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CALCULUS OF FUNCTIONALS

Introduction. In classical mechanics one has interest in functions x(t) of a
single variable, while in field theory one’s interest shifts to functions ϕ(t, x)
of several variables, but the ordinary calculus of functions of several variables
would appear to be as adequate to the mathematical needs of the latter subject
as it is to the former. And so, in large part, it is. But the “variational
principles of mechanics” do typically reach a little beyond the bounds of the
ordinary calculus. We had occasion already on p. 16 to remark in passing that
S[ϕ] =

∫
L(ϕ, ∂ϕ)dx is by nature a “number-valued function of a function,”

and to speak therefore not of an “action function” but of the action functional ;
it was, in fact, to emphasize precisely that distinction that we wrote not S(ϕ)
but S[ϕ]. When one speaks—as Hamilton’s principle asks us to do—of the
variational properties of such an object one is venturing into the “calculus of
functionals,” but only a little way. Statements of the (frequently very useful)
type δf(x) = 0 touch implicitly upon the concept of differentiation, but scarcely
hint at the elaborate structure which is the calculus itself. Similarly, statements
of the (also often useful) type δS[ϕ] = 0, though they exhaust the subject matter
of the “calculus of variations,” scarcely hint at the elaborate (if relatively little
known) structure which I have in the present chapter undertaken to review.
Concerning my motivation:

At (60) in Chapter I we had occasion to speak of the “Poisson bracket” of
a pair of functionals A =

∫
A(π, ϕ,∇π,∇ϕ)dx and B =

∫
B(π, ϕ,∇π,∇ϕ)dx,

and this—since in mechanics the Poisson bracket of observables A(p, q) and
B(p, q) is defined

[A,B] ≡
n∑

k=1

{
∂A

∂qk
∂B

∂pk
− ∂B

∂qk
∂A

∂pk

}

—would appear (as noted already on p.49) to entail that be we in position to
attach meaning to the “derivative” of a functional. One of my initial objectives
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will be to show how this is done. We will learn how to compute functional
derivatives to all orders, and will discover that such constructions draw in an
essential way upon the theory of distributions—a subject which, in fact, belongs
properly not to the theory of functions but to the theory of functionals.1 We
will find ourselves then in position to construct the functional analogs of Taylor
series. Our practical interest in the integral aspects of the functional calculus we
owe ultimately to Richard Feynman; we have seen that the Schrödinger equation
provides—interpretive matters aside—a wonderful instance of a classical field,
and it was Feynman who first noticed (or, at least, who first drew attention to
the importance of the observation) that the Schrödinger equation describes a
property of a certain functional integral. We will want to see how this comes
about. Methods thus acquired become indispensible when one takes up the
quantization of classical field theory; they are, in short, dominant in quantum
field theory. Which, however, is not our present concern. Here our objective will
be simply to put ourselves in position to recognize certain moderately subtle
distinctions, to go about our field-theoretic business with greater precision, to
express ourselves with greater notational economy.

Construction of the functional derivative. By way of preparation, let F (ϕ) be a
number-valued function of the finite-dimensional vector ϕ. What shall we mean
by the “derivative of F (ϕ)?” The key observation here is that we can mean
many things, depending on the direction in which we propose to move while
monitoring rate of change; the better question therefore is “What shall me mean
by the directional derivative of F (ϕ)?” And here the answer is immediate: take
λ to be any fixed vector and form

D[λ]F (ϕ) ≡ lim
ε→0

F (ϕ + ελ)− F (ϕ)
ε

(1.1)

=
∑
i

∂F (ϕ)
∂ϕi

λi (1.2)

≡ derivative of F (ϕ) “in the direction λ”

We might write
D[λ]F (ϕ) ≡ F [ϕ ;λ]

to underscore the fact that D[λ]F (ϕ) is a bifunctional . From (1.2) it is plain
that F [ϕ ;λ] is, so far as concerns its λ-dependence, a linear functional:

F [ϕ ; c1λ1 + c2λ2] = c1F [ϕ ;λ1] + c2F [ϕ ;λ2]

I have now to describe the close relationship between “linear functionals” on
the one hand, and “inner products” on the other. Suppose α =

∑
αiei and

λ =
∑

λiei are elements of an inner product space. Then (α,λ) is, by one

1 See J. Lützen’s wonderful little book, The Prehistory of the Theory of
Distributions, ().
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of the defining properties of the inner product, a bilinear functional. It is, in
particular, a linear functional of λ—call it A[λ ]—and can be described

(α,λ) = A[λ ] =
∑
i

αiλ
i with αi =

∑
j

(ei, ej)α
j

The so-called Riesz-Frechet Theorem runs in the opposite direction; it asserts2

that if A[λ ] is a linear functional defined on an inner product space, then there
exists an α such that A[λ ] can be represented A[λ ] = (α,λ). Returning in the
light of this fundamental result to (1), we can say that (1.1) defines a linear
functional of λ, therefore there exists an α such that

D[λ]F (ϕ) = (α,λ) =
∑
i

αiλ
i

and that we have found it convenient/natural in place of αi to write ∂F (ϕ)
∂ϕi .

It is by direct (infinite-dimensional) imitation of the preceeding line of
argument that we construct what might be (but isn’t) called the “directional
derivative of a functional F [ϕ(x)].” We note that

D[λ(x)]F [ϕ(x)] ≡ lim
ε→0

F [ϕ(x) + ελ(x)]− F [ϕ(x)]
ε

(2.1)

is a linear functional of λ(x), and admits therefore of the representation

=
∫

α(x′)λ(x′)dx′ (2.2)

And we agree, as a matter simply of notation (more specifically, as a reminder
that α(x) came into being as the result of a differentiation process applied to
the functional F [ϕ(x)]), to write

α(x) =
δF [ϕ]
δϕ(x)

=
∫

α(x′)δ(x′ − x)dx′ (3)

Evidently δF [ϕ]
δϕ(x) itself can be construed to describe the result of differentiating

F [ϕ] in the “direction” of the δ-function which is singular at the point x. If, in
particular, F [ϕ] has the structure

F [ϕ] =
∫

f(ϕ(x))dx (4.1)

then the construction (2.1) gives

D[λ]F [ϕ] =
∫

λ(x)
∂

∂ϕ
f(ϕ(x))dx

2 For a proof see F. Riesz & B. Sz.Nagy, Functional Analysis (), p. 61.
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whence
δF [ϕ]
δϕ(x)

=
∂

∂ϕ
f(ϕ(x)) (4.2)

And if, more generally,

F [ϕ] =
∫

f(ϕ(x), ϕx(x))dx (5.1)

then by a familiar argument

D[λ]F [ϕ] =
∫

λ(x)
{

∂

∂ϕ
− ∂

∂x

∂

∂ϕx

}
f(ϕ(x), ϕx(x))dx

and we have
δF [ϕ]
δϕ(x)

=
{

∂

∂ϕ
− ∂

∂x

∂

∂ϕx

}
f(ϕ(x), ϕx(x)) (5.2)

In such cases δF [ϕ]
δϕ(x) flourishes in the sunshine, as it has flourished unrecognized

in preceeding pages, beginning at about p. 43. But it is in the general case
distribution-like, as will presently become quite clear; it popped up, at (2.2), in
the shade of an integral sign, and can like a mushroom become dangerous when
removed from that protective gloom. There is, in short, some hazard latent in
the too-casual use of (3).

It follows readily from (2) that the functional differentiation operator
D[λ(x)] acts linearly

D[λ]

{
F [ϕ] + G[ϕ]

}
= D[λ]F [ϕ] + D[λ]G[ϕ] (6.1)

and acts on products by the familiar rule

D[λ]

{
F [ϕ] ·G[ϕ]

}
=

{
D[λ]F [ϕ]

}
·G[ϕ] + F [ϕ] ·

{
D[λ]G[ϕ]

}
(6.2)

In the shade of an implied integral sign we therefore have

δ

δϕ(x)

{
F [ϕ] + G[ϕ]

}
=

δ

δϕ(x)
F [ϕ] +

δ

δϕ(x)
G[ϕ] (7.1)

and

δ

δϕ(x)

{
F [ϕ] ·G[ϕ]

}
=

{ δ

δϕ(x)
F [ϕ]

}
·G[ϕ] + F [ϕ] ·

{ δ

δϕ(x)
G[ϕ]

}
(7.2)

In connection with the product rule it is, however, important not to confuse
F [ϕ] ·G[ϕ] =

∫
fdx′ ·

∫
gdx′′ with F [ϕ] ∗G[ϕ] =

∫
(f · g)dx.

A second ϕ-differentiation of the linear bifunctional

F [ϕ;λ1] = D[λ1]
F [ϕ] =

∫
δF [ϕ]
δϕ(x′)

λ1(x
′)dx′
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yields a bilinear trifunctional

F [ϕ;λ1, λ2] = D[λ2]
F [ϕ;λ1] = D[λ2]

D[λ1]
F [ϕ]

=
∫ ∫

δ2F [ϕ]
δϕ(x′)δϕ(x′′)

λ1(x
′)λ2(x

′′)dx′dx′′ (8)

In general we expect to have (and will explicitly assume that)

D[λ2]
D[λ1]

F [ϕ] = D[λ1]
D[λ2]

F [ϕ]

which entails that

δ2F [ϕ]
δϕ(x′)δϕ(x′′)

is a symmetric function of x′ and x′′

By natural extension we construct ϕ-derivatives of all orders:

D[λn] · · ·D[λ2]
D[λ1]

F [ϕ] = F [ϕ;λ1, λ2, . . . , λn]

=
∫∫
· · ·

∫
δnF [ϕ]

δϕ(x1)δϕ(x2) · · · δϕ(xn)︸ ︷︷ ︸λ1(x
1)λ2(x

2) · · ·λ2(x
2)dx1dx2 · · · dxn

totally symmetric in x1, x2, . . . , xn

Functional analog of Taylor’s series. In the ordinary calculus of functions,
derivatives of ascending order are most commonly encountered in connection
with the theory of Taylor series; one writes

f(x + a) = exp
{
a
d

dx

}
f(x) =

∑
n

1
n!

dnf(x)
dxn

an (9)

which is justified by the observation that, for all n,

lim
a→0

( d

da

)n

(lefthand side) = lim
a→0

( d

da

)n

(righthand side)

Similarly

f(x + a, y + b) = exp
{
a
∂

∂x
+ b

∂

∂y

}
f(x)

= f(x, y) +
{
afx(x, y) + bfy(x, y)

}
+ 1

2!

