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1 Introduction: what are we aiming at describing ?

Statistical Field Theory is an important subject in theoretical physics, with a wide range of
interdisciplinary applications ranging from statistical physics or condensed matter physics to
higher energy physics or random geometry, which has undergone many progresses in the recent
years. It is of course intimately linked to Quantum Field Theory.

Statistical Field Theory aims at dealing with the behavior of systems (classical or quantum)
with a large –actually infinitely large– number of interacting degrees of freedom. These systems
have very interesting and peculiar behaviors: they have different phases with different characters,
they manifest phase transitions, their behaviors are dominated by collective modes and/or refined
geometrical patterns, etc. Their understanding and analysis make contact with very elegant
mathematical structures (say probability theory, representation theory, geometry) and with
remarkable concepts, notably the renormalization group which is nowadays a cornerstone of
Physics and its ramification.

Statistical Field Theory aims at an understanding of those behaviors on the basis of a few
physical principles. This is particularly true for its application to critical phase transitions
through their universality property. These are characterized by sharp transitions in the physical
properties of statistical systems controlled by external parameters. They are induced by collec-
tive phenomena which involve large fluctuations over long distances without scale separation.
Statistical field theory provides tools to deal with many nested degrees of freedom, with large
fluctuations, over a cascade of scales.

A sample of
a Brownian curve in 2D.

Samples of 2D self-avoiding walks,
alias polymers.

Understanding random patterns is at the core of the comprehension of many physical phe-
nomena or mathematical structures, and the Brownian motion is a historical example of such
structures. Although the relevant geometries can be as simple as gentle curved or surfaces,
many relevant patterns are however not well-described by an integer dimension but have a frac-
tal character, at least over some length scale. For instance, the singular behavior of second order
phase transitions are compatible with fractal surfaces separating phases at the critical point. In
general, the deeper our understanding of these geometries, the more complete our predictions
can be. See Figure.

Polymers provide simple examples of such fractal geometry going beyond the simple model of
Brownian motions. These can be modeled by self avoiding random walks which may be viewed
as the paths drawn by a random walker on a square lattice constrained not to visit twice any site
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of the lattice. This constraint mimics the self-repulsion of the polymers. They undergo a phase
transition when the temperature is varied: at low temperature the polymers is compactly curled
up while at large temperature it extends macroscopically and resembles a fluctuating smooth
curve. At the critical point, the polymers possess macroscopic fractal shapes which nowadays
can be described using statistical field theory tools. See Figure.

Percolation is another geometrical example manifesting phase transition and generating ran-
dom fractal structures. Imagine that we randomly color the cells of a honeycomb lattice black
or white. The rule is that each cell has a probability p of being white and 1− p of being black.
If p is small, most of the cells will be black, with a few small islands of white cells. As p is
increased, these white clusters grow larger until a critical value pc at which there is a non-zero
probability that one of these clusters spans the whole domain, no matter how large it is. Per-
colation is important as a model for random inhomogeneous systems, for instance if the black
clusters represent untapped oil pockets it is much easier to extract the oil if they percolate. See
Figure.

O

A small sample of definition (left).
A critical percolating clusters (right).

Critical phase transitions (2nd order phase transitions) of statistical systems are the main
actors in statistical field theory. There is a large variety of physical systems exhibiting second
order phase transitions. Standard examples are the para-to-ferro magnetic transition in mag-
netic materials, the superfluidity transition in quantum fluids, the superconductivity transition
of certain metallic materials at low temperature, etc. Second order phase transitions have a
universality property in the sense that the types of phase transitions fall into a relatively small
number of categories, known as universality classes, which all behave similarly. Close to the tran-
sition there are singularities in the thermodynamical functions and, in parallel, large anomalous
fluctuations and power law behavior on the correlation functions. These singular behaviors,
characterized by scaling exponents of thermodynamical functions, are understood within sta-
tistical field theory. The size of the fluctuations is characterized by a length, the correlation
length ξ, which is the typical extension of the domain over which the degrees of freedom are
correlated. At the critical point, fluctuations are all over the scale and as a consequence this
length diverges. On one hand, this has dramatic consequences because all degrees of freedom
are then coupled, at any scale, making the analysis difficult (to say the least), but one the other
hand, it renders a continuous description with statistical field theory possible and it is at the
origin of the universality property.
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Magnetization versus temperature
in the 2D Ising model.

Heat capacity versus temperature
in the 2D Ising model.

The archetypical statistical model of phase transition is the Ising model for magnetic transi-
tion. The Ising degrees of freedom are simple spin variables si, whose values are either + or −,
defined on the sites i of a lattice. The statistical weight of a given spin configuration is propor-
tional to the Boltzmann weight e−E[{s}]/T , with T the temperature and with interaction energy
E[{s}] = −J

∑
i,j sisj where the sum is restricted to the neighbour spins on the lattice. For

J > 0, the configuration with aligned spins are the most probable at low temperature. There is
a phase transition at a certain critical temperature Tc. At T > Tc, spins have a tendency not to
be aligned and the mean magnetization vanishes, while at T < Tc spins get ordered, they form
large clusters, and there is a non zero spontaneous magnetization. At T = Tc, fluctuations are
large, clusters of identical spins form scale invariant fractal patterns. See Figure.

Ising configurations

Statistical Field Theory is also applicable to statistical systems out-of-equilibrium involving
a large number of coupled degrees of freedom fluctuating over large range of scales. Here, fluid
turbulence or turbulent transports are the main —yet unsolved— classical examples. Turbulence
in fluids is one of those natural phenomena for which we think we understand the underlying
physics but are nevertheless unable to make analytic precise predictions. Turbulence occurs when
a piece of fluid with low viscosity is stirred at large length scales. There is then a continual
cascade of energy from large to small scales where the energy is dissipated. This cascade of
energy may be described statistically in terms of random velocity fluctuations, with a power-law
spectrum of their Fourier components. Those fluctuations are all over the scales over which
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the cascade takes place and, as a consequence, are potentially describable with statistical field
theory methods. In two dimensions the fluid vorticity clusters form random mutli-scale patterns
bearing similarities with clusters of critical statistical transitions. See Figure.

Vorticity clusters
in 2D turbulence

A sample of the 2D massless
discrete Gaussian free field

As its name suggests, statistical field theory has grown from the merging of field theory,
classical or quantum, and statistical physics. As in classical field theory, statistical field theory
deals with the continuum of degrees of freedom encompassed in field variables. Those degrees of
freedom, which for instance encode for the large distance behaviour of relevant fluctuations close
to a critical phase transition, are characterized by their geometrical properties and symmetries.
Concretely the fields take values in manifolds specified by those properties. Because it deals
with the fluctuations of these degrees of freedom, statistical field theory gives statistical weights
to any of the field configurations. At equilibrium these weights are specified according to the
Boltzmann rules for statistical physics. Naively —and formally—, statistical field theory may
be viewed as an attempt to define probability measures on the spaces of field configurations
—which are indeed very infinite dimensional spaces. The construction of these measures is of
course guided by statistical physics but also by a few other general principles, say local property
inherited from the local nature of the underlying degrees of freedom and their interaction,
symmetry reflecting global or internal geometrical properties depending on the systems, etc.
The renormalization group, which provides both a conceptual framework and efficient tools to
deal with these infinitely many coupled degrees of freedom, is a key principle underlying the
construction and the use of statistical field theory. Its impact on Physics —in general not only
in statistical or quantum field theory— cannot be underestimated. See Figure.

By its very nature, Statistical Field Theory borrows tools from statistics or probability
theory, say Gaussian variables or fields. It also uses techniques from representation theory, in
particular because of its relation with Quantum Field Theory. Geometry, group theory and
dynamics have been historical cross points between mathematics and theoretical physics, as
recently illustrated by the impact of geometry or symmetry algebra on gauge theory, on the
standard model of particle physics, or on critical Conformal Field Theory. The recent evolution
advocates for a deeper role of probability theory in this mathematics-and-physics interaction,
especially in statistical field theory.
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2 Brownian motions, random paths and stochastic processes

The aim of this chapter is to introduce simple but fundamental random objects and to get
acquainted with their path integral representations. Both —the objects and the path integrals—
are baby examples of structures involved in statistical field theory. Illustrating such structures
in the case of stochastic processes yields tools which find applications in field theory but also in
other scientific domains. We are going to start with random walks and random paths defined
over discrete lattices and then take the limit to continuous spaces. This will allow us to introduce
the important notion of scaling limits that we will be encountered many times in the following.

2.1 Random walks and random paths

We start by discussing simple examples of random paths and random curves. The simplest is
of course that of random walks which we will later use to define the Brownian motion, one of
the basic objects random geometry deals with. We will introduce a few other examples whose
statistics are coded into sums over paths.

• Random walks: basics.

For simplicity let us (first) consider random walks on Z (generalizations are easy). Let
Λa ≡ aZ be the line with edges of size a. We consider symmetric walks, with equal probability
to move to the left and to the right. Let q0 be the initial walker’s position and Qn be its position
after n step. The rules are Qn → Qn+1 = Qn + aεn+1 with εn+1 = ± with probability 1

2 . Hence

Qn = q0 + a

n−1∑
k=0

εk+1,

with εk independent and identically distributed random variables (i.i.d.) with P[εk = ±] = 1
2 .

The mean and the covariance of the position Qn are easy to compute (set q0 = 0 for simplicity):

E[Qn] = 0, E[Q2
n] = a2 E[

∑
k,l

εkεl] = a2 E[
∑
k

ε2k] = a2n.

This last equation tells us that the typical displacement scales as the square of the number of
steps: ` '

√
n. We can compute other expectations, for instance the two point functions:

E[QnQm] = a2 E[
n∑
k=1

m∑
l=1

εkεl] = a2 E[

min(n,m)∑
k=1

ε2k] = a2 min(n,m).

Note that Qn is not a Gaussian variable but a sum of binomial variables.
We can of course consider more general random walks, say asymmetric walks with P[εk =

+] = p and P[εk = −] = q with p+ q = 1. Then (for q0 = 0) the mean is E[Qn] = a(p− q)n and
the variance E[Q2

n] − E[Qn]2 = a2 4pq n, so that there is a drift. We can also imagine random
walks in inhomogeneous (potential) landscape (i.e. with the probability to move to the left or
to the right depending on the position).

• Interlude: sum over paths.

Expectations on random walks are tautologically represented as (discrete) path sums or
integrals. A walk ω say of length N can be coded with its series of steps ω = (ε1, · · · , εN )
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or by its successive positions ω = (q0, q1, · · · , qN ) with qk − qk−1 = εk. Observables may for
instance be the positions at different times whose expectations are the multipoint functions
E[Qk1 · · ·Qkp ]. Let f be such a (general) observable, i.e. a function defined over the space of
walks: f : ω → f(ω). Its expectation reads (as usual in probability theory, or in statistical
physics dealing with Boltzmann sum)

E[f ] =
∑
ω:path

pω f(ω),

where pω is the probability of occurence of this walk. For random walks pω = p#rightq#left. This
is a sum over configuration (with Boltzmann weight proportional to pω) or a sum of discrete
paths (with a weight assign to each path).

Of course we are free to change the measure on path pω (if it yields interesting enough
models). For instance we can choose to weight the path according to their length, say pω ∝ z|ω|
with z > 0 and |ω| the number of the steps of the walk ω. This ensemble may be called that of
free random paths, and we will discuss it more in details in a little while. We can either consider
the canonical or grand-canonical ensembles, depending whether we fix the length of the curves
or not. For z = 1/2 (in D = 1) this ensemble of walks is that of standard symmetric random
walks with p = q = 1/2. This alternative formulation offers possible extensions. For instance,
we can also look at curves with free ends or connecting to preselected end points. We can then
look at the continuous (scaling) limit of those models, etc. We can also restrict the set of paths
that are sampled. For instance, we may demand that the paths are not self-touching, and hence
also not self-intersecting. Such paths are called self avoiding walks and we make them random
by equipping them with the probability measure pω ∝ z|ω|. Self avoiding walks are sometimes
used as a model for polymer physics. We leave all of these as exercises and we shall concentrate
ourselves on the scaling limit of the random walks and on the Brownian motion.

Path integral for Brownian motion, for stochastic processes, for quantum mechanics and/or
for field theories will simply be ‘formal’ extension/definition to continuous paths (which are
maps from some interval to some manifolds) or to higher dimensional analog maps from some
‘base manifold’ to some ‘target manifold’.

2.2 Scaling limits

We give here two presentations of the Brownian motion: via a continuous limit of random walks
or via its characteristic properties. We also discuss a scaling limit of the free paths defined
above which will turn out to be related to the Gaussian free field of statistical field theory. The
notion of scaling limits is very important: it encompasses the passage from a discrete model to
a continuous model.

• Brownian motion: basics.

We may define the Brownian motion from a scaling limit of random walks. We want to take
the continuous limit with the lattice spacing going to zero, i.e. a → 0. Since E[Q2

n] = a2n we
see that we have to simultaneously take the limit n→∞ keep the product a2n fixed in order to
get a non trivial result. Let t = a2n be called the time. Then the Brownian motion is defined
by:

Wt := lim
a→0, n→∞
a2n=t

Qn = lim
a→0

a

[t/a2]∑
k=1

εk,

11



with [t/a2] the integer part of t/a2. This is a scaling limit (with scaling dimensions assign to
physical quantities). From the previous computation for random walks we have

E[Wt] = 0, E[WtWs] = min(t, s).

In particular E[(Wt − Ws)
2] = |t − s|. The central limit theorem also implies that Wt is a

Gaussian variable. Indeed, a direct application of this theorem (see the exercise Section) gives:

E
[
eizWt

]
= e−t

z2

2 .

The Brownian motion possesses a few remarkable properties, some of which are directly
inherited from those of random walks:
— Markov property, in the sense that the future of a Brownian trajectory after a time s is
independent of the past but only dependent of the present position Ws;
— Identically distributed increments, in the sense that the increments Wt+s−Ws and Wt−W0,
for any t and s, have identical distributions. They are also independent from the past. These
two properties are inherited from similar properties which hold true for random walks;
— Translation invariance, in the sense that the increments of Wt and Wt+a have the same law;
— Dilatation invariance, in the sense that Wt and λ−1Wλ2 t have the same law (notice the change
in time).

It is worth knowing that these properties, together with continuity of the curves t→Wt are
characteristic of the Brownian motion. A Brownian path is almost surely not differentiable.

The generalization to higher dimensions in RD is simple: one takes D copies of independent
Brownian motions in correspondance with each of the D-orthogonal direction:

~Wt = (W 1
t , · · · ,WD

t ),

with W i
t , i = 1, · · · , D, independent identical distributed (i.i.d.) Brownian motions. The D-

dimension Brownian motion possesses all the properties of the 1D Brownian motion (translation
and dilatation invariance, Markov properties, i.i.d. of the increments) plus rotation invariance
~Wt → R · ~Wt with R ∈ SO(D) in dimension D ≥ 2.

• Scaling limit of asymmetric random walks

We now look how to take the continuum limit of asymmetric random walks with different
probability to step to the left or to the right. That is: asymmetric walks with P[εk = +] = p
and P[εk = −] = q. Since E[Qn] = a(p − q)n, the continuous limit under the Brownian scaling
a2n = t exists only if the probability p and q depend appropriately on the mesh a. We should
have (p− q) = aν with ν fixed, or equivalently p = 1

2(1 + νa) and q = 1
2(1− νa). Then,

E[Qn] = a(p− q)n ' ν t, E[Q2
n]− E[Qn]2 = a2 4pq n ' (νt)2 + t.

As in the symmetric case, we can thus define the limit of the asymmmetric walks by

Xt = lim
a→0, n→∞
a2n=t

Qn, with p =
1

2
(1 + νa), q =

1

2
(1− νa).

By the central limit theorem again, Xt is a Gaussian process with mean µt and covariance t:

E
[
eizXt

]
= e−t

z2

2
+iνt.
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There is a constant drift, with velocity ν, in the sense that it satisfies

dXt := Xt+dt −Xt = ν dt+ dWt,

with Wt a Brownian motion. This type of noisy evolution equation is an example of stochastic
differential equations.

Notice that we could have chosen to make the probabilities to jump to the left or to the right
inhomogeneous, so that the drift ν would also be inhomogeneous, position space dependent, say
ν = a(x). Then we would have got a more general stochastic differential equation of the form
dXt = a(Xt) dt+ dWt. We will come to it in a little while.

The noticeable point about this limit is that we have to let the parameters p and q of the
discretized microscopic model to approach the ‘critical’ value 1

2 appropriately when a → 0 for
the continuous limit to exist. This is a simple instance of what is called the scaling limit. This
is a typical procedure for extracting non-trivial continuous field theory from discrete version
thereof.

• Scaling limit of free random paths

We now describe the scaling of free paths and its connexion with what you will later recognise
as Gaussian free field. It also provides a very simple statistical model of random geometrical
structures, namely curves.

Recall that free path were defined above as the statistical ensemble of curves weighted ac-
cording to their lengths. Let us be a bit more precise. Let Λ be a D dimensional square lattice
with mesh size a: Λa = (aZ)D. We let ej , j = 1, · · · , D, be a basis of orthonormal vectors in RD,
so that points x ∈ Λa are x = a

∑
j njej with nj integers. We shall deal with paths Γ starting

at the origin 0 and ending at fixed point x, i.e. paths Γ = (x0, · · · , xi, · · · , x|Γ|) with x0 = 0 and
x|Γ| = x. The successive points in Γ have to be lattice neighbour so that the segment [xi, xi+1]
from an edge of the lattice.

The statistical ensemble of free paths is defined as the set of random paths drawn on Λa
whose statistics is specified by assigning a Boltzmann weight wΓ := µ|Γ| to each path Γ, with
µ a real number (µ > 0) and |Γ| be the number of bonds of the path Γ, so that a|Γ| is its
length. The parameter µ is often called the fugacity. The probability of a given path Γ from
0 to x is thus µ|Γ|/Z(x) with Z(x) the partition function conditioned on paths from 0 to x:
Z(x) =

∑
Γ: 0→x µ

|Γ|.
As usual in statistical physics, the partition function is a generating function for the number

of configuration of a given ‘energy’ —here of a given length. Thus, by construction,

Z(x) =
∑

Γ: 0→x
µ|Γ| =

∑
N≥0

µN W free
N (x) = δx;0 +

∑
N>0

µN W free
N (x),

with W free
N (x) the number of paths from 0 to x with N bonds. We note that W free

N=0(x) = δx;0

because a path of zero length does not escape from its original position.
We are now aiming at understanding the properties of this statistical ensemble of curves and

their limit in continuous space obtained by sending the mesh of the lattice to zero.
Because paths arriving at a given point have to visit one of its neighbour points before

reaching its destination (if it has more than one bond) the partition function Z(x) has to satisfy
the following difference equation:

Z(x) = δx;0 + µ

D∑
j=1

(
Z(x+ aej) + Z(x− aej)

)
.
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This is a linear equation, involving the discrete Laplacian on Λa. As a consequence, it can be
solved by Fourier transform giving

Z(x) =

∫
BZ

dDk

(2π/a)D
eik·x

1− 2µ
∑

j cos(ak · ej)
.

with BZ the Brillouin zone of the square lattice: BZ:= [−π
a ,

π
a ]D. This explicit expression makes

clear that Z(x) converges if the fugacity is smaller than a critical value: i.e. it converges for
|µ| < µc. This value actually depends on which lattice the model is defined but µc = 1/2D is
for Λa the square lattice. The partition function Z(x) has a simple pole singularity near the
critical fugacity, i.e. Z(x) ' const.

