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Abstract

In this project, we examine how integration over matrices is performed.
We investigate and develop a method for calculating matrix integrals
of the general form 

DMe− Tr(V (M)),

over the set of real square matrices M .
Matrix integrals are used for calculations in several different areas

of physics and mathematics; for example quantum field theory, string
theory, quantum chromodynamics, and random matrix theory.

Our method consists of ways to apply perturbative Taylor expan-
sions to the matrix integrals, reducing each term of the resulting Taylor
series to a combinatorial problem using Wick’s theorem, and represent-
ing the terms of the Wick sum graphically with the help of Feynman
diagrams and fat graphs. We use the method in a few examples that
aim to clearly demonstrate how to calculate the matrix integrals.





Sammanfattning

I detta projekt undersöker vi hur integration över matriser genom-
förs. Vi undersöker och utvecklar en metod för beräkning av matrisin-
tegraler på den allmänna formen

DMe− Tr(V (M)),

över mängden av alla reell-värda kvadratiska matriser M .
Matrisintegraler används för beräkningar i ett flertal olika områ-

den inom fysik och matematik, till exempel kvantfältteori, strängteori,
kvantkromodynamik och slumpmatristeori.

Vår metod består av sätt att applicera perturbativa Taylorutveck-
lingar på matrisintegralerna, reducera varje term i den resulterande
Taylorserien till ett kombinatoriellt problem med hjälp av Wicks sats,
och att representera termerna i Wicksumman grafiskt med hjälp av
Feynmandiagram. Vi använder metoden i några exempel som syftar till
att klart demonstrera hur beräkningen av matrisintegraler går till.
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Chapter 1

Introduction

1.1 Background
The calculation of matrix integrals is something that is commonly uti-
lized in several areas of modern physics and mathematics. Notable
mentions are, among others:

• Electromagnetic response and transport properties in disordered
or irregular quantum systems. [6]

• Counting of maps, triangulations [6] and quadrangulations [2] in
quantum field theory.

• Path integrals in quantum field theory. [6]

• Studying the spectrum of energy levels in large nuclei. [6]

• Two-dimensional quantum gravity. [6]

• Planar diagrams in quantum chromodynamics. [6]

• The Kardar–Parisi–Zhang equation. [6]

• Random growth models with random matrices. [6]

• Supersymmetric gauge theories in string theory. [6]

• Counting of maps, foldings, and knots in combinatorics. [6]
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Chapter 1. Introduction

1.2 Problem Formulation
The goal of this project is to specify how integration over matrices A
is performed, and to define and calculate different examples of matrix
integrals. We will define what it means to integrate over matrices, and
we will develop and investigate a method to calculate matrix integrals
of various forms.

We seek to, starting from [2] and [6], independently and thoroughly
develop and derive this method, and to verify that the resulting method
is the same as, or least equivalent to, the methods described in [2] and
[6].

We will present the results in the form of derivations, expressions
and methods for the calculation of the matrix integrals, as well as some
simple examples that demonstrate the use of the developed methods.
A general matrix integral can be written on the form

DMe− Tr(V (M)), (1.1)

with the integral taken over some set of matrices M . Here, we will focus
on the most basic set: the set of real n-by-n square matrices, that is

M ∈ Rn×n. (1.2)

1.3 Theory

1.3.1 Diagonalization of Matrices
In one of the first few steps towards deriving a method for calculating
matrix integrals, we will need to make use of a simple fact that follows
from the finite-dimensional spectral theorem.

Proposition 1.1 (Diagonalization of real symmetric matrices).

For a real and symmetric matrix

A = AT ∈ Rn×n, (1.3)

it follows from the spectral theorem that A has the (real) eigen-
values λi ∈ R and can be diagonalized into a matrix

D = diag (λ1, λ2, . . . , λn) (1.4)
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1.3. Theory

by an orthogonal matrix O, that is,

OAOT = D =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

 (1.5)

⇔ A = OT DO. (1.6)

1.3.2 Wick’s Theorem
We will arrive at a point where we need to make use of a theorem for
relating long and somewhat chaotic calculations of many derivatives
to an, in comparison, trivial combinatorial problem. This theorem is
called Wick’s theorem. [4, 5]

Theorem 1.2 (Wick’s Theorem).

For the expectation value

⟨xi1xi2 · · · xim⟩ , (1.7)

we have

⟨xi1xi2 · · · xim⟩ =


∆ip1 ip2
∆ip3 ip4

· · · ∆ipm−1 ipm
, (1.8)

where ∆ij := ⟨xixj⟩ denotes the propagator between the space
points xi and xj, and the sum is taken over all pairings

(ip1 , ip2) , (ip3 , ip4) , . . . ,

ipm−1 , ipm


(1.9)

of i1, i2, . . . , im.
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Chapter 2

Method

In this project, we develop a method to calculate matrix integrals.
Starting from [2] and [6], we develop the method independently, and
we carefully prove that all assumptions that we make are correct and
can be applied in our calculations.

We verify that the resulting method yields the same results from
calculations as the methods described in [2] and [6] do. Since we do not
regard the contents of our reference literature as facts, but rather as
guidelines for our choice of work flow, we are able to verify the validity
of the methods in [2] and [6].

2.1 Outline
Our first step is to calculate the one-dimensional Gaussian integral +∞

−∞
dxe− α

2 x2 (2.1)

(see section 3.1), and the multi-dimensional Gaussian integral
Rn

dnxe− 1
2 xT Ax, (2.2)

where x is a column vector and A is a real symmetric matrix (see
section 3.2). These simple integrals will evaluate to constants, and
knowledge of the constants will slightly simplify some subsequent cal-
culations.

