
15

Functional Derivatives

15.1 Functionals

A functional G[f ] is a map from a space of functions to a set of numbers.
For instance, the action functional S[q] for a particle in one dimension maps
the coordinate q(t), which is a function of the time t, into a number—the
action of the process. If the particle has mass m and is moving slowly and
freely, then for the interval (t

1

, t
2

) its action is

S
0

[q] =
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t1
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. (15.1)

If the particle is moving in a potential V (q(t)), then its action is

S[q] =
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dt
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#
. (15.2)

15.2 Functional Derivatives

A functional derivative is a functional

�G[f ][h] =
d

d✏
G[f + ✏h]

����
✏=0

(15.3)

of a functional. For instance, if Gn[f ] is the functional

Gn[f ] =

Z
dx fn(x) (15.4)
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then its functional derivative is the functional that maps the pair of functions
f, h to the number

�Gn[f ][h] =
d

d✏
Gn[f + ✏h]

����
✏=0

=
d

d✏

Z
dx (f(x) + ✏h(x))n
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✏=0

=

Z
dxnfn�1(x)h(x). (15.5)

Physicists often use the less elaborate notation

�G[f ]

�f(y)
= �G[f ][�y] (15.6)

in which the function h(x) is �y(x) = �(x � y). Thus in the preceding
example

�G[f ]

�f(y)
=

Z
dxnfn�1(x)�(x� y) = nfn�1(y). (15.7)

Functional derivatives of functionals that involve powers of derivatives
also are easily dealt with. Suppose that the functional involves the square
of the derivative f 0(x)

G[f ] =

Z
dx

�
f 0(x)

�
2

. (15.8)

Then its functional derivative is

�G[f ][h] =
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G[f + ✏h]
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�
f 0(x) + ✏h0(x)
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Z
dx 2f 0(x)h0(x) = �2

Z
dx f 00(x)h(x) (15.9)

in which we have integrated by parts and used suitable boundary conditions
on h(x) to drop the surface terms. In physics notation, we have

�G[f ]

�f(y)
= �2

Z
dx f 00(x)�(x� y) = �2f 00(y). (15.10)
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Let’s now compute the functional derivative of the action (15.2), which in-
volves the square of the time-derivative q̇(t) and the potential energy V (q(t))

�S[q][h] =
d

d✏
S[q + ✏h]

����
✏=0

=
d

d✏

Z
dt
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� V (q(t) + ✏h(t))
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h
mq̇(t)ḣ(t)� V 0(q(t))h(t)

i
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Z
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⇥
�mq̈(t)� V 0(q(t))

⇤
h(t) (15.11)

where we once again have integrated by parts and used suitable boundary
conditions to drop the surface terms. In physics notation, this is

�S[q]

�q(t)
=

Z
dt0

⇥
�mq̈(t0)� V 0(q(t0))

⇤
�(t0 � t) = �mq̈(t)� V 0(q(t)). (15.12)

In these terms, the stationarity of the action S[q] is the vanishing of its
functional derivative either in the form

�S[q][h] = 0 (15.13)

for arbitrary functions h(t) (that vanish at the end points of the interval) or
equivalently in the form

�S[q]

�q(t)
= 0 (15.14)

which is Lagrange’s equation of motion

mq̈(t) = �V 0(q(t)). (15.15)

Physicists also use the compact notation

�2Z[j]

�j(y)�j(z)
⌘ @2Z[j + ✏�y + ✏0�z]

@✏ @✏0

����
✏=✏0=0

(15.16)

in which �y(x) = �(x� y) and �z(x) = �(x� z).

Example 15.1 (Shortest Path is a Straight Line) On a plane, the length
of the path (x, y(x)) from (x

0

, y
0

) to (x
1

, y
1

) is

L[y] =

Z x1

x0

p
dx2 + dy2 =

Z x1

x0

p
1 + y02 dx. (15.17)
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The shortest path y(x) minimizes this length L[y], so

�L[y][h] =
d

d✏
L[y + ✏h]
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=
d

d✏
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=
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h
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dx = 0 (15.18)

since h(x
0

) = h(x
1

) = 0. This can vanish for arbitrary h(x) only if

d

dx

y0p
1 + y02

= 0 (15.19)

which implies y00 = 0. Thus y(x) is a straight line, y = mx+ b.