µc−µ . This singular behaviour codes for the asymptotic number of

curves from 0 to x with a large number N of bonds: W free
N (x) ' const. µ−Nc at large N .

So good so far for the discrete model. Let us now look at its continuous limit a → 0. The
first naive attempt would be to take this limit keeping all other parameters fixed, say µ, x fixed.
Then, the above equation for Z(x) implies that (1− 2Dµ)Z(x) ' δx;0 as a→ 0, and hence that
Z(x) is trivial in this limit in the sense that all geometrical objects it codes for have collapse
around the origin.

That is: we learn that, if we keep all parameters fixed, the naive continuous limit do not
describe extended structures in space. We have to adjust the parameters (here the fugacity µ
while taking the continuous limit). This is called the ‘scaling limit’. Letting µ → µc put more
and more weight on long paths and gives a chance to be get a meaningful continuous limit of
extended geometrical objects.

Let us thus look at the continuous limit a → 0 but adjusting µ → µc as a function of a.
Expanding the discrete equation for Z in power of a yields (recall that µ−1

c = 2D)

(µ−1 − µ−1
c )Z(x) = µ−1δx;0 + a2 (∆xZ)(x) + · · · ,

with ∆x the Laplacian in RD. Thus, we see that to get a non trivial limit we have to let
µ−1 − µ−1

c = a2m2 as a→ 0 with the parameter m fixed (m has the dimension of the inverse of
a length). Let us then define the scaling limit of Z(x) by

G(x) :=
1

2D
lim
a→0

a2−D Z(x),

with the limit understood as the scaling limit with µ−1 − µ−1
c = a2m2. By construction, it is

non-trivial and it satisfies (
−∆x +m2

)
G(x) = δ(x),

where we use the fact that a−Dδx;0 → δ(x), the Dirac measure centred at the origin, as a→ 0.
Notice that we had to incorporate an extra factor a−D in G(x) to get a meaningful continuous
limit, so that G(x) has the dimension of the (2 −D)-th power of a length —we shall say that
its scaling dimension is D− 2—, whereas Z(x) was initially dimensionless. The scaling function
G(x) is thus the Green function of the massive Laplacian in RD. Its explicit expression

G(x) =

∫
dDk

(2π)D
eik·x

m2 + k2
,

can either be found by taking the limit of the explicit formula for Z(x) or by solving the
differential equation it satisfies. As we shall see in a few Chapters, G(x) is the two point
function for a Gaussian free field.
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Let us insist on the notion of scaling limit: to get a meaningful continuous limit we had to
let the parameter µ of the model to approach its critical value µc in a specific way as a function
of the lattice cutoff.

2.3 Brownian motions and path integrals

We define and compute the Brownian transition kernel. This will then be used to give a path
integral representation of the Brownian motion. This type of path integrals is a baby exemple
of those we will encounter later when dealing with random fields.

• Brownian motion: its transition kernel.

We now characterize and determine the transition kernel Pt(x0, x) dx which is the probability
for a Brownian motion, started at position x0, to be at point x, up dx, at time t. We will get
the standard result that

Pt[x0;x] dx =
dx√
2πt

exp
(
− (x0 − x)2

2t

)
. (1)

Note that this is the solution of the heat equation
[
∂t− 1

2∂
2
x0

]
Pt[x0;x] = 0 with initial condition

Pt=0[x0;x] = δ(x0 − x). The Markov property implies that it satisfies the convolution property

Pt[x0;x] =

∫
dy Pt[x0; y]Pt[y;x].

The Brownian process is indeed Gaussian with i.i.d. increments.

More precisely, let us compute the probability Pt[x0; Ω] for a Brownian motion started at
x0 to be in the interval Ω at time t, i.e. the probability that Wt ∈ Ω. Let us start with the
discretizing model and look for the probability Pn[x0; Ω] for a random walker to be in Ω after
n step staring at x0. Since the walker would have done a first step either to the left or to the
right with probability 1/2, we have:

Pn+1[x0; Ω] =
1

2

(
Pn[x0 + a; Ω] + Pn[x0 − a; Ω]

)
,

In the continuous limit a→ 0, n→∞, with t = a2n, we get:(
Pn+1[x0; Ω]− Pn[x0; Ω]

)
' a2∂t Pt[x0; Ω](

Pn[x0 + a; Ω] + Pn[x0 − a; Ω]− 2Pn[x0; Ω]
)
' a2 ∂2

x0
Pt[x0; Ω]

The probability Pt[x; Ω] is therefore solution of the heat equation:

∂tPt[x0; Ω] =
1

2
∂2
x0

Pt[x0; Ω].

If Ω is small and centered around a point x we may write Pt[x; Ω] as a probability density
Pt[x0;x] dx, and for a domain ω of arbitrary size we have:

Pt[x0; Ω] =

∫
Ω
dxPt[x0;x]

By linearity, the probability density is also solution of the heat equation with initial condition
Pt=0[x0;x] = δ(x0 − x).
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• The path integral representation of the Brownian motion.

Brownian motion are random curves. We aim at representing their probability measure as
an integral sum over paths. Consider the Brownian motion on the time interval [0, t] starting at
initial point xi = x0. We are going to show that its transition kernel from xi to final point xf
admits the following path integral representation

Pt(xi, xf ) =

∫
x(0)=xi
x(t)=xf

[Dx] e−
1
2

∫ t
0 ds ẋ

2
s , (2)

where the symbols
∫

[Dx]... “means” the integral sum over continuous paths.
This may sounds a bizarre definition because the integral over continuous paths does not

seem to be well-defined (at least we didn’t defined it) and furthermore the derivative ẋs does
not exist for the Brownian motion so that the meaning of the integrals

∫
dx ẋ2 in unclear (it

depends on which curves/paths the measure [Dx] is supported). Path integrals are almost, if
not always, not well defined mathematically except in few cases. The Brownian motion is such
exceptional case: the Brownian path integral is “tautologically” defined by:∫

[Dx] e−
1
2

∫ t
0 ds ẋ

2
s (· · · ) := E[ (· · · ) ],

with (here) E[· · · ] denoting the Brownian expectations. Alternatively, we may formally write:

[Dx] e−
1
2

∫ t
0 ds ẋ

2
s = dP, with P the Brownian measure which is a mathematically well defined

notion.

The construction of the path integral goes by discretizing the time interval [0, t] and taking a
limit when the mesh of this discretization goes to zero (hence the number of intermediate points
becomes infinite). Consider a Brownian curve on interval [0, t] and look at the transition kernel
Pt(xi, xf ). We use a trick consisting in introducing successive cuts and intermediate points. Let
us first introduce a single intermediate point t′, 0 < t′ < t. Thanks to the convolution property
of the transition kernel we may write (See Figure)

Pt(xi, xf ) =

∫
dx′ Pt′(xi, x′)Pt−t′(x′, xf ).

By iterating and dividing the interval [0, t] in N sub-intervals [kδ, (k+1)δ], for k = 0, · · · , N−1,
of equal length δ := t/N , we write

Pt(xi, xf ) =

∫
[
N−1∏
k=1

dxk]Pδ(xi, x1) · · ·Pδ(xN−1, xf ).

Using Pδ(x, y) = 1√
2πδ

e−
(x−y)2

2δ , this can equivalently be written as (with x0 = xi and xN = xf )

Pt(xi, xf ) =

∫ [N−1∏
k=1

dxk√
2πδ

]
e−S

(N)
,

where the function S(N), call the discretized action, is S(N) = 1
2δ

∑N−1
k=0 (xk+1 − xk)2.
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Up to this stage the formula is exact. We have simply sampled the Brownian curve at a
large, but finite, number of points. The path integral formulation comes from taking the limit
N →∞ and thus δ = t/N → 0. By definition the path integral representation is set to be∫

[Dx] e−S[x] := lim
N→∞

∫ [N−1∏
k=1

dxk√
2πδ

]
e−S

(N)
.

Now the discretized action can alternatively be written as S(N) = δ
∑N−1

k=0

(xk+1−xk
δ

)2
. The

terms (
xk+1−xk

δ )2 are the discretized version of the velocity ẋ2, and the formal limit of S(N) is:

S(N) = δ

N−1∑
k=0

(xk+1 − xk
δ

)2 −→ S[x] :=
1

2

∫ t

0
ds ẋ2

s.

Denoting by [Dx] the formal limit of [
∏N−1
k=0

dxk√
2πδ

] when the number of sampled points increase,

we get (by definition) the path representation of the transition kernel

Pt(xi, xf ) =

∫
[Dx] e−S[x], S[x] =

1

2

∫ t

0
ds ẋ2

s,

with the boundary condition x(0) = xi and x(t) = xf .

2.4 The 2D Brownian motion

The 2D Brownian motion is the simple two component generalization of the 1D Brownian motion.
Besides the basic properties and symmetries (translation, rotation, dilatation invariances) it
possesses an extra remarkable property: it is conformally invariant.

The conformal invariance of 2D Brownian trajectories has first been understood by P. Lévy.
This invariance concerns the set of traces formed by these trajectories, i.e. their graphs, it does
not concern the time parametrized trajectories. These traces are not invariant realisation by
realisation, independently, but their statistical ensemble is conformal invariant. This invariance
manifests itself in the following way. Let us imagine sampling a Brownian motion in the unit
disk started from the origin and stopped the first instance it touches the boundary of the disk.
By conformal transformation, these curves can be transported in another planar domain having
a topology identical to that of the disk, for example a rectangle. One then obtains a statistical
ensemble of curves inscribed in this new planar domain. Conformal invariance asserts that this
set of curves possesses a statistical distribution identical to that of the Brownian motion started
from a point in the new domain (the image of the origin by the conformal map) and stopped
as soon as it touches the boundary of this new domain. That is: we cannot distinguish the
Brownian curves transported by conformal transformations to the Brownian curves themselves.

• 2D conformal transformations.

Conformal transformations in 2D are geometric transformations that preserve angles. Let
(x, y) ∈ R2 be the coordinates of a point in the plane and z = x + iy its complex coordinate.
Conformal transformations are locally holomorphic transformations:

z → w = f(z)
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Let z1 = z0 + δz1 and z2 = z0 + δz2 two neighbour points of z0. The two small vectors δz1 and
δz2 joining z0 to z1 or z2 are transformed into two vectors δw1 and δw2 joining w0 = f(z0) to
w1 = f(z1) or w2 = f(z2). To first order, we have:

δw1 = f ′(z0) δz1, δw2 = f ′(z0) δz2.

The angle between the vectors δw1 and δw2 is therefore identical to that between the vectors δz1

and δz2. Each of these vectors has been rotated, by an angle equal to the argument of f ′(z0),
and has been dilated proportionally to the modulus of f ′(z0).

• Conformal invariance of the 2D Brownian motion.

Lévy’s argument consists in promoting the global invariance by rotation and dilatation into
a local invariance (hence, the conformal invariance) using the locality properties of the Brownian
motion. This principle has a domain of applicability that extends beyond the study of Brownian
curves. Let us consider a Brownian curve stopped at time T . Let us divide the time intervalle
[0, T ] in a large number N of intervalles [ti, ti+1] with 0 = t0 < t1 < · · · < tN = T , and
decompose the trajectory as the sum of all its increments between these successive times:

Xt −X0 = (Xt1 −Xt0) + (Xt2 −Xt1) + · · ·+ (Xt −Xtj−1),

for t ∈ [tj−1, tj ]. All the increments Xtj+1 −Xtj are statistically independent and distributed
identically to Xtj+1−tj . This decomposition means that Brownian curves can be reconstructed
by concatenating its increments.

Let us now transform each of these increments by a rotation Rj and by a dilatation with
scale factor λj , which may vary from one increment to the next. We get:

(Xtj+1 −Xtj )→ λj Rj · (Xtj+1 −Xtj ) ≡in law Xλ2
j (tj+1−tj)

where in the last equivalence we used the global invariance of the Brownian motion. Thus, after
concatenation of the rotated and dilated increments, we obtain curves with the same statistic as
the Brownian curves but with a different temporal parameterization (since the time increments
tj+1 − tj have been transformed into λ2

j (tj+1 − tj)). Arbitrary conformal transformations can
be applied to the Brownian curves by naively taking a limit where the above discretization is
increasingly fine.

This argument, which can be made rigorous, indicates that the image of a Brownian curve by
a conformal transformation is yet another Brownian curve up to time reparameterization. The
conformal invariance of Brownian curves is at the origin of many of their peculiar properties.
For instance, it has recently been proved that the exterior perimeter of the graph a Brownian
trajectory is a fractal curve of dimension 4/3.

To conclude, let us note that this property is based on the following principle: “Global
invariance under dilatations and rotations plus locality implies invariance under local dilations
and rotations, i.e. under conformal transformations”. This is a principle that find applications
in many physical systems.

2.5 Brownian motions and stochastic differential equations

Stochastic differential equations provide a framework to model and analyse the effects of noise or
random external forces on dynamical systems. In the physics literature they are often represented
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as Langevin-type equations of the form

Ẋt = a(Xt) + ε ξt,

with a(x) some function (or vector field) driving the dynamical variable X in absence of noise and
ξt representing the noise with ε a parameter coding for the amplitude of that noise. Depending
on the physical problem various assumption can be made about the noise statistics, e.g, it can
be correlated or uncorrelated in time.

• Stochastic differential equations: discrete and continuous.

The simplest case —but nevertheless quite rich— amounts to assume that ξt is a white-in-
time Gaussian noise with zero mean and covariance E[ξt ξs] = δ(t− s). The δ-correlation codes
for the absence of memory so that ξt is a highly fluctuating quantity. Since the process ξt is
ill-defined mathematically, we shall write the above equation is a slightly different form:

dXt = a(Xt)dt+ ε dBt, (3)

with dXt = Xt+dt−Xt and Bt a (normalized) Brownian motion with zero mean and covariance
E[BtBs] = min(t, s). In particular, dBt = Bt+dt − Bt and E[dB2

t ] = dt. The parameter ε has
been introduced by convenience to scale the amplitude of the noise. Since ξt can be viewed as
the time derivative of the Brownian motion —which, mathematically speaking, almost surely
does not exists— these are two (equivalent) ways of writing the same equation. Of course one
can also consider more general SDEs, say with more variables. A proper definition of solution
of this equation is the integrated version of the SDE in the form Xt =

∫ t
0 a(Xs)ds+ εBt.

The process Xt defined by the SDEs dXt = a(Xt)dt + ε dBt may be viewed as the scaling
limit of asymmetric random walks but space dependent with probabilities to move to the left or
right, so that they induce a space dependent drift. Concretely one consider the scaling limit of
asymmetric random walks, defined on the lattice hZ with mesh size h, and probability p(x) (resp.
q(x) to move to the right (resp. to the left) scaling with the lattice mesh as p(x) = 1

2(1 +a(x)h)
and p(x) = 1

2(1− a(x)h) as h→ 0.
We may also look at more general SDEs of the form dXt = a(Xt)dt + b(Xt)dBt with b(x)

a non-constant function. Dealing with them however requires some care as the irregularity of
the Brownian motion as function of t demands to make precise what is meant by the product
b(Xt)dBt. This will be briefly discussed below.

A discretized version of this equation is (with δ := δt the elementary time step):

Xn+1 −Xn = δ a(Xn) + ε ξn+1. (4)

The ξk are Gaussian i.i.d. with zero mean, E[ξk] = 0 and covariance E[ξkξl] = δk;l δ. It is
important to note that ξk are typically of order

√
δ. The integrated version is

Xn −X0 = δ

n−1∑
k=0

a(Xk) + ε

n∑
k=1

ξk.

Recall that Bn =
∑n

k=1 ξk is a discretized version of the Brownian motion, and we may view
ξn as discrete time derivative, ξn+1 = Bn+1 − Bn. The form of this discretization, in which we
have chosen to sample a(X) at the starting point of the discretized intervals, is called the Itô
convention.
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• Transition kernels and the Fokker-Planck equation.

We are interested in the transition kernel dxPt(x0, x) or dxPt(x0 → x) which is the proba-
bility to be at position x up to dx at time t starting from point x0. It is such that

Ex0 [F (Xt)] =

∫
dxPt(x0, x)F (x),

for any test function F . Another (formal) way to define it uses Dirac delta function: Pt(x0, x) =
Ex0 [δ(Xt − x)]. By the Markov property the kernel satisfies the composition property:

Pt+s(x0, x) =

∫
dy Pt(x0, y)Ps(y, x).

It defines a semi-group. The transition kernel transports probability distributions (by duality).
If dx0Q0(x0) is the initial distribution, then its transport at time t is

Qt(x) =

∫
dx0Q0(x0)Pt(x0, x).

Similar formulas apply in the discrete version: Ex0 [F (Xn)] =
∫
dxPn(x0, x)F (x), etc.

We are know going to prove that the transition kernel is solution of a partial differential
equation (similar to the Schrödinger equation).

∂tPt(x0, x) = H · Pt(x0, x), H := ∂x
(ε2

2
∂x − a(x)

)
. (5)

This is called the Fokker-Planck equation. Notice its interpretation as a conservation law for
probabilities: ∂tPt(x0, x) = ∂xJt(x), with probability current Jt(x) := ( ε

2

2 ∂x − a(x))Pt(x0, x).
We can write Pt = etH. By construction H is a non positive operator. This operator actually
fully determine the process: its data is equivalent to that of the process. At large time Pt
converges toward the stationary measure if it exists. The approach to stationary is governed by
the spectrum of H. Note the analogy with quantum mechanics.

The invariant measure Pinv(x) should satisfies H · Pinv = 0. A solution with vanishing

probability current should satisfies ( ε
2

2 ∂x − a(x))Pinv(x) = 0. Let us set a(x) = −U ′(x) (this
is always possible in 1D, with one variable x, but not in higher dimension). The function U is
called the potential. Then, if normalizable, the invariant measure (with zero probability flux)
is:

Pinv(x) = Z−1 e−2U(x)/ε2 ,

with the normalization constant Z such that
∫
dxPinv(x) = 1 (if normalizable). This is Boltz-

mann distribution for a potential U(x) and temperature ε2/2, so we can set ε =
√

2kBT .

