
1

Functional Derivative

The goal of this section is to discover a suitable definition of a ”functional
derivative”, such that we can take the derivative of a functional and still have
the same rules of differentiation as normal calculus. For example, we wish to
find a definition for δJ

δy
, where J [y(x)] is a functional of y(x) such that things

like δ
δy
J2 = 2J δJ

δy
are still true.

Definitions

Functional

Stone’s definition of local functional where f is a multivariable function

J [y] =

∫ x2

x1

f(x, y(x), y′(x), y′′(x), · · · , y(n)(x))dx =

∫ x2

x1

fdx (1)

Notice the functional J ”eats” an entire function y, which is defined using
its local values y(x), y′(x) etc, and spits out a number through integration.
In short, a functional is just a number that depends on an input function.

Variation

A variation of the functional is the amount the functional changes when the
input function is changed by a little bit. Suppose we let y(x)→ y(x)+δy(x),
then since d

dx
is linear
y′(x)→ y′(x) + d

dx
δy(x) = y′(x) + δy′(x)

y′′(x)→ y′′(x) + d2

dx2
δy(x) = y′′(x) + δy′′(x)

...
y(n)(x)→ y(n)(x) + dn

dxn
δy(x) = y(n)(x) + δy(n)(x)

(2)

thus the integrant of the new output J [y+ δy] can be expanded to first order
using Taylor expansion of a multivariable function around the old input y

J [y + δy] =

∫ x2

x1

f(x, y + δy, y′ + δ′y, · · · , y(n) + δ(n)y)dx

=

∫ x2

x1

{
f +

∂f

∂x
dx+

∂f

∂y
δy +

∂f

∂y′
δy′ + · · ·+ ∂(n)f

∂y(n)
δy(n)

}
dx (3)
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The variation of the functional is thus, by definition, the new output minus
the old output taken to first order.

δJ =J [y + δy]− J [y]

=

∫ x2

x1

{
∂f

∂x
dx+

∂f

∂y
δy +

∂f

∂y′
δy′ + · · ·+ ∂(n)f

∂y(n)
δy(n)

}
dx (4)

we can moved all the d
dx

on δy to f using integration by parts

δJ =
d

dx
(
∂f

∂y′
)δy(x)

∣∣∣∣x2
x1

+
d

dx
(
∂f

∂y′′
)δy′(x)

∣∣∣∣x2
x1

− d2

dx2
(
∂f

∂y′′
)δy(x)

∣∣∣∣x2
x1

+ · · ·+ (−1)n−1
dn

dxn
(
∂f

∂y(n)
)δy(n)(x)

∣∣∣∣x2
x1

+

∫ x2

x1

∂f

∂x
dx+∫ x2

x1

(
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
− · · ·+ (−1)n−1

dn

dxn
∂f

∂y(n)

)
δy(x)dx

(5)

and Voila! (5) is the variation of the local functional defined in (1) with no
additional assumption.

Functional Derivative

For a normal multi-variable function f(x1, x2, · · · , xn) we have a nice form
for its variation

df =
n∑
i=1

{
∂f

∂xi
dxi

}
(6)

and we know how to calculate the derivatives ∂f
∂xi

. Here we wish to rewrite
(5) such that we have a similar form for the variation of a functional

δJ =

∫ x2

x1

dx

{
δJ

δy
(x)δy(x)

}
(7)

Unfortunately, this is only possible under special circumstances. That is, we
need the variation to have ”fixed-ends” (δy(n)(x1) = δy(n)(x2) = 0) and
that we require implicit f (∂f

∂x
= 0)1. Basically, we want everything before

the last line of (5) to vanish. This way, comparing (5) and (7) we finally have

δJ

δy
=
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
− · · ·+ (−1)n−1

dn

dxn
∂f

∂y(n)
(8)

1This is slightly over kill, since we just want
∫ x2

x1

∂f
∂xdx = 0
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As long as δJ can be written as (7), we will have our nice rules of differenti-
ation. For example

δ(J2) ≡(J + δJ)2 − J2 = 2JδJ +O(δJ2)

=

∫ x2

x1

dx

{
2J
δJ

δy
(x)δy(x)

}
⇒

δJ2

δy
= 2J

δJ

δy
(9)

A word of caution: This definition of functional derivative is nice, but as f
involves higher derivatives of y, the fixed-end condition becomes harsher and
the range of y this derivative applies to quickly diminishes. Therefore it is
sometimes more useful to make variations by hand according to (5).

Lagrangian Mechanics

When the integrant of the functional only has dependence on y and y′

(f(y, y′)), (8) reduces to the popular Fréchet derivative

δJ

δy
=
∂f

∂y
− d

dx

∂f

∂y′
(10)

this form should look familiar to all physicists, since it laid the foundation
for basic Lagrangian mechanics. In a typical classical mechanics problem, we
wish to minimize the action S, which is often a functional of a configuration
function q, whose basic independent variable is time t. That is

S[q] =

∫ t2

t1

L(q(t), q̇(t))dt (11)

where L is the Lagrangian. To find extrema, we set derivative to 0

δS

δq
= 0⇒

∂L

∂q
=

d

dt

∂L

∂q̇
(12)

Lo and behold, the Lagrangian equation of motion.


