L matrices chosen between A and B,
therefore we now consider the traces of such products. A simple inspection shows
immediately the Tr (AL) is nothing else that the replicated partition function of a
cavity loop, that is a closed chain of length L embedded in a locally tree-like random
graph. Consider instead a term with one insertion of the matrix B, Tr A... ABA. ...
Since B is factorized, its insertion prevents the closure of the chain and we obtain
the replicated partition function of an open cavity chain of length L. Generalizing
the argument we can see that the trace of a product containing k matrices B yields
the product of k replicated partition functions of open chains, whose total lengths
adds up to L. Since in the n | 0 limit products of partition functions become the
sum of free energies, we can write

8 L
5 Tr (TL) = B8P 65+ > biof ] +0(1), (A.14)
=1
where the coefficients b; have to be determined. It is easy to see that by, = —L and

br—1 = L, while a simple combinatoric argument gives the remaining coefficients. We
can construct an open chain of length [ < L—1 in the first [41 positions of the product
and than multiply for the L possible ways of obtaining the same trace. So we consider
products of the form BA!"'Bx {2171~ different combinations of A and B}. Taking
into account the number of insertions of B in the last L — [ — 1 positions we obtain

Lt L—1—1
by =L x Z(—nk( ):o for 1<L—1, (A.15)

k=0 k

which immediately yields eq. (4.23]).
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Appendix B

Appendix to Chapter 4.3

B.1 Integral representation of [Z"],,

The average of the replicated partition function of the model reads:

(2" oy = [Z (H exp (ﬁJZ]C” > olo ) Hexp <BH Zo ))] av, (B.1)

{o} \i<y
where the sum has to be taken over the replicated spins {o{'} for i =1,..., N and
a =1,...,n. The average [ - |ay has to be performed over the RRG ensemble,

the couplings J;; and the random fields H;. The graph ensemble is defined by the
probability of sampling one of its element, having adjacency matrix C;;. This is
given by

NHKl—) C)+§5(cij—1)}na(§cij_c). (B.2)
= - \Z

Here the variable c is the connectivity of the nodes, the weighting factors 1 — & and

ﬁ have been chosen for convenience and A is a normalization factor. Let us define

Uloi,05) = By (7 20707,

. (B.3)

B(o;) =logEgy (eﬁHza Ui) .
The arguments of the functions U(c;,0;) and B(o;) indicate the replicated spins
o; = (o},...,0"). When it can cause confusion, the replica label a will be explicitly
written.

After averaging over the graph ensemble [198], Eq. (B.1) takes the following
form:

av N Z/ (H d\; e —iXic+B(o; ) exp {Z]Og |: il (eMiU(O'i,O'j)ei)‘j B 1)
o} <
(B.4)

|

|



148 B. Appendix to Chapter

where we used the integral representations of the Kronecker J-functions appearing

in P(C):

2 d)\l i Zj iCijfc
1;[5(2]:@5—0):/0 1:[27_[_6 ( # )

We expand the argument of the exponential in Eq. (B.4) to obtain

(B.5)

Zlog {1 + — ( N (04, 04)eN — 1)} = (2?\7 + 5N ¢ )

1<j

Zel)‘ZU (0i,05)e )‘]
N ZGQiAiU(Uz’7Ui)]

2

+AN,¢)+0 <]1V) ,

(B.6)
where the constant A(N,c) is given by

N 2
A (B.7)

A(N,C):— 5 4

In order to compute the sum over the spin variables in Eq. (B.4)), we need to

decouple the sites. Site factorization can be achieved by introducing two functions
p1(0) and ps(0), defined as

_ % >N 600~ op),
— % Ze%\i Hé(aa — o),

(B.8)

if we are interest only in the first correction in % To obtain higher orders in the
expansion we would need up to ¢ different functions pi (o), as will be clear from what
follows. Using pi(o) and ps(c), along with the expansion (B.6]), Eq. (B.4) becomes

(27, ~e{ 5 (1+ ) [ dodr (@)U D7)

R Nlog/ o do exp [ —icA+ B(o) — L62“‘U(U,0)] (B.9)

up to the order O(1). In the previous equation the notation [ do stands for:

/da = H > (B.10)

a=1o0%=%1
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B.1 Integral representation of [Z"],

We note also that the function U(o, o), evaluated on the same first and second
arguments, is independent on o. To lighten the notation we then define:

Ulo,0) = Ese™! = 1. (B.11)

Proceeding in the calculation, we introduce two J-functionals to enforce the

definitions of p; (o) and pa(0):
1 ik a a
1= /Dpk 5 lpk(a) ~ Nzi:e ];[5(0 — ot )] for k=1,2. (B.12)