{
a2fxx(x, y) + 2abfxy(x, y) + b2fyy(x, y)

}
+ · · ·

No mystery attaches now to the sense in which (and why) it becomes possible
(if we revert to the notation of p.74) to write

F (ϕ + λ) = exp
{∑

λi ∂

∂ϕi

}
F (ϕ)

=
∞∑

n=0

1
n!

{∑
i1

∑
i2

· · ·
∑
in

Fi1i2···in(ϕ)λi1λi2 · · ·λin
}
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with Fi1i2···in(ϕ) ≡ ∂i1∂i2 · · · ∂inF (ϕ) where ∂i ≡ ∂
∂ϕi . Passing finally to the

continuous limit, we obtain

F [ϕ + λ] = exp
{
D[λ]

}
F [ϕ] (10)

=
∞∑

n=0

1
n!

{ ∫∫
· · ·

∫
F (x1, x2, . . . , xn;ϕ)λ(x1)λ(x2) · · ·λ(xn)dx1dx2 · · · dxn

}

with F (x1, x2, . . . , xn;ϕ) ≡ δnF [ϕ]/δϕ(x1)δϕ(x2) · · · δϕ(xn). The right side of
(10) displays F [ϕ + λ] as a “Volterra series”—the functional counterpart of a
Taylor series.3 Taylor’s formula (11) embodies an idea

function of interest =
∑

elementary functions

which is well known to lie at the heart of analysis (i.e., of the theory of
functions).4 We are encouraged by the abstractly identical structure and intent
of Volterra’s formula (12) to hope that this obvious variant

functional of interest =
∑

elementary functionals

3 Set a = δx in (9), or λ = δϕ in (10), and you will appreciate that I had the
calculus of variations in the back of my mind when I wrote out the preceeding
material. The results achieved seem, however, “backwards” from another point
of view; we standardly seek to “expand f(a+x) in powers of x about the point
a,” not the reverse. A version of (9) which is less offensive to the eye of an
“expansion theorist” can be achieved by simple interchange x � a:

f(a + x) =
∑
n

1
n!
fnx

n with fn =
dnf(a)
dan

(11)

Similarly, (10) upon interchange ϕ � λ and subsequent notational adjustment
λ→ α becomes

F [α + ϕ] =
∞∑

n=0

1
n!

{ ∫∫
· · ·

∫
F (x1, x2, . . . , xn) · (12)

· ϕ(x1)ϕ(x2) · · ·ϕ(xn)dx1dx2 · · · dxn

}

with F (x1, x2, . . . , xn) ≡ δnF [α]/δα(x1)δα(x2) · · · δα(xn).
4 To Kronecker’s “God made the integers; all else is the work of man” his

contemporary Weierstrass is said to have rejoined “God made power series; all
else is the work of man.” It becomes interesting in this connection to recall
that E. T. Bell, in his Men of Mathematics, introduces his Weierstrass chapter
with these words: “The theory that has had the greatest development in recent
times is without any doubt the theory of functions.” And that those words
were written by Vito Volterra—father of the functional calculus.
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of that same idea will lead with similar force and efficiency to a theory of
functionals (or functional analysis).

Simple examples serve to alert us the fact that surprises await the person
who adventures down such a path. Look, by way of illustration, to the functional

F [ϕ] ≡
∫

ϕ2(x)dx (13.1)

Evidently we can, if we wish, write

=
∫ ∫

F (x1, x2) · ϕ(x1)ϕ(x2)dx1dx2

with
F (x1, x2) = δ(x1 − x2) (13.2)

The obvious lesson here is that, while the expansion coefficients fn which
appear on the right side of Taylor’s formula (11) are by nature numbers, the
“expansion coefficients” F (x1, x2, . . . , xn) which enter into the construction (12)
of a “Volterra series” may, even in simple cases, be distributions.

Look next to the example

F [ϕ] ≡
∫

ϕ(x)ϕx(x)dx (14.1)

From ϕϕx = 1
2 (ϕ2)x we obtain

= boundary terms

Since familiar hypotheses are sufficient to cause boundary terms to vanish, what
we have here is a complicated description of the zero-functional , the Volterra
expansion of which is trivial. One might, alternatively, argue as follows:

ϕx(x) =
∫

δ(y − x)ϕy(y)dy

= −
∫

δ′(y − x)ϕ(y)dy by partial integration

Therefore
F [ϕ] = −

∫ ∫
δ′(y − x)ϕ(x)ϕ(y)dxdy

But only the symmetric part of δ′(y−x) contributes to the double integral, and

δ′(y − x) = lim
ε→0

δ(y − x + ε)− δ(y − x− ε)
2ε

is, by the symmetry of δ(z), clearly antisymmetric. So again we obtain

F [ϕ] = 0 (14.2)
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Look finally to the example

F [ϕ] ≡
∫

ϕ2
x(x)dx (15.1)

From ϕ2
x = −ϕϕxx+(ϕϕx)x we have F [ϕ] = −

∫
ϕϕxxdx plus a boundary term

which we discard. But

ϕxx(x) =
∫

δ(y − x)ϕyy(y)dy

= −
∫

δ′(y − x)ϕy(y)dy by partial integration

= +
∫

δ′′(y − x)ϕ(y)dy by a second partial integration

and

δ′′(y − x) = lim
ε→0

δ′(y − x + ε)− δ′(y − x− ε)
2ε

is, by the antisymmetry of δ′(z), symmetric. So we have

F [ϕ] =
∫ ∫

F (x1, x2) · ϕ(x1)ϕ(x2)dx1dx2

with
F (x1, x2) = δ′′(x1 − x2) (15.2)

Again, the “expansion coefficient” F (x1, x2) is not a number, not a function,
but a distribution.

The methods employed in the treatment of the preceeding examples have
been straightforward enough, yet somewhat ad hoc. Volterra’s formula (12)
purports to supply a systematic general method for attacking such problems.
How does it work? Let F [ϕ] be assumed to have the specialized but frequently
encountered form

F [ϕ] =
∫

f(ϕ,ϕx) dx (16)

Our objective is to expand F [α+ϕ] “in powers of ϕ” (so to speak) and then set
α(x) equal to the “zero function” 0(x). Our objective, in short, is to construct
the functional analog of a “Maclaurin series:”

F [ϕ] = F0 + F1[ϕ] + 1
2F2[ϕ] + · · · (17)

Trivially F0 =
∫
f(α, αx) dx

∣∣
α=0

and familiarly

F1[ϕ] =
[
D[ϕ]

∫
f(α, αx) dx

]
α=0

=
∫ [{

∂

∂α
− d

dx

∂

∂αx

}
f(α, αx)

]
α=0︸ ︷︷ ︸ϕ(x)dx (18)

=
δF [α]
δα(x)

, evaluated at α = 0
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But this is as far as we can go on the basis of experience standard to the
(1st-order) calculus of variations. We have

F2[ϕ] =
[
D[ϕ]D[ϕ]

∫
f(α, αx) dx

]
α=0

=
[
D[ϕ]

∫
g(α, αx, αxx)︸ ︷︷ ︸ϕ(x)dx

]
α=0

(19)

=
{

∂

∂α
− d

dx

∂

∂αx

}
f(α, αx) =

δF [α]
δα(x)

=
[∫

δ2F [α]
δα(x)δα(y)

ϕ(x)ϕ(y)dxdy)
]
α=0

Our problem is construct explicit descriptions of the 2nd variational derivative
δ2F [α]

δα(x)δα(y) and of its higher-order counterparts. The trick here is to introduce

ϕ(x) =
∫

δ(x− y)ϕ(y)dx (20)

into (19) for we then have

F2[ϕ] =
∫ [

D[ϕ]

∫
g(α, αx, αxx)δ(x− y)dx

]
α=0︸ ︷︷ ︸ϕ(y)dy

=
[ ∫

h(α, αx, αxx, αxxx)ϕ(x)dx
]
α=0

(21.1)

with

h(α, αx, αxx, αxxx) =
δ2F [α]

δα(x)δα(y)
(21.2)

=
{

∂

∂α
− d

dx

∂

∂αx

+
d2

dx2

∂

∂αxx

}
g(α, αx, αxx)δ(x− y)

The pattern of the argument should at this point be clear; as one ascends
from one order to the next one begins always by invoking (20), with the result
that δ-functions and their derivatives stack ever deeper, while the variational
derivative operator {

∂

∂α
− d

dx

∂

∂αx

+
d2

dx2

∂

∂αxx

+ · · ·
}

acquires at each step one additional term.
In ordinary analysis one can expand f(x) about the point x = a only if a

is a “regular point,” and the resulting Taylor series f(x) =
∑

1
n!fn(x− a)n can

be expected to make sense only within a certain “radius of convergence.” Such
details become most transparent when x is allowed to range on the complex
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plane. Similar issues—though I certainly do not intend to pursue them here—
can be expected to figure prominently in any fully developed account of the
theory of functionals.