Next, we calculate the integral +∞

−∞
dxxme− α

2 x2
, (2.3)
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Chapter 2. Method

by introducing the so called generating function

Z [j] :=
 +∞

−∞
dxe− α

2 x2+jx (2.4)

(see section 3.3). We relate the wanted integral to the generating func-
tion, whose value we can easily calculate. We also calculate the similar
but multi-dimensional integrals

Rn
dnxxixje

− 1
2 xT Ax (2.5)

and 
Rn

dnxxixjxkxle
− 1

2 xT Ax, (2.6)

and try to calculate the integral
Rn

dnxxi1xi2 · · · xime− 1
2 xT Ax, (2.7)

also by defining a generating function, which we relate to the wanted
integral (see section 3.4, section 3.5, and section 3.6). Since the latter
two of these three integrals leads to a significantly more complex ana-
lytical calculation than the first of these three integrals, we introduce
a different and much simpler way to calculate the involved expressions,
namely, Wick’s theorem (see Theorem 1.2).

After applying Wick’s theorem to the integrals, we end up with an
elementary combinatorial problem. Even more convenient is to repre-
sent this diagrammatically, using Feynman diagrams [2, 4, 6]. We in-
troduce the appropriate nomenclature and notations for the diagrams,
and establish a way to assign the diagrams values (see section 3.7).

We then calculate the integral
Rn

dnxe− 1
2 xT Ax+αxj

, (2.8)

with an additional term introduced in the exponent, by rewriting the
integral using Taylor expansion, and exchanging the order of the sum-
mation and the integration (see section 3.8). The resulting expression
is a sum, where each term is an integral of a form that we are already
familiar with.

Our next step is to calculate the matrix integral
Rn×n

DMe− 1
2 Tr(M2). (2.9)
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2.1. Outline

By rewriting the integral, we can make it assume a form that resembles
the integrals that we have already calculated (see section 3.9).

We then calculate the matrix integral
Rn×n

DMMijMkle
− 1

2 Tr(M2), (2.10)

and begin to calculate the matrix integral
Rn×n

DMMi1j1Mi2j2 · · · Mimjme− 1
2 Tr(M2). (2.11)

Like when calculating previous integrals, we rewrite the integral on a
form we are familiar with (see section 3.10 and section 3.11). We apply
Wick’s theorem to the latter of the two integrals to reduce the otherwise
complicated calculation to a more convenient combinatorial problem.

Just like in the case with integrals over vectors, we can also here
represent the resulting combinatorial sum graphically using Feynman
diagrams [2, 6]. We introduce the appropriate nomenclature and the
notations necessary to extend the Feynman diagrams to usage with
matrix elements (see section 3.12).

As the last step, we apply all of the tools that we have presented to
calculate the integral

Rn×n
DMe− 1

2 Tr(M2)+g Tr(M3) (2.12)

(see section 3.13).
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Chapter 3

Results

3.1 One-dimensional Gaussian Integral
We begin by calculating the value of the one-dimensional Gaussian in-
tegral,

Z =
 +∞

−∞
dxe− α

2 x2 (3.1)

⇒ Z2 =
 +∞

−∞
dxe− α

2 x2
 +∞

−∞
dye− α

2 y2


(3.2)

=
 +∞

−∞

 +∞

−∞
dxdye− α

2 (x2+y2). (3.3)

We substitute the variables

x =: r cos (θ) , (3.4)
y =: r sin (θ) (3.5)

⇒ Z2 =
 +∞

0
rdr

 2π

0
dθe− α

2 ar2 (3.6)

= 2π
 +∞

0
drre− α

2 r2
. (3.7)

We perform another substitution,

z := r2 (3.8)

⇒ Z2 = π
 +∞

0
dze− α

2 z (3.9)

= π


−2e− α

2 z

α

+∞

0
(3.10)
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Chapter 3. Results

= 2π

α
(3.11)

⇒ Z2 = 2π

α
(3.12)

⇒ Z =


2π

α
. (3.13)

The value of this integral is a constant, and knowledge of this con-
stant will allow us to simplify the subsequent calculations.

3.2 Multi-dimensional Gaussian Integral
Next, we calculate the value of the multi-dimensional Gaussian integral,
that has the form

Z =

Rn

dnxe− 1
2 xT Ax, (3.14)

where x is the column vector

x =


x1
x2
...

xn

 , (3.15)

and A is a real symmetric matrix, that is

A = AT ∈ Rn×n (3.16)
⇔ Aij = Aji. (3.17)

Since the matrix A is real and symmetric, we can make use of a
result that follows from the spectral theorem, see Proposition 1.1. The
spectral theorem implies that A has the eigenvalues λi ∈ R and can be
diagonalized into a matrix D = diag (λ1, λ2, . . . , λn) by an orthogonal
matrix O (see Proposition 1.1), that is

D = OAOT =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn

 (3.18)

⇔ A = OT DO (3.19)

⇒ Z =

Rn

dnxe− 1
2 xT Ax (3.20)
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3.2. Multi-dimensional Gaussian Integral

=

Rn

dnxe− 1
2 xT OT DOx (3.21)

=

Rn

dnxe− 1
2 (Ox)T D(Ox). (3.22)

We perform the variable substitution

y := Ox (3.23)