Let us now derive the differential equation satisfied by the kernel. We compute the condi-
tioned expectation E[F (Xn+1)|Fn], conditioned on the knowledge of the process up to step n.
We have to compute E[F (Xn + δAn + ε ξn+1|Fn] with An = a(Xn). Conditioning on Fn means
that Xn, An are fixed (non random) number in this expectation, so that the expectation is only
about the gaussian variable ξn+1. We compute by expanding in power of δ (recall that ξk are
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typically of order
√
δ):

E[F (Xn + δAn + ε ξn+1)|Fn]

= F (Xn) + δ An F
′(Xn) + ε F ′(Xn)E[ξn+1] +

ε2

2
F ′′(Xn)E[ξ2

n+1] +O(δ3/2),

= F (Xn) + δ
(
An F

′(Xn) +
ε2

2
F ′′(Xn)

)
+ · · ·

The r.h.s. depends only on data up to step n (i.e. it is Fn-measurable) as it should be. As a
consequence

E[F (Xn+1] = E[F (Xn) + δ
(
a(Xn)F ′(Xn) +

ε2

2
F ′′(Xn)

)
] + · · ·

Up to an integration by part, this is equivalent to (recall that δ is the time step δt)

Pn+1(x0, x)− Pn(x0, x) = δ
( ε2

2
∂2
x − ∂x a(x))Pn(x0, x)

)
+O(δ2).

Hence we get the Fokker-Planck equation in the continuum limit.
We could also have derived a differential equation for Pt(x0, x) but acting the initial point x0.

This equation is the dual of the one acting x, that it ∂tPt(x0, x) =
(
ε2

2 ∂x0 + a(x0)
)
∂x0Pt(x0, x).

As for the Brownian motion, it can be derived by looking at what happened after one step but
taking into account that the probabilities to move to the right or to the left of space dependent
with the appropriate scaling as the mesh of the lattice goes to zero.

• Itô versus Stratonovich.

We can of course consider more general SDEs —and those naturally occur in physical prob-
lems. Instead of Sees of the form dXt = a(Xt)dt+ ε dBt we can more generally look at SDEs

dXt = a(Xt)dt+ b(Xt)dBt,

with a(x) and b(x) smooth function and with Bt a Brownian motion, dB2
t = dt. A proper

definition of solution of this equation is in the integrated version:

Xt =

∫ t

0
a(Xs)ds+

∫ t

0
b(Xs)dBs.

We have to be careful how we define the integrals, in particular the stochastic integral.
Let us defined them by discretization. Different conventions differ from where we sample the
function in the Riemann sum. Two important conventions are the so-called Itô or Stratonovich
convention, with ξk+1 = (Bk+1 −Bk):

Ito : Xn = δ
n−1∑
k=0

a(Xk) +
∑
k=0

b(Xk)ξk+1,

Stratonovich : Xn = δ
n−1∑
k=0

1

2
(a(Xk+1 + a(Xk)) +

∑
k=0

1

2
(b(Xk+1) + b(Xk))ξk+1,
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in the large N limit with δ = 1/N and nδ = t. With the Itô convention we sample the function
at the beginning of the sub-intervals, with the Stratonovich convention with sample it with the
mean of its value at both ends of the sub-intervals. Of course there are intermediate alternative
choices in which we weight differently the sums. The important property of Itô convention is
that ξk+1 = Bk+1 −Bk is independent of b(Xk) and all b(Xl), l ≤ k.

Itô and Stratonovich convention for stochastic integrals are related by∫
b(Bs) dBs|Ito =

∫
b(Bs) dBs|Strato −

1

2

∫ T

0
b′(Bs) ds.

This equation is simply checked in the case b(B) = B. The simplest way to check it is to verify

it for
∫
BtdBt. One has

∫ T
0 BtdBt|Ito = 1

2B
2
T −

1
2T and

∫ T
0 BtdBt|Strato = 1

2B
2
T . Here is a more

general but naive proof. Let I be the difference between the Itô minus Stratonovich integrals∫
b(Bs)dBs. We have:

I = −1

2

∑
k

(b(Bk)− b(Bk−1)) (Bk −Bk−1),

' −1

2

∑
k

b′(B̂k−1) (Bk −Bk−1)2 ' −1

2

∑
k

b′(B̂k−1) (δt)k = −1

2

∫
b′(Bs) ds.

The Itô calculus is very efficient “computationally” because (i) it is simply based on Taylor
expansions in dBt and dt with the rule dB2

t = dt, and (ii) in product of the form b(Bt)dBt
the random quantities b(Bt) and dBt are independent. In particular, for any regular enough
function F we have

dF (Bt) =Ito F
′(Bt)dBt +

1

2
F ′′(Bt)dt.

In the Stratonovich convention the formula will be dF (Bt) =Strato F
′(Bt)dBt as with Leibniz

rules but the quantities F ′(Bt) and dBt are there not independent.

2.6 Path integral representation for SDEs

The path integral representation (also called the MSR representation) of a SDE of one variable of
the form dXt = a(Xt)dt+ ε dBt with dB2

t = dt is specified by the action (in the Itô convention):

S[x] =

∫ t

0
ds

(ẋs − a(xs))
2

2ε2
(6)

Here ẋs := ∂sxs. The action codes for the Boltzmann weight e−S in the path integral measure.
This means that expectation of function F (Xt) testing the process can be written as path
integral. For instance the probability Pt(x0, x) to go from x0 to x can be written as

Pt(x0, x) =

∫
x(0)=x0

x(t)=x

[Dx] e−S[x] (7)

We shall discuss some property of this representation and use it in the following section to derive
exact —and non perturbative— results in the small noise limit.

We are going to present two derivations: the first using a discretization of the SDE, the
second directly using the continuous formulation.
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• An approach by discretization.

With the Itô convention, the discrete form of the SDE reads

Xn+1 −Xn = δ a(Xn) + ε ξn+1,

with δ the small time interval, δ = dt, and ξk’s Gaussian i.i.d. with covariance E[ξ2
k] = δ, with

initial data X0 = x0. Imagine we aim at computing the expectation E[F (X1, · · · , XN )] testing
the process at different times. The expectation is with respect to the Gaussian noise ξk so that
it corresponds to the measure (up to a proportionality coefficient):

N−1∏
k=0

dξk e
−ξ2

k+1/2δ

Now, given the ξk’s we have to recursively solve the difference equations xk+1 − xk = δ a(xk) +
ε ξk+1 for k = 0 up to N−1. These are recursive equations (in the sense that given the n first xk’s
we can solve for xn+1). At this point there are two possible routes: either we integrate directly on
the ξk’s, or we implement these constraints by introducing series of δ-functions in the integrals.
We choose the second way because it has a wider application (in more general context). So let
us enforce these constraints by inserting the following series of integrated δ-functions:

[Dx]

N−1∏
k=0

δ
(
xk+1 − xk − δ a(xk)− ε ξk+1

)
.

Because the constraints are recursively linear in xk+1, their implementations do not involve any
Jacobian. This would not have been true if we would have chosen another discretization form
(i.e. it is only true for the Itô prescription). We can then represent these delta-functions via
their Fourrier transforms: Fourier integral:

δ(xk+1 − xk − δ a(xk)− ε ξk+1) =

∫
dφk+1

2π
e−iφk+1(xk+1−xk−δ a(xk)−ε ξk+1).

Gathering, we get the measure [
∏
k dξkdφkdxk] e

−S with action

S =
1

2δ

N−1∑
k=0

ξ2
k+1 + i

N−1∑
k=0

φk+1(xk+1 − xk − δak − ε ξk+1).

Doing successively the Gaussian integrals over the ξ’s first and the φ’s yields:

S ≡ δ ε2

2

N−1∑
k=0

φ2
k+1 + i

N−1∑
k=0

φk+1(xk+1 − xk − δak)

≡
N−1∑
k=0

(xk+1 − xk − δak)2

2δ ε2
,

By convention notation ≡ means “equivalent up to Gaussian integration”. The integrations are
over ξ1, · · · , ξN , and φ1, · · · , φN but x1, · · · , xN−1 with x0 and xN = xf fixed. The last form
can be expanded into

S =
1

ε2
(N−1∑
k=0

(xk+1 − xk)2

2δ
−
N−1∑
k=0

ak (xk+1 − xk) +
δ

2

N−1∑
k=0

a2
k

)
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The first term is the Gaussian Brownian measure 1
2

∫
ds ẋ2

s, the second is the Itô integral
∫
as dxs

and the third is the Riemann integral 1
2

∫
ds a2

s. Taking the large N limit we get the action:

S[x] =
1

ε2
(1

2

∫
ds ẋ2

s −
∫
as dxs +

1

2

∫
ds a2

s

)
=

∫ T

0
ds

(ẋs − a(xs))
2

2ε2

Note that the formula for the action depends on the fact that we use the Itô convention. It
will also be different if we were dealing with a SDE of the form dXt = a(Xt)dt+ b(Xt)dBt. The
construction is slightly different if we use the Stratonovich convention.

• A continuous description.

Here we do the same computation in the ‘physicist’s way’ directly in the continuous formu-
lation. This will give us the opportunity to become acquainted with formal manipulations of
path-integrals. We start again from the SDE

dXt = a(Xt)dt+ ε dWt,

with Wt a normalized Brownian motion with dW 2
t = dt. Let us code this equation into F(xt) :=

ẋt − a(xt) − εẇt. We aim at integrating over ẇt, with the Brownian measure [Dw] e−
1
2

∫
ds ẇ2

s ,
with the contraint that xt is the solution (supposed to be unique) of the equation F(xt) = 0.
We have to enforce this constraint by inserting in the path-integral a multi-variable δ-function∏
t δ(xt−x∗t ) with x∗t the solution of the differential equation. Recall the properties of Dirac delta

function of single variable is such that δ(f(x))|f ′(x)|dx = δ(x−x∗)dx for any function f(x) with
single zero at x∗. The extension of this formula to the infinite dimensional case corresponding
to the curve xt reads

[Dx]×
∏
s

δ
(
xs − x∗s

)
= [Dx]×

∏
s

δ(F(xs))×
∣∣∣Det

[δF
δx

]∣∣∣,
where Det

[
δF
δx

]
is the infinite dimensional (functional) determinant of the functional operator

with entries
[ δF(xs)
δxs′

]
. This operator is [∂t − a′(xt)] viewed as acting on functions of the variable

t. Thus the path-integral measure we start with reads

[Dw][Dx] e−
1
2

∫
ds ẇ2

s ×
∏
s

δ
(
ẋs − a(xs)− εẇs

) ∣∣Det[∂t − a′(xt)]
∣∣.

As before, we can represent the Dirac delta function using Fourier transform. The only delicate
point is that now this is continuous product of δ-function so that the conjugated variable, which
we denote φs, as to be a function of the time variable, so that∏

s

δ
(
ẋs − a(xs)− εẇs

)
=

∫
[Dφ] ei

∫
ds φs(ẋs−a(xs)−εẇs).

The field φs plays the role of Lagrange multipliers imposing the constraint. Gathering all the
bits, we can write the path-integral measure as

[Dw][Dx][Dφ] e−
1
2

∫
dsẇ2

s ei
∫
ds φs(ẋs−a(xs)−εẇs)

∣∣Det[∂t − a′(xt)]
∣∣ .

24



We now have to deal with the determinant (the Jacobian). We know from the discrete formula
we previously discuss that this Jacobian is 1, at least with the Itô convention (this will be proved
in more detail in the exercise section)1 :

Det[∂t − a′(xt)]
Det[∂t]

= 1, (Ito convention).

We give an alternative naive argument (if not proof) working directly in the continuum. This
determinant is the Jacobian for the change of variable from the function xt to the function zt,
solution of żt = ẋt − a(xt) − εwt. With the Itô convention, which is a strict forward in time
convention, the function zt as to be thought as zt = xt −

∫ t−
0 ds (a(xs) + εws). Hence, with this

convention, the Jacobian is one because it is the determinant of the ‘matrix’ [ δztδxs
] which is (in

this convention) strictly triangular with 1 on the diagonal:
Hence, with this convention, we got the measure [Dw][Dx][Dφ] e−S[x] with action:

S[x] =
1

2

∫
ds ẇ2

s + i

∫
ds φs(ẋs − a(xs)− εẇs).

The term ẇ2
s represents the Brownian Gaussian measure, and φs plays the role of Lagrange

multiplier enforcing the SDE. We can now do the Gaussian integrals successively the Gaussian
integrals over ws and then φs to obtain:

S[x] ≡ ε2

2

∫
ds φ̇2

s + i

∫
ds φs(ẋs − a(xs))

≡ 1

2ε2

∫
ds (ẋs − a(xs))

2

By convention notation ≡ means “equivalent up to Gaussian integration”. Note that this Jaco-
bian, and hence this convention, do not matter in the small nose limit ε→ 0.

• Path integral perturbation and the Girsanov theorem.

The path integral representation has a simple interpretation in terms of Radon-Nikodym
derivatives (i.e. changes of probability measures), martingales and the Girsanov theorem. This
provides a formal way to make it rigorous mathematically.

Recall the action (with ε = 1 for simplicity)

S[x] =
1

2

∫ t

0
ds (ẋs − a(xs))

2.

The weight e−S factorizes into the product of two terms: e−
1
2

∫
ds ẋ2

s and e
∫ T
0 ds ẋs a(xs)− 1

2

∫ T
0 ds a(xs)2

.
Even though there is clearly a question of convention (‘Itô versus Stratonovich’) let us write for-

mally
∫ T

0 ds ẋs a(xs) =
∫ T

0 a(xs) dxs. Then we have:

[Dx] e−S[x] = [Dx] e−
1
2

∫ T
0 ds ẋ

2
s × e

∫ T
0 a(xs) dxs− 1

2

∫ T
0 ds a(xs)2

.

1Actually, we have

Det[∂t − a′(xt)] = Det[∂s] Det
[
δ(t− s)− θ(t− s)a′(xs)

]
= Det[∂s] e

−θ(0)
∫
ds a′(xs).

As usual, there is an ambiguity in defining θ(0), which is linked to ordering factors. The different conventions
for stochastic calculus, say Itô versus Stratonovich, correspond to different convention for θ(0). Itô convention
corresponds to θ(0) = 0, Stratonovich convention to θ(0) = 1/2.
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The first term is the Brownian measure and the second codes for the change of measure, weighting
differently the trajectories of the process. Let MT be this extra weight:

MT = e
∫ T
0 a(xs) dxs− 1

2

∫ T
0 ds a(xs)2

.

We can then write the measures as

[Dx] e−S[x] = [Dx] e−
1
2

∫ T
0 ds ẋ

2
s ×MT .

Hence we may interpret the path integral representation in terms of the Brownian measure as :∫
[Dx] e−S[x] · · · = Eo

[
MT · · ·

]
,

with Eo[· · · ] the Brownian measure for X and Mt the exponential martingale defined above. The
process t → Mt (defined as an Itô integral) is known to be a martingale under the Brownian
measure, solution of the stochastic differential equation dMt = a(Xt)Mt dXt for dX2

t = dt.
Alternatively we can write this relation as dP = dPo ×MT , with Po the Brownian measure and
P that for the process associated to the SDE dXt = a(Xt)dt+ dWt. This representation of the
measure of the process Xt is known as the Girsanov theorem.

• Itô versus Stratonovich.

Here is a comment on the echo of the Itô and Stratonovich conventions on the path integral
representation of SDEs. Although they yield naively different representations, these conventions
are of course compatible. Let us again consider the (simple) SDE dXt = a(Xt)dt + dWt with
dW 2

t = dt. The action of path integral representation depends on the convention we are using
because, as mentioned above and proved in an exercice below, the determinant Jacobian is
convention dependent. One has:

Det[∂t − a′(xt)] = Det[∂t]× e−α
∫
ds a′(xs),

with α = 1
2 with the Stratonovich convention and α = 0 with the Itô convention. As a conse-

quence the path integral actions are respectively:

SIto =
1

2

∫ T

0
ds (ẋ2

s − a(xs))
2,

SStrato =
1

2

∫ T

0
ds (ẋ2

s − a(xs))
2 +

1

2

∫ T

0
ds a′(xs).

The two representations are of course compatible because when expanding the square
∫
ds(ẋ2

s−
a(xs))

2 we have to view the cross term
∫
dsẋs a(xs) as the stochastic integral

∫
dxs a(xs) which

is convention dependent by definition. Compatibility is recovered because Itô and Stratonovich
integrals are related as follows (see above):

∫ T
0 a(xs) dxs|Ito =

∫ T
0 a(xs) dxs|Strato− 1

2

∫ T
0 a′(xs) ds.

Each convention has his own avantages: Ito calculus encodes directly for the independence of
the increment of the Brownian motion but chain rules and changes of variables are simpler in
the Stratonovich convention.
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2.7 The small noise limit and the Arrhenius law

The path integral representation may sound a bit formal –actually, it is quite formal. Except in
a few cases, Gaussian integrals for instance, it cannot be computed. It is nevertheless adapted to
formal manipulations which allow to extract general properties that the measure should satisfy
—or it expected to satisfy— if it can be defined. It is also computable when there is a small
parameter which can be used to approximate the integral via a saddle point. In the context of
quantum mechanics this approximation is called the semi-classical approximation, in the context
of field theory it is called instantons for historical reasons. This saddle point approximation
allows us to derive results which are exact in the small noise limit. For instance, the presence of
noise may allow the dynamical systems to follows paths, say to through an energy barrier, which
would be forbidden in absence of noise. The small noise saddle point approximation provides a
way to derive exact results for the probability of the occurence of these forbidden moves even
though these probabilities are non perturbative in ε (they are asymptotically zero as ε→ 0 and
do not admit a power series expansion in ε).

• Small noise and saddle points.

We want to study the small noise limit (i.e. the limit ε → 0). In this case the action
S[x] = 1

2ε2

∫
ds (ẋs − a(xs))

2 + α
∫
ds a′(xs) is independent of the convention (i.e. independent

on α). So we take

S[x] =
1

2ε2

∫ T

0
ds (ẋs − a(xs))

2 =:
1

ε2
A.

The path integral, with measure [Dx] e−S is dominated in the limit ε→ 0 by the saddle points
(actually the minimum) of S. We may write S = A/ε2 to make the ε dependence explicit. Let
us call “classical” the trajectory minimizing the action A. These trajectories are solutions of
the Euler-Lagrange equations of motion derived from this action. These classical solutions are
also/sometimes called “instantons”. Naively, we may write∫

[Dx]e−S[x] [...] �ε→0 e
−ε−2Aclassical [...]classical. (8)

A more precise formulation of this equation consists in taking the logarithm of both sides (and
this is what the symbol � means). There could be a sum over all classical solutions in case there
are many (but the one with the minimal action contributes the most).

A more precise formulation proved rigorously (Freidlin-Wentzell theory) is the following. Let
x̂s be a given smooth path from xi to xf on the time interval [0, T ]. Then the probability that
the stochastic path xs is (arbitrary) close the given path is such that

lim
δ→0

lim
ε→0

ε2 logP
[

sup
0≤s≤T

|xs − x̂s| < δ
]

= −1

2

∫ T

0
ds
(

˙̂xs − a(x̂s)
)2

Note that this action (and hence minus the logarithm of the probability) is always positive. It
is zero (and hence maximal) on the noiseless trajectories ˙̂xs = a(x̂s). Given two points xi and
xf , such noiseless trajectories do not always exist. This probability is maximal on the classical
trajectory (minimizing the classical action). The formula codes more information because it
also measures how fast the probability decreases for trajectories which deviate from the classical
ones.
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• Saddle points and classical instantons.