The functional measure Dp is defined as Dp = [[,ern dp(0). Moreover, we use the

following integral representation of the §-functional

— /Dﬁ o~ J do p(0)p(o) (B.13)

where Dp = [[,cprn dg—(a), to rewrite the replicated partition function as

2
(2] as N/ <H DPkDﬁk> eXp{ - N/dU p1(o)pi(o)

k 1

ML ( ) /dadT (@)U (0, 7)pi (7)

- / do po(o)pa(o) — & / do dr pa(0)U?(0,7)pa(7)
+Nlog/dae /— exp[ o) M—ic)\—i—ej\;)\ (ﬁg(a)—cgo)]

+ A(N,c) — log./\/}.
(B.14)

We now can carry out the A integration, expanding the exponential and obtaining

2 d\ R 21)\ A CUO
/0 or &P [Pl(a) — A N (P2(U)— 2)}
c/2 N c—2m m
1 . U
- PO (hato) - 52
= mlc—2m)! N 2
(B.15)

In the sum on the r.h.s. of Eq. (B.15]) we retain only the leading terms, corresponding
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to m =0 and m = 1. The partition function (B.14) now reads
2
[Z" ]y ~ / ( II Dpzﬂ?@) exp{ - N / do p1(o)p1(0)

+( >/dad7’p1 U(o,T)p1(T /dO'P2 o)pa2(o

_ f/da dr pa(o (0’ T)p2(T) + Nlog/da eB(U)ﬁl(o')c

A" o ((o)—d;o)M

- N,c¢) —logN — Nlogel b.
+ c(c Tdo B @ py (o) (N,c) —log ogec }
(B.16)
At this point it is natural to define a new field (o) as
d B(o) 5 c—2
(o) = 2197 7o) B.17)

[ do eB@) (o)

and to observe that the integral over ps(o) gives

[ P2 exp{~ [ d0ps(0) [palo) - “Frio)| | =6 - ] By

Integrating out also p2, we obtain

20~ [ memexp{ N [ do p( >p1<>+( <) [dodr p@Uie ()
(c—

+ Nlog/da eB(”)ﬁl(a)C (U)UQ(U, 7)r(7)

-1
- (CQ)UO/dU r(o) + A(N,c) —log N — Nlogc!}.
The integral over p; is Gaussian and can be performed explicitly and we get:
n -1/2 A N ¢ A -1 A
(2] ~[det(cU)] Dprexpy — — [ dodr pi(o)U™ (o, 7)p1(7)

—|—Nlog/d0 e p1 /dUdT p1(a) U (o, 7)p1(7)
_(c_l /dadr r(o)U?(o, 7)r(T) Uo/d

+ A(N,¢) —log./\/—Nlogc!}.

(B.19)

We make the following change of variables, introducing at last the order parameter
p(o) through

pi(o) = c/da U(o,7)p(T), (B.20)
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which redefines also the field r(o) as

PO dr Ul r)p(r)
[do eB@ [[dr U(o,7)p(T)]"

r(o) (B.21)
The computation of the factor log N can be done among the same lines of the
preceding derivation, and gives [198]:
1 log2

logNNN(clogc—logc!—c)—i-g-i-z— 5 (B.22)

Calling for brevity A(N, ¢) the quantity

A(N,c) = A(N,c) + Ncloge — Nlogc! —log N
_Nc 241 log2 (B.23)
2 4 2’

we obtain the final expression of the [Z"],y up to the order O(1), that is
[Z7ay ~ [det(cU)]/2eAN0) / Dp e~ NSolol=S1lel, (B.24)

Here the integration measure is given by Dp = [],cgn dp—\/giﬂ), and the functionals
Solp] and S1[p] read
Sole) = 5 [ dodr (@)U (o 1p(r) = log [ do )| [ ar U(o,m)o(r)|
(c—1)
4

Silp] = —% /da dr p(o)U(o,7)p(T) +

(c— 1)U
+ To/da r(o).

/da dr r(o)U?(o, 7)r(T)

(B.25)

B.2 Computing the finite size corrections

There are two sources for the 1/N finite size corrections to the thermodynamic
free energy density. The first contribution comes from the subleading part of the
replicated action S;[p], evaluated in the saddle point solution p,, given in eq. .
The second one stems from the Gaussian integral obtained by expanding the leading
action Sp[p] around the saddle point. This is given by

[det(cU)]l/Q/Dx eféfxc’ﬁsa‘x _ e—%logdet(]l—E)7 (B.QG)
where x (o) is the rescaled fluctuation of p(o) around the saddle point and we omitted

the dependence on the replicated spins in the exponent of the 1.h.s.. The matrix
Y (o, T) is defined as

S(0,7) = (¢ — VT(0,7) — ¢ [/ do’ U(a,0")ps(0")| pa(7),
T(o,7) =Ul(o,7)r«(1).