Construction of functional analogs of the Laplacian and Poisson bracket. Now
that we possess the rudiments of a theory of functional differentiation, we are
in position to contemplate a “theory of functional differential equations.” I do
not propose to lead an expedition into that vast jungle, which remains (so far
as I am aware) still largely unexplored. But I do want to step out of our canoe
long enough to draw your attention to one small methodological flower that
grows there on the river bank, at the very edge of the jungle. Central to many
of the partial differential equations of physics is the Laplacian operator, ∇2.
Here in the jungle it possess a functional analog. How is such an object to be
constructed? The answer is latent in the “sophisticated” answer to a simpler
question, which I pose in the notation of p. 74: How does

∇2F (ϕ) =

{∑
i

(
∂

∂ϕi

)2
}
F = tr‖∂2F/∂ϕi∂ϕj‖

come to acquire from D[λ]F (ϕ) the status of a “natural object”? Why, in
particular, does∇2F contain no allusion to λ? We proceed from the observation
that

D[λ]D[λ]F (ϕ) =
∑ ∑ ∂2F

∂ϕi∂ϕj
λiλj

= λ
T
F λ where F is the square matrix ‖∂2F/∂ϕi∂ϕj‖

= tr FL where L is the square matrix ‖λiλj‖

We note more particularly that L
2 = (λ · λ)L, so if λ is a unit vector (λ · λ = 1)

then L is a projection matrix which in fact projects upon λ: Lx = (λ·x)λ.
Now let {ei} refer to some (any) orthonormal basis, and let {Ei} denote the
associated set of projection matrices. Orthonormality entails EiEj = δijEi

while
∑

Ei = I expresses the presumed completeness of the set {ei}. From
these elementary observations5 it follows that∑

D[e
i
]D[e

i
]F (ϕ) =

∑
tr FEi = tr F

=
∑
‖∂2F/∂ϕi∂ϕi‖

= ∇2F (ϕ)

Turning now from functions to functionals, we find it quite natural to construct

∑
D[e

i
]D[e

i
]F [ϕ] =

∑ ∫ ∫
δ2F [ϕ]

δϕ(x)δϕ(y)
ei(x)ei(y)dxdy

5 The ideas assembled here acquire a striking transparency when formulated
in a simplified variant of Dirac’s “bra-ket notation.” Readers familiar with that
notation are encouraged to give it a try.
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And if we assume the functions {ei(x)} to be orthonormal
∫
ei(x)ej(x)dx = δij

and (which is more to the immediate point) complete in function space∑
ei(x)ej(y) = δ(x− y)

then we obtain this natural definition of the “Laplacian of a functional”:

∇∇∇2F [ϕ] ≡
{∑

D[e
i
]D[e

i
]

}
F [ϕ] =

∫ ∫
δ2F [ϕ]

δϕ(x)δϕ(x)
dx (22)

Familiarly, the “partial derivative of a function of several variables” is
a concept which arises by straightforward generalization from that of “the
(ordinary) derivative of a function of a single variable.” The “partial functional
derivative” springs with similar naturalness from the theory of “ordinary
functional derivatives,” as outlined in preceeding paragraphs; the problem one
encounters is not conceptual but notational/terminological. Let us agree to
write D[λ]/ϕF [. . . , ϕ, . . .] to signify “the partial derivative of F [. . . , ϕ, . . .] —a
functional of several variables—with respect to ϕ(x) in the direction λ(x):

D[λ]/ϕF [. . . , ϕ, . . .] =
∫

δF [. . . , ϕ, . . .]
δϕ(x)

λ(x)dx

I shall not pursue this topic to its tedious conclusion, save to remark that one
expects quite generally to have “equality of cross derivatives”

D[λ1]/ϕ
D[λ2]/ψ

F [ϕ,ψ] = D[λ2]/ψ
D[λ1]/ϕ

F [ϕ,ψ]

since, whether one works from the expression on the left or from that on the
right, one encounters F [ϕ+ λ1, ψ + λ2]−F [ϕ+ λ1, ψ]−F [ϕ,ψ + λ2] +F [ϕ,ψ].
Instead I look to one of the problems that, on p. 73, served ostensibly to
motivate this entire discussion. Let A[ϕ, π] and B[ϕ, π] be given functionals
of two variables, and construct

D[λ1]/ϕ
A ·D[λ2]/π

B −D[λ1]/ϕ
B ·D[λ2]/π

A

=
∫ ∫ {

δA

δϕ(x)
δB

δπ(y)
− δB

δϕ(x)
δA

δπ(y)

}
λ1(x)λ2(y)dxdy

Proceeding now in direct imitation of the construction which led us a moment
ago to the definition (22) of the functional Laplacian, we write

[A,B] ≡
∑ {

D[e
i
]/ϕA ·D[e

i
]/πB −D[e

i
]/ϕB ·D[e

i
]/πA

}

=
∫ ∫ {

δA

δϕ(x)
δB

δπ(y)
− δB

δϕ(x)
δA

δπ(y)

}
·
∑

ei(x)ei(y)dxdy

=
∫ {

δA

δϕ(x)
δB

δπ(x)
− δB

δϕ(x)
δA

δπ(x)

}
dx (23)

=
∫

[A,B]dx in the notation of (60), Chapter I
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At (23) we have achieved our goal; we have shown that the Poisson bracket
—a construct fundamental to Hamiltonian field theory—admits of natural
description in language supplied by the differential calculus of functionals.

I return at this point to discussion of our “functional Laplacian,” partly to
develop some results of intrinsic interest, and partly to prepare for subsequent
discussion of the integral calculus of functionals. It is a familiar fact—the upshot
of a “folk theorem”—that

∇2ϕ(x) ∼ 〈average of neighboring values〉 − ϕ(x) (24)

∇2ϕ provides, therefore, a natural measure of the “local disequilibration” of
the ϕ-field; in the absence of “disequilibration” (∇2ϕ = 0) the field is said to be
“harmonic.” I begin with discussion of an approach to the proof of (24) which,
though doubtless “well-known” in some circles, occurred to me only recently.6

Working initially in two dimensions, let ϕ(x, y) be defined on a neighborhood
containing the point (x, y) on the Euclidian plane. At points on the boundary
of a disk centered at (x, y) the value of ϕ is given by

ϕ(x + r cos θ, y + r sin θ) = er cos θ ∂
∂x +r sin θ ∂

∂y · ϕ(x, y)
= ϕ + r(ϕx cos θ + ϕy sin θ)

+ 1
2r

2(ϕxx cos2 θ + 2ϕxy cos θ sin θ + ϕyy sin2 θ) + · · ·

The average 〈ϕ〉 of the values assumed by ϕ on the boundary of the disk is
given therefore by

〈ϕ〉 =
1

2πr

∫ 2π

0

{right side of preceeding equation}rdθ

= ϕ + 0 + 1
4r

2{ϕxx + ϕyy}+ · · ·

from which we obtain

∇2ϕ = 4
r2

{
〈ϕ〉 − ϕ

}
+ · · · in the 2-dimensional case (25)

This can be read as a sharpened instance of (24).7 In three dimensions we
are motivated to pay closer attention to the notational organization of the

6 See the introduction to my notes “Applications of the Theory of Harmonic
Polynomials” for the Reed College Math Seminar of  March .

7 If ϕ refers physically to (say) the displacement of a membrane, then it
becomes natural to set

restoring force = k
{
〈ϕ〉 − ϕ

}
= mass element · acceleration

= 2πr2ρ · ϕtt

and we are led from (25) to an instance of the wave equation:

∇2ϕ = 1
c2ϕtt

with c2 = k/8πρ.
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argument; we write

ϕ(xxx + rrr) = ϕ(xxx) + r · ∇r · ∇r · ∇ϕ + 1
2r ·r ·r ·


ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33


 rrr + · · · (26)

which we want to average over the surface of the sphere r2
1 + r2

2 + r2
3 = r2. It is

to that end that I digress now to establish a little Lemma, which I will phrase
with an eye to its dimensional generalization:

Let 〈xp〉 denote the result of averaging the values assumed by xp on the
surface of the 3-sphere of radius r. Proceeding in reference to the figure, we
have

〈xp〉 =
1

S3(r)

∫
xpdS

dS = S2(r sin θ) · rdθ

dS

x-axis

r

θ

Figure 1: Geometrical construction intended to set notation used
in proof of the Lemma. The figure pertains fairly literally to the
problem of averaging xp over the surface of a 3-sphere, but serves
also to provide schematic illustration of our approach to the problem
of averaging xp over the surface of an N-sphere.

where I have adopted the notation

SN (r) ≡ surface area of N -sphere of radius r =




2πr when N = 2
4πr2 when N = 3
...

Evidently

〈xp〉 =
S2(r)
S3(r)

rp+1

∫ π

0

cosp θ sin θdθ︸ ︷︷ ︸
=

∫ 1

−1

updu =




2
p+1 for p even

0 for p odd
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which in the cases of particular interest gives

〈x0〉 =
S2(r)
S3(r)

r1 2
1

= 1

〈x 〉 = 0

〈x2〉 =
S2(r)
S3(r)

r3 2
3

= 1
3r

2

Returning with this information to (26), we rotate to the coordinate system
relative to which the ‖ϕij‖ matrix is diagonal

ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33


 −→


φ11 0 0

0 φ22 0
0 0 φ33




and obtain

〈ϕ〉 = ϕ + 0 + 1
2 tr


φ11 0 0

0 φ22 0
0 0 φ33


 · 1

3r
2

But the trace is rotationally invariant, so we have (compare (25))

∇2ϕ = 6
r2

{
〈ϕ〉 − ϕ

}
+ · · · in the 3-dimensional case (27)

Dimensional generalization of this result follows trivially upon dimensional
generalization of our Lemma. If 〈xp〉 is taken now to denote the result of
averaging the values assumed by xp on the surface of the N -sphere of radius r,
then—arguing as before—we have

〈xp〉 =
1

SN (r)

∫
xpdS

dS = SN−1(r sin θ) · rdθ

A simple scaling argument is sufficient to establish that

SN (r) = rN−1 · SN (1)

so we have

〈xp〉 =
SN−1(1)
SN (1)

rp
∫ π

0

cosp θ sinN−2 θdθ︸ ︷︷ ︸ (28)

and because the integrand is even/odd on the interval 0 ≤ θ ≤ π we have (for
N = 2, 3, 4, . . .; i.e., for q ≡ N − 2 = 0, 1, 2, . . .)

