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A Gaussian integral has the form

G=
∫

∞

−∞

e−x
2
dx (1)

There is no closed form indefinite integral (without the limits) in terms
of elementary functions, but it turns out that, with the infinite limits, the
integral is quite easy to using a simple trick. The trick is to square the
integral and convert to polar coordinates, using r2 = x2 +y2.

G2 =
∫

∞

−∞

∫
∞

−∞

e−x
2−y2

dxdy (2)

=
∫

∞

0

∫ 2π

0
re−r

2
dθdr (3)

= 2π
∫

∞

0
re−r

2
dr (4)

= π
(
−e−r

2
)∣∣∣∞

0
(5)

= π (6)

Taking the square root gives

G=
∫

∞

−∞

e−x
2
dx=

√
π (7)

We can generalize this to the case where the exponent is a general qua-
dratic in x, that is ∫

∞

−∞

e−ax
2+bxdx (8)

where a > 0 (if a < 0 the integral diverges). The trick here is to complete
the square in the quadratic:

1

http://physicspages.com
https://physicspagescomments.wordpress.com


GAUSSIAN INTEGRALS: SINGLE VARIABLE & MATRIX EXPONENTS 2

−ax2 + bx = −a
(
x2− b

a
x

)
(9)

= −a
(
x− b

2a

)2

+
b2

4a
(10)

Now use the substitution u≡
√
a
(
x− b

2a

)
, du=

√
adx to get

∫
∞

−∞

e−ax
2+bxdx =

1√
a
eb

2/4a
∫

∞

−∞

e−u
2
du (11)

=

√
π

a
eb

2/4a (12)

We can generalize this even further by considering an exponent of the
form −1

2x
TAx+JTx, where x and J are now N -dimensional vectors and

A is a real symmetricN×N matrix, with xT being the transpose of x. With
these definitions, the exponent −xTAx+JTx is a scalar, although it now
contains N independent coordinates xi for i= 1, . . . ,N rather than just the
single x we’ve been considering so far. In this case the Gaussian integral
becomes

∫
∞

−∞

∫
∞

−∞

. . .
∫

∞

−∞

dx1dx2 . . .dxNe
− 1

2x
TAx+JT x (13)

To derive a formula for this integral, we need a theorem from linear alge-
bra which states that we can decompose a real symmetric matrix A into the
form

A=O−1DO (14)

where D is a diagonal matrix whose diagonal elements are the eigenval-
ues of A and O is an orthonormal matrix, that is a matrix with determinant
1 and such that O−1 = OT . The matrix O is therefore a rotation matrix in
N dimensional Euclidean space.

We can now make the substitution

y =Ox (15)

which applies the rotation O to the original coordinates x. Then x =
O−1y =OT y and xT = yTO , so

http://www.physicspages.com/2015/10/22/lies-method-of-generating-rotations/
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−1
2
xTAx+JTx = −1

2
yTO

(
O−1DO

)
O−1y+JTOT y (16)

= −1
2
yTDy+(OJ)T y (17)

Because D is diagonal, we get

−1
2
yTDy = −1

2

N

∑
i=1

Diiy
2
i (18)

(OJ)T y =
N

∑
i=1

(OJ)i yi (19)

That is, the exponential in the integral 13 has decoupled into a product of
independent integrals, each of the form 8.

One final point needs to be addressed, and that’s the transformation of the
volume element dx1dx2 . . .dxN into the yi coordinates. Because the x and
y coordinate systems are related by a rigid rotation 15, the volume elements
are the same in the two coordinate systems, so dx1dx2 . . .dxN just becomes
dy1dy2 . . .dyN . Therefore we get

∫
∞

−∞

∫
∞

−∞

. . .
∫

∞

−∞

dx1dx2 . . .dxNe
− 1

2x
TAx+JT x =

∫
∞

−∞

∫
∞

−∞

. . .
∫

∞

−∞

dy1dy2 . . .dyNe
− 1

2 ∑
N
i=1Diiy

2
i+∑

N
i=1(OJ)iyi

(20)

=
N

∏
i=1

∫
∞

−∞

dyie
− 1

2Diiy
2
i+(OJ)iyi

(21)

=

[
N

∏
i=1

√
2π
Dii

]
e∑

N
i=1(OJ)

2
i/2Dii

(22)

To simplify this result, we can fiddle with the matrices a bit. From 14

A−1 =O−1D−1O (23)

The inverse of a diagonal matrix D is another diagonal matrix whose
diagonal elements are 1/Dii:

(
D−1)

ii
= 1

Dii
. Therefore (OJ)T D−1 (OJ)

is ∑
N
i=1 (OJ)

2
i /Dii, and:
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(OJ)T D−1 (OJ) = JTOTD−1OJ (24)

= JTO−1D−1OJ (25)
= JTA−1J (26)

Also, taking the determinant of 14 we get (remember detO = detO−1 =
1):

detA= detD =
N

∏
i=1

Dii (27)

Finally we get

∫
∞

−∞

∫
∞

−∞

. . .
∫

∞

−∞

dx1dx2 . . .dxNe
− 1

2x
TAx+JT x =

√
(2π)N

detA
e

1
2J

TA−1J (28)

Example. We can test this formula in the 2-d case using

A =

[
6 2
2 3

]
(29)

A−1 =
1
7

[
3
2 −1
−1 3

]
(30)

detA = 14 (31)

J =

[
0.5
0.6

]
(32)

JTA−1J = 0.1221 (33)√
(2π)N

detA
e

1
2J

TA−1J = 1.785 (34)

We can check this by evaluating the integral 13 directly (I did this using
Maple). The exponent is

−1
2
xTAx+JTx=−3x2

1−2x1x2−
3
2
x2

2 +0.5x1 +0.6x2

(35)∫
∞

−∞

∫
∞

−∞

dx1dx2e
− 1

2x
TAx+JT x = 1.785 (36)

This verifies the formula 28. [If you want to do the integrals by com-
pleting the square, do the x1 integral first by completing the square on the
quadratic in x1, treating x2 as a constant. This will give you an integral
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over x2 in which the exponent is a quadratic in x2, so you can complete the
square again to do this integral.]
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