(B.27)
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Summing up all the contributions, the averaged replicated partition function [Z"].y
up to order O(1) becomes:

131
[Z™]av ~ exp [A(N, ¢) = NSo[ps] = Silps] + 5 ; ;o . (B.28)

The introduction of the auxiliary matrix T'(o, 7) will simplify a lot the computa-
tion of the trace appearing in Eq. (B.28). The crux is to observe that p.(c) is a left
eigenvector of T'(o, 7) with eigenvalue 1, i.e.

/ do pu(0)T(0,7) = pa(r). (B.29)

This property can be verified by acting on the left with T'(¢, 7) on the saddle point

equation (4.57]).

It is useful to define also an auxiliary function p,. (o) as follows:

p(o) = / dr U(o,7)pa(r). (B.30)

As a consequence of the saddle point equation (4.57)), the function p.(o) has the
following interesting property:

/ do pu(0)pa(0) = 1. (B.31)

Using the definition of T'(o, 7) and p. (o), the matrix ¥(o, 7) can be cast in a simpler
form, that reads

(o,7) = (c = 1)T(0,7) = cp«(0)pu(7)- (B.32)
The two matrices T'(o, 7) and p.(0)p«(7) in the r.h.s of Eq. (B.32) they do commute

with each other, as can be checked by inspection. Therefore, the trace of the ¢-th
power of the matrix > can be written as

l
L
sl =% < )(c — 1) (=) T | (pup) T (B.33)
k
k=0
Observing that in all the terms of the sum, but the one corresponding to k = 0, the
matrix T is multiplied on the left by its left eigenvector with unitary eigenvalue, we
easily get the following result:

TrTt fork =0
~ kmt—k| _
Tr [(pepa)* T7F] = {1 forks 2 0. (B.34)

We can now immediately evaluate Eq. (B.33]) and we find:

Ty = (e 1) [T’ — 1] + (- 1)". (B.35)
Inserting Eq. (B.35]) into Eq. (B.28) we get
1 (c—1)° log 2
(27w ~ exp [—NSO[P*] s+ I et 1) A -2 ] .
/=1

(B.36)
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The term Si[ps] can be expressed using the matrix 7" in the following way:

2+1 _12
Silp] = 1 C 4) [TrTQ—l}

clinro), (B.37)

Therefore we see that the terms £ = 1 and ¢ = 2 in the sum in Eq. (B.36) cancel out
with the terms coming from Si[p.]. Moreover, using the definiton of A(N, ¢), and
the noting that Sp[p.] equals

Solps] = g — log/da eP)

/ dr U(U,T)p*(T)]C, (B.38)

we finally obtain

[Z™]av ~ exp {Nlog/da eBPl)

/dTUU, 7)ps(T ]+ Z [TrTe—l}}.

(B.39)
We split the free energy density f(INV) into the sum of the leading term plus the
1/N correction:

1
F(N) = fo+ w5 fr+o(1/N). (B.40)
The quantity f; is given by

1 E (e—1)*
= _B}%Z (c T S o, et (B.41)
(=3

B.3 Evaluating Tr 7"

The matrix T'(o,7) is defined as T'(o,7) = U(o,7)r(7). In the replica-symmetric
regime, we can parametrize the field (o) as

pry " o
/dr B 2cosh(5r)]

a

(B.42)

where the density R, (r) is non-negative and normalized to 1 in the limit n — 0. In
order to compute the O(1/N) correction to the free energy, we need also to compute
its normalization up to order O(n). Inserting the parametrization in the
equation defining r(0), i.e. Eq. , and considering also the n-dependence of
the distribution P, (h) parametrizing p(o), we obtain

cosh(BJ) cosh(Br + fu)

2
cosh(r) cosh(Su) + O(n”). (B.43)

/dr R,(r)=1-nkEj,,log {
The random variable u is called a cavity bias and is drawn from the distribution
Q(u) = E; / dh P(h) 6Ju— a(B, J, h)], (B.44)

with P(h) solution of Eq. (4.59). In Eq. (B.43)) the random variable r is distributed
as R(r) = lim,, 0 R, (r), solution to Eq. (B.21).
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With this considerations in mind, the matrix T'(o,7) can be written, for small n,
as

T(O’, 7') :EJJ [ﬁ exp (BJUaTa + ﬂT‘Ta)‘|

a=1

(B.45)
2 cosh(fJ) cosh(Br + fu)

O(n?).
cosh(fu) ] (")
The first term in Eq.(B.45) is the replicated transfer matrix of a 1-dimensional
disordered Ising chain with random couplings J and random fields r. Let’s call
T, (o, 7) this first term.

