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New algorithm of the finite lattice method is presented to generate the high-temperature expansion series of 
the lsing model. It enables us to obtain much longer series in three dimensions when compared not only to the 
previous algorithm of the finite lattice method but also to the standard graphical method. It is applied to extend 
the high-temperature series of the simple cubic Ising model from @26 to /3’6 for the free energy and from p25 to 
p32 for the magnetic susceptibility. 

1. INTRODUCTION 

The finite lattice method[l-31 is a powerful tool 
to generate the exact high- and low-temperature 
series and other exact expansion series for the 
spin models in the infinite volume limit. In the 
graphical method, one has to list up all the rel- 
evant diagrams and count the number they ap- 
pear. In the finite lattice method we can skip 
these jobs and reduce the main task to the calcu- 
lation of the partition function for the finite size 
lattices, which can be done efficiently using the 
site-by-site integration[4,5] without the graphical 
technique. 

It has been extremely effective primarily in two 
dimensions, but unfortunately it has worked out 
the series only in some limited cases in three di- 
mensions. This is because in two dimensions the 
CPU time and the computer memory needed to 
obtain the series to order N increase exponen- 
tially with N, while they grow up exponentially 
with N2 in three dimensions. Here we present 
a new algorithm of the finite lattice method in 
which the CPU time and the computer mem- 
ory increase exponentially with N log Iv. It en- 
ables us to generate much longer series of the 
high-temperature expansion for the Ising model 
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in three dimensions when compared not only to 
the previous algorithm of the finite lattice method 
but also to the graphical method. 

Although our main target is in three dimen- 
sions, the new algorithm of the finite lattice 
method applies in arbitrary dimensions, so we de- 
scribe it in two dimensions for convenience in the 
next two sections. 

2. FINITE LATTICE METHOD 

In the finite lattice method to generate the 
high-temperature series for the free energy in 
two dimensions we calculate the partition func- 
tion Z(I, x lY) for the finite size lattices with 
2(l, + lY) < N and define recursively[2] 

- c 4(C x CJ (1) 

Here we use the notation for the lattice size such 
that the 1 x 1 lattice means the unit square com- 
posed of 2 x 2 sites. The Boltzmann factor for 
each bond is expressed as 

exp (,!3sksk~) = cash (/?) (1 + tskskf) , (2) 

with ,0 = J/ksT and t = tanh (/3). We define the 
bond configuration as the set of bonds to which 
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the factor tskskl in (2) is assigned while the factor 
1 is assigned to the other bonds. Non-vanishing 
contribution to the partition function comes only 
from the bond configuration in which the bonds 
form one or more closed loops. Each of the closed 
loops is a polymer in the standard cluster expan- 
sion[6]. Then the Taylor expansion of 4(lZ x lv) 
with respect to t includes the contribution from 
all the clusters of polymers in the standard cluster 
expansion that can be embedded into the lattice 
of 1, x 1, but cannot be embedded into any of its 
rectangular sub-lattices 1; x 1; and it starts from 
the term tn with n = 2(1, + ly), which comes 
from the cluster of a single polymer (one closed 
loop of bonds) that have two intersections with 
any line perpendicular to the lattice bonds. The 
expansion series of the free energy density in the 
infinite volume limit is given by 

f = c 4(L x lY) (3) 
2(1,+I,)LN 

3. NEW ALGORITHM 

In the standard algorithm of the finite lattice 
method the full partition function for the finite 
size lattice is calculated with all the bond con- 
figurations taken into account. In order to ob- 
tain the series to a given order, however, it is 
enough to consider only a restricted number of 
the bond configurations. Let us consider the 
anisotropic model of the simple cubic Ising model 
with ,& = Ji/knT and ti = tanh (,Bi) (i = X, y). 
To obtain the series for 4(IZ x ly) to order NY = 
21, + ANY in t, we introduce[7] in the new algo- 
rithm d(lz x l,, AN,) defined recursively by 

cb(L x l,, AN,) = log [Z(L x I,, AN,)] 

Here the partition function Z(1, x 1,) AN,) is cal- 
culated only with the bond configurations taken 
into account that have orders nyi in t, for the i-th 
layer perpendicular to the y-direction satisfying 

5 max(nvi, 2) 5 21, + AN, . 
i=l 

(5) 