Instantons are solutions of the Euler-Lagrange (classical) equation (these are not the noiseless
equations of motion, they are more general):

ẍ = a(x)a′(x) = −∂xVeff(x), with Veff = −1

2
a2(x).

This corresponds to the motion of a classical particle in a potential Veff . The ‘energy’ is conserved
e = 1

2 ẋ
2 − 1

2a
2(x) = 1

2 ẋ
2 + Veff . The momentum is p = ẋ − a(x) and the hamiltonian is

h(p, x) = 1
2 ẋ

2− 1
2a

2(x) = p2

2 +pa(x). The action A(T, x), evaluated along the classical trajectory
and view as a function of the time T and final position x satisfies the hamilton-Jacobi equation

∂TA = h(p = ∂xA, x) =
1

2
(∂xA)2 + a(x)∂xA.

We can also write the equation of motion keeping track of the auxiliary field (the Lagrange

multiplier). Then S = i
∫ T

0 ds φs(ẋs − a(xs)) + ε2

2

∫ T
0 ds φ2

s. To factorize ε we choose to redefine

φs = −iε−2ξs). Then ε2 S =
∫ T

0ds ξs(ẋs−a(xs))− 1
2

∫ T
0 ds ξ2

s . The (classical) equations of motion

are ξs = ẋs − a(xs) and ξ̇s = −a′(xs)ξs. They are clearly equivalent to the equations above.

Notice that noiseless trajectories, solutions of ẋ = a(x) are always solutions (because they
satisfy ẍ = a(x)a′(x)). They are zero ‘energy’ solution e = 0. These are not the only zero
‘energy’ trajectories. The other set are those with reversed/opposite velocity, i.e. ẋ = −a(x).
The former are sometime called the ‘downhill trajectories’, the later the ‘uphill’ trajectoires (the
names comes from looking that these trajectories in the landscape specified by the potential
u(x) such that a(x) = −U ′(x)).

downhill : ẋt = a(xt), pt = 0, e = 0, A = 0

uphill : ẋt = −a(xt), pt 6= 0, e = 0, A = 2
(
U(xf )− U(xi)

)
.

We have given the value of the action on these trajectories. The uphill trajectories exist only if
U(xf ) ≥ U(xi), because A ≥ 0 (hence they are effectively uphill; they are induced by the noise).
The downhill trajectories exist only if U(xf ) ≤ U(xi).

• Application to the Arrhenius law.

Let a(x) = −U ′(x) and take the potential U to be a double well. Figure. The stationary
measure is P (x)dx = Z−1 e−2U(x)/ε2dx; it is very localized around the minimas when ε → 0
(which means that a population of particle in such landscape, if stationary w.r.t. to this process,
will mostly be concentrated around the minima). We may identify ε2 with the temperature
(recall ε2 = 2kBT ). We aim at evaluating the probability that thermal noise/fluctuations induce
transitions of particle from one minima to the next. So we want to evaluate the probability that
there is transition from xi (close to one minima) to xf (close to another minima; take xi < xf
to fix the setup), that we may define by2

P[xi → xf ] := SupT PT [xi → xf ].

2It is clear that if xi and xf are separated by an energy barrier the maximum of PT [xi → xf ] is attained
asymptotically when T goes to infinity, and then PT [xi → xf ], as a function of xf , is asymptotically proportional

to the invariant measure e−2U(xf )/ε2 .
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In the small noise limit PT [xi → xf ] 'ε→0 e
−ε−2A(T ;xi→xf ). Maximizing over the time T to reach

the final position amounts to extremize the action A over T , hence to impose ∂TA = 0. By
the Hamilton-Jacobi equation, this corresponds to zero ‘energy’ solution. Hence the transition
probability is

P[xi → xf ] �ε→0 e
−ε−2A(xi→xf ;e=0).

Now which zero energy trajectory we have to chose depends on the profil of the potential
U(x) (recall that we set a(x) = −U ′(x)). When the potential goes down we take the noiseless
(classical) downhill trajectories with A = 0, when the potential goes up we have to take the
“anti-noiseless” uphill trajectoires with A = 2(∆U). Hence,

P[xi → xf ] �ε→0 e
−2(∆U)tot/ε2 = e−(∆U)tot/kBT ,

with (∆U)tot the sum of the potential differences along uphill trajectories. Recall that ε2/2 is
identified with the temperature. This is the Arrhenius law/formula. We can actually do a bit
better and compute the pre-factor (but we leave this as an exercise...).
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2.8 Exercises

• Exercise 2.8.1: Random variables and generating functions.

Let X be a real random variable. Let its characteristic function (also called generating
function) be defined by

Φ(z) := E[ eizX ].

It is always well defined for real z (why?), but its properties under analytical continuation depend
on the distribution. Let W (z) be defined as W (z) := log Φ(z) or Φ(z) = eW (z).
(i) Expand Φ and W in power of z and identify the first few Taylor coefficients.
(ii) Suppose that X is a Poisson variable taking integer values with P[X = n] = λn

n! e
−λ. What

are its means, its covariance and its generating function?
(iii) Suppose that X is a Gaussian variable with probability distribution density

P[X ∈ [x, x+ dx] ] =
dx√
2πσ

e−x
2/2σ.

Verify that P is correctly normalized and compute its characteristic function.

• Exercise 2.8.2: Random Gaussian vectors.

Let ~X be a N -dimensional Gaussian random vector with real coordinates Xi, i = 1, · · · , N .
By definition it probability distribution is

P(X) dNX = dNX
(det[G]

(2π)N
) 1

2 exp
(
− 1

2
〈X|G|X〉

)
,

with 〈X,G,X〉 =
∑

ij X
iGijX

j , where the real symmetric form Gij is supposed to be non

degenerate. Denote by Ĝ its inverse: GijĜ
jk = δik.

(i) Verify that this distribution is normalized, that is:∫
dNX

(2π)N/2
e−

1
2
〈X|G|X〉 =

(
det[G]

)− 1
2 .

(ii) Verify that E[Xi] = 0 and E[XiXj ] = Ĝij .
(iii) Show the generating function E[ei〈U |X〉] with 〈U |X〉 =

∑
i UiX

i is

E[ei〈U |X〉] = e−
1
2
〈U |Ĝ|U〉.

Notice that U and X belong to dual spaces.

• Exercise 2.8.3: The law of large number and the central limit theorem.

The aim of this exercise is to prove (a simplified version of) the central limit theorem, which
we used above. Let εk, k = 1, · · · , n, be independent identically distributed (i.i.d.) variables.
To simplify matter, let us suppose that ε = ± with probability 1

2 . This theorem says that the

sum Ŝn = 1√
n

∑
k εk, is a Gaussian variable in the limit n → ∞ (the more precise statement is

that it converges in law).
(i) Prove that

E[eiz Ŝn ] =
[

cos(
z√
n

)
]n −−−→

n→∞
e−

z2

2 ,
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and conclude.
Hint: Recall the Taylor expansion cos( z√

n
) = 1− z2

2n +o( 1
n) and use limn→∞[1− y

n +o( 1
n)]n = e−y

(which can be proved by taking the logarithm).

• Exercise 2.8.4: Free random paths.

The aim of this exercise is to complete the study of free paths presented in the main text.
See the main text for a precise definition of the statistical ensemble of free paths. Recall the
definition of Z(x) as the partition function of free paths from 0 to x:

Z(x) = δx;0 + µ
D∑
j=1

(
Z(x+ aej) + Z(x− aej)

)
.

(i) Compute the Fourier transform of Z(x) and prove the explicit expression of Z(x) as an
integral over the Brouillon zone given in the text.
(ii) Let ∆dis. be the discrete Laplacian and write ∆dis. = Θ− 2D I with Θ the lattice adjacency
matrix and I the identity matrix. We view Θ as acting on functions via (Θ ·f)(x) =

∑D
j=1

(
f(x+

aej) + f(x− aej)
)
. Show that:

Z(x) = 〈0| 1

I− µΘ
|x〉,

with |x〉 the δ-function peaked at x, i.e. 〈y|x〉 = δy;x. Deduce from this formula that Z(x)
converges for |µ| < µc with µc = 1/2D.
(iii) Let Z(x) =

∑
N µ

NW free
N (x) for |µ| < µc. Give an expression of W free

N (x) as matrix elements
of powers of the matrix Θ and give a geometrical interpretation of this formula.
(iv) Prove the formula for the Green function G(x) given in the main text.

• Exercise 2.8.5: Computation of a path integral Jacobian determinants.

The aim of this exercise is to compute the determinant Det[∂t − A(t)] of the linear map
acting functions f(t) as follows f(t) → (Jf)(t) = f ′(t) − A(t)f(t) with A(t) a given function.
Instead of computing directly this determinant we factorize the derivation operator and we write
Det[∂t −A(t)] := Det[∂t]×Det[1−K]. The operator K is defined by integration as follows:

K : f(t)→ (Kf)(t) =

∫ t

0
dsA(s)f(s),

for any function f defined on the finite interval [0, T ]. The aim of this exercise is thus to compute
the determinant Det[1−K] and to prove that

Det[1−K] = e−α
∫ T
0 dsA(s),

with α a parameter depending on the regularization procedure (α = 0 for Itô and α = 1
2 for

Stratonovich conventions). This illustrates possible strategy to define and compute functional
–infinite dimensional– determinants.

To define the determinant Det[1−K] we need to discretize it by representing the integral of
any function by a Riemann sum. Let us divide the interval [0, T ] in N sub-interval [nδ, (n+ 1)δ]
with n = 0, · · ·N − 1 and δ = T/N . We will then take the limit N → 0. To simplify notation
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we denote fn := f(nδ). There are many possible discretizations but we shall only consider two
of them (which correspond to the Itô and Stratonovich conventions):

Ito :

∫ t

0
f(t)dt := lim

N→∞
δ
n−1∑
k=0

fk,

Stratonovich :

∫ t

0
f(t)dt := lim

N→∞
δ
n−1∑
k=0

1

2
(fk + fk+1).

(i) Write the regularized action of the operator K on function f by writing the expression of
(Kf)n.
(ii) Show that the operator 1−K is lower triangular and determine the diagonal entries (which
are convention dependent).
(iii) Deduce, by taking the large N limit, the formula for the determinant:

Ito : Det[1−K] = 1,

Stratonovich : Det[1−K] = e−
1
2

∫ T
0 dsA(s).

More general discretization are defined by sampling differently the Riemann sum as follows:∫ t
0 f(t)dt = limN→∞ δ

∑n−1
k=0((1−α)fk+αfk+1). Following the same strategy as above, it is then

clear that Det[1−K] = e−α
∫ T
0 dsA(s).

• Exercise 2.8.6: Levy’s construction of the Brownian motion.

The path integral representation is actually closely related to an older (!) construction of the
Brownian motion due to P. Levy. The aim of this exercise is to present the main point of Levy’s
approach which constructs the Brownian paths by recursive dichotomy.

We aim at constructing the Brownian curves on the time interval [0, T ] starting point x0.
The construction is recursive.
(a) First, pick the end point xT with the Gaussian probability density dxT√

2πT
e−(xT−x0)2/2T and

draw (provisionally) a straight line from x0 to xT .
(b) Second, construct the intermediate middle point xT/2 at time T/2 by picking it randomly
from the Gaussian distribution centered around the middle of the segment joining x0 to xT , and
with the appropriate covariance to be determined. Then, draw (provisionally) two straight lines
from x0 to xT/2 and from xT/2 to xT .
(ic) Next, iterate by picking the intermediate points at times T/4 and 3T/4, respectively, from
the Gaussian distribution centered around the middle point of the two segments drawn between
x0 and xT/2 and between xT/2 and xT , respectively, and with the appropriate covariance. Then
draw (provisionally) all four segments joining the successive points x0, xT/4, xT/2, x3T/4 and
xT/2.
(d) Iterate ad infinitum...

Show that this construction yields curves sampled with the Brownian measure.
Hint: This construction works thanks to the relation

(xi − x)2

2(t/2)
+

(x− xf )2

2(t/2)
=

(xi − xf )2

2t
+

(x− xi+xf
2 )2

2(t/4)
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• Exercise 2.8.7: The over-damped limit of the noisy Newtonian particle.

Consider Newton’s equation for a particle of mass m subject to a friction and random forcing
(white noise in time). That is, consider the SDEs:

dXt =
Pt
m
dt, dPt = −γ dXt + dBt,

withXt the position and Pt the momentum. We are interested in the limitm→ 0 (or equivalently
γ large). Let us set m = ε2 to match the Brownian scaling. Then show that:
(i) the process γXε

t converges to a Brownian motion Bt;
(ii) Y ε

t := ε Ẋε
t converges to a finite random variable with Gaussian distribution.

That is: Introducing the mass, or ε, is a way to regularize the Brownian curves in the sense
that Xε

t admits a time derivative contrary to the Brownian motion. But quantities such as Y ε
t ,

which are naively expected to vanish in the limit ε→ 0, actually do not disappear because the
smallness of ε is compensated by the irregularities in Ẋε

t as ε → 0. For instance E[1
2mẊ

2
t ] is

finite in the limit m→ 0. Such phenomena –the existence of naively zero but nevertheless finite
quantities due to the emergence of irregular structures in absence of regularizing– is commun
phenomena in statistical field theory, (sometimes) called ‘anomaly’.

• Exercise 2.8.8: SDEs with ‘multiplicative’ noise.

Generalize the results described above for a more general SDE of the form

dXt = a(Xt)dt+ b(Xt)dBt

with a(x) and b(x) smooth non constant functions. To deal with the small noise limit one may
introduce a small parametr ε by rescaling b(x) via b(x)→ ε b(x).
(i) Prove that the Fokker-Planck operator for SDEs reads

H = ∂x
(1

2
∂x b

2(x)− a(x)
)

(ii) Verify that the invariant measure (if normalizable) is

Pinv(x) dx = b−2(x) e−2s(x) dx, s(x) := −
∫ x

dy
a(y)

b2(y)
.

What is the invariant measure if the later is not normalizable?
What is then the physical interpretation of this new measure?
(iii) Show that the action of the path integral representation of these SDEs is

S =
1

2

∫ T

0
ds

(ẋs − a(xs))
2

b2(xs)
.

in the small noise limit ε � 1. Verify (by going back to the discret formulation) that this way
of writing the action is still valid away from the small noise limit provided that one carefully
defined the integrals.

• Exercise 2.8.9: Multivariable SDEs

Generalize all these results for multivariable SDEs of the form dXi = ai(X) dt+ bij(X) dBj
t

where Bj are Brownian motions with covariance E[Bi
tB

j
s ] = δijmin(t, s).
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3 Statistical lattice models

In this Chapter we present basic examples of lattice models of statistical mechanics and the 2D
Ising model with more details. This allows us to introduce the important concept of transfer
matrix which is based on algebraic rewriting of the Boltzmann sums. The correspondences
between statistical lattice models and lattice formulations of field theories is spelled out.

3.1 Examples of statistical lattice models

By a statistical lattice model is meant a model of statistical mechanics defined on a graph
G = (V,E) with vertices V and edges E. Most of the time, G is a regular lattice embedded in
D dimensions, such as a square or a (hyper)cubic lattice. In some situations it is of interest to
study models on more general classes of graphs, for instance the set of all planar triangulations.
The statistical sum then carries over both the statistical degrees of freedom and the graphs
themselves, weighted by the number of vertices, and it provides a discretisation of 2D quantum
gravity.

The statistical degrees of freedom are typically discrete variables, called spins and denoted
Si. In most situations the spins are defined on the vertices V , so that i ∈ V , and the interaction
takes place along the edges E, via the definition of some (dimensionless) energy functional, called
Hamiltonian and denoted H = E/(kBT ), that depends only on pairs of neighbouring spins. The
properties of the system can be studied via the correlation functions of spins, by which is meant
the mean (expectation) values of functions of spins at selected vertices, such as 〈Si〉, 〈SiSj〉, etc.

Although the interaction in such models is short-ranged, they can have a very rich behaviour
at long distances. When D ≥ 2 there typically exists a critical temperature Tc so that the system
is ordered for T < Tc and disordered at T > Tc. In the low-temperature phase, the majority
of the spins takes a particular value, meaning that we have spontaneous symmetry breaking
with a non-zero value of a suitably defined order parameter. The transition at Tc can be first-
order (with latent heat), or second (or maybe higher) order. In the latter case, the system is
said to be critical, and it will display statistical fluctuations at all length scales, meaning more
precisely that its correlation functions transform covariantly under a change of the length scale.
Concretely, the two-point function of spins will decay with distance as a power law (sometimes
involving also a logarithmic factor), 〈SiSj〉 ∝ |i − j|−α, defining some critical exponent α. For
T 6= Tc, it would instead decay as an exponential, 〈SiSj〉 ∝ e−|i−j|/ξ, defining a characteristic
length ξ, called correlation length, beyond which the effective interaction becomes negligible.

• Ising model

The simplest —and most well-studied— model of this type is the Ising model with Si = ±1
and

H = −K
∑

(ij)∈E

SiSj −B
∑
i∈V

Si . (9)

Here K = J/(kBT ) is the (dimensionless) coupling constant, and B the corresponding magnetic
field. The Ising model can be solved exactly —by which we mean that the partition function
and correlation functions can be computed analytically— in D = 1, and also for B = 0 on
regular lattices in D = 2, for any value of the temperature T . The exact solutions in D = 2
with B 6= 0, and in D > 2 with B = 0 seem beyond reach, despite considerable effort; but in
both cases we have nevertheless a good understanding of the long distance behaviour from field
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theory. The Ising model has a Z2 symmetry, Si → −Si, which is explicitly broken for B 6= 0,
and spontaneously broken for B = 0 and T < Tc.

Below we present the exact solution of the D = 2 zero-field Ising model.
The properties of statistical models depend subtly on which correlation functions one is

interested in. In the case of the 2D Ising model, it is also of interest to study the behaviour
of domain walls, which are the boundaries between regions with Si = 1 and Si = −1. To be
precise, they are closed curves on the dual lattice G∗. One may then ask questions like:
— What is the fractal dimension of a domain wall, or of a region of spins surrounded by one
domain wall?
— What is the decay of the probability that two (or more) domain walls extend from the
neighbourhood of a point i to the neighbourhood of a distant point j?
This type of questions have highly non-trivial answers even in the case T =∞. So for T =∞,
the 2D Ising model behaves trivially in terms of the spins (with ξ = 0), but non-trivially in
terms of the non-locally defined domain walls. This gives rise to an active research field known
as random geometry.