The second term in Eq. (B.45)) is proportional to the thermodynamic free-energy

density ¢ of an Ising chain with random couplings J and random fields r [138] [1],
explicitly:

- nEJ,T,u IOg |:

2 cosh(J) cosh(Br + fu)
Byl = B¢ B.46
Jirau 108 [ cosh(Bu) B¢ (B.46)
The full matrix T'(o, 7), in the limit n — 0, then becomes:
T(0,7) = Tn(o,7) + 0B + O(n?). (B.A7)
Taking the trace Tr (TK) we find
Tr T = Tr T, + nlBo + o(n?). (B.48)
Now we observe that
lim O, T T = — B¢, (B.49)
n—

where ¢7 is the free energy of a closed chain (loop) of length ¢, receiving a field  on
each of its vertex. Eventually taking the derivative and then the limit n — 0 of the
full trace Tr T¢, we get

lim 9y, Tr T = —B(¢§ — Lo) = Aghy. (B.50)

Coming back to the equation (B.41]) for f;, and substituting the previous result
(B.50), we finally obtain the formula given in the main text:

© (¢ _ 1)
f1:Z( 261) Ady. (B.51)

/=3
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Appendix C

Appendix to Chapter [0

C.1 Evaluation of >,

In this appendix we will show that, in dimension d > 2, the function

s = Y 1” (1)

nezd\ {0} In

a particular Epstein zeta function defined for Res > g, analytically continued to
the point s = 1, takes the value of X4 defined in Eq. (6.22)), i.e. (4(1) = £4. Then
we will derive an easily computable representation of the analytic continuation of
Ca(s) which was already presented in the literature |180}/199|.

Let us fix d > 2 and a > 0. Then, for Res > %, we can rewrite Eq. as

[ Inl<R 1 R pd—1 R pd—1
L neZd\ {0}
- (C.2)
II%%R 1 R pd—1 qd—2s
~ lim is—sd/ T _ar| + 8, .
Rtoo || 2y n? o T 2s —d

Assuming that the limit in the last equation exists also for Re s < g, we have isolated
the singular term. The analytic continuation of (4(s) then reads

IIISR 1 R pd—1 d
Cqa(s) = lim — — Sd/ ——dr for Res < —, (C.3)
Roboo || 7o) |n|| 0o 12 2

where to limit @ — 0 has been taken. Note that, comparing the previous equation

with Eq. (6:22)), (4(1) = Z4. On the other hand, for Res > ¢

_ L B
Cd(S) = Zd: F(s)/o z e z
neZ\{0} (04)

S

= % /O+OO 2571 (@d(z) — 1) dz,
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where O(z) is defined by O(z) = Y7 e ™% = §(0;iz), where U(r;z) is the

Jacobi theta function. Noticing that for z < 1 asymptotically we have O(z) ~ %,
while ©(z) ~ 14 2e~% for z > 1, we can isolate the singular parts of (4(s) writing

Ca(s) = FZ) {232—d . % n /;00 H5—1 (@d(Z) - 1) dz + /01 251 (@d(z) - ;‘;) dz} .
(C.5)

Last expression can be readily continued to the region Res < g. Using the property
VtO(t) = O(t 1), we can write

—1+ /1+°° (1+ z%*) (6() 1) dz} . (C.6)

Zd:Cd(l):ﬂ[2_d
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Appendix D

Appendix to Chapter

D.1 Normalization Factor

Let’s compute the total number A of realizations of GM. Simple combinatorics
gives N = (M !)‘E |, We will rederive this results using delta functions and Lagrange
multipliers. We have

V=3 TS (S —). ox

{n} (i—j) @

Using Lagrange multipliers to expand the Kronecker deltas we obtain
d/\?—> —ixa IS Al
N / H H j 11—>ij1_[ 1+ez i—j 1]—)1)
_/ H H Z*)j 77‘21—>] Za z—>]+2(1]) Z e 1_”)(Z 6 ]_H

(i—j) @

[/H dAfo d>\2—>1 e i M=, A+, ePMo2) (30 eP2o)

(D.2)

|E|

where the second passage will be a posteriori justified. Using the relation

eAB — ew = / %eﬂkyﬂA(IJriy)JrB(%iy) (D.3)

e poi integrando su A si ottiene

N = [/ %6_1’2_?/2(30 +iy)M (z — Z’y)M}

™

E
_ [/ dz dy @) (2 4 yQ)M} |El (D.4)

T
=T(M +1)E

where we obtained the expected result in last equation passing through polar
coordinates.
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