⇒ dny = det


dy

dx


dnx (3.24)

⇒ dnx = 1
det (O)dny (3.25)

⇒ Z =

Rn

dny
1

det (O)e− 1
2 yT Dy (3.26)

=

Rn

dny
1

det (O)e
− 1

2

n
i=1

λiy
2
i

(3.27)

= 1
det (O)

n
i=1

 +∞

−∞
dyie

− 1
2 λiy

2
i . (3.28)

Using Equation 3.13, we get

Z = 1
det (O)

n
i=1


2π

λi

(3.29)

= 1
det (O)

(2π)n/2
det (D)

(3.30)

= (2π)n/2
det (OT DO)

(3.31)

= (2π)n/2
det (A)

(3.32)

⇒ Z = (2π)n/2
det (A)

. (3.33)

Also here, the result is a constant that we will use in subsequent
calculations.
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Chapter 3. Results

3.3 Generating Function
We then calculate the integral

I =
 +∞

−∞
dxxme− α

2 x2
, (3.34)

by introducing and defining the generating function Z [j]. With the help
of derivatives, we relate the wanted integral to the generating function,
whose value we can easily calculate.

Z [j] :=
 +∞

−∞
dxe− α

2 x2+jx (3.35)

⇒ I = dmZ [j]
djm


j=0

. (3.36)

We evaluate the generating function

Z [j] =
 +∞

−∞
dxe− α

2 x2+jx (3.37)

=
 +∞

−∞
dxe− α

2 (x− j
α)2

+ j2
2α . (3.38)

We substitute the variable

y := x − j

α
(3.39)

⇒ Z [j] =
 +∞

−∞
dye− α

2 y2+ j2
2α (3.40)

= e
j2
2α

 +∞

−∞
dye− α

2 y2
. (3.41)

Using Equation 3.13, we see

Z [j] = e
j2
2α

 +∞

−∞
dye− α

2 y2 (3.42)

=


2π

α
e

j2
2α (3.43)

⇒ I = dmZ [j]
djm


j=0

(3.44)

=


2π

α

dm

djm


e

j2
2α


j=0

(3.45)

⇒ I =


2π

α

dm

djm


e

j2
2α


j=0

. (3.46)
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3.4. Two-point Function

3.4 Two-point Function
Similarly, we calculate the multi-dimensional integral

I =

Rn

dnxxixje
− 1

2 xT Ax. (3.47)

To do this, we define the generating function Z [J ]. Again, we re-
late the wanted integral, with the help of partial derivatives, to the
generating function, whose value we can easily calculate.

Z [J ] :=

Rn

dnxe− 1
2 xT Ax+xT J (3.48)

⇒ I = ∂2Z [J ]
∂Ji∂Jj


J=0

, (3.49)

where

J =


J1
J2
...

Jn

 . (3.50)

We see that

Z [J ] =

Rn

dnxe− 1
2 xT Ax+xT J (3.51)

=

Rn

dnxe− 1
2(x−A−1J)T

A(x−A−1J)+ 1
2 JT A−1J . (3.52)

We substitute the variable

y := x − A−1J (3.53)

⇒ Z [J ] =

Rn

dnye− 1
2 yT Ay+ 1

2 JT A−1J (3.54)

= e
1
2 JT A−1J


Rn

dnye− 1
2 yT Ay. (3.55)

Using Equation 3.33, we see that

Z [J ] = e
1
2 JT A−1J


Rn

dnye− 1
2 yT Ay (3.56)

= (2π)n/2
det (A)

e
1
2 JT A−1J (3.57)

⇒ I = ∂2Z [J ]
∂Ji∂Jj


J=0

(3.58)
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Chapter 3. Results

= (2π)n/2
det (A)

∂2

∂Ji∂Jj


e

1
2 JT A−1J


J=0

. (3.59)

Using

JT A−1J =
n

k=1

n
l=1


A−1


kl

JkJl, (3.60)

Z0 := Z [0] (3.61)

= (2π)n/2
det (A)

, (3.62)

we see

I = Z0
∂2

∂Ji∂Jj

e
1
2

n
k=1

n
l=1

(A−1)
kl

JkJl



J=0

(3.63)

= Z0
∂

∂Jj


1
2

n
a=1


A−1


ai

Ja + 1
2

n
b=1


A−1


ib

Jb



·e
1
2

n
k=1

n
l=1

(A−1)
kl

JkJl



J=0

(3.64)

= Z0
∂

∂Jj

 n
a=1


A−1


ia

Jae
1
2

n
k=1

n
l=1

(A−1)
kl

JkJl



J=0

(3.65)

= Z0


A−1


ij

+
n

a=1


A−1


ia

Ja


1
2

n
b=1


A−1


bj

Jb

+1
2

n
c=1


A−1


jc

Jc


e

1
2

n
k=1

n
l=1

(A−1)
kl

JkJl


J=0

(3.66)

= Z0


A−1


ij

+
n

a=1


A−1


ia

Ja

·
n

b=1


A−1


jb

Jb


e

1
2 JT A−1J


J=0

(3.67)

= Z0

A−1


ij

(3.68)

⇒ I = Z0

A−1


ij

, (3.69)

where Z0 = Z [0] is a constant that by itself is of low importance, but
will follow us throughout this chapter.