• Potts model

The Ising model is a special case of the Q-state Potts model. Let Q ∈ N and define, for each
i ∈ V , a spin Si = 1, 2, . . . , Q. The Hamiltonian is

H = −K
∑

(i,j)∈E

δ(Si, Sj) , (10)

where the Kronecker delta function is defined as

δ(Si, Sj) =

{
1 if Si = Sj
0 otherwise

(11)

Note that is we had defined the Q = 2 model with Si = ±1, then 2δ(Si, Sj) = SiSj + 1, so this
is equivalent to the Ising model with KPotts = 2KIsing.

The Potts model has a second order phase transition also for Q = 3 and Q = 4. But more
interestingly, it is possible to reformulate it geometrically for real values of Q. To see this, notice
first that by (11) we have the identity

eKδ(Si,Sj) = 1 + vδ(Si, Sj) , (12)

where we have defined v = eK − 1. Now, it is obvious that for any edge-dependent factors he
one has ∏

e∈E
(1 + he) =

∑
E′⊆E

∏
e∈E′

he . (13)

where the subset E′ is defined as the set of edges for which we have taken the term he in
the development of the product

∏
e∈E . In particular, taking he = vδ(σi, σj) we obtain for the

partition function

Z =
∑
S

e−H =
∑
E′⊆E

v|E
′|
∑
S

∏
(ij)∈E′

δ(Si, Sj) =
∑
E′⊆E

v|E
′|Qk(E′) , (14)

where k(E′) is the number of connected components in the graph G′ = (V,E′), i.e. the graph
obtained from G by removing the edges in E \ E′. Those connected components are called
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clusters, and (14) is the Fortuin-Kasteleyn cluster representation of the Potts model partition
function. The sum over spins S in the original definition of Z has now been replaced by a sum
over edge subsets, and Q appears as a parameter in (14) and no longer as a summation limit.
Therefore it makes sense to take any real Q > 0.

• Bond percolation

For Q = 1 the Potts model is seemingly trivial, with partition function Z = (1 + v)|E|.
Instead of setting Q = 1 brutally, one can however consider taking the limit Q→ 1. This leads
to the important special case of bond percolation.

Let p ∈ [0, 1] and set v = p/(1− p). We then consider the rescaled partition function

Z̃(Q) ≡ (1− p)|E|Z =
∑
E′⊆E

p|E
′|(1− p)|E|−|E′|Qk(E′) . (15)

We have of course Z̃(1) = 1. But formally, what is written here is that each edge is present in
E′ (i.e., percolating) with probability p and absent (i.e., non percolating) with probability 1−p.
Appropriate correlation functions and derivatives of Z̃(Q) in the limit Q → 1 furnish valuable
information about the geometry of the percolation clusters. For instance

lim
Q→1

Q
dZ̃(Q)

dQ
= 〈k(E′)〉

gives the average number of clusters.
Bond percolation is an extreme example of random geometry. The local occupation numbers

of edges are completely uncorrelated, and all corresponding correlation functions are trivial.
However, non-trivial questions about the fractal geometry of the clusters can be asked in analogy
with the above discussion of Ising domain walls.

3.2 Transfer matrices

The transfer matrix T is a linear operator that builds the partition function Z of a D-dimensional
statistical lattice model with short-range interactions, by relating the states of two adjacent
(D − 1) dimensional slices. With suitable modification T can be used to study correlation
functions as well.

The basic strategy is as follows. Divide the lattice into two parts, called past and future, by
intersecting it with a (D−1) dimensional (hyper)plane, called a time slice. The vertices contained
in the time slice belong to the present. Let ~St denote the states of all spins corresponding to
vertices in the present, and let Zt(~St) be the partition function of the past part of the system,
conditioned by the state ~St of the present vertices. We interpret t as a time parameter, and we
consider building up the whole lattice by letting the time evolve in discrete steps.

Consider now another time slice at time t+1. We suppose that it differs from the one at time
t by having had the present shifted a bit into the future, in such a way that vertices belonging
to the present at time t and at time t+ 1 are either identical or nearest neighbours. Knowing ~St
and ~St+1 it is then possible to infer the part w(t, t+ 1) of the Boltzmann weights that describe
the interaction between the spins in ~St and those in ~St+1. We can then write

Zt+1(~St+1) =
∑
~St

w(t, t+ 1)Zt(~St) , (16)
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where w(t, t+ 1) are the matrix elements of the linear operator Tt+1:

w(t, t+ 1) = 〈~St+1|Tt+1|~St〉 .

Eq. (16) is just the component form of Zt+1 = Tt+1Zt, where Zt and Zt+1 are vectors and T is a
matrix, whence the name transfer matrix. Iterating this relation we obtain finally the complete
partition function

Z =
∑
~ST

ZT =
∑
~S0,~ST

〈~ST |TT · · · T3T2T1|~S0〉 , (17)

where ~S0 and ~ST describe the possible initial and final states. When writing this, care must be
taken so that the interaction along each edge of the lattice is represented by one and only one
transfer matrix, since otherwise some double-counting would occur.

For a regular lattice, we can choose always to shift the time slices in the same way, in the
direction orthogonal to the time slice, so that both the state space ~St and the transfer matrix
Tt are independent of t. If we further assume periodic boundary conditions in the direction
perpendicular to the time slice, the initial and final spins can be identified, viz. ~ST = ~S0, and
(17) reduces to

Z = Tr
(
T T
)
. (18)

In most situations T is diagonalisable, and since Boltzmann weights are strictly positive the
Perron-Frobenius theorem guarantees that the largest (dominant) eigenvalue Λ0 is non-degenerate.
We have then

Z ' (Λ0)T . (19)

for T large. The behaviour of the partition function in the thermodynamic limit (large system
size) is thus determined by the largest transfer matrix eigenvalue.

• Example: 1D Ising model

The Hamiltonian is

H = −K
T∑
t=1

StSt+1 −
B

2

T∑
t=1

(St + St+1) , (20)

where each time slice consists of a single spin St. Note that we have rewritten the interaction
with the magnetic field B in a convenient way that makes St and St+1 play symmetric roles.
Since St = ±1 takes two values, T is just a 2× 2 matrix:

T =

(
eK+B e−K

e−K eK−B

)
.

• Example: Dimer-monomer mixture in 1D

Consider a 1D lattice with T sites and free boundary conditions. We wish to cover the
lattice with two different kinds of objects —dimers that are small rods covering two adjacent
sites, and monomers that are points covering just one site— in such a way that each lattice site
is covered by precisely one object. The Boltzmann weights for dimers and monomers are wd and
wm respectively.
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To deal with this situation, we let St describe the states of the edges rather than the vertices.
More precisely, St = 0 or 1, depending on whether the edge just to the left of the site t is empty
or occupied by a dimer. Then

T =

[
wm 1
wd 0

]
,

and the initial and final state vectors are

|S0〉 =

[
1
0

]
, 〈ST | =

[
1 0

]
,

In (17) there is no sum over S0 and ST , since the boundary states have been fixed in this way,
by requiring that no dimer can stick out of the system. So Z = 〈ST |T T |S0〉. We leave as an
exercise to show that

Z =

bT/2c∑
n=0

(
T − n
T − 2n

)
(wd)

n(wm)T−2n

by using the transfer matrix formalism. Can you provide also a direct combinatorial argument?

• Further remarks

In D = 2, each time slice describes the set of spins along a (say) horizontal line intersecting
the lattice. Therefore, for a lattice of size Nh ×Nv, the transfer matrix of the Ising model has
dimension 2Nh . To describe an infinite lattice, we must take the Nh → ∞ limit, and dealing
with this is the crux of solving such a model exactly. We shall see it done below.

The transfer matrix formalism is quite malleable and can deal with a variety of situations,
provided that the concepts of time slices and state spaces are carefully rethought. Here are a
few possibilities:

• Interactions of longer (but finite range): Make the time slices thicker (i.e. consist of several
adjacent layers).

• Continuous degrees of freedom: In each matrix product, replace the summation over the
discrete degrees of freedom by an integral.

• Inhomogeneities: Replace T by a time-dependent Tt.

• Random graphs: Sum over both the statistical degrees of freedom and the graphs them-
selves. Use a time slice whose size varies as it is swept over the graph.

3.3 The 2D Ising model

We now consider the zero-field Ising model on a 2D square lattice. The Hamiltonian is

H = −
Nx∑
x=1

Ny∑
y=1

[Kx Sx,ySx+1,y +Ky Sx,ySx,y+1] , (21)
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where we have chosen different coupling constants, Kx and Ky, in the horizontal and vertical
directions. We assume periodic boundary conditions in both directions.

• Existence of a phase transition

We first present an argument due to Peierls that the 2D Ising model has a phase transition
at some non-zero temperature T . We assume here Kx = Ky ≡ K = J/T , where J is the physical
(temperature independent) coupling constant.

The ground state in which all spins are aligned has energy E0 = 2JNxNy. An excitation
consisting of a droplet of overturned spins within the ordered ground state has energy E1 =
E0 + 2J`, where ` is the perimeter of the droplet. The number of possible shapes of the droplet
equals the number of closed walks on the square lattice of length `, with self-intersections at the
vertices being allowed. Viewing such walks as an exploration process, one has at least 1 and
at most 3 possibilities for each step (the walk cannot backtrace). So the number of walks is of
order c`, with 1 < c < 3 (the precise value of c is known but does not matter for this argument).

The contribution to Z of such droplet configurations is c`e−E1/T , so the free energy is

F = E − TS = E0 + (2J − T log c)` .

Now, if T < Tc ≡ 2J
log c we have F > 0 for any `, so droplets will be exponentially suppressed.

Conversely, if T > Tc we have F < 0 for large enough `, so droplets will proliferate. Therefore
we expect a phase transition at Tc > 0.

By contrast, in 1D a droplet corresponds to just two units of domain wall, so the excitation
energy is constant. Therefore we will have Tc = 0 in that case, as is easily confirmed by solving
the model exactly.

• High-temperature expansion

The Boltzmann weight of a configuration of Ising spins S reads

W [S] =
∏
x,y

exp(Kx Sx,ySx+1,y) exp(Ky Sx,ySx,y+1) .

Since the product of two spins SiSj = ±1, we have the identity

exp(KSiSj) = coshK + sinhK SiSj = coshK × (1 + w SiSj) , (22)

where w = tanhK. If we drop the overall multiplicative factor, we get:

W [S] ∝
∏
x,y

(1 + wxSx,ySx+1,y)(1 + wySx,ySx,y+1) ,

with

wx = tanhKx , wy = tanhKy .

This product can be expanded graphically, associating the term 1 with an empty edge, and the
term wSiSj with an occupied edge. Thus

Z = (coshKx)|Ex|(coshKy)
|Ey |

∑
{S}

∑
A⊆E

w|Ex(A)|
x w

|Ey(A)|
y

∏
(ij)∈A

SiSj

 ,
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where |Ex(A)| and |Ey(A)| are the number of horizontal and vertical edges contained in the edge
subset A. To get a non-zero contribution, every factor Si should occur as an even power, so a
non-zero contribution is obtained only if A is a set of closed polygons:

Z = (coshK1)|Ex|(coshK2)|Ey | 2|V |
∑

A polygons

w|Ex(A)|
x w

|Ey(A)|
y . (23)

This exact rewriting of Z is called a high-temperature expansion, since w = tanhK � 1 when
K � 1.

• Low-temperature expansion

We can also expand Z around a fully ordered state. The excitations are then droplets of
spins of the opposite sign, which are bordered by domain walls that live on the dual graph G∗,
again a square lattice. These domain walls are again polygon configurations:

Z = 2eKx|Ex|+Ky |Ey |
∑

A∗⊆E∗
(w∗x)|Ey(A∗)|(w∗y)

|Ex(A∗)| ,

where
w∗x = e−2Kx , w∗y = e−2Ky .

Notice how w∗x is now conjugate to |Ey(A∗)|, since a horizontal edge in E is dual to a vertical
edge in E∗, and vice versa. This is called a low-temperature expansion.

• Duality

It follows that if the high-temperature rewriting of Z has a singularity at some parameters
(wx, wy), then the low-temperature rewriting of Z must have the same singularity at the dual
parameters (w∗y, w

∗
x). This is called a duality transformation. Since the square lattice is self-dual,

the two rewritings are in terms of the same polygon expansion, so we have related singularities
of Z at two sets of parameter values.

It might of course be that Z really has a pair of distinct singularities (critical points), but
if we suppose —as seems more likely— that there is a unique critical point, then it must occur
where

wx = w∗y , wy = w∗x .

It is easy to show the involution property (w∗x)∗ = wx, so there is actually only one relation:

tanhKx = e−2Ky . (24)

This fixes the selfdual manifold along which the Ising model is critical.
The critical properties (critical exponents) are identical all along the self-dual variety (24).

Indeed, in the continuum limit we can just scale the x and y directions with opposite scale factors,
so that the system becomes isotropic. This is known as anisotropic scaling. The advantage is
that we may then solve the Ising model by going to the completely anisotropic limit, where
Kx � 1 and Ky � 1, while maintaining the relation (24). In this limit the dynamics of the
system simplifies considerably, since all interactions are close to the identity in the transfer
matrix formalism (where we transfer along the y-direction). We now give the details of this
solution.
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• Transfer matrix and Hamiltonian

A spin configuration along a horizontal row of the lattice is denoted ~S1 = {S1,y, S2,y, . . . , SNx,y}.
The transfer matrix T transfers this into another configuration ~S2 in which y has been replaced
by y + 1: ~S2 = {S1,y+1, S2,y+1, . . . , SNx,y+1}. Explicitly this reads

〈~S2|T |~S1〉 =

Nx∏
x=1

exp (Kx Sx,ySx+1,y +Ky Sx,ySx,y+1) .

We can separate the horizontal and vertical interactions by writing T = TvTh, with

〈 ~̃S1|Th|~S1〉 =

Nh∏
x=1

exp (KxSx,ySx+1,y) δ( ~̃S1, ~S1) ,

〈~S2|Tv| ~̃S1〉 =

Nh∏
x=1

exp
(
KyS̃x,ySx,y+1

)
.

The individual factors in each product commute, but Th does not commute with Tv. However, in
the completely anisotropic limit (Kx � 1 and Ky � 1) both matrices are close to the identity,
up to an unimportant overall factor in Tv. Indeed we can write

Th = e−Hh , Tv = eKxNxe−Hv ,

where the matrices Hh,Hv � 1. In particular we have

e−Hhe−Hv ≈ (1−Hh)(1−Hv) ≈ 1−Hh −Hv ≈ e−Hh−Hv .

To leading order, Th reads

〈 ~̃S1|Th|~S1〉 = δ( ~̃S1, ~S1)

(
1 +Kx

Nx∑
x=1

Sx,ySx+1,y

)

and in terms of the Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
we have

Th = 1 +Kx

Nx∑
x=1

τ3
xτ

3
x+1 .

Here the subscript of the Pauli matrices indicate on which tensorand they act. Re-exponentiating
we get the horizontal part of the Hamiltonian:

Hh = −Kx

Nx∑
x=1

τ3
xτ

3
x+1 .
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Let us now examine one factor in Tv, acting at position x:[
eKyS̃x,ySx,y+1

]Sx,y+1

S̃x,y
= eKy

(
1 e−2Ky

e−2Ky 1

)
= eKy

(
1 + e−2Kyτ1

)
≈ eKy exp

(
e−2Kyτ1

)
.

Combining this, we arrive at

Hv = −e−2Ky

Nx∑
x=1

τ1
x .

Summarising our achievements this far, if we write the transfer matrix as

T = eKyNxe−H ,

and introduce the parameters

γ = e−2Ky , β = Kx ,

then the corresponding 1D quantum Hamiltonian is

H = −γ
Nx∑
x=1

τ1
x − β

Nx∑
x=1

τ3
xτ

3
x+1 , (25)

This is known as the 1D transverse field Ising spin chain. By the argument of anisotropic
rescaling, its critical behaviour is identical to that of the original 2D Ising model.

• Ordered phase

When γ � β, there are two degenerate ground states of H with energy E0 = −βNx:

| ⇑〉 =

(
1

0

)
⊗ · · · ⊗

(
1

0

)
, | ⇓〉 =

(
0

1

)
⊗ · · · ⊗

(
0

1

)
.

They correspond of course to the two ordered states in the 2D formulation of the Ising model.
An elementary excitation is obtained by reversing one of the Nx spins, and the corresponding

energy is E1 = −βNx + 2β. Recalling (25) the corresponding eigenvalues of T are then

λ0 = eKyNxe−E0 , λ1 = eKyNxe−E1 ,

so the correlation length is finite:

ξ =

(
log

λ0

λ1

)
=

1

E1 − E0
=

1

2β
.

• Disordered phase

When γ � β, we look instead for the dominant eigenvector of τ1. The ground state of H is
then (

1

1

)
⊗ · · · ⊗

(
1

1

)
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with energy E0 = −γNx. This corresponds to the completely disordered state in the 2D formu-
lation: a equally weighted superposition of all possible states.

An elementary excitation is obtained by replacing one of the factors in the tensor product
by the other eigenvector of τ1, which is (1,−1) with eigenvalue −1. The energy is then E1 =
−γNx + 2γ, and we have again a finite correlation length:

ξ =
1

E1 − E0
=

1

2γ
.

Below we shall show that the exact expression for ξ, valid for any values of γ and β is

ξ =
1

2|γ − β|
.

Notice that this diverges for γ = β, so this must correspond to Tc. This matches indeed the
selfduality criterion (24) in the completely anisotropic limit Kx � 1:

Kx = e−2Ky ,

in agreement with (25).

• Jordan-Wigner transformation

We rotate the Pauli matrices by means of a unitary transformation to obtain the equivalent
Hamiltonian

H = −γ
Nx∑
x=1

τ3
x − β

Nx∑
x=1

τ1
xτ

1
x+1 .

Introduce the raising and lowering operators τ±x = 1
2(τ1

x ± iτ2
x). They satisfy the anticommuting

relations

(τ+
x )2 = (τ−x )2 = 0 , τ+

x τ
−
x + τ−x τ

+
x = 1 ,

which makes the problem start looking fermionic. However, these τ± commute on two different
sites, so a trick is needed to obtain the required anticommutativity also in this case.

This is accomplished by the Jordan-Wigner transformation:

ax = exp
(
iπ

x∑
y=1

S−y S
+
y

)
S+
x , a†x = exp

(
− iπ

x∑
y=1

S−y S
+
y

)
S−y ,

It is straightforward to show that we now have the required fermionic relation

a†xay + aya
†
x = δx,y .

The Hamiltonian is then

H = γ

Nx∑
x=1

(
a†xax − axa†x

)
− β

Nx∑
x=1

(
a†x − ax

)(
a†x+1 + ax+1

)
. (26)

It is quadratic in the fermion operators.

43



• Diagonalisation of H

By means of a discrete Fourier transformation

ax =
1√
Nx

∑
k

eikxak , a†x =
1√
Nx

∑
k

e−ikxa†k

this becomes

H = γ
∑
k

(
a†kak − aka

†
k

)
− β

∑
k

(
a†k − a−k

)(
a†−k + ak

)
eik ,

where the sum is over the Brillouin zone, k ∈ [−π, π], in steps of 2π
Nx

. Note that this couples
only the wave numbers k and −k, so we can write

H =
∑
k≥0

Hk ,

where Hk reads in matrix notation

Hk = 2
(
a†k a−k

)( γ − β cos k −iβ sin k
iβ sin k −γ + β cos k

)(
ak
a†−k

)
.

