15

Functional Derivatives

15.1 Functionals

A functional $G[f]$ is a map from a space of functions to a set of numbers. For instance, the action functional $S[q]$ for a particle in one dimension maps the coordinate $q(t)$, which is a function of the time t, into a number-the action of the process. If the particle has mass m and is moving slowly and freely, then for the interval $\left(t_{1}, t_{2}\right)$ its action is

$$
\begin{equation*}
S_{0}[q]=\int_{t_{1}}^{t_{2}} d t \frac{m}{2}\left(\frac{d q(t)}{d t}\right)^{2} . \tag{15.1}
\end{equation*}
$$

If the particle is moving in a potential $V(q(t))$, then its action is

$$
\begin{equation*}
S[q]=\int_{t_{1}}^{t_{2}} d t\left[\frac{m}{2}\left(\frac{d q(t)}{d t}\right)^{2}-V(q(t))\right] \tag{15.2}
\end{equation*}
$$

15.2 Functional Derivatives

A functional derivative is a functional

$$
\begin{equation*}
\delta G[f][h]=\left.\frac{d}{d \epsilon} G[f+\epsilon h]\right|_{\epsilon=0} \tag{15.3}
\end{equation*}
$$

of a functional. For instance, if $G_{n}[f]$ is the functional

$$
\begin{equation*}
G_{n}[f]=\int d x f^{n}(x) \tag{15.4}
\end{equation*}
$$

then its functional derivative is the functional that maps the pair of functions f, h to the number

$$
\begin{align*}
\delta G_{n}[f][h] & =\left.\frac{d}{d \epsilon} G_{n}[f+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{d}{d \epsilon} \int d x(f(x)+\epsilon h(x))^{n}\right|_{\epsilon=0} \\
& =\int d x n f^{n-1}(x) h(x) \tag{15.5}
\end{align*}
$$

Physicists often use the less elaborate notation

$$
\begin{equation*}
\frac{\delta G[f]}{\delta f(y)}=\delta G[f]\left[\delta_{y}\right] \tag{15.6}
\end{equation*}
$$

in which the function $h(x)$ is $\delta_{y}(x)=\delta(x-y)$. Thus in the preceding example

$$
\begin{equation*}
\frac{\delta G[f]}{\delta f(y)}=\int d x n f^{n-1}(x) \delta(x-y)=n f^{n-1}(y) \tag{15.7}
\end{equation*}
$$

Functional derivatives of functionals that involve powers of derivatives also are easily dealt with. Suppose that the functional involves the square of the derivative $f^{\prime}(x)$

$$
\begin{equation*}
G[f]=\int d x\left(f^{\prime}(x)\right)^{2} \tag{15.8}
\end{equation*}
$$

Then its functional derivative is

$$
\begin{align*}
\delta G[f][h] & =\left.\frac{d}{d \epsilon} G[f+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{d}{d \epsilon} \int d x\left(f^{\prime}(x)+\epsilon h^{\prime}(x)\right)^{2}\right|_{\epsilon=0} \\
& =\int d x 2 f^{\prime}(x) h^{\prime}(x)=-2 \int d x f^{\prime \prime}(x) h(x) \tag{15.9}
\end{align*}
$$

in which we have integrated by parts and used suitable boundary conditions on $h(x)$ to drop the surface terms. In physics notation, we have

$$
\begin{equation*}
\frac{\delta G[f]}{\delta f(y)}=-2 \int d x f^{\prime \prime}(x) \delta(x-y)=-2 f^{\prime \prime}(y) \tag{15.10}
\end{equation*}
$$

Let's now compute the functional derivative of the action (15.2), which involves the square of the time-derivative $\dot{q}(t)$ and the potential energy $V(q(t))$

$$
\begin{align*}
\delta S[q][h] & =\left.\frac{d}{d \epsilon} S[q+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{d}{d \epsilon} \int d t\left[\frac{m}{2}(\dot{q}(t)+\epsilon \dot{h}(t))^{2}-V(q(t)+\epsilon h(t))\right]\right|_{\epsilon=0} \\
& =\int d t\left[m \dot{q}(t) \dot{h}(t)-V^{\prime}(q(t)) h(t)\right] \\
& =\int d t\left[-m \ddot{q}(t)-V^{\prime}(q(t))\right] h(t) \tag{15.11}
\end{align*}
$$

where we once again have integrated by parts and used suitable boundary conditions to drop the surface terms. In physics notation, this is

$$
\begin{equation*}
\frac{\delta S[q]}{\delta q(t)}=\int d t^{\prime}\left[-m \ddot{q}\left(t^{\prime}\right)-V^{\prime}\left(q\left(t^{\prime}\right)\right)\right] \delta\left(t^{\prime}-t\right)=-m \ddot{q}(t)-V^{\prime}(q(t)) . \tag{15.12}
\end{equation*}
$$