=




0 when p is odd

2
∫ 1

2π

0

cosp θ sinq θdθ when p is even
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The surviving integral is tabulated; we have8

∫ 1
2π

0

cosp θ sinq θdθ = 1
2B

(
p+1
2 , q+1

2

)
where

B(x, y) ≡ Γ (x)Γ (y)
Γ (x + y)

Here Γ (x) ≡
∫ ∞
0

e−ttx−1dt is Euler’s gamma function. Familiarly, Γ (1) = 1
and Γ (x + 1) = xΓ (x) so when x is an integer one has

Γ (n + 1) = n!

from which it follows that

B(m + 1, n + 1) =
Γ (m + 1)Γ (n + 1)

Γ (m + n + 2)

=
1

m + n + 1
· m!n!
(m + n)!

Just as Euler’s gamma function Γ (x) is a function with the wonderful property
that at non-negative integral points it reproduces the factorial, so does Euler’s
beta function B(x, y) possess the property that at non-negative lattice points it
reproduces (to within a factor) the combinatorial coefficients. From Γ ( 1

2 ) =
√
π

it follows that at half-integral points one has

Γ (n + 1
2 ) =

(2n− 1)!!
2n

√
π =




1
2

√
π at n = 1

1·3
22

√
π at n = 2

1·3·5
23

√
π at n = 3

...

We find ourselves now in position to write

∫ π

0

cos0 θ sinq θdθ = B
(

1
2 ,

q+1
2

)
=

Γ ( 1
2 )Γ ( q+1

2 )
Γ ( q2 + 1)

=
√
πΓ ( q+1

2 )
Γ ( q2 + 1)

(29.1)

8 See I. Gradshteyn & I. Ryzhik, Table of Integrals, Series, and Products
(), 3.621.5, p. 369 or W. Gröbner & N. Hofreiter, Bestimmte Integrale
(), 331.21, p. 95.
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and ∫ π

0

cos2 θ sinq θdθ = B
(

3
2 ,

q+1
2

)
=

Γ ( 3
2 )Γ ( q+1

2 )
Γ ( q2 + 2)

=
1
2

√
πΓ ( q+1

2 )
( q2 + 1)Γ ( q2 + 1)

(29.2)

It can be shown (and will be shown, though I find it convenient to postpone
the demonstration) that

SN (r) =
2π

N
2

Γ (N2 )
rN−1 (30)

so

SN−1(1)
SN (1)

=
Γ (N2 )

√
πΓ (N−1

2 )

=
Γ ( q2 + 1)
√
πΓ ( q+1

2 )
by N = q + 2 (31)

Returning with (29) and (31) to (28) we find, after much cancellation, that
〈x0〉 = 1 (which is gratifying) and that

〈x2〉 = 1
q+2r

2 = 1
N r2

Since (26) responds in an obvious way to dimensional generalization, we obtain
at once

∇2ϕ = 2N
r2

{
〈ϕ〉 − ϕ

}
+ · · · in the N -dimensional case (32)

which gives back (25) and (27) as special cases. This is a result of (if we can agree
to overlook the labor it cost us) some intrinsic charm. But the point to which
I would draw my reader’s particular attention is this: equation (32) relates a
“local” notion—the Laplacian that appears on the left side of the equality—
to what might be called a “locally global” notion, for the construction of 〈ϕ〉
entails integration over a (small) hypersphere.9 Both the result and the method
of its derivation anticipate things to come.

But before I proceed to my main business I digress again, not just to make
myself honest (I have promised to discuss the derivation of (30)) but to plant

9 “Integration over a hypershpere” is a process which echoes, in a curious
way, the “sum over elements of a complete orthonormal set” which at p. 80 in
Chapter I entered critically into the definition of the Laplacian, as at p. 81 it
entered also into the construction of the Poisson bracket.
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some more seeds. To describe the volume VN (R) of an N -sphere of radius R
we we might write

VN (R) =
∫∫
· · ·

∫
x2
1+x2

2+···+x2
N

=R2
dx1dx2 · · · dxN = VN ·RN

where VN = VN (1) is a certain yet-to-be-determined function of N . Evidently
the surface area of such a hypersphere can be described

SN (R) =
d

dR
VN (R) = SN ·RN−1 with SN = NAN

Conversely VN (R) =
∫ R

0
SN (r)dr, which is familiar as the “onion construction”

of VN (R). To achieve the evaluation of SN—whence of AN—we resort to a
famous trick: pulling

I ≡
∫∫
· · ·

∫ ∞

−∞
e−(x2

1+x2
2+···+x2

N )dx1dx2 · · · dxN

from our hat, we note that

=




[∫ ∞

−∞
e−x2

dx

]N

on the one hand

SN ·
∫ ∞

0

e−r2
rN−1dr on the other

On the one hand we have the N th power of a Gaussian integral, and from∫ ∞
−∞ e−x2

dx =
√
π obtain I = πN/2, while on the other hand we have an

integral which by a change of variable (set r2 = u) can be brought to the form
1
2

∫ ∞
0

e−uu
N
2 −1du which was seen on p. 85 to define Γ (N2 ). So we have

SN =
2π

N
2

Γ (N2 )

as was asserted at (30), and which entails

VN =
1
N

SN =
π

N
2

N
2 Γ (N2 )

=
π

N
2

Γ (N+2
2 )

(33)

Fairly immediately V0 = 1, V1 = 2 and VN = 2π
N VN−2 so

VN=2n =
πn

n!

VN=2n+1 = 2πn 2n

1 · 3 · 5 · · · (2n + 1)


 (34)
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which reproduce familiar results at N = 2 and N = 3. Note the curious fact that
one picks up an additional π-factor only at every second step as one advances
through ascending N -values.

First steps toward an integral calculus of functionals: Gaussian integration. Look
into any text treating “tensor analysis” and you will find elaborate discussion
of various derivative structures (covariant derivatives with respect to prescribed
affine connections, intrinsic derivatives, constructs which become “accidentally
tensorial” because of certain fortuitious cancellations), and of course every
successful differentiation process, when “read backwards,” becomes a successful
antidifferentiation process. But you will find little that has to do with the
construction of definite integrals. What little you do find invariably depends
critically upon an assumption of “total antisymmetry,” and falls into the domain
of that elegant subject called the “exterior calculus,” where integral relations
abound, but all are variants of the same relation—called “Stokes’ theorem.”
Or look into any table of integrals. You will find antiderivatives and definite
integrals in stupifying (if never quite sufficient) abundance, but very little that
pertains to what might be called the “systematics of multiple integration.”
What little you do find10 displays a curious preoccupation with hyperspheres,
gamma functions, Gaussians. I interpret these circumstances to be symptoms
not of neglect but of deep fact: it becomes possible to speak in dimensionally
extensible generality of the integral properties of multi-variable objects only
in a narrowly delimited set of contexts, only in the presence of some highly
restrictive assumptions. It would be the business of an “integral calculus of
functionals” to assign meaning to expressions of the type

∫
elements of some “function space”

F [ϕ]d[ϕ]

and it is sometimes alleged (mainly by persons who find themselves unable
to do things they had naively hoped to do) that this is an “underdeveloped
subject in a poor state of repair.” It is, admittedly, a relatively new subject,11

but has enjoyed the close attention of legions of mathematicians/physicists of
the first rank. My own sense of the situation is that it is not so much lack of
technical development as restrictions inherent in the subject matter that mainly
account for the somewhat claustrophobic feel that tends to attach to the integral
calculus of functionals. That said, I turn now to review of a few of the most
characteristic ideas in the field.

10 See Gradshteyn & Ryzhik’s §§4.63–4.64, which runs to a total of scarcely
five pages (and begins with the volume of an N -sphere!) or the more extended
§3.3 in A. Prudnikov, Yu. Brychkov & O. Marichev’s Integrals and Series
().

11 N. Wiener was led from the mathematical theory of Brownian motion to
the “Wiener integral” only in the s, while R. Feynman’s “sum-over-paths
formulation of quantum mechanics” dates from the late s.
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One cannot expect a multiple integral∫ ∫
· · ·

∫
F (x1, x2, . . . , xN )dx1dx2 · · · dxN

to possess the property of “dimensional extensibility” unless the integrand
“separates;” i.e., unless it possesses some variant of the property

F (x1, x2, . . . , xN ) = F1(x
1)F2(x

2) · · ·FN (xN )

giving

∫ ∫
· · ·

∫
F (x1, x2, . . . , xN )dx1dx2 · · · dxN =

N∏
i=1

∫
Fi(x

i)dxi

If F (x1, x2, . . . , xN ) = ef(x1,x2,...,xN ) and f(x1, x2, . . . , xN ) separates in the
additive sense f(x1, x2, . . . , xN ) = f1(x

1) + f2(x
2) + · · ·+ fN (xN ) then

∫ ∫
· · ·

∫
ef(x1,x2,...,xN )dx1dx2 · · · dxN =

N∏
i=1

∫
efi(x

i)dxi

represents a merely notational variant of the same basic idea, while a more
radically distinct variation on the same basic theme would result from

F (r1, θ1, r2, θ2, . . . , rN , θN ) =
∏
i

Fi(r
i, θi)

“Separation” is, however, a very fragile property in the sense that it is generally
not stable with respect to coordinate transformations x −→ y = y(x); if F (x)
separates then G(y) ≡ F (x(y)) does, in general, not separate. Nor is it, in
general, easy to discover whether or not G(y) is “separable” in the sense that
separation can be achieved by some suitably designed x ←− y. A weak kind
of stability can, however, be achieved if one writes F (x) = ef(x) and develops
f(x) as a multi-variable power series:

f(x) = f0 + f1(x) + 1
2f2(x) + · · · =

∑
1
n!fn(x)

where fn(x) is a multinomial of degree n. For if x = x(y)←− y is linear

x = Ty + t

then gn(y) = fn(x(y)) contains no terms of degree higher than n, and is itself
a multinomial of degree n in the special case t = 0.