This latter form can be diagonalised by successively applying the relabelling a†−k = iã†−k and
a−k = −iã−k, and the Bogoliubov transformation (orthogonal rotation)(

ak
ã†−k

)
=

(
cosφk sinφk
− sinφk cosφk

)(
ck
c†−k

)
.

Omitting the details, the result is

H =
∑
k>0

hk

(
c†kck − c−kc

†
−k

)
, (27)

where
hk =

[
(γ − β)2 + 4γβ sin2(k/2)

]1/2
. (28)

The ground state of (27) is obtained by making only the minus term in the parenthesis
contribute, viz., by leaving all the fermionic modes empty. An elementary excitation corresponds
to populating just one fermionic mode q. The excitation energy is

E1(q)− E0 = 2hq .

The lowest-lying excitation corresponds to q → 0, so we get the correlation length

ξ =
1

E1(q → 0)− E0
=

1

2|γ − β|
(29)

as already announced.
If we define the “mass” m = |γ − β|/

√
γβ, then the excitation energy has the relativistic

form
(E1(q)− E0)2 ∝ m2 + q2 , (30)
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and the mass vanishes at Tc. In other word, at the critical point we have a massless field theory.
According to (27) it is a theory of free fermions, but of a particular type. Namely, the modes
with positive (resp. negative) momentum k have an energy that increases when k becomes more
positive (resp. negative), so they move to the right (resp. left) in Fourier space. Therefore they
are often called right-movers (resp. left-movers). Such particles are called Majorana fermions.

By contrast, the standard Dirac fermions move left or right for any k, independently of the
sign. (There is one more type of free fermions known as symplectic fermions.)

3.4 Lattice field theory

[... To be completed...]

3.5 Partition functions and path integrals

The aim of the two following sections is to point out analogies and relations between models of
statistical physics and of quantum mechanics. These relations are already present, more or less
explicitly, in the transfer matrix formulation of lattice statistical models —which is grounded
on time evolution of time slice ‘spin configuration states’.

We first start by describing a path integral representation of the partition function of a
quantum system at finite temperature. We assume the reader is familiar enough —or at least
know or heard about it— with Feynman path integral representation of Quantum Mechanics.
This will be done by implementing an analytic continuation in the time variable known as the
“Wick rotation”. We then extend this construction to field theory.

• Feynmann path integrals

In quantum mechanics the evolution operator U(t) is solution of the Schrödinger equation
(we shall later put ~ = 1)

i~∂tU(t) = H(t)U(t),

with H(t) the system hamiltonian, so that the system state |ψ(t)〉 at time t is U(t)|ψ0〉, with
|ψ0〉 its initial state. For time independent hamiltonian H, it is simply U(t) = e−itH . It may
be explicitly written if one knows the spectral decomposition of the hamiltonian. Feynman
path integral is an alternative representation of this evolution operator as some over all possible
system histories. Let q be the dynamical variables of the system and |q〉 are the eigen-position
states. Then, the path integral representation of the matrix elements of the evolution operator
reads:

〈q′|U(t)|q〉 =

∫
q(0)=q
q(t)=q′

[Dq] e
i
~S[q] (31)

with S(q) the classical action evaluated along the trajectories s → qs. The integral sum is
formally over all paths starting at q and ending at q′. This is similar to the path integral
representation of the Brownian motion discussed in a previous chapter except for the important
complex extra factor ‘i’ inherent to quantum mechanics. See any Quantum Mechanics text book
for more details.
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• The Euclidean evolution operator and Wick’s rotation.

Wick rotation is based on the fact that the evolution operator U(t) is analytic in the lower
half complex plane =m t < 0. Indeed, if ψα form an ortho-normalized eigen-basis of H (which

is supposed to be time independent) with eigenvalue Eα, we have U(t) =
∑

α |ψα〉 e
− i

~ tEα 〈ψα|.
Its matrix elements between position eigenstates |q〉 and 〈q′| are

〈q′|U(t)|q〉 =
∑
α

ψα(q′) e−
i
~ tEα ψα(q),

with ψα(q) = 〈q|ψα〉. All these matrix elements are indeed analytic for =m t < 0 if the hamil-
tonian is bounded from below (because the series is absolutely convergent for =m t < 0). This
analyticity property is valid provided its hamiltonian is bounded from below.

Thanks to this property, we can analytically continue the time evolution operator from real
time to complex time t → −iτ with τ real and called the “Euclidean time”. This analytic
continuation is called the Wick rotation. Let UE be this analytic continuation. It satisfies the
differential equation

−∂τUE = H UE ,

where the hamiltonian H can be time dependent or not. For H time independent, UE = e−τH

(because −it = −τ). For a particle in a potential V (q), this is a kind of heat kernel, solution of
a generalized heat equation of the form

∂τUE = −
(
− ∆q

2m
+ V (q)

)
UE .

The Euclidean evolution operator also admits a path integral representation

〈q′|UE(τ)|q〉 =

∫
q(s=0)=q

q(s=t)=q
′

[Dq] e−SE [q], (32)

with Euclidean action SE defined as (here the integration variable s is again the Euclidean time)

SE [q] =

∫ τ

0
ds
[1
2
q̇2
s + V (q)

]
.

Notice the difference of signs between the real time action (defined by a Lagrangian) and the
Euclidean action (defined after analytic continuation). These differences can be justified/derived
in different ways: either using the previous construction based on a discretization of the path
integral —as for the path integral of quantum mechanics or for the Brownian motion—, or
directly by noticing that under the Wick rotation q̇2 → −q̇2 and ids → ds so that i

∫
ds[q̇2 −

V (q)]→ −
∫
ds[q̇2 + V (q)], or equivalently iS[q]→ −SE [q].

For a free particle, in absence of external potential, UE is simply the heat kernel and the
Euclidean path integral with action SE [q] = 1

2

∫
ds q̇2

s is that of the Brownian motion. Hence the
Euclidean path integral for a particle in a potential V can be written as Brownian expectation
(and hence it is better defined its the real time analogue). Namely,∫

[Dq] e−SE [q] = E
[
e−

∫
ds V (Xs)

]
,
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where E[· · · ] the expectation over the Brownian motion Xs. This representation of the Euclidean
evolution operator as a Brownian expectation is called the Feynman-Kac representation. Note
that it is slightly different form the representation of SDEs with drift which we previously
discussed.

• Path integral representation of partition functions.

The euclidean evolution operator is UE = e−τH . It may be compared with the density matrix
of a system with hamiltonian H at temperature kBT = 1/β which reads:

ρGibbs = Z−1 e−βH .

Here Z = Tr(e−βH) is the partition function, a key quantity of statistical physics at equilibrium
(recall that F = −kBT logZ is the free energy). Computing the partition function amounts the
trace of the Euclidean evolution operator with τ = β = 1/kBT , that is

Z = Tr(e−βH) =

∫
dq 〈q|UE(τ = β)|q〉.

This of course can be represented by a path integral with periodic boundary condition, with
period β:

Z =

∫
q(β)=q(0)

[Dq] e−SE(q). (33)

Periodicity is a way to implement the trace sum. This is an important formula, because it
generalizes to any quantum systems and in particular to quantum field theory.

We can similarly write path integral representations of thermal expectations of operators. If
A is an observable of the quantum system with hamiltonian H, its expectation at temperature
1/β is defined to be

〈A〉β =
Tr(Ae−βH)

Tr(e−βH)
.

Its path integral representation is thus given by the ratio

〈A〉β =

∫
q(β)=q(0)

[Dq]A(τ0) e−SE(q)∫
q(β)=q(0)

[Dq] e−SE(q)
.

For instance, if the observable A is a function A(q) of the operator q, its insertion amounts to
insert A(q(τ0)) in the path integral. Again we have periodic boundary conditions to close the
trace. The time τ0 at which we insert the operator A does not matter (because of the periodicity
we can always split e−βH is two pieces of move them around the trace).

Note that physical quantities, such as expectations or correlations, are ratio of path integrals.
Taking this ratio improves some of the problems of the (any way ill-defined) path integral measure
because the undefined normalization cancels between the numerator and the denominator.

• Application to field theory.

It is a small step to go (formally) from high dimensional hamiltonian systems to field theory.
To make it concrete one may discretized space on a lattice with vertices at points xk. The
dynamical variables are then countable variables φ(xk) so that one has the correspondance

{q} ↔ {φ(xk)}.
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One may also take (formally) the continuous limit and view the value of the field φ(x) at space
point x as the dynamical variables. They don’t form a countable set but we nevertheless apply
the previous formal manipulations.

A (classical) field theory comes equipped with an action S[φ], depending on the field con-
figurations, which determine the field dynamics. By hypothesis, it can be written in terms a
Lagrangian density L(φ, φ̇) as

S[φ] =

∫
dtdxL(φ, φ̇).

The simplest example is that of free massive field for which the action is:

S[φ] =

∫
dtdxL =

∫
dtdx

(1

2
(φ̇)2 − 1

2
(∂xφ)2 − V (φ)

)
where V (φ) = 1

2m
2φ2 with m the mass of the field.

This classical field theory may (formally) be quantized using the previous path integral
formalism. Upon quantization, a basis of the Hilbert space of the quantum field theory is
(formally) made of eigen-field configuration states |{φ(x)}〉. These are the analogue of the eigen-
position states |q〉. To specify the quantum dynamical we may give ourselves two configurations
at two different times (at two different time slices), {φ0(x)} at time t0 and {φ1(x)} at time t1,
and postulate that the quantum amplitude is (formally) defined by the path integral

〈{φ1(x)}|U(t1, t0)|{φ0(x)}〉 =

∫
φ(x,t0)=φ0(x)
φ(x,t1)=φ1(x)

[Dφ] e(i/~)S[φ],

with the boundary condition specified by the two field configurations. The integral is over ‘path’
in the space of field configurations.

We can of course Wick’s rotate this path integral, as we did for quantum mechanics. This
yields a Euclidean path integral over field configurations in one dimension higher (we set ~ = 1):∫

[Dφ] e−SE [φ],

with Euclidean action SE [φ] =
∫
dx
(

1
2(∇φ)2 +V (φ)

)
where ∇ is the gradient derivative along all

directions (space and Euclidean time). Here we use the notation x = (τ,x), with τ the Euclidean
time, which effectively span a space of one dimension higher than that of x. In particular the
partition function Z(β) = Tr(e−βH) of a quantum field at temperature 1/β is given by the
Euclidean path integral with periodic condition along the Euclidean time:

Z(β) =

∫
φ(β,x)=φ(0,x)

[Dφ] e−SE(φ).

To make these formal definitions workable is what quantum and statistical field theory is about.
It is worth having in mind a geometrical picture related to these path integral representations.

If the quantum field theory is defined on the infinite line the path integral representation of its
partition function takes place over a cylinder of circumference β and infinite height (the long
axis of the cylinder is the infinite line on which the quantum system is defined, the periodic circle
is associated with the finite temperature and the periodicity comes form taking the traces). If
the quantum field theory is defined on a finite interval, then the path integral takes place on
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a cylinder of finite length. If the quantum system is periodic with period R (i.e. it is defined
on a circle of radius R), the path integral takes place on a torus. Generalizations to higher
dimensional quantum systems is clear. If the field theory is defined over a manifoldM, then its
partition function path integral takes values on M× S1 with S1 the circle of period β. It may
be useful to have these geometrical pictures in mind. See Figure.

3.6 The classical/quantum correspondance

The previous constructions provide instances of a correspondance between the physics of quan-
tum systems and that of classical systems but in one dimension higher —a correspondance which
was already transparent in the transfer matrix formulation of lattice statistical models. The aim
this section is to spell out this correspondance and to establish the dictionary between these two
setups

• D-classical/(D − 1)-quantum correspondance.

By interpreting the Euclidean path integral as the partition function of a classical system
whose Boltzmann weights e−SE we get a correspondance between the physics of quantum system
in dimension d at finite temperature and that of classical system in D = d+ 1 dimension.

Consider a lattice statistical model defined on hyper-cubic lattice in dimension D with spin
variables Si0,i1,··· ,iD−1 on each point of the lattice with (i0, i1, · · · , iD−1) the coordinates the
vertices. We can choose one of the direction, say the first one corresponding to the index i0,
and declare it to be the Euclidean time direction. Accordingly we can slice the D-dimensional
hyper-cube as (D−1) hyper-surfaces equally spaced along the Euclidean time direction. The set
of the spin variables on these (D − 1) hyper-surfaces may be viewed as the dynamical variables
of a quantum systems. Collecting all values of those variables on all slices along the chosen
Euclidean time direction gives a Euclidean time trajectories. The energy of the configuration of
all spins variables on all hyper-surfaces slices (i.e. on the original hyper-cube) is then identified
with the Euclidean action of these trajectories. Hence, if this identification applies, the partition
sum of the classical statistical model is identified with the (discretized) path integral of these
trajectories.

This mapping is particularly explicit in the transfer matrix formulation of lattice statistical
models. The transfer matrix T is identified with the Euclidean evolution over a lattice distance
δ, that is we have the identification T = e−δH with H the hamiltonian. For a statistical model
in dimension D, it acts on Hilbert space defined over an hypersurface of dimension d = D − 1
which is identified with the quantum Hilbert space.

• Thermal expectations, energy gap and correlation length.

Through the previous correspondance we associate a D-dimensional classical statistical sys-
tems with partition function Z with a (D − 1) quantum systems with hamiltonian H. The
quantum system is thought to be defined on the hyper-surface orthogonal to one of the direction
classical system which, by convention is called the Euclidean time direction. This correspondance
is such that if the classical system is made periodic, then

Z(L) = Tr(e−LH),

where the trace is over the quantum system Hilbert space.
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Accordingly we have the correspondance:

D − dim. ”classical” system (D − 1)− dim. ”quantum” system

lattice spacing ↔ discretization

configuration energy βEc ↔ Euclidean action SE

periodic system L ↔ finite temperature β

inverse correlation length ξ−1 ↔ energy gap ∆E = E1 − E0

The first three statement are clear and were already discussed at length. The last statement
about the correlation length needs an explanation. It requires computing one and two point
correlation functions.

Let us first look at the expectation of some observable A. We first (and provisionally) makes
the Euclidean time direction periodic of period L. We will later take the large L limit. Following
the above strategy we may represent the expectation values as

〈A〉L =
Tr
(
e−LH A

)
Tr
(
e−LH)

,

where Z(L) = Tr
(
e−LH) is the partition function with H the hamiltonian coding for the evolu-

tion along the Euclidean time. By decomposing on the eigen-state of H, we write

〈A〉L =
1

Z(L)

∑
n

e−LEnAnn,

where En are the eigen-values of H and Ann the matrix elements of A in the eigen-basis. The
partition function is Z(L) =

∑
n e
−LEn . In the large L limit, the minimum energy E0 dominates

(assuming that there is a gap). This projects the sum on the ground state |0〉. The vacuum
energy compensate (as it should be) in the ratio, and we get

〈A〉L 'L→∞ A00.

A formula which may be summarized as: taking the infinite size limit projects on the ground
state.

Let us now pick B and A two operators and consider their two point functions at different
sites at position τ1 and τ2 along the Euclidean time direction. Let ` = τ2 − τ1 > 0 be their
distance. We may then represent this correlation function as follows:

〈B(`)A(0)〉L =
Tr
(
e−(L−`)HB e−`H A

)
Tr
(
e−LH)

,

with ` = τ2 − τ1 > 0 the distance between the two insertion points. We want to know how
this correlation function behavior at large distance but small compare to the system size, i.e.
1� `� L. Decomposing the trace on the hamiltonian eigenstates gives

〈B(`)A(0)〉L =
1

Z

∑
n,m

e−(L−`)EnBnm e
−`EmAmn.
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Imposing 1 � ` � L amounts to take the limits L → ∞ then ` → ∞ is this order. Again the
eigen-state with minimum energy dominates in the large L limit, and

〈B(`)A(0)〉L=∞ =
∑
m

B0m e
−`(Em−E0)Am0.

The dominating contribution in this last sum again comes from the vacuum energy with the
terms B00A00 = 〈B〉〈A〉. Let us defined the connected correlation function by

〈B(`)A(0)〉conn.
L := 〈B(`)A(0)〉L − 〈B(`)〉L〈A(0)〉L.

In the large L limit we have 〈B(`)A(0)〉conn.
L=∞ =

∑
m 6=0B0m e

−`(Em−E0)Am0. Hence, the domi-
nating contribution at large distance `� 1 comes the first excited state and we have

〈B(`)A(0)〉conn.
L=∞ ' const.e−`/ξ

with
ξ−1 = E1 − E0.

By definition, ξ is then the correlation length. Notice that the decay is exponentially fast only
if the gap is not vanishing (in the infinite size limit).
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3.7 Exercises

• Exercise 3.7.1: Fermionic representation of the 2D Ising model

The aim of this exercise is to complete the study of the 2D Ising model presented in the
main text. Recall the definition of the 2D Ising model given in the text.
(i) Prove –or argue for– the expression for the Ising transfer matrix.
(ii) Recall the Jordan-Wigner transformations given in the main text which construct fermionic
operators in terms of Pauli matrices via

ax = eiπ
∑x
y=1 τ

−
y τ

+
y τ+

x , a†x = e−iπ
∑x
y=1 τ

−
y τ

+
y τ−x .

Show that we may alternatively write

ax =
( x−1∏
y=1

τ zy
)
τ+
x , a†x =

( x−1∏
y=1

τ zy
)
τ−x .

Verify that they satisfy the canonical fermionic relation a†xay + aya
†
x = δx,y.

(iii) Complete the proof of the diagonalisation of the Ising hamiltonian and its spectrum. Proof
that, after an appropriate Bogoliubov transformation on the fermion operators, the Ising hamil-
tonian (25) can be written in the form (27) given in the main text, which we recall here,

H =
∑
k>0

hk

(
c†kck − c−kc

†
−k

)
,

with single particle spectrum hk =
[
(γ − β)2 + 4γβ sin2(k/2)

]1/2
.

• Exercise 3.7.2: Spin operators, disorder operators and parafermions.

The aim of this exercise –and the following two– is to study some simple consequences of
group symmetry in lattice statistical models.

Let us consider a lattice statistical model on a two dimensional square lattice Λ := a2Z2 with
spin variables s on each vertex of the lattice. These variables take discrete or continuous values,
depending on the models. We consider neighbour spin interactions with a local hamiltonian
H(s, s′) so that the Boltzmann weight of any given configuration [c] is

W ([c]) :=
∏

[i,j]=edge

w[i,j], w[i,j] = e−H(si,sj),

where, by convention, [i, j] denotes the edge connecting the vertices i and j. Let Z :=
∑

[c]W ([c])
be the partition function.