15.3 Higher-Order Functional Derivatives

The second functional derivative is

�2G[f ][h] =
d2

d✏2
G[f + ✏h]|✏=0

. (15.20)

So if GN [f ] is the functional

GN [f ] =

Z
fN (x)dx (15.21)

then
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=
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Example 15.2 (�2S
0

) The second functional derivative of the action S
0

[q]
(15.1) is
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and is positive for all functions h(t). The stationary classical trajectory

q(t) =
t� t

1

t
2

� t
1

q(t
2

) +
t
2

� t

t
2

� t
1

q(t
1

) (15.24)

is a minimum of the action S
0

[q].

The second functional derivative of the action S[q] (15.2) is

�2S[q][h] =
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d✏2
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(15.25)

and it can be positive, zero, or negative. Chaos sometimes arises in systems
of several particles when the second variation of S[q] about a stationary path
is negative, �2S[q][h] < 0 while �S[q][h] = 0.

The nth functional derivative is defined as

�nG[f ][h] =
dn

d✏n
G[f + ✏h]|✏=0

. (15.26)

The nth functional derivative of the functional (15.21) is

�nGN [f ][h] =
N !

(N � n)!

Z
fN�n(x)hn(x)dx. (15.27)

15.4 Functional Taylor Series

It follows from the Taylor-series theorem (section 4.6) that

e�G[f ][h] =
1X
n=0

�n

n!
G[f ][h] =

1X
n=0

1

n!
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d✏n
G[f + ✏h]

����
✏=0

= G[f + h] (15.28)

which illustrates an advantage of the present mathematical notation.

The functional S
0

[q] of Eq.(15.1) provides a simple example of the func-
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tional Taylor series (15.28):
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⌘
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If the function q(t) makes the action S
0

[q] stationary, and if h(t) is smooth
and vanishes at the endpoints of the time interval, then

S
0

[q + h] = S
0

[q] + S
0

[h]. (15.30)

More generally, if q(t) makes the action S[q] stationary, and h(t) is any
loop from and to the origin, then

S[q + h] = e�S[q][h] = S[q] +
1X
n=2

1

n!
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d✏n
S[q + ✏h]|✏=0

. (15.31)

If further S
2

[q] is purely quadratic in q and q̇, like the harmonic oscillator,
then

S
2

[q + h] = S
2

[q] + S
2

[h]. (15.32)

15.5 Functional Di↵erential Equations

In inner products like hq0|fi, we represent the momentum operator as

p =
~
i

d

dq0
(15.33)

because then

hq0|p q|fi = ~
i

d

dq0
hq0|q|fi = ~

i

d

dq0
�
q0hq0|fi

�
=

✓
~
i
+ q0

~
i

d

dq0

◆
hq0|fi (15.34)

which respects the commutation relation [q, p] = i~.
So too in inner products h�0|fi of eigenstates |�0i of �(x, t)

�(x, t)|�0i = �0(x)|�0i (15.35)
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we can represent the momentum ⇡(x, t) canonically conjugate to the field
�(x, t) as the functional derivative

⇡(x, t) =
~
i

�

��0(x)
(15.36)

because then

h�0|⇡(x0, t)�(x, t)|fi = ~
i

�

��0(x0)
h�0|�(x, t)|fi

=
~
i

�

��0(x0)

�
�0(x)h�0|fi

�
(15.37)

=
~
i

�

��0(x0)

✓Z
�(x� x0)�0(x0) d3x0 h�0|fi

◆
=

~
i

✓
�(x� x0) + �0(x)

�

��0(x0)

◆
h�0|fi

= h�0|� i~�(x� x0) + �(x, t)⇡(x0, t)|fi

which respects the equal-time commutation relation

[�(x, t),⇡(x0, t)] = i ~ �(x� x0). (15.38)

We can use the representation (15.36) for ⇡(x) to find the wave function
of the ground state |0i of the hamiltonian

H =
1

2

Z ⇥
⇡2 + (r�)2 +m2�2

⇤
d3x (15.39)

where we set ~ = c = 1. We will use the trick we used in section 2.11 to find
the ground state |0i of the harmonic-oscillator hamiltonian

H
0

=
p2

2m
+

m!2q2

2
. (15.40)

In that trick, one writes

H
0

=
1

2m
(m!q � ip)(m!q + ip) +

i!