Integrals of the type∫ ∫
· · ·

∫ +∞

−∞
ef0+f1(x)dx1dx2 · · ·xN
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are divergent, so the conditionally convergent integrals∫ ∫
· · ·

∫ +∞

−∞
ef0+f1(x)+ 1

2 f2(x)dx1dx2 · · ·xN

acquire in this light a kind of “simplest possible” status. The question is: do
they possess also the property of “dimensional extensibility”? Do they admit
of discussion in terms that depend so weakly upon N that one can contemplate
proceeding to the limit N −→∞? They do.

Our problem, after some preparatory notational adjustment, is to evaluate

I ≡
∫ ∫

· · ·
∫ +∞

−∞
e−

1
2 (x·Ax+2B·x+C) dx1dx2 · · ·xN

To that end, we introduce new variables y by x = Ry and obtain

I =
∫ ∫

· · ·
∫ +∞

−∞
e−

1
2 (y·RT

ARy+2b·y+C) J dy1dy2 · · · yN

where b = R
TB, where the Jacobian J =

∣∣∂(x1,x2,...,xN )
∂(y1,y2,...,yN )

∣∣ = det R, and where A

can without loss of generality be assumed to be symmetric. Take R to be in
particular the rotation matrix that diagonalizes A:

R
T
AR =




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · aN




The numbers ai are simply the eigenvalues of A ; they are necessarily real, and
we assume them all to be positive. Noting also that, since R is a rotation
matrix, J = det R = 1, we have

I = e−
1
2C ·

∏
i

∫ +∞

−∞
e−

1
2 (aiy

2+2biy) dy︸ ︷︷ ︸
=

√
2π
ai

exp
{

1
2

[
bi ·

1
ai
· bi

]}
(35)

= e−
1
2C ·

√
(2π)N

a1a2 · · · aN
e

1
2b·(RT

AR)–1b

= e−
1
2C ·

√
(2π)N

detA
e

1
2B·A–1B (36)

Offhand, I can think of no formula in all of pure/applied mathematics that
supports the weight of a greater variety of wonderful applications than does
the formula that here—fittingly, it seems to me—wears the equation number
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137 = �c/e2. One could easily write at book length about those applications,
and still not be done. Here I confine myself to a few essential remarks.

Set B = −ip, C = 0 and the multi-dimensional Gaussian Integral Formula
(36) asserts that the Fourier transform of a Gaussian is Gaussian:

(
1√
2π

)N
∫ +∞

−∞
eip·x e−

1
2x·Ax dx1dx2 · · · dxN =

1√
detA

e−
1
2p·A–1p (37.1)

of which

(detA)
1
4 e−

1
2x·Ax −−−−−−−−−−−−−−−−−−→

Fourier transformation
(detA

–1)
1
4 e−

1
2p·A–1p (37.2)

provides an even more symmetrical formulation. This result is illustrative of
the several “closure” properties of Gaussians. Multiplicative closure—in the
sense

equadratic · equadratic = equadratic

—is an algebraic triviality, but none the less important for that; it lies at the
base of the observation that if

G(x−m ;σ) ≡ 1
σ
√

2π
exp

{
− 1

2

[
x−m

σ

]2}

is taken to notate the familiar “normal distribution” then

G(x−m′;σ′) ·G(x−m′′;σ′′) = G(m′ −m′′;
√
σ′2 + σ′′2) ·G(x−m ;σ)

where (1/σ)2 = (1/σ′)2 + (1/σ′′)2 is less than the lesser of σ′ and σ′′, while
m = m′(σ/σ′)2 + m′′(σ/σ′′)2 has a value intermediate between that of m′ and
m′′. In words:

normal distribution · normal distribution =
attenuation factor · skinny normal distribution

This result is absolutely fundamental to statistical mechanics, where it gives
one license to make replacements of the type 〈f(x)〉 −→ f(〈x〉); it is, in short,
the reason there exists such a subject as thermodynamics!

Also elementary (though by no means trivial) is what might be called the
“integrative closure” property of Gaussians, which I now explain. We proceed
from the observation that

Q(x) ≡
(
x
y

)
·
(
A11 A12

A21 A22

) (
x
y

)
+ 2

(
B1

B2

)
·
(
x
y

)
+ C

can be notated
Q(x) = ax2 + 2bx + c
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with
a = A11

b = 1
2 (A12 + A21)y + B1

c = A22y
2 + 2B2y + C

Therefore

∫ +∞

−∞
e−

1
2Q(x)dx =

√
2π
a

exp
{
b2 − ac

a

}

The point is that the result thus achieved has the form

=

√
2π
a

e−
1
2Q

′(y) with Q′(y) ≡ a′y2 + 2b′y + c′

so that if one were to undertake a second integration one would confront again
an integral of the original class.12 The statement

∫ +∞

−∞
e quadratic in N variables d(variable) = e quadratic in N−1 variables (38)

appears to pertain uniquely to quadratics. In evidence I cite the facts that even
the most comprehensive handbooks13 list very few integrals of the type

∫ +∞

−∞
e non-quadratic polynomial in x dx

and that in the “next simplest case” one has14

∫ +∞

−∞
e−

1
2 (ax4+2bx2+c) dx =

√
b
2ae

1
2

[
b2−2ac

2a

]
K 1

4

(
b2

2a

)
�= equartic !

It is “integrative closure” that permits one to construct multiple integrals by
tractable iteration of single integrals. The moral appears to be that if it is

12 Indeed, if one works out explicit descriptions of a′, b′ and c′ and inserts
them into

∫
e−

1
2Q

′(y)dy one at length recovers precisely (36), but that would
(especially for N � 2) be “the hard way to go.”

13 See, for example, §§3.32–3.34 in Gradshteyn & Ryzhik and §2.3.18 in
Prudnikov, Brychkov & Marichev.

14 See Gradshteyn & Ryzhik, 3.323.3. Properties of the functions Kν(x)
—sometimes called “Basset functions”—are summarized in Chapter 51 of An
Atlas of Functions by J. Spanier & K. Oldham (). They are constructed
from Bessel functions of fractional index and imaginary argument.
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iterability that we want, then it is Gaussians that we are stuck with. And
Gaussians are, as will emerge, enough.15

At the heart of (38) lies the familiar formula

∫ +∞

−∞
e−

1
2 (ax2+2bx+c) dx =

√
2π
a e

1
2

[
b2−ac

a

]
(39)

of which we have already several times made use. And (39) is itself implicit in
this special case: ∫ +∞

−∞
e−x2

dx =
√
π (40)

This is a wonderfully simple result to support the full weight of the integral
calculus of functionals! We are motivated to digress for a moment to review
the derivation of (40), and details of the mechanism by which (40) gives rise to
(39). Standardly, one defines G ≡

∫
e−x2

dx and observes that

G ·G =
∫ ∫ +∞

−∞
e−(x2+y2) dxdy

=
∫ 2π

0

∫ ∞

0

e−r2
rdrdθ

= 2π · 1
2

∫ ∞

0

e−s ds

= π

from which (40) immediately follows.16 It is a curious fact that to achieve this
result we have had to do a certain amount of “swimming upstream,” against
the prevailing tide: to evaluate the single integral which lies at the base of our
theory of iterative multiple integration we have found it convenient to exploit a
change-of-variables trick as it pertains to a certain double integral! Concerning

15 Feynman’s “sum-over-paths” is defined by “refinement” N −→ ∞ of just
such an iterative scheme. The Gaussians arise there from the circumstance that
ẋ enters quadratically into the construction of physical Lagrangians. One can
readily write out the Lagrangian physics of systems of the hypothetical type
L = 1

3µẋ
3 − U(x). But look at the Hamiltonian: H = 2

3
1√
µp

3
2 + U(x)! Look

at the associated Schrödinger equation!! The utter collapse of the Feynman
formalism in such cases, the unavailability of functional methods of analysis,
inclines us to dismiss such systems as “impossible.”

16 The introduction of polar coordinates entailed tacit adjustment (square to
circle) of the domain of integration, which mathematicians correctly point out
requires some justification. This little problem can, however, be circumvented
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the production of (39) from (40), we by successive changes of variable have

√
2π
a =

∫ +∞

−∞
e−

1
2ax

2
dx

=
∫ +∞

−∞
e−

1
2a(x+ b

a )2 dx

= e−
1
2

[
b2−ac

a

]
·
∫ +∞

−∞
e−

1
2 (ax2+2bx+c)dx

What’s going on here, up in the exponent, is essentially a “completion of the
square.” These elementary remarks acquire deeper interest from an observation
and a question. Recalling from p. 87 the definition of the gamma function, we
observe that ∫ +∞

0

e−xn

dx = 1
n

∫ +∞

0

e−uu
1
n−1du

= 1
nΓ ( 1

n )

which, by the way, gives back (40) at n = 2. Why can we not use this striking
result to construct a general theory of

∫
epolynomial of degree ndx? Because there

exists no cubic, quartic. . . analog of “completion of the square;”

Pn(x) = (x + p)n + q

serves to describe the most general monic polynomial of degree n only in the
case n = 2. This little argument provides yet another way (or another face of an
old way) to understand that the persistent intrusion of Gaussians into theory of
iterative multiple integration (whence into the integral calculus of functionals)
is not so much a symptom of “Gaussian chauvinism” as it is a reflection of
some essential facts. I have belabored the point, but will henceforth consider
it to have been established; we agree to accept, as a fact of life, the thought
that if we are to be multiple/functional integrators we are going to have, as a
first qualification, to be familiar with all major aspects of Gaussian integration
theory. Concerning which some important things remain to be said:

by a trick which I learned from Joe Buhler: write y = ux and obtain

G ·G = 22

∫ ∞

0

∫ ∞

0

e−x2(1+u2) xdxdu

= 4
∫ ∞

0

∫ ∞

0

e−v

2(1 + u2)
dudv where v = x2(1 + u2)