In these terms, the stationarity of the action $S[q]$ is the vanishing of its functional derivative either in the form

$$
\begin{equation*}
\delta S[q][h]=0 \tag{15.13}
\end{equation*}
$$

for arbitrary functions $h(t)$ (that vanish at the end points of the interval) or equivalently in the form

$$
\begin{equation*}
\frac{\delta S[q]}{\delta q(t)}=0 \tag{15.14}
\end{equation*}
$$

which is Lagrange's equation of motion

$$
\begin{equation*}
m \ddot{q}(t)=-V^{\prime}(q(t)) . \tag{15.15}
\end{equation*}
$$

Physicists also use the compact notation

$$
\begin{equation*}
\left.\frac{\delta^{2} Z[j]}{\delta j(y) \delta j(z)} \equiv \frac{\partial^{2} Z\left[j+\epsilon \delta_{y}+\epsilon^{\prime} \delta_{z}\right]}{\partial \epsilon \partial \epsilon^{\prime}}\right|_{\epsilon=\epsilon^{\prime}=0} \tag{15.16}
\end{equation*}
$$

in which $\delta_{y}(x)=\delta(x-y)$ and $\delta_{z}(x)=\delta(x-z)$.
Example 15.1 (Shortest Path is a Straight Line) On a plane, the length of the path $(x, y(x))$ from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ is

$$
\begin{equation*}
L[y]=\int_{x_{0}}^{x_{1}} \sqrt{d x^{2}+d y^{2}}=\int_{x_{0}}^{x_{1}} \sqrt{1+y^{\prime 2}} d x \tag{15.17}
\end{equation*}
$$

The shortest path $y(x)$ minimizes this length $L[y]$, so

$$
\begin{align*}
\delta L[y][h] & =\left.\frac{d}{d \epsilon} L[y+\epsilon h]\right|_{\epsilon=0}=\left.\frac{d}{d \epsilon} \int_{x_{0}}^{x_{1}} \sqrt{1+\left(y^{\prime}+\epsilon h^{\prime}\right)^{2}} d x\right|_{\epsilon=0} \\
& =\int_{x_{0}}^{x_{1}} \frac{y^{\prime} h^{\prime}}{\sqrt{1+y^{2}}} d x=-\int_{x_{0}}^{x_{1}} h \frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} d x=0 \tag{15.18}
\end{align*}
$$

since $h\left(x_{0}\right)=h\left(x_{1}\right)=0$. This can vanish for arbitrary $h(x)$ only if

$$
\begin{equation*}
\frac{d}{d x} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=0 \tag{15.19}
\end{equation*}
$$

which implies $y^{\prime \prime}=0$. Thus $y(x)$ is a straight line, $y=m x+b$.

15.3 Higher-Order Functional Derivatives

The second functional derivative is

$$
\begin{equation*}
\delta^{2} G[f][h]=\left.\frac{d^{2}}{d \epsilon^{2}} G[f+\epsilon h]\right|_{\epsilon=0} \tag{15.20}
\end{equation*}
$$

So if $G_{N}[f]$ is the functional

$$
\begin{equation*}
G_{N}[f]=\int f^{N}(x) d x \tag{15.21}
\end{equation*}
$$

then

$$
\begin{align*}
\delta^{2} G_{N}[f][h] & =\left.\frac{d^{2}}{d \epsilon^{2}} G_{N}[f+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{d^{2}}{d \epsilon^{2}} \int(f(x)+\epsilon h(x))^{N} d x\right|_{\epsilon=0} \\
& =\left.\frac{d^{2}}{d \epsilon^{2}} \int\binom{N}{2} \epsilon^{2} h^{2}(x) f^{N-2}(x) d x\right|_{\epsilon=0} \\
& =N(N-1) \int f^{N-2}(x) h^{2}(x) d x \tag{15.22}
\end{align*}
$$