Page 14 of 39



3.5. Four-point Function

3.5 Four-point Function
We also calculate the multi-dimensional integral

I =

Rn

dnxxixjxkxle
− 1

2 xT Ax. (3.70)

We define the generating function

Z [J ] :=

Rn

dnxe− 1
2 xT Ax+xT J (3.71)

⇒ I = ∂4Z [J ]
∂Ji∂Jj∂Jk∂Jl


J=0

. (3.72)

Using Equation 3.57 we see that

I = ∂4Z [J ]
∂Ji∂Jj∂Jk∂Jl


J=0

(3.73)

= Z0
∂4

∂Ji∂Jj∂Jk∂Jl


e

1
2 JT A−1J


J=0

(3.74)

= Z0
∂4

∂Ji∂Jj∂Jk∂Jl

e

1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.75)

= Z0
∂3

∂Jj∂Jk∂Jl


1
2

n
a=1


A−1


ai

Ja + 1
2

n
b=1


A−1


ib

Jb



·e
1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.76)

= Z0
∂3

∂Jj∂Jk∂Jl

 n
a=1


A−1


ia

Jae

1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.77)

= Z0
∂2

∂Jk∂Jl


A−1


ij

+
n

a=1


A−1


ia

Ja


1
2

n
b=1


A−1


bj

Jb

+1
2

n
c=1


A−1


jc

Jc


e

1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.78)

= Z0
∂2

∂Jk∂Jl


A−1


ij

+
n

a=1


A−1


ia

Ja

n
b=1


A−1


jb

Jb


e

1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.79)
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= Z0
∂

∂Jl


A−1


jk

n
a=1


A−1


ia

Ja +

A−1


ik

n
b=1


A−1


jb

Jb

+


A−1


ij
+

n
a=1


A−1


ia

Ja

n
b=1


A−1


jb

Jb



·


1
2

n
c=1


A−1


ck

Jc + 1
2

n
d=1


A−1


kd

Jd



·e
1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.80)

= Z0
∂

∂Jl


A−1


jk

n
a=1


A−1


ia

Ja +

A−1


ik

n
b=1


A−1


jb

Jb

+

A−1


ij

n
c=1


A−1


kc

Jc +
n

a=1


A−1


ia

Ja

n
b=1


A−1


jb

Jb

n
c=1


A−1


kc

Jc



·e
1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.81)

= Z0


A−1


ij


A−1


kl

+

A−1


ik


A−1


jl

+

A−1


il


A−1


jk

+

A−1


il

n
b=1


A−1


jb

Jb

n
b=1


A−1


kc

Jc

+

A−1


jl

n
b=1


A−1


ia

Ja

n
b=1


A−1


kc

Jc

+

A−1


kl

n
b=1


A−1


ia

Ja

n
b=1


A−1


jb

Jb

+


A−1


jk

n
a=1


A−1


ia

Ja +

A−1


ik

n
b=1


A−1


jb

Jb

+

A−1


ij

n
c=1


A−1


kc

Jc +
n

a=1


A−1


ia

Ja

n
b=1


A−1


jb

Jb

n
c=1


A−1


kc

Jc



·


1
2

n
d=1


A−1


dk

Jd + 1
2

n
e=1


A−1


ke

Je



·e
1
2

n
p=1

n
q=1

(A−1)
pq

JpJq



J=0

(3.82)

= Z0


A−1


ij


A−1


kl

+

A−1


ik


A−1


jl

Page 16 of 39



3.6. m-point Function and Wick’s Theorem

+

A−1


il


A−1


jk


(3.83)

⇒ I = Z0


A−1


ij


A−1


kl

+

A−1


ik


A−1


jl

+

A−1


il


A−1


jk


. (3.84)

This portrays the level of complexity of calculating these integrals
analytically, using derivatives.

3.6 m-point Function and Wick’s Theo-
rem

We then begin to calculate the integral

I =

Rn

dnxxi1xi2 · · · xime− 1
2 xT Ax. (3.85)

We once again define the same generating function Z [J ], and relate
the wanted integral to partial derivatives of the generating function.

Z [J ] :=

Rn

dnxe− 1
2 xT Ax+xT J , (3.86)

⇒ I = ∂mZ [J ]
∂Ji1∂Ji2 · · · ∂Jim


J=0

. (3.87)

Using Equation 3.57 we see

I = ∂mZ [J ]
∂Ji1∂Ji2 · · · ∂Jim


J=0

(3.88)

= Z0
∂m

∂Ji1∂Ji2 · · · ∂Jim


e

1
2 JT A−1J


J=0

. (3.89)

Note that, for odd m, every term that comes from the derivatives
contains some Ji, and the value of the integral is thus zero.

Since calculating this seemingly elementary expression analytically
would require several pages of paper (an assumption based on the
rapidly increasing complexity of the calculations in section 3.4 and sec-
tion 3.5), we introduce an alternative way to calculate these integrals.

We introduce and define the m-point function

⟨xi1xi2 · · · xim⟩ := 1
Z0


Rn

dnxxi1xi2 · · · xime− 1
2 xT Ax, (3.90)
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with the same multi-dimensional generating function Z [J ] as before.
We then relate the m-point function to the generating function using
partial derivatives, and make use of Theorem 1.2 to turn the very untidy
calculation of the derivatives into a combinatorial problem.

Z [J ] :=

Rn

dnxe−xT Ax+xT J , (3.91)

which implies that

⟨xi1xi2 · · · xim⟩ = 1
Z0

∂mZ [J ]
∂Ji1∂Ji2 · · · ∂Jim


J=0

(3.92)

= ∂m

∂Ji1∂Ji2 · · · ∂Jim


e

1
2 JT A−1J


J=0

. (3.93)

We reformulate Wick’s theorem (Theorem 1.2) to match the nota-
tion used here, and we can then use it to calculate this integral.