= 2
∫ ∞

0

e−vdv ·
∫ ∞

0

du

1 + u2

= 2 · 1 · arctan(∞)
= π
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Returning to (39), we note that the integrand e−
1
2Q(x) will be maximal

when Q(x) ≡ ax2 + 2bx + c is minimal, and from d
dxQ(x) = 2(ax + b) = 0 find

that Q(x) is minimal at x = x0 ≡ − b
a , where Q(x0) = −

[
b2−ac

a

]
. The pretty

implication is that (39) can be notated

∫ +∞

−∞
e−

1
2Q(x) dx =

√
2π
a e−

1
2Q(x0) (41)

where
Q(x) ≡ ax2 + 2bx + c and x0 ≡ −a–1 b

But by Taylor expansion (which promptly truncates)

= Q(x0) + a(x− x0)
2

Equation (41) can therefore be rewritten in a couple of interesting ways; we
have ∫ +∞

−∞
e−

1
2{Q(x0)+a(x−x0)

2} dx =
√

2π
a e−

1
2Q(x0) (42.1)

—of which more in a minute—and we have the (clearly equivalent) statement

∫ +∞

−∞

{√
a
2π e

− 1
2a(x−x0)

2
}

dx = 1 : all a and all x0 (42.2)

where the integrand is a “normal distribution function,” and can in the notation
of p. 91 be described G(x − x0; a

− 1
2 ). By an identical argument (36) becomes

(allow me to write b and c where formerly I wrote B and C)

∫ ∫
· · ·

∫ +∞

−∞
e−

1
2Q(x) dx1dx2 · · ·xN =

√
(2π)N

detA
e−

1
2Q(x0) (43)

where
Q(x) ≡ x·Ax + 2b · x + c and x0 ≡ −A

–1b

By Taylor expansion

= Q(x0) + (x− x0)·A(x− x0)

so we have∫ ∫
· · ·

∫ +∞

−∞
e−

1
2{Q(x0)+(x−x0)·A(x−x0)} dx1dx2 · · ·xN =

√
(2π)N

detA
e−

1
2Q(x0)

and ∫ ∫
· · ·

∫ +∞

−∞

{√
detA

(2π)N e−
1
2 (x−x0)·A(x−x0)

}
dx1dx2 · · ·xN = 1 (44)
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The function in braces describes what might be called a “bell-shaped curve in
N -space,” centered at x0 and with width characteristics fixed by the eigenvalues
of A.

Asymptotic evaluation of integrals by Laplace’s method. Pierre Laplace gave the
preceeding material important work to do when in  he undertook to study
the asymptotic evaluation of integrals of the general type

I(λ) =
∫ +∞

−∞
f(x)e−λg(x) dx

Assume g(x) to have a minimum at x = x0. One expects then to have (in
ever-better approximation as λ −→∞)

I(λ) ∼
∫ x0+ε

x0−ε

f(x)e−λg(x) dx

By Taylor expansion g(x) = g(x0)+0+ 1
2g

′′(x0)(x−x0)
2 + · · · with g′′(x0) > 0.

Drawing now upon (42) we obtain

I(λ) ∼ e−λg(x0)
√

2π
λg′′(x0)

∫
f(x)

{√
λg′′(x0)

2π e−
1
2λg

′′(x0)(x−x0)
2
}

dx

In a brilliancy which anticipated the official “invention of the δ-function” by
more than a century, Laplace observed that the expression in braces nearly
vanishes except on a neighborhood of x0 that becomes ever smaller as λ becomes
larger, and arrived thus at the celebrated “Laplace asymptotic evaluation
formula”17

I(λ) ∼ f(x0)e
−λg(x0)

√
2π

λg′′(x0)
(45)

In classic illustration of the practical utility of (45) we recall from p. 87
that

Γ (n + 1) ≡
∫ ∞

0

e−xxn dx = n! for n integral

But a change of variables x −→ y ≡ x/n gives

= nn+1

∫ ∞

0

e−n(y−log y) dy

and g(y) ≡ y − log y is minimal at y = 1, so by application of (45) we have

Γ (n + 1) = n! ∼
√

2πnn+ 1
2 e−n

17 For careful discussion of Laplace’s formula and its many wonderful variants
see Chapter II of A. Erdélyi, Asymptotic Expansions () or N. De Bruijn,
Asymptotic Methods in Analysis ().
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which is familiar as “Stirling’s formula.” De Bruijn, in his §4.5, shows how one
can, with labor, refine the argument so as to obtain

n! ∼
√

2πnn+ 1
2 e−n · exp

{
B2

1 · 2n +
B4

3 · 4n3
+

B6

5 · 6n5
+ · · ·

}

=
√

2πnn+ 1
2 e−n ·

{
1 +

1
12n

+
1

288n2
− 139

51840n3
− 571

2488320n4
+ · · ·

}

where B2, B4, B6, . . . are Bernoulli numbers. The pretty particulars of this last
result are of less interest than its general implication: Laplace’s argument does
not simply blurt out its answer and then fall silent; it supports a “refinement
strategy” (though this is, to my knowledge, seldom actually used).

I thought I heard some gratuitous coughing during the course of that last
paragraph, so hasten to turn now to an “illustration of the practical utility” of
Laplace’s formula which has a latently more physical feel about it. Let G(p) be
the Fourier transform of F (x):

F (x) −−−−−−−−→
Fourier

G(p) = 1√
2π

∫ +∞

−∞
e

i
�
px F (x) dx

Let us, moreover, agree to write F (x) = F(x)e−
i
�
f(x) and G(p) = G(p)e−

i
�
g(p).

The implied relationship

G(p)e−
i
�
g(p) = 1√

2π

∫ +∞

−∞
F(x)e−

i
�
[f(x)−px] dx

between {F(x), f(x)} and {G(p), g(p)} is difficult/impossible to describe usefully
in general terms, but in the asymptotic limit 1

�
−→ ∞ we can draw formally

upon (45) to obtain

G(p) · e− i
�
g(p) ∼

√
�

f ′′(x) F(x) · e− i
�
[f(x)−px]

∣∣∣
x→x(p)

(46)

where x(p) is obtained by functional inversion of p = f ′(x). The remarkable
implication is that g(p) is precisely the Legendre transform of f(x)! We have
established that, in a manner of speaking,

Fourier transformations −−−−−−−−→ e i (Legendre transformations)

and in precisely that same manner of speaking it emerges that

physical optics −−−−−−−−→
c−→∞

e i (geometrical optics)

quantum mechanics −−−−−−−−→
�

–1−→∞
e i (classical mechanics)

statistical mechanics −−−−−−−−→
k–1−→∞

e− (thermodynamics)
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The physical connections thus sketched comprise, I think we can agree, physics
of a high order (indeed, physics of an asymptotically high order!). Remarkably,
at the heart of each of those many-faceted connections live either Laplace’s
formula or one of its close relatives (the Riemann–Debye “method of steepest
descents,” the Stokes–Kelvin “method of stationary phase”). And at the heart
of each of those lives a Gaussian integral.18

Laplace’s asymptotic formula admits straightforwardly of N -dimensional
generalization. We write

I(λ) ≡
∫ ∫

· · ·
∫ +∞

−∞
F (x)e−λg(x) dx1dx2 · · · dxN

Assume g(x) to have a minimum at x = x0. Then

g(x) = g(x0) + 0 + 1
2 (x− x0)·G(x− x0) + · · ·

where G ≡ ‖∂2g(x)/∂xi∂xj‖ —the matrix of second partials, evaluated at x0

—is positive definite. Arguing as before, we obtain

I(λ) ∼ F (x0)e
−λg(x0)

√
(2π/λ)N

det G
(47)

Physically motivated functional integration. I turn now to discussion of how
a theory of functional integration emerges “ by refinement” (i.e., in the limit
N →∞) from the interative theory of multiple integration. Both Wiener (in the
late ’s, for reasons characteristic of his approach to the theory of Brownian
motion19) and Feynman (in the early ’s, for reasons characteristic of his
approach to quantum mechanics20) had reason to be interested in what have
come universally (if awkwardly) to be called “sum-over-path” processes.

18 I remarked in the text that (46) was obtained by “formal” application
of (45). The adjective alludes to the fact that the Gaussian integral formula
(39) holds if an only if �(a) > 0, which in the present context may not be
satisfied. The problem would not have arisen had we been discussing Laplace
transforms rather than Fourier transforms, and can frequently be circumvented
by one or another of strategies which physicists have been at pains to devise;
for example, one might (as Feynman himself suggested: see footnote #13 to
his “Space-time approach to non-relativistic quantum mechanics,” Rev. Mod.
Phys. 20, 367 (1948)) make the replacement � −→ �(1− iε) and then set ε ↓ 0
at the end of the day. My own practice will be to proceed with formal abandon,
trusting to the sensible pattern of our (formal) results, and to the presumption
that when we have accumulated results in a sufficient mass we will find both
motivation and some elegant means to dot the i’s and cross the mathematical t’s.

19 See Chapter I of his Nonlinear Problems in Random Theory ().
20 See §4 of the classic paper cited on the previous page, or Chapter II of

Quanatum Mechanics and Path Integrals by R. Feynman & A. Hibbs ().
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∫
∫
∫
∫

t1

t2

x2x1

Figure 2: Representation of the elementary essentials of the idea
from which the Wiener–Feynman “sum-over-paths” construction
proceeds.

