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1 Functions vs. functionals
What distinguishes a functional such as the action S [x (t)] from a function f (x (t)), is that f (x (t)) is a
number for each value of t, whereas the value of S [x (t)] cannot be computed without knowing the entire
function x (t) . Thus, functionals are nonlocal. If we think of functions and functionals as maps, a compound
function is the composition of two maps

f : R→ R

x : R→ R

giving a third map
f ◦ x : R→ R

A functional, by contrast, maps an entire function space into R,

S : F → R

F = {f (x) |x : R→ R}

In this section we develop the functional derivative, that is, the generalization of differentiation to functionals.

2 Intuitions

2.1 Analogy with the derivative of a function
We would like the functional derivative to formalize finding the extremum of an action integral, so it makes
sense to review the variation of an action. The usual argument is that we replace x(t) by x(t) + h(t) in the
functional S[x(t)], then demand that to first order in h(t),

δS ≡ S[x+ h]− S[x] = 0

Now, suppose S is given by

S[x(t)] =

ˆ
L(x(t), ẋ(t))dt

Then replacing x by x+ h, subtracting S and dropping all higher order terms gives

δS ≡
ˆ
L(x+ h, ẋ+ ḣ)dt−

ˆ
L(x, ẋ)dt

=

ˆ (
L(x, ẋ) +

∂L(x, ẋ)

∂x
h+

∂L(x, ẋ)

∂ẋ
ḣ

)
dt−

ˆ
L(x, ẋ)dt

=

ˆ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt
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0 = δS =

ˆ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt

and since h (t) is arbitrary, we conclude that the Euler-Lagrange equation must hold at each point,

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ
= 0

By analogy with ordinary differentiation, we would like to replace this statement by the demand that the
extrema are given by the vanishing of the first functional derivative of S[x],

δS[x(t)]

δx(t)
= 0

This means that the functional derivative of S should be the Euler-Lagrange expression. It is tempting to
define

δS[x(t)]

δx(t)
≡ lim
h→0

S[x+ h]− S[x]
h (t)

but even the ratio S[x+h]−S[x]
h(t) is not well-defined if h (t) has any zeros. What does work is to convert the

problem to an ordinary differentiation.

2.2 The Dirac delta
Suppose S is given by

S[x(t)] =

ˆ
L(x(t), ẋ(t))dt

Then replacing x by x+ h and subtracting S gives

δS ≡
ˆ
L(x+ h, ẋ+ ḣ)dt−

ˆ
L(x, ẋ)dt

=

ˆ (
L(x, ẋ) +

∂L(x, ẋ)

∂x
h+

∂L(x, ẋ)

∂ẋ
ḣ

)
dt−

ˆ
L(x, ẋ)dt

=

ˆ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt

Setting δx = h(t) we may write this as

δS =

ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′) dt′

Now write
δS =

δS

δx(t)
δx(t) =

(ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′)

δx(t)
dt′
)
δx(t)

or simply
δS

δx(t)
=

ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δx(t′)

δx(t)
dt′ (1)

We might write this much by just using the chain rule. What we need is to evaluate the basic functional
derivative,

δx(t′)

δx(t)

To see what this might be, consider the analogous derivative for a countable number of degrees of freedom.
Beginning with

∂qj

∂qi
= δji
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we notice that when we sum over the i index holding j0 fixed, we have∑
i

∂qj0

∂qi
=
∑
i

δj0i = 1

since i = j0 for only one value of i. We need the continuous version of this relationship. The sum over
independent coordinates becomes an integral,

∑
i →
´
dt′, so we demand

ˆ
δx(t′)

δx(t)
dt′ = 1

This will be true provided we use a Dirac delta function for the derivative:

δx(t′)

δx(t)
= δ(t′ − t)

Substituting this expression into eq.(1) gives the desired result for δS
δx(t) :

δS

δx(t)
=

ˆ (
∂L(x, ẋ)

∂x
− d

dt′
∂L(x, ẋ)

∂ẋ

)
δ(t′ − t) dt′

=
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

Notice how the Dirac delta function enters this calculation. When finding the extrema of S as before, we
reach a point where we demand

0 = δS =

ˆ (
∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

)
h(t) dt

for every function h(t). To complete the argument, suppose there is a time t0 at which ∂L(x,ẋ)
∂x − d

dt
∂L(x,ẋ)
∂ẋ is

nonzero. For concreteness, let ∂L(x,ẋ)
∂x − d

dt
∂L(x,ẋ)
∂ẋ

∣∣∣
t0
> 0. Then by continuity there must be a neighborhood

of t0 ∈ (t1, t2) on which ∂L(x,ẋ)
∂x − d

dt
∂L(x,ẋ)
∂ẋ > 0. Choose any function h (t) which is positive on (t1, t2) and

which vanishes outside this interval. Then we have a contradiction, since the integral must be positive. An
identical argument holds if the integrand is negative, so we must have

∂L(x, ẋ)

∂x
− d

dt

∂L(x, ẋ)

∂ẋ

∣∣∣∣
t0

= 0

Since the point t0 is arbitrary, we conclude that the expression vanishes everywhere.
This argument works fine if we only wish to find the extremum of the action. However if we can develop

a formalism such that we get a Dirac delta function,

δx (t′)

δx (t)
= δ (t′ − t)

then the functional derivative will exist for all curves. We now turn to a formal definition.