Theorem 3.1 (Wick’s Theorem).

∂m

∂Ji1∂Ji2 · · · ∂Jim


e

1
2 JT A−1J


J=0

=


A−1


ip1 ip2


A−1


ip3 ip4

· · ·

A−1


ipm−1 ipm

, (3.94)

where the sum is taken over all pairings

(ip1 , ip2) , (ip3 , ip4) , . . . ,

ipm−1 , ipm


(3.95)

of i1, i2, . . . , im.

3.7 Feynman Diagrams
This combinatorial problem can be solved with even less effort using a
visual representation of the combinatorial sum [2, 6]. We now introduce
a way to represent each term of the sum with a drawing of a so called
Feynman diagram [2, 4, 6], and use this method to calculate a few
examples of integrals that would be very inconvenient to calculate using
partial derivatives.

We assign to each factor xp
i a vertex with p half-edges. Then we

connect the different half-edges in pairs with a propagator. To the
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3.7. Feynman Diagrams

propagator belonging to the vertices xi, xj we assign a weight (A−1)ij.
We connect the half-edges in every possible way, and sum together
the permutations, after calculating the product of the weights of the
propagators for each permutation (see Example 3.2 and Example 3.3).
[2, 6]

The resulting diagrams that we draw here are then called Feynman
diagrams [2, 4, 6].

Example 3.2 (Four-point function).

⟨x1x2x3x4⟩ =
 x1 x2

x3 x4


=

x1 x2

x3 x4

+

x1 x2

x3 x4

+

x1 x2

x3 x4

(3.96)

=

A−1


12


A−1


34

+

A−1


13


A−1


24

+

A−1


14


A−1


23

. (3.97)
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Example 3.3 (Six-point function).

⟨x1x2x3x4x5x6⟩ =


x3

x2x1

x6

x5 x4


= x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4
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3.8. Perturbative Expansion

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

+ x3

x2x1

x6

x5 x4

(3.98)

=

A−1


12


A−1


34


A−1


56

+

A−1


12


A−1


35


A−1


46

+

A−1


12


A−1


36


A−1


45

+

A−1


13


A−1


24


A−1


56

+

A−1


13


A−1


25


A−1


46

+

A−1


13


A−1


26


A−1


45

+

A−1


14


A−1


23


A−1


56

+

A−1


14


A−1


25


A−1


36

+

A−1


14


A−1


26


A−1


35

+

A−1


15


A−1


23


A−1


46

+

A−1


15


A−1


24


A−1


36

+

A−1


15


A−1


26


A−1


34

+

A−1


16


A−1


23


A−1


45

+

A−1


16


A−1


24


A−1


35

+

A−1


16


A−1


25


A−1


34

. (3.99)

3.8 Perturbative Expansion
We now calculate the integral

I =

Rn

dnxe− 1
2 xT Ax+αxj

, (3.100)

with a new term introduced in the exponent.
Rewriting the integral using Taylor expansion, and exchanging the

order of the summation and the integration, gives us

I =

Rn

dnxe− 1
2 xT Ax+αxj (3.101)

=

Rn

dnxeαxj

e− 1
2 xT Ax (3.102)

=

Rn

dnx
∞

k=0

(αxj)k

k! e− 1
2 xT Ax (3.103)
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=
∞

k=0

αk

k!


Rn

dnxxjke− 1
2 xT Ax. (3.104)

Each term in this sum bears strong resemblance to previously per-
formed integrals (see section 3.6), and can thus be solved in the same
way. For α small enough, the first few terms in the sum are dominating,
and we can be satisfied with calculating only the first few terms.

Example 3.4 (Perturbative expansion for j = 4).

I =

Rn

dnxe− 1
2 xT Ax+αx4 (3.105)

=
∞

k=0

αk

k!


Rn

dnxx4ke− 1
2 xT Ax (3.106)

= Z0

∞
k=0


x4k


(3.107)

= Z0

⟨1⟩ +
n

i=1

n
j=1

⟨xixixjxj⟩ + · · ·

 (3.108)

= Z0

1 +
n

i=1

n
j=1


xi xj


+ · · ·

 (3.109)

= Z0

1 +
n

i=1

n
j=1

 xi xj

+ xi xj + xi xj

+ · · ·

 (3.110)

= Z0

1 +
n

i=1

n
j=1


A−1


ii


A−1


jj

+2

A−1

2

ij


+ · · ·


(3.111)
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≈ Z0

1 +
n

i=1

n
j=1


A−1


ii


A−1


jj

+ 2

A−1

2

ij

 . (3.112)

3.9 Basic Matrix Integral
We calculate the matrix integral

I =

Rn×n

DMe− 1
2 Tr(M2). (3.113)

For the matrix trace, we see that

Tr

M2


=

n
i=1


M2


ii

, (3.114)


M2


ii

=
n

j=1
MijMji (3.115)

⇒ Tr

M2


=

n
i=1

n
j=1

MijMji (3.116)

=
n

i=1

n
j=1

n
k=1

n
l=1

MijMklδilδjk. (3.117)

To solve the integral, we identify the matrix M with the previously
used vector x, and the Kronecker delta functions δil, δjk with the previ-
ously used matrix A. We define

x :=



M11
M12

...
M1n

M21
M22

...
Mnn


∈ Rn2 (3.118)

⇔ Mij =: xn(i−1)+j ∀i, j ∈ N ∩ [1, n] , (3.119)
δilδjk =: An(i−1)+j,n(k−1)+l ∀i, j, k, l ∈ N ∩ [1, n] , (3.120)

⇒ xT Ax =
n

i=1

n
j=1

n
k=1

n
l=1

MijMklδilδjk (3.121)

= Tr

M2


. (3.122)
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Note that each element in M corresponds to exactly one element in x,
and vice versa. Additionally, our matrix A is still real and symmetric.