Example $15.2\left(\delta^{2} S_{0}\right)$ The second functional derivative of the action $S_{0}[q]$ (15.1) is

$$
\begin{align*}
\delta^{2} S_{0}[q][h] & =\left.\frac{d^{2}}{d \epsilon^{2}} \int_{t_{1}}^{t_{2}} d t \frac{m}{2}\left(\frac{d q(t)}{d t}+\epsilon \frac{d h(t)}{d t}\right)^{2}\right|_{\epsilon=0} \\
& =\int_{t_{1}}^{t_{2}} d t m\left(\frac{d h(t)}{d t}\right)^{2} \geq 0 \tag{15.23}
\end{align*}
$$

and is positive for all functions $h(t)$. The stationary classical trajectory

$$
\begin{equation*}
q(t)=\frac{t-t_{1}}{t_{2}-t_{1}} q\left(t_{2}\right)+\frac{t_{2}-t}{t_{2}-t_{1}} q\left(t_{1}\right) \tag{15.24}
\end{equation*}
$$

is a minimum of the action $S_{0}[q]$.
The second functional derivative of the action $S[q]$ (15.2) is

$$
\begin{align*}
\delta^{2} S[q][h] & =\left.\frac{d^{2}}{d \epsilon^{2}} \int_{t_{1}}^{t_{2}} d t\left[\frac{m}{2}\left(\frac{d q(t)}{d t}+\epsilon \frac{d h(t)}{d t}\right)^{2}-V(q(t)+\epsilon h(t))\right]\right|_{\epsilon=0} \\
& =\int_{t_{1}}^{t_{2}} d t\left[m\left(\frac{d h(t)}{d t}\right)^{2}-\frac{\partial^{2} V(q(t))}{\partial q^{2}(t)} h^{2}(t)\right] \tag{15.25}
\end{align*}
$$

and it can be positive, zero, or negative. Chaos sometimes arises in systems of several particles when the second variation of $S[q]$ about a stationary path is negative, $\delta^{2} S[q][h]<0$ while $\delta S[q][h]=0$.

The nth functional derivative is defined as

$$
\begin{equation*}
\delta^{n} G[f][h]=\left.\frac{d^{n}}{d \epsilon^{n}} G[f+\epsilon h]\right|_{\epsilon=0} . \tag{15.26}
\end{equation*}
$$

The nth functional derivative of the functional (15.21) is

$$
\begin{equation*}
\delta^{n} G_{N}[f][h]=\frac{N!}{(N-n)!} \int f^{N-n}(x) h^{n}(x) d x \tag{15.27}
\end{equation*}
$$

15.4 Functional Taylor Series

It follows from the Taylor-series theorem (section 4.6) that

$$
\begin{equation*}
e^{\delta} G[f][h]=\sum_{n=0}^{\infty} \frac{\delta^{n}}{n!} G[f][h]=\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n}}{d \epsilon^{n}} G[f+\epsilon h]\right|_{\epsilon=0}=G[f+h] \tag{15.28}
\end{equation*}
$$

which illustrates an advantage of the present mathematical notation.
The functional $S_{0}[q]$ of Eq.(15.1) provides a simple example of the func-
tional Taylor series (15.28):

$$
\begin{align*}
e^{\delta} S_{0}[q][h] & =\left.\left(1+\frac{d}{d \epsilon}+\frac{1}{2} \frac{d^{2}}{d \epsilon^{2}}\right) S_{0}[q+\epsilon h]\right|_{\epsilon=0} \\
& =\left.\frac{m}{2} \int_{t_{1}}^{t_{2}}\left(1+\frac{d}{d \epsilon}+\frac{1}{2} \frac{d^{2}}{d \epsilon^{2}}\right)(\dot{q}(t)+\epsilon \dot{h}(t))^{2} d t\right|_{\epsilon=0} \\
& =\frac{m}{2} \int_{t_{1}}^{t_{2}}\left(\dot{q}^{2}(t)+2 \dot{q}(t) \dot{h}(t)+\dot{h}^{2}(t)\right) d t \\
& =\frac{m}{2} \int_{t_{1}}^{t_{2}}(\dot{q}(t)+\dot{h}(t))^{2} d t=S_{0}[q+h] \tag{15.29}
\end{align*}
$$