Each worked in a subject area marked (as it happens) by the natural occurrence
—for distinct reasons—of Gaussians, each was led to contemplate expressions
of the type

lim
N→∞

∫
· · ·

∫
e−(quadratic form in N variables) d(variables) (48)

and each was protected from disaster by the “integrative closure” property of
Gaussians. Each was led to write something like∫

space of paths x(t)

F [x(t)]Dx(t) (49)

to describe the result of such a limiting process. Concerning the structure of
the “space of paths” over which the functional integral (49) ranges: the figures
suggests that the elements x(t) of “path space” are, with rare exceptions, too
spiky to permit the construction of ẋ(t). It would, however, be a mistake to
waste time pondering whether this development is to be regarded as a “physical
discovery” or a “formal blemish,” for to do so would be to attach to the figure
a literalness it is not intended to support. Suppose, for example, we were to
write

x(t) = xnice(t) + s(t)

where xnice(t) is any (nice or unnice) designated path linking specified spacetime
endpoints (x1, t1) −→ (x2, t2) and where

s(t) ≡
∞∑

n=1

an sin
{
nπ

[
t − t1
t2 − t1

]}
(50)
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has by design the property that s(t1) = s(t2) = 0. Individual paths would then
be specified not by “the locations of their kinks” but by their Fourier coefficients
{an}. Elements of the path space thus constructed can be expected to have
differentiability properties quite different from those originally contemplated,
and “summing-over-paths” would entail iterated operations of the type

∫
da.21

Applications of the functional integral concept tend, to a remarkable degree, to
proceed independently of any precise characterization of path space.

In order to make as concretely clear as possible the issues and methods most
characteristic of the applied integral calculus of functionals, I look now to the
essential rudiments of the Feynman formalism. By way of preparation, in order
to grasp Feyman’s train of thought, we remind remind ourselves that in abstract
quantum mechanics one has i� ∂

∂t |ψ) = H |ψ), giving |ψ)t = exp{ 1
i�Ht}|ψ)0. In

the x-representation22 we have (x|ψ)t =
∫

(x| exp{ 1
i�Ht}|y)dy(y|ψ)0 which is

more often written

ψ(x, t) =
∫

K(x, t; y, 0)ψ(y, 0) dy

It is from the preceeding equaton that the Green’s function of the Schrödinger
equation—usually called the “propagator”

K(x, t; y, 0) ≡ (x, t|y, 0) = (x| exp{ 1
i�Ht}|y)

—acquires its role as the “fundamental object of quantum dynamics.” Three
properties of the propagator are of immediate importance. We note first that
K(x, t; •, •) is itself a solution of the Schrödinger equation

i� ∂
∂tK(x, t; •, •) = HK(x, t; •, •) (51.1)

From
lim
t↓0

K(x, t; y, 0) = (x|y) = δ(x− y) (51.2)

we see that K(x, t; y, 0) is in fact the solution that evolved from an initial
δ-function. It follows finally from the triviality eH (a+b) = eHa · eHb that

K(x, t; z, 0) =
∫

K(x, t; y, τ)dyK(y, τ ; y, 0) for all t ≥ τ ≥ 0 (51.3)

It was by an interative refinement procedure based upon the “composition rule”
that Feynman was led to the imagery of figure 10. But it was a stroke of

21 For discussion of details relating to this mode of proceeding, see Chapter I,
pp. 56–60 of Quantum Mechanics ().

22 The “space-time approach. . . ” of Feynman’s title reflects his appreciation
of the fact that selection of the x-representation is an arbitrary act, yet an act
basic to the imagery from which his paper proceeds.



Wiener-Feynman “sum-over-path” processes 31

genius23 which led Feynman to contemplate a formula of the structure

K(x2, t2;x1, t1) =
∫

e
i
�
S[x(t)]Dx(t) (52)

Here x(t) is a “path” with the endpoint properties

x(t1) = x1 and x(t2) = x2

S[x(t)] is the classical action functional associated with that path

S[x(t)] =
∫ t2

t1

L(x(t), ẋ(t)) dt (53)

and Dx(t) —for which in some contexts it becomes more natural to write
R[x(t)]Dx(t) —alludes implicitly to the as-yet-unspecified “measure-theoretic”
properties of path space. Our problem is to assign specific meaning to the
functional integral that stands on the right side of (52). To that end, let
L(x, ẋ) = 1

2mẋ2−U(x) describe the classical dynamics of some one-dimensional
system, let xc(t) be a solution of the equations of motion that interpolates
(x1, t1) −→ (x2, t2) between specified endpoints, let s(t) be some given/fixed
nice function with the property that s(t1) = s(t2) = 0 and let

x(t) = xc(t) + λs(t)

be the elements of a one-parameter path space generated by s(t). Under such
circumstances the action functional (53)—though it remains a functional of
s(t) —becomes an ordinary function of the parameter λ (and of the endpoint
coordinates). This is the simplification that makes the present discussion24

work. We have
L(xc + λs, ẋc + λṡ) = e

λ
(
s ∂

∂xc
+ṡ ∂

∂ẋc

)
L(xc, ẋc)

=
∑
k

1
k!λ

kLk(xc, ẋc, s, ṡ)
giving

S[x(t)] =
∑
k

1
k!λ

k Sk(x2, t2;x1, t1; s(t))︸ ︷︷ ︸
=

∫ t2

t1

Lk(xc.ẋc, s, ṡ) dt

23 Dirac’s genius, one might argue. See §32 “The action principle,” in The
Principles of Quantum Mechanics () and “The Lagrangian in quantum
mechanics,” Physik. Zeits. Sowjetunion 3, 64 (1933), both of which—and little
else—are cited by Feynman. The latter paper has been reprinted in J. Schwinger
(ed.) Quantum Electrodynamics ().

24 It has served my expository purpose to depart here from the historic main
line of Feynman’s argument; I follow instead in the footsteps of C. W. Kilmister,
“A note on summation over Feynman histories,” Proc. Camb. Phil. Soc. 54, 302
(1958).
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and notice that

S0 = S[xc(t)] is just the classical action

S1 = 0 by hamilton’s principle

xc(t)

xc(t) + λs(t)

t2

x2x1

t1

Figure 3: λ-parameterized family of paths having xc(t) as a
member, and generated by an arbitrary s(t). The arrow indicates
the effect of increasing λ. We are making integral use of what is,
in fact, the construction standard to the calculus of variations.

By computation
L0 = 1

2mẋ2
c − U(xc)

L1 = need not be computed

L2 = mṡ2 − U ′′(xc)s
2

...

Lk = −U (k)(xc)s
k

so within the path space here in question we have25

S[x(t)] = Sclassical(x2, t2;x1, t1) + 1
2λ

2

∫ t2

t1

{
mṡ2 − U ′′(xc)s

2
}
dt

−
∞∑
k=3

1
k!λ

k

∫ t2

t1

U (k)(xc)s
k dt

(54)

25 This is a specialized instance of (see again (9)) the generic Volterra series

S[xc + λs] = S[xc] + λ

∫ t2

t1

δS[xc]
δxc(t)

s(t) dt

+ 1
2λ

2

∫ t2

t1

∫ t2

t1

δ2S[xc]
δxc(t′)δxc(t′′)

s(t′)s(t′′) dt′dt′′ + · · ·
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It becomes natural at this point to write∫
paths generated by s(t)

e
i
�
S[x(t)] Dx(t) =

∫ +∞

−∞
e

i
�
{S0+

1
2λ

2S2+higher order terms} dλ (55)

In the interests of maximal tractability (always fair in exploratory work) we opt
to kill the “higher order terms” by assuming the potential U(x) to depend at
most quadratically upon x; we assume, in short, that the Lagrangian L(x, ẋ)
pertains to an oscillator in a gravitational field :

U(x) = mgx + 1
2mω2x2 (56)

Equation (54) then truncates:

S[x(t)] = Sclassical(x2, t2;x1, t1)︸ ︷︷ ︸ + 1
2λ

2 ·
∫ t2

t1

m
{
ṡ2 − ω2s2

}
dt︸ ︷︷ ︸ (57)

S0 S2

Remarkably, all reference to xc(t)—and therefore to the variables x1 and x2—
has disappeared from the 2nd-order term, about which powerful things of several
sorts can be said. We might write

S2 = S2[s(t)] = D2
[s ]S[x(t)] (58.1)

to emphasize that S2 is a functional of s(t) from which all x(t)-dependence has
dropped away. And we might write

S2 = S2(t2 − t1) (59.2)

to emphasize that S2 depends upon t1 and t2 only through their difference,26

and is (as previously remarked) independent of x1 and x2 . If we now return

26 It is elementary that∫ t2

t1

F
(
x
( t −t1
t2−t1

)
, ẋ

( t −t1
t2−t1

))
dt =

∫ 1

0

F
(
x(ϑ), 1

t2−t1

d
dϑx(ϑ)

)(
t2 − t1

)
dϑ

= function of (t2 − t1)

so one has only to insert (50) into the integral that defines S2 to achieve the
result claimed in the text. One could, however, continue; drawing upon∫ 1

0

sinmπϑ sinnπϑ dϑ =
∫ 1

0

cosmπϑ cosnπϑ dϑ = 1
2δmn

for m,n = 1, 2, 3, · · · one can actually do the integral. One obtains at length

S2 = m
2T

∑
(πn)2

[
1−

(
ωT
πn

)2
]
a2
n with T ≡ t2 − t1

which is the starting point for the
∫
da-procedure to which I alluded on p. 99.
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with (57) to (55) we obtain

∫
paths generated by s(t)

e
i
�
S[x(t)] Dx(t) = e

i
�
S0 ·

∫ +∞

−∞
e−

1
2 · 1

i�
S2[s(t)]·λ2

(59)

To perform the Gaussian integral is to obtain

= e
i
�
S0 ·

√
2πi�

S2[s(t)]

which, because of its surviving functional dependence upon the arbitrarily
selected generator s(t), cannot possibly provide a description of the propagator
(x2, t2|x1, t1). One obvious way to remedy this defect is—consistently with the
essential spirit of the Feyman formalism—to sum over all generators; we back
up to (59), set λ = 1, and obtain

K(x2, t2;x1, t1) =
∫

all paths

e
i
�
S[x(t)]Dx(t)

= e
i
�
S0(x2,t2;x1,t1) ·

{ ∫
all generators

e
i
�

1
2S2[s(t)]Ds(t)

}

We appear to have simply replaced one functional integral by another, but
the latter is an object we know something about: it is (since a sum of such
functions) a function of t2 − t1. So we have

K(x2, t2;x1, t1) = A(t2 − t1) · e
i
�
S0(x2,t2;x1,t1) (60.1)

with

A(t2 − t1) =
∫

all generators

e
i
�

m
2

∫ t2

t1
{ṡ2−ω2s2}dt

Ds(t) (60.2)

There are several alternative ways in which we might now proceed. We
might roll up our sleeves and undertake (as Feynman did) to evaluate the
functional integral that defines A(t2 − t1). To that end we would write

∫ t2

t1

{ṡ2 − ω2s2}dt

= lim
N→∞

τ
{( s1−0

τ

)2 +
( s2−s1

τ

)2 + · · ·+
( sN−sN−1

τ

)2 +
( 0−sN

τ

)2

− ω2
(
s2
1 + s2

2 + · · ·+ s2
N−1 + s2

N

)}
= lim

N→∞
1
τ s·Ms

with τ = (t2− t1)/(N +1) = [(t2− t1)/N ]{1− 1
N + 1

N2 + · · ·} ∼ (t2− t1)/N and
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M ≡




M −1 0 0 0
−1 M −1 0 0
0 −1 M −1 0

. . .
. . .