Let us suppose that a group G is acting the spin variables. We denote by R the corresponding
representation. Furthermore we assume that the interaction is invariant under this group action
so that, by hypothesis,

H(R(g) · s,R(g) · s′) = H(s, s′), ∀g ∈ G.

(i) Transfer matrix: Define and construct the transfer matrix for these models.
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(ii) Spin operators: Spin observables, which we denote σ(i), are defined as the local insertions of
the spin variables at the lattice site i. That is: σ(i) is the function which to any configuration
associate the variable si.
Write the expectations of the spin observables 〈σ(i1) · · ·σ(iN )〉 as a sum over configurations
weighted by their Boltzmann weights.
Write the same correlation functions in terms of the transfer matrix.
(iii) Disorder operators: Disorder observables are defined on the dual lattice and are indexed by
group elements. Let Γ be a closed anti-clockwise oriented contour on the square lattice Λ̃ dual
to Λ –the vertices of Λ̃ are the center of the faces of Λ. Let ` denote an oriented edge of Γ. It
crosses an edge of Λ and we denote by `− and `+ the vertices of this edge with `− inside the
loop Γ. The disorder observable µg(Γ) for g ∈ G is defined as

µΓ(g) := exp
(∑
`∈Γ

(H(s`− , s`+)−H(s`− , R(g)s`+)
)
,

Inserting µΓ(g) in the Boltzmann sum amounts to introduce a defect by replacing the hamiltonian
H(s`− , s`+) by its rotated version H(s`− , R(g)s`+) on all edges crossed by Γ.
Write the expectations of disorder observables in terms of the transfer matrix.

• Exercise 3.7.3: Symmetries, conservation laws and lattice Ward identities

The aim of this exercise is to understand some of the consequences of the presence of sym-
metries. The relations we shall obtain are the lattice analogue of the so-called Ward identities
valid in field theory.

We consider the same two dimensional lattice model as in previous exercise. We recall that
we assume the Bolztmann weight to be invariant under a symmetry group G in the sense that

H(R(g) · s,R(g) · s′) = H(s, s′), ∀g ∈ G.

(i) Let ik be points on the lattice Λ and Γ a contour as in previous exercise.. Show that the
group invariance implies that

〈µΓ(g)
∏
k

σ(ik)〉 =
∏

ik inside Γ

Rik(g) · 〈
∏
k

σ(ik)〉,

where Rik(g) denote the group representation R acting on the spins at site ik.
(ii) Show that µg(Γ) is invariant under any smooth continuous deformation of Γ as long as the
deformation does not cross points of spin insertions (it is homotopically invariant).

We now look at the consequences of these relations for infinitesimal transformations. Suppose
that G is a Lie group and Lie(G) its Lie algebra. Let us give a name to small variations of H
by defining ∂XH. For g = 1 + εX + · · · with X ∈ Lie(G), we set

H(s,R(g)s′)−H(s, s′) =: ε ∂XH(s, s′) + · · · .

For ` = [`−, `+] an oriented edge of Γ as in previous exercise and X ∈ Lie(G), we let

∗JX` := ∂XH(s`− , s`+),

They are specific observables, called currents, whose correlation functions are defined as usual
via insertion into the Bolztmann sums.
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(i) Show that the following equality holds:

〈
∑
`∈Γ

∗JX` ·
∏
i

σ(i)〉 = 〈
( ∑
ik inside Γ

Rik(X)
)
·
∏
i

σ(i)〉,

if some spin observables are inserted inside Γ.
(ii) Deduce that, if there is no observables inserted inside Γ, then the following equality holds
inside any expectation values: ∑

`∈Γ

∗JX` = 0,

That is: The second of these two equations is a conservation law (i.e. it is the analogue of the
fact that

∫
∗J = 0 if ∗J is a closed form, or equivalently, if J is a conserved current), the first

tells about the consequences of this conservation law when insertion of observables are taken into
account. It is analogous to the Gauss law in electrodynamics. They are called Ward identities
in field theory.

• Exercise 3.7.4: Para-fermionic operators and braiding relations

The aim of this exercise is to develop further the notion of spin and disorder operator using
the transfer matrix approach and the corresponding operator formalism.

We consider the same 2D group invariant lattice model as in previous exercises. The sites of
the 2D square lattice are labeled (n,m) with n and m integers. Let T be the transfer matrix for
a one-step evolution. It acts on the Hilbert space H = ⊗(n,0)V(n,0), product of the local Hilbert
spaces along an horizontal line (m = 0). Let n∞ the most left point on this line.

Spin operators: Define the spin operator σ̂(n) by spin multiplication on site (n, 0). Let
σ̂(n,m) := T −mσ̂(n)T m be its translation by m vertical step.

Disorder operators: Define the disorder operator µ̂g(n) by the insertion of R(g) on all sites
strictly on the left of the site (n, 0), i.e. on all site (k, 0) with n∞ ≤ k < n. Let µ̂g(n,m) =
T −mµ̂g(n)T m be its translation by m vertical step.
(i) Show the generalized commutation relations, called braiding relations, for g ∈ G:

σ̂(n1) µ̂g(n2) =

{
µ̂g(n2) σ̂(n1) , if n1 ≥ n2

µ̂g(n2) (R(g) · σ̂(n1)) , if n1 < n2

(ii) Show that, for g, h ∈ G:

µ̂g(n1) µ̂h(n2) = µ̂h(n2) µ̂h−1gh(n1) , if n1 < n2.

Para-fermions: Let ψRg (n) be the product of operators ψ̂Rg (n) = σ̂(n)µ̂g(n).
(ii) Compare this definition with the Jordan-Wigner transformation.
(iv) Show that for all g, h ∈ G:

ψ̂Rg (n1) ψ̂Rh (n2) = ψ̂Rh (n2) (R(g) · ψ̂Rh−1gh(n1)) , if n1 < n2.

(v) Determine what are these commutation relations when G = Z2. Compare with fermionic
commutation relations. Extend these questions to G = ZN .
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• Lattice gauge theory.

[...To be completed...]

• Self-avoiding walks and the O(n)-models

[...To be completed...]
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4 Critical systems and mean field theory.

The aim of this chapter is to describe basics facts about second order phase transitions and criti-
cal systems. These include scaling exponents, coding for the singular behavior of thermodynamic
quantities at the transition, and the important notion of universality. We explain the Landau
theory which is based on mean field approximations as well as its domain of validity. First steps
on how to go beyond mean field theory, away from its domain of validity, are discussed.

4.1 Critical systems: phenomenology

Critical systems refer to second order phase transitions. Classical thermodynamics classifies
phase transitions according to the behavior of the thermodynamical functions at the transition.
(See standard textbook for basic facts about phases transitions). For first order phase transition
the first derivative of the free energy is discontinuous at the phase transition point. For second
order phase transition, the first order derivative is continuous there is a discontinuity in a higher
order derivative of the free energy.

• Second order phase transitions.

Second order phase transitions are continuous phase transitions (no discontinuity in the re-
sponse function). The fact that the transition is continuous does not mean that the behavior
is not singular. Although continuous at the transition, the response functions are not a smooth
functions of the external parameters (some of their derivatives develop singularities). Standard
examples are:
— Para/Ferromagnet transition: Above the critical temperature Tc, the magnetization is zero,
whereas below the critical temperature the magnetization becomes non zero. For a second order
(and hence continuous) phase transition the magnetization vanishes at the critical temperature
(in absence of external magnetic field);
— Bose condensation: Below a critical temperature, the lowest energy orbital becomes macro-
scopically occupied (i.e. it becomes on the order of the macroscopic number of bosons in the
system);
— Superconducting or superfluid transition: Below a critical temperature, certain systems dis-
play dissipation-less flow of current or of fluid mass.
— And many more examples,...
All these transitions share a great deal of similarities and they often can be mapped to the
others.

We shall use the (most standard) example of para-to-ferro transition to illustrate the phe-
nomena. Some of the typical data of second order phase transitions are the followings:

At high temperature T > Tc, the system is in a disordered phase in which the local spins
vary randomly and rapidly from one site to the others. For instance, in the infinite temperature
Ising model (T � J) the spins at different sites are independent. The response of the system
to a small magnetic field is linear: the mean magnetization m̄ is linear in the external field and
the magnetic susceptibility χ(T ) := ∂m̄(h)/∂h|h=0 is finite. Figure.

At low temperature T < Tc, the system is ordered. The spins have tendency to be aligned,
with a large probability, and they are correlated at large distances. For instance, in the zero
temperature Ising model, the most probable configurations are those in which all spins point in
the same direction. There is a non zero spontaneous magnetization and hence the system is in

56



a ferromagnetic phase. More precisely,

lim
h→0+

m̄(h) 6= 0.

in such case, on says that the symmetry is broken (the symmetry is the Z2 action reversing all
spins). This is a key concept in the theory of second order phase transition but also in particule
physics through the so-called Higgs mechanism. Figure

The spontaneous magnetization m̄ (at h = 0) is a function of the temperature: m̄ 6= 0 at
T < Tc and m̄ = 0 at T > Tc and the magnetization vanishes continuously at T = Tc. The
magnetization is not a smooth function of the temperature but develops a power law behavior
m̄(T ) ' |T − Tc|β for T < Tc close to the critical temperature. Figure.

At the critical point T = Tc, the system possesses peculiar and anormal properties: the
magnetization at small external field is singular, m̄(h)|T=Tc ∝ h1/δ, the susceptibility diverges
close to the transition, χ(T ) ∝ |T − Tc|−γ , etc. All these exposants β, δ, γ, etc, are non trivial.

These behavior are linked to the presence of large fluctuations at all scales so that the physics
is dominate dby collective phenomena. Critical systems (at T = Tc) are characterized infinite
correlation length. In particular there is no intrinsic characteristic length scale so that these
system are invariant under dilatation.

• Why do we care about second order phase transition?

(i) True phase transitions (singularities in the free energy) can only occur in the thermo-
dynamic limit (i.e., when there are an infinite number of degrees of freedim in the system, as
otherwise the partition function a finite polynomial sum). Phase transitions are key examples
of collective phenomena, i.e. how many objects act together to give new physics.

(ii) Phase transitions have universal properties. Phases of matter are so diverse so that
many of the properties of these phases are “non-generic”. However, the types of second order
phase transitions turn out to fall into a relatively small number of classes known as “universality
classes” which all behave similarly. Understanding the phase transitions also helps understanding
the key differences between these phases.

(iii) The mathematical structure build to study phase transitions (statistical field theory
and the renormalization group) turns out to be one of the most fundamental tool to understand
non-trivial physics (say involving infinitely large numbers of degrees of freedom, at all scales),
with applications to condensed matter and high energy physics.

4.2 The Ising mean field theory

Here we describe the mean field theory in the case of the Ising model. Although non exact the
mean field theory provides a simple scheme illustrating the emergence of singular behaviors at a
transition. There are different ways of deriving the mean field theory (either using a local field
approximation as done below, or using a variational ansatz as done in the exercise Section).

• The Ising model

We consider the Ising model on a hyper-cubic lattice in dimension D, with a the mesh of
the lattice a, i.e. the lattice is aDZD. On each lattice site we put a spin variable si, i ∈ Λa,
which possibly takes two values si = ±1. A configuration [s] is the data of all spin values on all
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point of the lattice. The energy of a configuration codes for the interaction of neighbor spins.
by definition, it is given by the formula:

E[s] = −J0

∑
i∼j

sisj − h
∑
i

si

where the sum us over pairs of neighbor sites. The constant J0 > 0 measure the strength of
the interaction and h is the external magnetic field. The statistical distribution is specified by
the Boltzmann rules: the probabilities for a configuration [s] is proportional to e−E[s]/T where
T is the temperature. Since J0 > 0, aligned configurations are favored at low temperature. The
Ising model possesses a second order phase transition (at zero external field) at some critical
temperature Tc.

• Mean field theory

The mean field theory consists in making the approximation that at each site the local spin
is effectively sensible only to the“mean field” created by the neighbor spins. If z is the number
of neighbor (z = 2D in the case of the hyper-cubic lattice), the mean field is h+ zJ0m̄ with m̄
the local magnetization (m̄ is the mean value 〈s〉 of the spin si). This mean field approximation
consist in replacing the sum

∑
<ij> sisj by zm̄

∑
i si in the energy of a spin configuration, which

is then reduced to a sum of independent terms:

E[s]→ Ē[s] = −
∑
i

(zJ0m̄+ h) si.

The local mean energy is ei := (zJ0m̄+h) si. Self-consistency condition demands that the mean
spin (computed using the Boltzmann rules specified by Ē[s]) should be m̄, i.e.

〈s〉 = m̄, alias m̄ =
e−βe(+) − e−βe(−)

e−βe(+) + e−βe(−)
= tanh(β(zJ0m̄+ h)),

with β = 1/kBT the inverse temperature (in the following we take kB = 1). This condition means
that we equate the mean computed using a spatial averaging procedure with the thermodynamic
mean. As consequence, and according to the central limit theorem, we expect this approximation
to be better as the spatial dimension increases.

At zero external field (see Figure), the mean field equation is trivial with m̄ = 0 if T > Tc
but non-trivial solution with m̄ 6= 0 for T < Tc (the other solution m̄ = 0 is unstable). The
critical temperature is Tc = zJ0. That is, we have:{

if βzJ0 < 1, m̄ = 0, (para phase);

if βzJ0 > 1, m̄ = ±m̄0 6= 0, (ferro phase).

At h = 0, and close to the critical point, one obtains the magnetization by simply expanding
the self consistency condition in power of the magnetization. This yields

1

3
(zβJ0m̄)3 =

Tc − T
T

m̄.

Hence for T > Tc, we recover m̄ = 0, while for T < Tc we get m̄0 ' (Tc − T )1/2. The phase
transition is thus continuous. It is a second order phase transition.
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For h 6= 0 but at the critical temperature, the mean field equation reads m̄ = tanh(m̄+βch).
Hence m̄0 ' h1/3 since tanhx ' x− 1

3x
3 +O(x5).

Similarly, writing the mean field equation at small external field and at T 6= Tc but close to
the critical point yields (∂m̄/∂h)h=0 ' |T − Tc|−1, (for instance by evaluating the derivative of
the mean field equation w.r.t to external field at h = 0),.

Hence, we have a second order transition with β = 1/2, δ = 3, γ = 1, and one can also
verifies that α = 0 (the heat capacity is discontinuous).

4.3 Critical exponents and universality

Here we introduce the standard notation to parametrize the singular behavior of thermodynam-
ical function at a critical point. These singular behaviors are coded into critical exponents which
we list just below.

• Critical exponents.

— For the magnetization as function of the temperature (magnetization exponent):

m̄(T ) '

{
C |Tc − T |β, for T < Tc,

0, for T > Tc.

Both the critical temperature and the amplitude C are not universal, but the exponent is.

— The magnetic susceptibility (at zero magnetic field) is defined as χ(T ) := ∂m̄(h)/∂h|h=0. It
is singular as the temperature approches Tc (it diverges):

χ(T ) = ∂m̄(h)/∂h|h=0 '

{
χ+ |Tc − T |−γ , for T < Tc,

χ− |T − Tc|−γ , for T > Tc.

The amplitudes χ± are not universal but their ratio is. The exponent γ is universal (it could
have been different on both side of the transition but this turns out not to be the case).

— The magnetisation at the critical temperature is also singular as a function of the magnetic
field:

m̄(h)|T=Tc ' σ0 h
1/δ.

The writing 1/δ, and not the reverse, is a convention.

— The heat capacity (which is the second order derivative of the free energy w.r.t. the tem-
perature) diverges at the critical temperature (and this is often taken as a characteristic of the
transition):

C(T ) '

{
A+ |Tc − T |−α, for T > Tc,

A− |T − Tc|−α, for T < Tc.

The amplitudes A± are not universal but their ratio is. The exponent α is universal.

— The correlation length diverges at the transition. The correlation length codes how much
two distant spins (for magnetic systems) are correlated. It could be defined via the two point
connected correlation spin function, G(i, j) = 〈SiSj〉c = 〈SiSj〉 − 〈Si〉〈Sj〉, for spins at positions
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xi and xj . At T > Tc, 〈Si〉 = 0, whereas 〈Sj〉 6= 0 at T < Tc. At distances large enough we
expect an exponentiel decreases of the correlation function

G(i, j) ' const. e−|xi−xj |/ξ,

with ξ the (so-called) correlation length. It depends on the temperature (and on the magnetic
field which we set here to zero). For T � Tc spins are quite uncorrelated (by the very nature of
the disordered phase) and get more and more correlated as T approches Tc so that ξ increases
as T → T+

c until it gets infinite as ones approaches the ferromagnetic phase (the direction of
all spins in the system are correlated in the ferromagnetic phase). This divergence also occurs
when approaching Tc from below. We have

ξ(T ) '

{
ξ+ |Tc − T |−ν , for T > Tc,

ξ− |T − Tc|−ν , for T < Tc.

Surprisingly the exponent are identical on both sides of the transition. The amplitudes ξ± are
not universal but their ratio is.

It should be noticed that the correlation length is infinite at the critical temperature ξ(Tc) =
∞. This tells us that all length scales are becoming correlated as we approach the critical
temperature. At the critical point there is no characteristic length and the system behavior
is thus expected to be invariant under scale (global dilatation) transformation. By “usual”
(folklore) argument, locality promotes this invariance to global conformal invariance.

At criticality the correlation function decreases as a power law (not exponentially)

G(i, j)|T=Tc '
1

|xi − xj |D−2+η
.

This defines a new exponent (the scaling dimension of the spin operator).

All these exponents are in general not independent. They satisfy (so-called) scaling relations
(not to be proven at this point of the lectures):

α+ 2β + γ = 2 , α+ βδ + β = 2,

α+Dν = 2 , γ = ν(2− η).

These relations come from assuming (or proving) that all relevant quantities, such as the (sin-
gular part) of the free energy or the correlation functions, are essentially homogeneous functions
of the external parameters and of the correlation length. But a proof of them requires analyzing
the RG transformations, see below.

To conclude, we present a table of the Ising critical exponents in various dimensions:

ISING ; mean field ; exact 2D ; 3D approx.
−−−−−−−−−−−−−−−−− ; −−−− ; −−−− ; −−−−

magnetization : m(T ) ' (Tc − T )β ; β = 1/2 ; β = 1/8 ; β = 0.3264...

critical magnetization : m(h) ' h1/δ ; δ = 3 ; δ = 15 ; δ = 4.7898...
magnetic susceptibility : χ(T ) ' |Tc − T |−γ ; γ = 1 ; γ = 7/4 ; γ = 1.2371...

correlation length : ξ(T ) ' |Tc − T |−ν ; ν = 1/2 ; ν = 1 ; ν = 0.6299...
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• Universality

We have already mentioned this important property. Universality means that the critical
behavior near the transition does not depend on the details of the systems or of the model
systems, but only on a few properties – such as symmetries, the representation of this symmetry
group associated to the order parameters, etc. For instance the Ising model is the representative
of the universality class for which the order parameter is a scalar —here the magnetization—
and the symmetry is the Z2 reflexion symmetry of this scalar. The universality property is an
echo the renormalization group analysis.