We can now also define the measure

DM :=

i,j

dMij (3.123)

=

i,j

dxn(i−1)+j (3.124)

= dn2
x (3.125)

⇒ I =

Rn2

dn2
xe− 1

2 xT Ax. (3.126)

This integral now assumes a form that is nearly identical to integrals
we have already solved. The value of this integral is a constant which
we will use in subsequent calculations. From Equation 3.33 we see that

I = (2π)n2/2
det (A)

. (3.127)

3.10 Two-point Function of Matrix Ele-
ments

We calculate the matrix integral

I =

Rn×n

DMMijMkle
− 1

2 Tr(M2). (3.128)

Like in the previous section, we rewrite the integral on a form we
are familiar with. We identify

Mij =: xn(i−1)+j ∀i, j ∈ N ∩ [1, n] , (3.129)
δilδjk =: An(i−1)+j,n(k−1)+l ∀i, j, k, l ∈ N ∩ [1, n] , (3.130)

⇒ I =

Rn2

dn2
xxn(i−1)+jxn(k−1)+le

− 1
2 xT Ax. (3.131)

From Equation 3.69 we then see that

I =

Rn2

dn2
xxn(i−1)+jxn(k−1)+le

− 1
2 xT Ax (3.132)

= Z0

A−1


n(i−1)+j,n(k−1)+l

(3.133)

= Z0An(i−1)+j,n(k−1)+l (3.134)
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= Z0δilδjk, (3.135)

where (from Equation 3.127)

Z0 :=

Rn×n

DMe− 1
2 Tr(M2) (3.136)

= (2π)n2/2
det (A)

. (3.137)

3.11 m-point Function of Matrix Elements
and Wick’s Theorem

Suppose we want to calculate the matrix integral

I =

Rn×n

DMMi1j1Mi2j2 · · · Mimjme− 1
2 Tr(M2). (3.138)

We introduce the m-point function
m

k=1
Mikjk


:= 1

Z0


Rn×n

DMMi1j1Mi2j2 · · · Mimjme− 1
2 Tr(M2) (3.139)

= 1
Z0


Rn2

dn2
x

m
k=1

xn(ik−1)+jk
e− 1

2 xT Ax, (3.140)

with the same definitions of A and x as previously, and begin to calcu-
late this integral.

From Equation 3.89 we see
m

k=1
Mikjk


= 1

Z0


Rn2

dn2
x

m
k=1

xn(ik−1)+jk
e− 1

2 xT Ax (3.141)

=


m
k=1

∂

∂Jn(ik−1)+jk


e

1
2 JT A−1J


J=0

(3.142)

Again, we can use Wick’s theorem to reduce this long calculation of
the partial derivatives to a much more elegant combinatorial problem.
We reformulate Wick’s theorem (Theorem 1.2) using the same notations
as here.

Page 25 of 39



Chapter 3. Results

Theorem 3.5 (Wick’s Theorem).


m

k=1

∂

∂Jn(ik−1)+jk


e

1
2 JT A−1J


J=0

=


A−1


ip1 ip2


A−1


ip3 ip4

· · ·

A−1


ipm−1 ipm

, (3.143)

where the sum is taken over all pairings

(ip1 , ip2) , (ip3 , ip4) , . . . ,

ipm−1 , ipm


(3.144)

of i1, i2, . . . , im.

Note that our definition of A leads to

A−1 = A. (3.145)

Proof. 
A2


ab
=

n2
p=1

AapApb. (3.146)

Define

a := n (i − 1) + j, (3.147)
b := n (k − 1) + l, (3.148)
p =: n (q − 1) + r. (3.149)

Note that, for each a ∈ N ∩ [1, n2], there exists a unique combination
of i, j ∈ N ∩ [1, n] such that this equality holds. The same is true
for b ∈ N ∩ [1, n2] with k, l ∈ N ∩ [1, n], and p ∈ N ∩ [1, n2] with
q, r ∈ N ∩ [1, n].


A2


ab
=

n2
p=1

AapApb (3.150)

=
n

q=1

n
r=1

An(i−1)+j,n(q−1)+rAn(q−1)+r,n(k−1)+l (3.151)

=
n

q=1

n
r=1

δirδjqδlqδkr (3.152)

Page 26 of 39



3.12. Feynman Diagrams and Fat Graphs

= δjlδik (3.153)
= δn(i−1)+j,n(k−1)+l (3.154)
= δab (3.155)
= (1)ab (3.156)

⇒ A2 = 1 (3.157)
⇒ A−1 = A. (3.158)

This implies that
m

k=1

∂

∂Jn(ik−1)+jk


e

1
2 JT A−1J


J=0

=


A−1


ip1 ip2


A−1


ip3 ip4

· · ·

A−1


ipm−1 ipm

, (3.159)

=


Aip1 ip2
Aip3 ip4

· · · Aipm−1 ipm
, (3.160)