3 Formal definition of the functional derivative

3.1 Test functions and distributions
We begin with some definitions.

A test function is a smooth function which vanishes outside of a compact region.
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A distribution is a limit of test functions. There is an alternative definition as a linear functional taking as
set of test functions to the reals. I find the idea of a limit more intuitive, though the definition as functionals
has calculational advantages. For example, the Dirac delta function is such a functional, for if f (x) is any
test function,

δ (x− x0) : f (x)→ f (x0) ∈ R

That is, for any test function f , the delta function maps f to the real number f (x0). As a limit of smooth
functions, we may define

δ (x− x0) = lim
σ→0

[
1√
2πσ2

e−
(x−x0)2

2σ2

]
This is only one of many representations for δ (x− x0). In the end we only use the linear functional properties.
It is straightforward to show that for any test function f ,

lim
σ→0

1√
2πσ2

ˆ
f (x) e−

(x−x0)2

2σ2 dx = f (x0)

This is written as ˆ
f (x) δ (x− x0) dx = f (x0)

which gives us an explicit calculational form for the linear functional.

3.2 The functional derivative
Given a functional of the form

f [x(t)] =

ˆ
g (x (t′) , ẋ (t′) , . . .) dt′

we consider a sequence of 1-paramater variations of f given by replacing x(t′) by

xn(ε, t
′) = x(t′) + εhn (t, t

′)

where each hn is a test function, and the sequence of functions hn defines a distribution,

lim
n→∞

hn (t, t
′) = δ (t− t′)

Since we may vary the path by any function h(x), each of these functions εhn is an allowed variation.
Then the functional derivative is defined by

δf [x(t)]

δx(t)
≡ lim
n→∞

d

dε
f [xn(ε, t

′)]

∣∣∣∣
ε=0

(2)

The derivative with respect to ε accomplishes the usual variation of the action by using the chain rule.
Taking a derivative and setting ε = 0 is just a clever way to select the part of the variation linear in ε. Then
we take the limit of a carefully chosen sequence of variations hn to extract the variational coefficient from
the integral with a Dirac delta function.

To see explicitly that this works, we compute:

δf [x (t)]

δx (t)
≡ lim

n→∞

d

dε
f [xn (ε, t

′)]

∣∣∣∣
ε=0

= lim
n→∞

ˆ
dg (ε, x (t′) , ẋ (t′) , . . .)

dε

∣∣∣∣
ε=0

= lim
n→∞

ˆ
d

dε
g
(
x (t′) + εhn (t, t

′) , ẋ (t′) + εḣn (t, t
′) , . . .

)∣∣∣∣
ε=0
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= lim
n→∞

ˆ (
∂g

∂x
hn (t, t

′) +
∂g

∂ẋ (t′)

dhn (t, t
′)

dt′
+ . . .

)
dt′

=

ˆ
lim
n→∞

hn (t, t
′)

(
∂g

∂x
− d

dt′
∂g

∂ẋ
+ . . .

)
dt′

=

ˆ (
∂g

∂x
− d

dt′
∂g

∂ẋ
+ . . .

)
δ (t− t′) dt′

=
∂g

∂x
− d

dt

∂g

∂ẋ
+ . . .

A convenient shorthand notation for this procedure is

δf [x(t)]

δx(t)
=

δ

δx(t)

ˆ
g (x(t′), ẋ(t′), . . .) dt′

=

ˆ (
∂g

∂x (t′)

δx(t′)

δx(t)
+
∂g

∂ẋ

d

dt′
δx(t′)

δx(t)
+ . . .

)
dt′

=

ˆ (
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ
+ . . .

)
δx(t′)

δx(t)
dt′

=

ˆ (
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ
+ . . .

)
δx(t′)

δx(t)
δ (t′ − t) dt′

=
∂g

∂x (t)
− d

dt

∂g

∂ ˙x (t)
+ . . .

The method can be extended to more general forms of functional f.
One advantage of the formal definition is that it can be iterated,

δ2f [x (t)]

δx (t′′) δx (t′)
=

δ

δx (t′)

δf [x (t)]

δx (t′)

=
δ

δx (t′′)

(
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ (t′)
+

)
=

∂g

∂x (t′)

(
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ (t′)
+

)
δx (t′)

δx (t′′)
+

∂g

∂ẋ (t′)

(
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ (t′)
+

)
δẋ (t′)

δx (t′′)

=
∂g

∂x (t′)

(
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ (t′)
+

)
δ (t′ − t′′) + ∂g

∂ẋ (t′)

(
∂g

∂x (t′)
− d

dt′
∂g

∂ẋ (t′)
+

)
d

dt′
δ (t′ − t′′)

Another advantage of treating variations in this more formal way is that we can equally well apply the
technique to classical field theory.

4 Field equations as functional derivatives
We can vary field actions in the same way, and the results make sense directly. Consider varying the scalar
field action

S =
1

2

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d4x

with respect to the field ϕ. Setting the functional derivative of S to zero, we have

0 =
δS [ϕ]

δϕ (xµ)

=
1

2

δ

δϕ (xµ)

ˆ (
∂αϕ∂αϕ−m2ϕ2

)
d4x′
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=

ˆ (
∂αϕ

∂

∂x′α
δϕ (x′µ)

δϕ (xν)
−m2ϕ

δϕ (x′µ)

δϕ (xν)

)
d4x′

=

ˆ (
−∂α∂αϕ−m2ϕ

) δϕ (x′µ)

δϕ (xν)
d4x′

=

ˆ (
−∂α∂αϕ−m2ϕ

)
δ4(x′µ − xµ)d4x′

= −�ϕ−m2ϕ

and we have the field equation.

Exercise: Find the field equation for the complex scalar field by taking the functional derivative of its
action.

Exercise: Find the field equation for the Dirac field by taking the functional derivative of its action.

Exercise: Find the Maxwell equations by taking the functional derivative of its action.

With this new tool at our disposal, we turn to quantization.
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