2
[p, q]

=
1

2m
(m!q � ip)(m!q + ip) +

1

2
~! (15.41)

and seeks a state |0i that is annihilated by m!q + ip

hq0|m!q + ip|0i =
✓
m!q0 + ~ d

dq0

◆
hq0|0i = 0. (15.42)

The solution to this di↵erential equation

d

dq0
hq0|0i = �m!q0

~ hq0|0i (15.43)



632 Functional Derivatives

is

hq0|0i =
⇣m!

⇡~

⌘
1/4

exp

✓
�m!q02

2~

◆
(15.44)

in which the prefactor is a constant of normalization.
So extending that trick to the hamiltonian (15.39), we factor H

H =
1

2

Z hp
�r2 +m2 �� i⇡

i hp
�r2 +m2 �+ i⇡

i
d3x+ C (15.45)

in which C is the (infinite) constant

C =
i

2

Z h
⇡,

p
�4+m2 �

i
d3x. (15.46)

The ground state |0i of H therefore must satisfy the functional di↵erential
equation h�0|

p
�r2 +m2 �+ i⇡|0i = 0 or

�h�0|0i
��0(x)

= �
p
�r2 +m2 �0(x) h�0|0i. (15.47)

The solution to this equation is

h�0|0i = N exp

✓
�1

2

Z
�0(x)

p
�r2 +m2 �0(x) d3x

◆
(15.48)

in which N is a normalization constant. To see that this functional does
satisfy equation (15.47), we compute the derivative

dh�0 + ✏h|0i
d✏

= N
d

d✏
exp


�1

2

Z �
�0 + ✏h

�p
�4+m2

�
�0 + ✏h

�
d3x

�
(15.49)

which at ✏ = 0 is

dh�0 + ✏h|0i
d✏

����
✏=0

= �1

2

Z
h(x)

p
�4+m2 �0(x) �3x

+

Z
�0(x)

p
�4+m2 h(x) d3x

�
h�0|0i.

(15.50)

We integrate the second term by parts and drop the surface terms because
the smooth function h goes to zero quickly as its arguments go to infinity.
We then have

dh�0 + ✏h|0i
d✏

����
✏=0

= �
Z
h(x0)

p
�4+m2 �0(x0) d3x0 h�0|0i. (15.51)

Letting h(x0) = �(3)(x0 � x), we arrive at (15.47).
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The spatial Fourier transform �̃0(p)

�0(x) =

Z
eip·x �̃0(p)

d3p

(2⇡)3
(15.52)

satisfies �̃0(�p) = �̃0⇤(p) since �0 is real. In terms of it, the ground-state
wave function is

h�0|0i = N exp

✓
�1

2

Z
|�̃0(p)|2

p
p2 +m2

d3p

(2⇡)3

◆
. (15.53)

Example 15.3 (Other Theories, Other Vacua) We can find exact ground
states for interacting theories with hamiltonians like

H =
1

2

Z hp
�r2 +m2 �� icn�

n � i⇡
i hp

�r2 +m2 �+ icn�
n + i⇡

i
d3x.

(15.54)
The state |⌦i will be an eigenstate of H with eigenvalue zero if

�h�0|⌦i
��0(x)

= �
hp

�r2 +m2 �0(x) + icn�
0n
i
h�0|⌦i. (15.55)

By extending the argument of equations (15.45–15.51), one may show (ex-
ercise 15.4) that the wave functional of the vacuum is

h�0|⌦i = N exp


�
Z ✓

1

2

�0
p

�r2 +m2 �0 +
icn

n+ 1
�0n+1

◆
d3x

�
. (15.56)

Exercises

15.1 Compute the action S
0

[q] (15.1) for the classical path (15.24).
15.2 Use (15.25) to find a formula for the second functional derivative of the

action (15.2) of the harmonic oscillator for which V (q) = m!2q2/2.
15.3 Derive (15.53) from equations (15.48 & 15.52).
15.4 Show that (15.56) satisfies (15.55).