If the function $q(t)$ makes the action $S_{0}[q]$ stationary, and if $h(t)$ is smooth and vanishes at the endpoints of the time interval, then

$$
\begin{equation*}
S_{0}[q+h]=S_{0}[q]+S_{0}[h] \tag{15.30}
\end{equation*}
$$

More generally, if $q(t)$ makes the action $S[q]$ stationary, and $h(t)$ is any loop from and to the origin, then

$$
\begin{equation*}
S[q+h]=e^{\delta} S[q][h]=S[q]+\left.\sum_{n=2}^{\infty} \frac{1}{n!} \frac{d^{n}}{d \epsilon^{n}} S[q+\epsilon h]\right|_{\epsilon=0} \tag{15.31}
\end{equation*}
$$

If further $S_{2}[q]$ is purely quadratic in q and \dot{q}, like the harmonic oscillator, then

$$
\begin{equation*}
S_{2}[q+h]=S_{2}[q]+S_{2}[h] \tag{15.32}
\end{equation*}
$$

15.5 Functional Differential Equations

In inner products like $\left\langle q^{\prime} \mid f\right\rangle$, we represent the momentum operator as

$$
\begin{equation*}
p=\frac{\hbar}{i} \frac{d}{d q^{\prime}} \tag{15.33}
\end{equation*}
$$

because then

$$
\begin{equation*}
\left\langle q^{\prime}\right| p q|f\rangle=\frac{\hbar}{i} \frac{d}{d q^{\prime}}\left\langle q^{\prime}\right| q|f\rangle=\frac{\hbar}{i} \frac{d}{d q^{\prime}}\left(q^{\prime}\left\langle q^{\prime} \mid f\right\rangle\right)=\left(\frac{\hbar}{i}+q^{\prime} \frac{\hbar}{i} \frac{d}{d q^{\prime}}\right)\left\langle q^{\prime} \mid f\right\rangle \tag{15.34}
\end{equation*}
$$

which respects the commutation relation $[q, p]=i \hbar$.
So too in inner products $\left\langle\phi^{\prime} \mid f\right\rangle$ of eigenstates $\left|\phi^{\prime}\right\rangle$ of $\phi(\boldsymbol{x}, t)$

$$
\begin{equation*}
\phi(\boldsymbol{x}, t)\left|\phi^{\prime}\right\rangle=\phi^{\prime}(\boldsymbol{x})\left|\phi^{\prime}\right\rangle \tag{15.35}
\end{equation*}
$$

we can represent the momentum $\pi(\boldsymbol{x}, t)$ canonically conjugate to the field $\phi(\boldsymbol{x}, t)$ as the functional derivative

$$
\begin{equation*}
\pi(\boldsymbol{x}, t)=\frac{\hbar}{i} \frac{\delta}{\delta \phi^{\prime}(\boldsymbol{x})} \tag{15.36}
\end{equation*}
$$

because then

$$
\begin{align*}
\left\langle\phi^{\prime}\right| \pi\left(\boldsymbol{x}^{\prime}, t\right) \phi(\boldsymbol{x}, t)|f\rangle & =\frac{\hbar}{i} \frac{\delta}{\delta \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right)}\left\langle\phi^{\prime}\right| \phi(\boldsymbol{x}, t)|f\rangle \\
& =\frac{\hbar}{i} \frac{\delta}{\delta \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right)}\left(\phi^{\prime}(\boldsymbol{x})\left\langle\phi^{\prime} \mid f\right\rangle\right) \tag{15.37}\\
& =\frac{\hbar}{i} \frac{\delta}{\delta \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right)}\left(\int \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}\left\langle\phi^{\prime} \mid f\right\rangle\right) \\
& =\frac{\hbar}{i}\left(\delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)+\phi^{\prime}(\boldsymbol{x}) \frac{\delta}{\delta \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right)}\right)\left\langle\phi^{\prime} \mid f\right\rangle \\
& =\left\langle\phi^{\prime}\right|-i \hbar \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)+\phi(\boldsymbol{x}, t) \pi\left(\boldsymbol{x}^{\prime}, t\right)|f\rangle
\end{align*}
$$

which respects the equal-time commutation relation

$$
\begin{equation*}
\left[\phi(\boldsymbol{x}, t), \pi\left(\boldsymbol{x}^{\prime}, t\right)\right]=i \hbar \delta\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \tag{15.38}
\end{equation*}
$$