0 −1 M −1
0 0 −1 M




where M ≡ 2− (τω)2

We look to the N -fold integral

IN =
∫
· · ·

∫ +∞

∞

e−
1
2 s·As ds1ds2 · · · dsN

where A = βM and β = m/i�τ and draw upon the multi-dimensional Gaussian
integral formula to obtain

IN =

√
(2π)N

det A
=

√
(2π/β)N

det M
(61)

To evaluate DN = det M when M is N ×N , we look to the sequence of

D1 = (M ) , D2 =
(

M −1
−1 M

)
, D3 =


 M −1 0
−1 M −1
0 −1 M


 , . . .

of sub-determinants and obtain

D1 = M

D2 = M2 − 1

D3 = M3 − 2M
...

Dn = MDn−1 −Dn−2

We introduce the “tempered” numbers Dn ≡ ωτDn to facilitate passage to the
limit. They obviously satisfy an identical recursion relation, and upon recalling
the definition of M we observe that the recursion relation in question can be
expressed

1
τ

{
Dn(N)−Dn−1(N)

τ
− Dn−1(N)−Dn−2(N)

τ

}
= −ω2Dn−1(N)

This in the limit becomes a differential equation

d2D(t)
dt2

= −ω2D(t) (62.1)
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descriptive of a function D(t) for which we seek the value at t = Nτ = t2 − t1.
To start the recursive construction off we need initial data; we have

D1 = ωτ [2− (ωτ)2] giving D(0) = 0 (62.2)

and

D2 −D1

τ
=

ωτ

τ

{
[2− (ωτ)2]2 − 1− [2− (ωτ)2]

}
= ω

{
1− 3(ωτ)2 + (ωτ)4

}
giving D′(0) = ω (62.3)

It follows from (62) that D(t) = sinωt. Returning with this information to (61)
we obtain

IN =
(

2πi�τ
m

)N
2

√
ωτ

sinω(t2 − t1)

= RN+1 ·
√

mω

2πi� sinω(t2 − t1)
with R(τ) ≡

√
2πi�τ
m

To obtain a non-trivial result in the limit τ ↓ 0 we must abandon the prefactor.
To that end we make the replacement

ds1d2 · · · dN −→ R · ds1 ·R · ds2 ·R · · ·R · dsN ·R

which is, in effect, to assign a “measure” to path space. Thus—following a
cleaned-up version of the path blazed by Feynman—do we assign direct meaning
to the statement

A(t2 − t1) =
∫

all generators

e
i
�

m
2

∫ t2

t1
{ṡ2−ω2s2}dt

Ds(t) =
√

mω

2πi� sinω(t2 − t1)
(63)

Our success, it will be noted, was entirely Gaussian in origin. And hard won!
There is, however, a “softer” way to proceed. We might consider that the

functional integral concept had already told us what it had to say when at
(60.1) it ascribed a certain non-obvious structure to the propagator, and that it
is to conditions (51) that we should look for more particular information about
the left side A(t2 − t1). To illustrate with minimal clutter the kind of analysis
I have in mind, consider the case of a free particle. For such a system it is a
familiar fact that the classical action can be described

S0(x2, t2;x1, t1) =
m

2
(x2 − x1)

2

t2 − t1

What condition on A(t2 − t1) is forced by the requirement that, consistently
with (51.2),

K(x2, t2;x1, t1) = A(t2 − t1) · e
i
�

m
2 (x2−x1)

2/(t2−t1) −→ δ(x2 − x1)
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as (t2 − t1) ↓ 0? Familiarly

δ(x− a) = lim
σ→0

1
σ
√

2π
exp

{
− 1

2

[
x− a

σ

]2}
so we write

e
i
�

m
2 (x2−x1)

2/(t2−t1) = exp
{
− 1

2

[
x2 − x1√

i�(t2 − t1)/m

]2}

and conclude that A(t2 − t1) has necessarily the form

A(t2 − t1) =
√

m

2π�(t2 − t1)
· {1 + arbitrary power series in (t2 − t1)}

This result is consistent with the result obtained from (63) in the free particle
limit ω ↓ 0. Much sharper conclusions can be drawn from (51.3); one wants

A(t2 − t1) · e
i
�

m
2 (x2−x1)

2/(t2−t1)

= A(t2 − t)A(t− t1)
∫ +∞

−∞
e

i
�

m
2 (x2−x)2/(t2−t)e

i
�

m
2 (x−x1)

2/(t−t1) dx

which after performance of the Gaussian integral is found to entail

A(t2 − t1) = A(t2 − t)A(t− t1)

√
2πi�
m

(t2 − t)(t− t1)
(t2 − t1)

It implication is that A(•) satisfies a functional equation of the form

A(x + y) = A(x)A(y)
√

αx · αy
α(x + y)

with α ≡
√

2πi�
m

This can be written G(x + y) = G(x)G(y) with G(x) ≡ A(x)
√
αx, and if

Γ (x) ≡ logG(x) we have Γ (x + y) = Γ (x) + Γ (y). Therefore

Γ (x + y)− Γ (x)
y

=
Γ (y)
y

for all x

from which (taking Y to the limit y ↓ 0) we obtain

dΓ (x)
dx

= k whence Γ (x) = kx + c

But the functional condition satisfied by Γ (x) enforces c = 0, so we have

G(x) = ekx giving A(x) =
√

1
αxe

kx. Thus do we obtain

Kfree particle =
√

m

2πi�(t2 − t1)
· ek(t2−t1) exp

{
i
�
Sfree particle

}
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The central exponential can be gauged away by adjustment of the energy
scale, since V (x) −→ V (x) + k induces S −→ S − k(t2 − t1). This result is
not only consistent with, but actually reproduces, the result implicit in (63).
What information could, alternatively, have been gleaned from the requirement
(51.1)that K(x, t; •, •) = A(t) exp{ i

�
S(x, t; •, •)} satisfy the Schrödinger

equation? The first of the equations (68) reduces (by Axx = 0) to precisely
the Hamilton-Jacobi equation, which S by construction satisfies exactly. The
second of equations (68) in Chapter I reads

(A2)t + (x−x1
t− t1

A2)x = 0

giving

A(t− t1) = A(t0) ·
√

t0
t − t1

which is again consistent with but much weaker than the result implicit in
(63). The evidence of this discussion suggests that after-the-fact constructions
of A(t2 − t1) proceed most effectively from the composition rule (51.3).

And there is, in fact, a still “softer” line of argument which is sufficient
to the needs of some applications. Looking back again to (60.1), we note that
ratios of propagators are described by a formula

K(x2, t2;x1, t1)
K(x̃2, t2; x̃1, t1)

= e
i
�
{S(x2,t2;x1,t1)−S(x̃2,t2;x̃1,t1)}

from which all reference to A(t2 − t1) has dropped away. This result becomes
most vivid when x̃1 is a “vacuum point”—a point at which the particle can be
at rest with zero energy ; we have

S(x̃, t2; x̃, t1) =
{
−E0(t2 − t1) when x̃ is an equilibrium point
0 when x̃ is a “vacuum point”

and in the latter case

K(x2, t2;x1, t1) = K(x̃, t2; x̃, t1) · e
i
�
S(x2,t2;x1,t1) (64)

For a free particle

Sfree particle(x2, t2;x1, t1) =
m

2
(x2 − x1)

2

t2 − t1

shows that every point is a “vacuum point”:

Sfree particle(x, t2;x, t1) = 0 for all x

For an oscillator

Soscillator(x, t2;x, t1) =
mω

2 sinω(t2 − t1)

[
(x2

2 + x2
1)cosω(t2 − t1)− 2x2x1

]
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there is a single vacuum point, situated at the origin. For the system

V (x) = mgx + 1
2mω2x2

a solitary equilibrium point resides at x̃ = −g/ω2, where the rest energy is
E0 = −mg2/ω2; to make x̃ into a vacuum point one must adjust the zero of
the energy scale. For a particle in free fall V (x) = mgx there is no equilibrium
point, no vacuum point, and it becomes therefore impossible to make use of
(64).

The Feynman formalism—clearly and explicitly—takes classical mechanics
as its point of departure, and achieves quantum mechanics by a functional
integration process, a process that (see the figure) “gives Hamilton’s comparison

t1

t2

x2x1

Figure 4: Representation of the Feynman quantization procedure.

paths a physical job to do.” It is, in effect, a quantization procedure, and is
today widely considered to be “the quantization procedure of choice.” Run
in reverse, it provides fresh insight into the placement of classical mechanics
within a quantum world, and it is that aspect of the Feynman formalism that
I want now to explore. Let
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