We neglect every bond configuration for the 
partition function that has cfr, max(nvi, 2) > 
21, + AN, among the configurations that have 
Et!., nYi 5 21, + AN,. It is easy to prove that 
any of the neglected configuration does not con- 
tribute to ~$(1, x lv) in the order lower than or 
equal to NY = 21, + AN,. For such a configura- 
tion at least one of the nyi’s should be zero, so 
they are disconnected configuration(composed of 
more than one polymer) or they can be embed- 
ded into a rectangular sub-lattice of 1; x 1& with 
1; < 1, and in either case they do not contribute 
to ~$(1, x ly) in the order lower than or equal to 
NY = 21, + AN,. They contribute to $(iZ x lY) 
only in higher order than NY = 21, + AN, by 
constituting the connected cluster of polymers to- 
gether with the polymers coming from other con- 
figurations that have n’ Yi > 2 for the layer i with 
7&j = 0 . Examples of the bond configurations 
are shown in Figure 1 for 1, = 4, 1, = 5. The 
example (a) has {nyi} = {2,2,4,2,2} and should 
be taken into account for AN, = 2, while the ex- 
ample (b) has {nyi} = {0,4,4,0,2} and should 
be neglected for the same AN, = 2, in spite of 
the fact that the total order of(b) in t, is smaller 
than 21, + AN,. 

(4 (b) ______________ 
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Figure 1. Examples of the bond configurations. 

The contribution of the bond configuration 
with {n,i} to the partition function of the finite 
size lattice can be calculated by the transfer ma- 
trix formalism as 

Z({n,i}) = V,,jIt;“‘vjI,jat;“” .t;y’y~,yrO. (6) 

Here KG,+, is the transfer matrix element with 
incoming nYi spins and outgoing nY i+r spins. 
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The summations over the spin locations j, , j,, . . 
of the nyl, ny2, ’ spins, respectively, are as- 
sumed in the right hand side of (6). 

In three dimensions, which is our main target, 
the transfer matrix element itself can be regarded 
as the partit,ion function in two dimensions and 
can be calculated efficiently by the site-by-site 
construction[4,5]. In the new algorithm most of 
the CPU time should be used for the calculation 
of these transfer matrix elements, and the total 
CPU time to generate the series to order N can be 
estimated to increase exponentially with the lead- 
ing term of the exponent proportional to N log N. 

4. RESULT 

The new algorithm is applied to generate the 
high-temperature series of the simple cubic Ising 
model for the free energy[7] to p46 and for the 
magnetic susceptibility[8] to p3’. The obtained 
series agree with t,he previous series to pz6 for the 
free energy[9], which was obtained by the previ- 
ous algorithm of the finite lattice method, and 
to /325 for the susceptibility[lO], which was ob- 
tained by the graphical method. It should be 
commented that the previous algorithm of the fi- 
nite lattice method can generate the susceptibility 
series only to ,013. 

Preliminary analysis of the free energy series 
using the inhomogeneous differential approxima- 
tion and the ratio method biased by the value 
of the critical point PC gives the estimation of 
the critical exponent for the specific heat as 
(Y = 0.104(l) and c-r = 0.108(l) correspond- 
ing to the result of ,& = 0.22165459(10) and 
PC = 0.2216595( 15),respectively, of the recent two 
Monte Carlo simulations[ 11,121. Unfortunately 
the free energy series can give the estimate of the 
critical point itself only in poor precision. The 
analysis of the susceptibility series by the ratio 
method gives the estimate of the critical point 
as ,L% = 0.2216550(5) and the critical exponent 
as y = 1.2370(2). This estimation for the criti- 
cal exponent do not use the value of the critical 
point as the input. It is consistent with the recent 
estimate y = 1.2371(4) obtained from the high- 
temperature series of the generalized Ising model 
1131. 

5. DISCUSSION 

We have presented the new algorithm of the fi- 
nite lattice method for the high-temperat,ure ex- 
pansion of the Ising model. It has been applied to 
the high-temperature expansion of the free energy 
and the magnetic susceptibility for t,he simple cu- 
bic Ising model. It, can be applied to the high- 
temperature expansion of other quantities such as 
the correlation length and it can also be applied 
to the models with continuous spin variables such 
as the XY model in three dimensions. We note 
that the dimensionality of the lattice is not re- 
stricted to three as can seen by the fact that the 
description of the new algorithm in section 3 was 
given in two dimensions. Furthermore the basic 
idea of the new algorithm can be used in the low- 
temperature expansion for the spin models. We 
can expect that the new algorithm will enable us 
to generate the series for these models that are 
much longer than the presently available series. 
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