=


An(jp1 −1)+kp1 ,n(jp2 −1)+kp2
An(jp3 −1)+kp3 ,n(jp4 −1)+kp4

· · · An(jpm−1 −1)+kpm−1 ,n(jpm −1)+kpm
(3.161)

=


δjp1 kp2
δjp2 kp1

δjp3 kp4
δjp4 kp3

· · · δjpm−1 kpm
δjpm kpm−1

, (3.162)

where the single sum is taken over all pairings

(ip1 , ip2) , (ip3 , ip4) , . . . ,

ipm−1 , ipm


(3.163)

of i1, i2, . . . , im for i ∈ N ∩ [1, n2], and the double sum is taken over all
pairings

(jp1 , jp2) , (jp3 , jp4) , . . . ,

jpm−1 , jpm


(3.164)

of j1, j2, . . . , jm, and

(kp1 , kp2) , (kp3 , kp4) , . . . ,

kpm−1 , kpm


(3.165)

of k1, k2, . . . , km, for j, k ∈ N ∩ [1, n], respectively. Once again, note
that, for each i ∈ N ∩ [1, n2], there exists a unique combination of
j, k ∈ N ∩ [1, n] such that i = n (j − 1) + k.

3.12 Feynman Diagrams and Fat Graphs
Like in the case with a multi-dimensional integral over a vector (see
section 3.7), this combinatorial problem can be solved with less effort
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by representing each term of the combinatorial sum graphically with a
Feynman diagram. [2, 4, 6]

We therefore assign, to each factor with cyclically contracted indices
Mi1i2Mi2i3 · · · Mimi1 , a vertex with m double-line half-edges, each with
a pair of indices corresponding to a matrix element; see for example
Figure 3.1, in which m = 4. The single lines are oriented, and the
indices are constant along these. [2, 6]

l
i

k
j

i j

l k

Figure 3.1: The vertex corresponding to ⟨MijMjkMklMli⟩.

Then we connect the different half-edges in pairs with an oriented
double-line edge propagator with the same indices; see Figure 3.2. [2, 6]

j
i

k
l

Figure 3.2: The Feynman propagator.

To each propagator with the indices i, j and k, l we assign a weight
δilδjk, corresponding to the value of the two-point function (similar to
how we defined the propagator in section 3.7). We connect the half-
edges in every possible way while respecting the orientation of the single
lines by making sure it is preserved, and sum together the permutations
after calculating the product of the weights of the propagators for each
permutation. [2, 6]

The diagrams drawn here are also a form of Feynman diagrams
[2, 4, 6]. Since they consist of double-lines, they are sometimes called
fat graphs as well [2, 6].

Example 3.6 (Fat graph).

We calculate 
Tr

M4


. (3.166)
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We note that

Tr

M4


=

n
i=1


M4


ii

(3.167)

=
n

i=1

n
k=1


M2


ik


M2


ki

(3.168)

=
n

i=1

n
j=1

n
k=1

n
l=1

MijMjkMklMli (3.169)

⇒

Tr

M4


=


n
i=1

n
j=1

n
k=1

n
l=1

MijMjkMklMli


(3.170)

=
n

i=1

n
j=1

n
k=1

n
l=1

⟨MijMjkMklMli⟩ (3.171)

=
n

i=1

n
j=1

n
k=1

n
l=1


l
i

k
j

i j

l k


(3.172)

=
n

i=1

n
j=1

n
k=1

n
l=1

 l
i

k
j

i j

l k

+ l
i

k
j

i j

l k

+ l
i

k
j

i j

l k

 (3.173)

=
n

i=1

n
j=1

n
k=1

n
l=1

(δikδjjδikδll

+δjlδiiδjlδkk + δijδjkδklδli) (3.174)
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= 2n3 + n. (3.175)

3.13 Perturbative Expansion of a Matrix
Integral

We now calculate one final example matrix integral, using perturba-
tive expansion in addition to the previously demonstrated techniques,
putting all the tools that we have developed to use.

Example 3.7 (Perturbative expansion of a matrix integral).

Calculate the matrix integral

I = 1
Z0


Rn×n

DMe− 1
2 Tr(M2)+g Tr(M3). (3.176)

We express the matrix trace as a sum of matrix elements. We
see that

Tr

M3


=

n
j=1


M3


jj

(3.177)

=
n

j=1

n
k=1

Mjk


M2


kj

(3.178)

=
n

j=1

n
k=1

n
l=1

MjkMklMlj. (3.179)

Like in section 3.8, we then rewrite the integral using Taylor
expansion, and exchange the order of summation and integration.
This implies that

I = 1
Z0


Rn×n

DMe− 1
2 Tr(M2)+g Tr(M3) (3.180)

= 1
Z0


Rn×n

DMeg Tr(M3)e− 1
2 Tr(M2) (3.181)

= 1
Z0


Rn×n

DM
∞

i=0

1
i!

g Tr


M3

i
e− 1

2 Tr(M2) (3.182)
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= 1
Z0

∞
i=0

gi

i!