We can use the representation (15.36) for $\pi(x)$ to find the wave function of the ground state $|0\rangle$ of the hamiltonian

$$
\begin{equation*}
H=\frac{1}{2} \int\left[\pi^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right] d^{3} x \tag{15.39}
\end{equation*}
$$

where we set $\hbar=c=1$. We will use the trick we used in section 2.11 to find the ground state $|0\rangle$ of the harmonic-oscillator hamiltonian

$$
\begin{equation*}
H_{0}=\frac{p^{2}}{2 m}+\frac{m \omega^{2} q^{2}}{2} \tag{15.40}
\end{equation*}
$$

In that trick, one writes

$$
\begin{align*}
H_{0} & =\frac{1}{2 m}(m \omega q-i p)(m \omega q+i p)+\frac{i \omega}{2}[p, q] \\
& =\frac{1}{2 m}(m \omega q-i p)(m \omega q+i p)+\frac{1}{2} \hbar \omega \tag{15.41}
\end{align*}
$$

and seeks a state $|0\rangle$ that is annihilated by $m \omega q+i p$

$$
\begin{equation*}
\left\langle q^{\prime}\right| m \omega q+i p|0\rangle=\left(m \omega q^{\prime}+\hbar \frac{d}{d q^{\prime}}\right)\left\langle q^{\prime} \mid 0\right\rangle=0 . \tag{15.42}
\end{equation*}
$$

The solution to this differential equation

$$
\begin{equation*}
\frac{d}{d q^{\prime}}\left\langle q^{\prime} \mid 0\right\rangle=-\frac{m \omega q^{\prime}}{\hbar}\left\langle q^{\prime} \mid 0\right\rangle \tag{15.43}
\end{equation*}
$$

is

$$
\begin{equation*}
\left\langle q^{\prime} \mid 0\right\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega q^{\prime 2}}{2 \hbar}\right) \tag{15.44}
\end{equation*}
$$

in which the prefactor is a constant of normalization.
So extending that trick to the hamiltonian (15.39), we factor H

$$
\begin{equation*}
H=\frac{1}{2} \int\left[\sqrt{-\nabla^{2}+m^{2}} \phi-i \pi\right]\left[\sqrt{-\nabla^{2}+m^{2}} \phi+i \pi\right] d^{3} x+C \tag{15.45}
\end{equation*}
$$

in which C is the (infinite) constant

$$
\begin{equation*}
C=\frac{i}{2} \int\left[\pi, \sqrt{-\triangle+m^{2}} \phi\right] d^{3} x \tag{15.46}
\end{equation*}
$$

The ground state $|0\rangle$ of H therefore must satisfy the functional differential equation $\left\langle\phi^{\prime}\right| \sqrt{-\nabla^{2}+m^{2}} \phi+i \pi|0\rangle=0$ or

$$
\begin{equation*}
\frac{\delta\left\langle\phi^{\prime} \mid 0\right\rangle}{\delta \phi^{\prime}(\boldsymbol{x})}=-\sqrt{-\nabla^{2}+m^{2}} \phi^{\prime}(\boldsymbol{x})\left\langle\phi^{\prime} \mid 0\right\rangle . \tag{15.47}
\end{equation*}
$$

The solution to this equation is

$$
\begin{equation*}
\left\langle\phi^{\prime} \mid 0\right\rangle=N \exp \left(-\frac{1}{2} \int \phi^{\prime}(\boldsymbol{x}) \sqrt{-\nabla^{2}+m^{2}} \phi^{\prime}(\boldsymbol{x}) d^{3} x\right) \tag{15.48}
\end{equation*}
$$

in which N is a normalization constant. To see that this functional does satisfy equation (15.47), we compute the derivative

$$
\begin{equation*}
\frac{d\left\langle\phi^{\prime}+\epsilon h \mid 0\right\rangle}{d \epsilon}=N \frac{d}{d \epsilon} \exp \left[-\frac{1}{2} \int\left(\phi^{\prime}+\epsilon h\right) \sqrt{-\triangle+m^{2}}\left(\phi^{\prime}+\epsilon h\right) d^{3} x\right] \tag{15.49}
\end{equation*}
$$

which at $\epsilon=0$ is

$$
\begin{align*}
\left.\frac{d\left\langle\phi^{\prime}+\epsilon h \mid 0\right\rangle}{d \epsilon}\right|_{\epsilon=0}=-\frac{1}{2} & {\left[\int h(\boldsymbol{x}) \sqrt{-\triangle+m^{2}} \phi^{\prime}(\boldsymbol{x}) \delta^{3} x\right.} \tag{15.50}\\
& \left.+\int \phi^{\prime}(\boldsymbol{x}) \sqrt{-\triangle+m^{2}} h(\boldsymbol{x}) d^{3} x\right]\left\langle\phi^{\prime} \mid 0\right\rangle .
\end{align*}
$$

We integrate the second term by parts and drop the surface terms because the smooth function h goes to zero quickly as its arguments go to infinity. We then have

$$
\begin{equation*}
\left.\frac{d\left\langle\phi^{\prime}+\epsilon h \mid 0\right\rangle}{d \epsilon}\right|_{\epsilon=0}=-\int h\left(\boldsymbol{x}^{\prime}\right) \sqrt{-\triangle+m^{2}} \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}\left\langle\phi^{\prime} \mid 0\right\rangle . \tag{15.51}
\end{equation*}
$$

Letting $h\left(\boldsymbol{x}^{\prime}\right)=\delta^{(3)}\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}\right)$, we arrive at (15.47).

The spatial Fourier transform $\tilde{\phi}^{\prime}(\boldsymbol{p})$

$$
\begin{equation*}
\phi^{\prime}(\boldsymbol{x})=\int e^{i \boldsymbol{p} \cdot \boldsymbol{x}} \tilde{\phi}^{\prime}(\boldsymbol{p}) \frac{d^{3} p}{(2 \pi)^{3}} \tag{15.52}
\end{equation*}
$$

satisfies $\tilde{\phi}^{\prime}(-\boldsymbol{p})=\tilde{\phi}^{\prime *}(\boldsymbol{p})$ since ϕ^{\prime} is real. In terms of it, the ground-state wave function is

$$
\begin{equation*}
\left\langle\phi^{\prime} \mid 0\right\rangle=N \exp \left(-\frac{1}{2} \int\left|\tilde{\phi}^{\prime}(\boldsymbol{p})\right|^{2} \sqrt{\boldsymbol{p}^{2}+m^{2}} \frac{d^{3} p}{(2 \pi)^{3}}\right) . \tag{15.53}
\end{equation*}
$$

Example 15.3 (Other Theories, Other Vacua) We can find exact ground states for interacting theories with hamiltonians like

$$
\begin{equation*}
H=\frac{1}{2} \int\left[\sqrt{-\nabla^{2}+m^{2}} \phi-i c_{n} \phi^{n}-i \pi\right]\left[\sqrt{-\nabla^{2}+m^{2}} \phi+i c_{n} \phi^{n}+i \pi\right] d^{3} x . \tag{15.54}
\end{equation*}
$$

The state $|\Omega\rangle$ will be an eigenstate of H with eigenvalue zero if

$$
\begin{equation*}
\frac{\delta\left\langle\phi^{\prime} \mid \Omega\right\rangle}{\delta \phi^{\prime}(\boldsymbol{x})}=-\left[\sqrt{-\nabla^{2}+m^{2}} \phi^{\prime}(\boldsymbol{x})+i c_{n} \phi^{\prime n}\right]\left\langle\phi^{\prime} \mid \Omega\right\rangle \tag{15.55}
\end{equation*}
$$

By extending the argument of equations (15.45-15.51), one may show (exercise 15.4) that the wave functional of the vacuum is

$$
\begin{equation*}
\left\langle\phi^{\prime} \mid \Omega\right\rangle=N \exp \left[-\int\left(\frac{1}{2} \phi^{\prime} \sqrt{-\nabla^{2}+m^{2}} \phi^{\prime}+\frac{i c_{n}}{n+1} \phi^{\prime n+1}\right) d^{3} x\right] . \tag{15.56}
\end{equation*}
$$

Exercises

15.1 Compute the action $S_{0}[q]$ (15.1) for the classical path (15.24).
15.2 Use (15.25) to find a formula for the second functional derivative of the action (15.2) of the harmonic oscillator for which $V(q)=m \omega^{2} q^{2} / 2$.
15.3 Derive (15.53) from equations ($15.48 \& 15.52$).
15.4 Show that (15.56) satisfies (15.55).