Rn×n

DM

 n
j=1

n
k=1

n
l=1

MjkMklMlj

i

e− 1
2 Tr(M2)

(3.183)

=
∞

i=0

gi

i!

 n
j=1

n
k=1

n
l=1

MjkMklMlj

i
(3.184)

= ⟨1⟩ + g


n

j=1

n
k=1

n
l=1

MjkMklMlj



+ g2

2


n

i=1

n
j=1

n
k=1

n
l=1

n
p=1

n
q=1

MijMjkMkiMlpMpqMql


+ · · · . (3.185)

We calculate each term of this expression by representing it with
a Feynman diagram. We first note that the second term contains
an odd number of matrix elements. Similar to what we saw in
section 3.6, this term thus evaluates to zero. We also see, that
for small g, the first few terms are dominant. Therefore, it is
enough to calculate a finite number of terms of the Taylor series;
otherwise calculating this expression would simply not be feasible.
In this example, we are satisfied with calculating the integral up
to and including and order of g2. Note that, when we draw the
diagrams in the following calculation, we sometimes leave out
arrows and labels, purely to reduce the clutter in the figures.

⇒ I = 1 + 0 + g2

2


n

i=1

n
j=1

n
k=1

n
l=1

n
p=1

n
q=1

MijMjkMkiMlpMpqMql


+ · · · (3.186)

≈ 1 + g2

2


n

i=1

n
j=1

n
k=1

n
l=1

n
p=1

n
q=1

MijMjkMkiMlpMpqMql


(3.187)

= 1 + g2

2

n
i=1

n
j=1

n
k=1

n
l=1

n
p=1

n
q=1



i

j j

k k

i

l

pp

qq
l 

(3.188)
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= 1 + g2

2

n
i=1

n
j=1

n
k=1

n
l=1

n
p=1

n
q=1


i

j j

k k

i

l

pp

qq
l

+ +

+ +

+ +

+ +

+ +

+ +
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+ +

 (3.189)

= 1 + g2

2

n
i=1

n
j=1

n
k=1

n
l=1

n
p=1

n
q=1

(δilδkqδkqδjpδjpδil

+δilδkqδkpδjlδjqδip + δiqδkpδklδjqδjpδil + δiqδkpδkpδjlδjlδiq

+δipδklδklδjqδjqδip + δipδklδkqδjpδjlδiq + δilδkqδikδjjδlqδpp

+δiqδkpδikδjjδllδpq + δipδklδikδjjδlpδqq + δiiδjkδklδjqδlqδpp

+δiiδjkδkqδjpδllδpq + δiiδjkδkpδjlδlpδqq + δijδkkδjlδiqδlqδpp

+δijδkkδjqδipδllδpq + δijδkkδjpδilδlpδqq) (3.190)

= 1 + g2

2

n3 + n + n + n3 + n3 + n + n3 + n3 + n3

+ n3 + n3 + n3 + n3 + n3 + n3


(3.191)

= 1 + g2

2

12n3 + 3n


(3.192)

We now have the tools required to calculate an arbitrarily compli-
cated matrix integral on the form


Rn×n

DMMi1j1Mi2j2 · · · Mimjme
− 1

2 Tr(M2)+
p

k=1
αk Tr(Mk)

. (3.193)
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Discussion &
Recommendation

4.1 Discussion

4.1.1 Limitations
There are apparent limitations to the theory of matrix integrals inves-
tigated in this project.

What might be most limiting is the fact that our results are valid
only for integration over the set of real-valued square matrices. Of
course, since the matrix trace is defined only for square matrices, the
actual limitation of this project does not lie in that the matrices must
be square; rather, the limitation consists of the fact that we allow only
real-valued matrices.

Something else that can seem like a limitation is the fact that we
several times, without further discussion, exchange the order of integra-
tion of summation. In general, however, this is not a problem. As long
as the functions we are summing over converge uniformly, the value of
the integral expression remains unchanged.

4.1.2 Evaluation
Taking these limitations into account, the obtained results and methods
fulfill the goal of this project. We are now able to calculate a general
matrix integral of the form shown in Equation 1.1. (In fact, what we
can calculate is actually slightly more complicated, see Equation 3.193.)
The method which allows us to calculate matrix integrals using Feyn-
man diagrams greatly simplifies the, potentially extremely complicated,
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analytical expressions we obtain while calculating derivatives of the gen-
erating functions.

Our developed method agrees well with the methods presented in
[2] and [6]. While it is not identically the same, it is equivalent to those
methods, and it yields the same results.

4.2 Recommendation
Following up this project, there are two obvious extensions to this the-
ory of matrix integrals. Our recommendations are to

1. Evaluate the matrix integrals over different sets of matrices. The
most evident and notable sets are

(a) The set of complex square matrices, that is

M ∈ Cn×n. (4.1)

(b) The set of unitary matrices, that is

M † = M−1 (4.2)
⇒ MM † = 1. (4.3)

(c) The set of Hermitian matrices, that is

M = M †. (4.4)

2. Evaluate the matrix integrals for matrices whose size approaches
infinity. This is called the large-N limit [1], and can be performed
with a method called saddle-point approximation [3].

Page 36 of 39



Chapter 5

Conclusions

In this project, we have examined and performed integration over ma-
trices. We have developed a method for calculating matrix integrals of
the general form 

DMe− Tr(V (M)), (5.1)

over the set of real square matrices M .
We calculated the matrix integrals by applying a perturbative Taylor

expansion to the matrix integrals. Using Wick’s theorem, we simplified
the calculations of the integrals further, to a combinatorial problem.
By representing the terms of the Wick sum graphically with Feynman
diagrams and fat graphs, we calculated the final results of the integrals.
Compared to calculating the integrals strictly analytically using partial
derivatives of a generating function, our method has the obvious advan-
tage of making the calculations less complicated, and being intuitively
simple to use. We demonstrated the usage of this developed method in
a few important examples that are representative for the method.
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