4.4 Landau theory

Landau theory is an effective theory to deal with second order phase transitions, very much close
the Ising mean field theory, but with much wider perspectives and domains of applications. It
is based on the following methodological tools:
(i) Identify a local order parameter (often called m or φ), which describes (macroscopically) the
relevant degrees of freedom close to the transition. This parameter can be a scalar, a vector, a
tensor, etc. but symmetry arguments usually helps identifying it.
(ii) Construct a local free energy functional F [m] by expanding in power of m (or power of
its gradient ∇m) assuming that all fluctuations are small enough. Again symmetry arguments
help restricting the possible terms in this expansion. By hypothesis, the expansion coefficients
depend smoothly on the external parameters (T , h, etc.).
(iii) Minimize the free energy to evaluate the thermodynamical functions and the critical expo-
nents.

• The Ising (mean field) universality class.

The order parameter is φ = m, the local magnetization. There is a Z2-symmetry. For
homogeneous configurations, and homogeneous applied external field h, the free energy is pro-
portional to the volume F [m;T, h] = Vol. f [m;T, h] where f is the free energy per unit volume.
The coupling to the external field is

f [m;T, h] = f0[T,m]− hm.

Z2-symmetry demands that f0 to be even: f0[T,m] = f0[T,−m]. Hence we expand in power of
m:

f0[T,m] = g0(T ) + g2(T )m2 + g4(T )m4 + · · · .
We truncate the expansion at order four. For the free energy to be bounded from below we
assume g4 > 0 (otherwise we would have to expand to the next order hoping the next expansion
coefficient is positive). The Taylor coefficient gk are smooth functions of the temperature. The
behavior of f0 as function of m (here the variational parameter) is different whether g2 is positive
or negative. Hence the transition temperature Tc occurs when g2 vanishes. We write (a > 0):

g2(T ) =
a

2
(T − Tc) + · · · , g4 =

g

4!
+ · · · ,

where the dots refer to higher order terms in T − Tc.
The thermodynamical quantities are determined by minimizing the free energy with respect

to m (this comes from usual arguments of thermodynamics). Writing ∂f/∂m = 0 yields

a(T − Tc)m̄+
g

3!
m̄3 = h.
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At h = 0 we get

m̄|h=0 '

{
0, for T > Tc,

±
(

6a
g

) 1
2 (Tc − T )

1
2 , for T < Tc.

This corresponds to an exponent β = 1/2.

At non zero magnetic field h 6= 0, evaluating the derivative (at h = 0) of the above minimizing
equation yields

χ(T ) = ∂m̄/∂h|h=0 '

{
[a(T − Tc)]−1, for T > Tc,

[2a(Tc − T )]−1, for T < Tc.

This corresponds to an exponent γ = 1.
At the critical temperature, the minimizing equation is g

3!m̄
3 = h. Hence,

m̄(h)|T=Tc ' h1/3.

This corresponds to an exponent δ = 3.

Similarly, the singular part of the heat capacity is C ' −T ∂2f
∂T 2 . For T > Tc, m = 0 and

f0 = g0(T ). For T < Tc, the magnetization is non zero and f0 = g0(T ) + 3a2

2g (Tc − T )2 + · · · .
Hence, there is no divergence of the heat capacity at the transition but a jump with an extra
heat capacity

δC ' 3a2Tc/g.

This corresponds to an exponent α = 0. We of course recover all exponents of the Ising mean
field theory.

The key point of this section is that we don’t actually need any microscopic details in order
to calculate exponents. All we needed to know was the symmetry of the order parameter. All we
needed was a generic Taylor series expansion, and we didn’t even need to know much about the
value of any of the expansion coefficients. One could have ferromagnets on any shaped lattice,
or any sort of microscopic physics, and still the same expansion pertains. Furthermore, we can
translate this calculation to many other systems, such as ferro-electrics (where h is replaced by
the externally applied electric field), if one can argue that the necessary symmetry holds.

4.5 Landau-Ginzburg theory

The Landau-Ginzburg theory is same thing as Landau theory but taking into account more
carefully spatial the dependence of the magnetization. It generalizes the previous construction
by taking into account inhomogeneity (in the external field or in the local magnetization). It
will give us access to the correlation length. It only describes the long wave length of these
inhomogeneities (not inhomogeneities at small distance). To lowest order in the derivative, the
free energy reads

F [m;h] =

∫
dDx

[κ(T )

2
(∇m)2(x) + g2(T )m(x)2 + g4(T )m(x)4 − h(x)m(x) + · · ·

]
,

up to the irrelevant constant (in m) term g0(T ). We neglect higher order derivatives assuming
that fluctuations are small and that the long wave length modes are the only relevant ones.
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• Heuristics

One may justify the use of this functional free energy by a (naive) coarse graining approx-
imation. Let us imagine dividing our system into small cells, large enough compared to the
microscopic scale but still very small compared to lengths of interest (i.e. we want to be able
to take averages within the cells and deal with them as if they were macroscopic sub-systems).
We can then divide our partition function into sums over a large number of individual cells

Z =
∑
[s]

e−βH[s] =
∑
[m]

∑
[s:

∑
i∈cell si=m]

e−βH[s].

The last sum is restricted such that the sum over all the spins in the cell number k is equal to
the magnetization mk. Since all cells are macroscopic sub-systems, we assign them a free energy
given the values of the magnetizations in the different boxes, so that the partition function reads

Z →
∫

[
∏
k

dmk] e
−F [m1,··· ,mk,··· ].

We are defining a free energy which is a function of a magnetization, the only difference is that
here the free energy is a function of the magnetization in all of the different cells. We have
absorbed β into the definition of F . The sum over cells has been converted into integrals (since
the cells are large enough that the averaged magnetization is essentially continuous) and then
the integration over all of the small cells is essentially what we mean by a functional integral

Z '
∫

[Dm] e−F [m].

where we can describe the free energy functional as an integral over a local energy functional
F [m] =

∫
dDx f [m(x)]. Here we have made an assumption that the free energy functional is

essentially local, an assumption that is usually true if there are no long range interactions and
we think of the microscopic boxes as being larger than the interaction length scale.

The mean field approximation corresponds to estimate this integral by a saddle approxima-
tion, (even though there is no small parameter) so that

logZ = −Fmin, with Fmin = min[m(x)] F [m].

Notice that we have neglected all fluctuations around the “coarse grained” mean field m(x)
determined by a minimization problem.

• Correlation functions

To compute the correlation exponent requires to slightly generalize the construction of the
previous section by taking into account inhomogeneity (in the external field or in the local
magnetization). To lowest order in the derivative, the Landau-Ginzburg free energy reads

F [m;h] =

∫
dDx

[κ(T )

2
(∇m)2(x) + g2(T )m(x)2 + g4(T )m(x)4 − h(x)m(x) + · · ·

]
,

up to the irrelevant constant term g0(T ). The minimization is now with respect to m(x). The
minimizing condition is the differential equation

−κ(T ) ∆m(x) + 2g2(T )m(x) + 4g4(T )m(x)3 = h(x).
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Again we Taylor expand the coefficient around the critical temperature, so that

κ(T ) = κ+ · · · , g2(T ) =
a

2
(δT ) + · · · , g4 =

g

4!
+ · · · ,

with δT := T − Tc, the gap to the critical point, and a > 0. Up to a redefinition of m, we can
set κ = 1. The equation for the local magnetization then reads

−∆m(x) + a(δT )m(x) +
g

3!
m(x)3 = h(x).

We look at the response function

G(x, y) :=
∂m(x)

∂h(y)

∣∣
h=0

,

which is linked to the correlation functions (coding for the fluctuations) through the fluctuation-
dissipation theorem. It satisfies(

−∆x + a(δT ) +
g

2!
m̄2

0

)
G(x, y) = δ(x− y),

with m0 the magnetization at zero external field. This is the equation for the Euclidean Green

function with mass Meff =
√
a(δT ) + g

3! m̄
2
0. This function decreases at large distances G(r) '

e−Meffr with a correlation length ξ = M−1
eff . See next Chapter. Recall that m0 = 0 for δ(T ) > 0

and g
3! m̄

2
0 = −a(δT ) for δT < 0. Hence,

ξ(T ) = M−1
eff '

{
[a(T − Tc)]−1/2, for T > Tc,

[2a(Tc − T )]−1/2, for T < Tc.

This corresponds to the exponent ν = 1/2.
At the critical point T = Tc, the mass Meff vanishes and the correlation length ξ diverges.

The Green function satisfies −∆xG(x− y) = δ(x− y), so that

G(x)|T=Tc ∝ |x|2−D.

This corresponds to the exponent η = 0.

Remark that speaking about correlation functions requires talking about the probability
measure used to define and to compute them. Here we took a short cut arguing that we could
use the fluctuation-dissipation theorem and the Landau-Ginzburg free energy to compute the
response functions. Hence we implicitly assume that this free energy can be used as a generating
functional for correlation functions (called an effective action). This requires arguing why and
when the mean free approximation is exact, or not. This will be discussed below.

We can a postiori justify the truncation of the free energy expansion within the mean field
approximation. The Landau-Ginzburg free energy describes the transition close the transition,
i.e. for δT = |T − Tc| � Tc. Let us evaluate the typical order of magnitude of each term. We
have seen that m ∼ (δT )1/2. By the minimization equation this means that h ∼ (δT )3/2 (more
precisely that the previous description does not hold if the magnetic field is much bigger that
this typical order of magnitude). We also evaluate the correlation length ξ ∼ (δT )−1/2. This
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gives the typical order of the space variation the magnetization so that the spatial derivatives
scale as ∇ ∼ ξ−1 ∼ (δT )1/2. Hence, all the term is the LG free energy scale the same way,
namely

(∇m)2 ∼ (δT )m2 ∼ m4 ∼ hm ∼ ξ−4 ∼ (δT )2.

All the higher order terms, compatible with the Z2-symmetry, such as (∇m)4, (∇2m)2 or
m2(∇m)2, m6 etc. scale with higher power of (δT ). They can be neglected close to the transition
point. This scaling argument will be made more precise below and within the renormalization
group formulation.

4.6 Upper and lower critical dimensions

This section is concerned with the domain of validity of the mean field Landau-Ginzburg de-
scription. The Landau model, as any mean field model, assumes that the fluctuations are not
too important and do no play a relevant role. The upper and lower critical dimensions are the
dimensional thresholds at which those fluctuations become relevant.

The fluctuations typically increase as the dimension is lowered. There are two notions, the
upper and the lower critical dimension.
— If the dimension is small enough, i.e. if D < Di with Di the lower critical dimension, the
fluctuations are strong enough to destroyed any order at any temperature. That is: for D < Di,
there could not be any ordered phase: the fluctuations prevent them to exist.
— If the dimension is big enough, i.e. D > Ds, the fluctuations are small enough so that the
mean field approximation is correct. That is, for D > Ds, the fluctuations are irrelevant and
the Landau description is exact.

In the intermediate regime,
Di < D < Ds,

the fluctuations are relevant, they do not destroy the possible existence of a phase transition.
They have to be taken into account in the description of this phase transition (which is then
quite non-trivial, see the following Chapters).

• The upper critical dimension

Let us start with the estimation of the upper critical dimension Ds. It depends on the
universality class, so we shall do it for the Ising universality class (the φ4 Landau theory). For
the Ising class Ds = 4. We consider the Ising model at zero external field h = 0. Recall the
expression for the free energy

F [m] =

∫
dDx

(1

2
(∇m)2(x) +

a

2
(δT )m(x)2 +

g

4!
m(x)4

)
,

with a > 0. The Landau theory will be correct if the typical fluctuations of the magnetization
∆m(x) are small compared to the typically magnetization m0, i.e.

(∆m)2 � m2
0.

This is called the Ginzburg criteria.
Since spins are uncorrelated at distances bigger than the correlation length, the natural

scale/size ` of such fluctuations is the correlation length: ` ∼ ξ. In the Landau mean field
theory ξ2 ∼ (δT )−1 and m2

0 ∼ (δT ). Let us estimate the free energy variation, ∆F = F [m0 +
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∆m] − F [m0], associated to fluctuations of typical amplitude ∆m. The first two terms in F
scale the same ways (using that `2 ∼ ξ2 ∼ (δT )−1) but the second scale differently with the size
` ∼ ξ: ∫

dDx
1

2
(∇m)2(x) ∼ ξD−2(∆m)2∫

dDx a(δT )m2(x) ∼ ξD(δT )(∆m)2 ∼ ξD−2(∆m)2,∫
dDx

g

4!
m4(x) ∼ ξDg(∆m)4.

According to the Boltzmann rules, the relative statistical weight of such fluctuations is of order
e−∆F . Thus the typical sizes of the maximum fluctuations are so such that ∆F is of order O(1)
—as, if it is much bigger it occurs with a much smaller probability.

For D > 4, the typical size is determined by the first terms, so that (∆m)2 ∼ ξ2−D. Indeed,
then ξD(∆m)4 ∼ ξ4−D → 0 for large ξ. Thus for D > 4, we have

(∆m)2 ∼ ξ2−D � m2
0 ∼ ξ−2.

Hence, the Landau mean field approximation is justified for D > 4.
For D < 4, the typical size is determined by the second term, so that (∆m)2 ∼ ξ−D/2.

Indeed, then ξD−2(∆m)2 ∼ ξ(D−4)/2 → 0. Thus for D < 4, we have

(∆m)2 ∼ ξ−D/2 � m2
0 ∼ ξ−2.

Hence, the Landau mean field approximation breaks down for D < 4. And the upper critical
dimension is Ds = 4.

We can refine this argument a little. Consider still D < 4. The parameters of the model
define a length scale `c by dimensional analysis via

`D−4
c ' g.

Let us repeat the previous analysis but putting back the dependence on g via `c. This yields

that the typical fluctuations are of size (∆m)2 ∼ ξ−D/2 `(D−4)/2
c for D < 4. Equivalently,

(∆m)2

m2
0

∼
( ξ
`c

)(4−D)/2
.

Hence, (∆m)2 � m2
0 iff ξ � `c. Since the correlation length has of course also to be much bigger

than the microscopic length, we thus learn that for D < 4 the Landau theory is correct is

ξmicro � ξ(T )� `c.

Since the correlation length increases close to the critical point, ξ(T ) ∼ (δT )−1, this is equivalent
to saying that the Landau theory is correct if the distance to the critical temperature is big
enough. In other words, the breakdown of the mean field approximation occurs very close the
critical point (it only occurs as one approches the critical point).

Before closing this discussion recall that he upper critical dimension depends on the univer-
sality class, i.e. it depends on the symmetry, on the Landau expansion, etc.
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• The lower critical dimension

Let us now discuss the lower critical dimension. A standard argument by Peierls tells that
there is no ordered phase at positive temperature T > 0 in dimension 1. Hence the lower critical
dimension is at minimum bigger than one: Di > 1.

This is the lower critical dimension for universality class with discrete symmetries.
For continuous symmetry, ordered phase associated to symmetry breaking comes with mass-

less Goldstone modes (see below). A theorem from Mermin and Wagner tells that this cannot
occurs in dimension less than 2 (at least for a compact symmetry group). The argument is
essentially based the IR behavior of massless Green function,

GM=0(x) =

∫
dDk

(2π)D
eikx

k2
.

It scaled like ∼ kD−2 for k small, and hence it is infrared divergent in D < 2. A way to
regularized in D = 2 is to put the system in a finite volume of typical size L (see the more
in-depth discussion in the chapter on free conformal field theory below), then at distances large
enough

G(x) ' log(|x|/L), if D = 2,

The fluctuations are therefore large at large distance and the spins cannot be ordered (because
if they were their two point function G(x) = 〈S0 Sx〉 will asymptotically factorizes/clusters as
〈S〉2). Thus the lower critical dimension is Di = 2.

4.7 Deviation from mean field theory

Here we describe how going away from the mean field approximation leads to deal with large
fluctuations encompassed in statistical field theory.

• Naive scaling dimensions

Let us rederive the previous results using scaling arguments –or let us make contact between
this result and scaling arguments. This will be a tiny step towards reasoning used when formu-
lation the renormalization group. We want to analyse how the theory changes when changing
the size of the fluctuations. Let us write again the action as

F [m] =

∫
dDx

(1

2
(∇m)2(x) +

τ

2
m(x)2 +

g

4!
m(x)4

)
.

Here, we set τ :' (δT ) that we view as an extra parameter similar to the coupling constant g.
We want to compare this action for a profile m(x) and a scaled profile mλ(x) in which we have
scaled (scaled up if λ� 1) the distance (hence the size of the magnetization profile). Thus

m(x)→ mλ(x) = λ−∆m(x/λ),

where we used the freedom to scale the height of the profile. ∆ is free parameter called the (bare)
scaling dimension. We fix it by demanding that the first term in the free energy is preserved,
hence

2∆ = D − 2.
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We now look how to transform the parameter g and τ as g → gλ and τ → τλ in such way to
preserve the free energy, i.e. such that

F [mλ; g, τ ] = F [m; gλ, τλ].

This is may alternatively be interpreted as follows: the free energy (or the action) for configu-
rations of size λ` with parameter τ and g is identical as those of size ` but with parameter gλ
and τλ. This is a key equation, because it will generalize within the renormalisation group.

It is then a simple scaling exercise to check that

τλ = λ2 τ, gλ = λ4−D g.

Hence, the non-linear effects become more and more important at large scale (i.e. for large
scale configuration) if D < 4 = Ds. That is: the non-linear quartic terms are relevant at large
distances, at large scales, if D < 4.

Let us then determine the scaling dimensions of other operators, i.e. m2k(x) or ∇2pm2k(x).
They for instance correspond to add terms of the form gk

∫
dDxm2k(x) in the action. Under the

scaling transformation m → mλ, these couplings change (in order to preserve the key relation
F [mλ; gk] = F [m; gk(λ)] as

gk(λ) = λD−k(D−2) gk.

All these couplings decrease as λ→∞, i.e. at large distances, for D > 3 (the coupling to m6 is
marginal in D = 3). Adding derivatives as in ∇2pm2k renders this decrease faster.

Thus, in D > 3 only the coupling to m2 and m4 are relevant. We can thus discard all other
operators as long as we are only looking at the large distance physics.

Remark that this analysis shows that the dimension D = 2 is peculiar, in the sense that m
has zero scaling dimension in D = 2. All polynomial terms scale the same way in D = 2 and
this allow for a wide landscape of multi-critical points.

• Beyond the Ising mean field theory

We are going to use a (dual) reformulation of the Ising model in terms of (dual) variables
close to the scalar field of the Landau theory. This reformulation goes beyond the Landau theory.
We start with the Ising model on the square lattice with partition sum (we have absorbed the
inverse temperature β into J and h)

Z =
∑
{sk}

e
∑
ij Jijsisj+

∑
i hisi .

We represent the spin-spin interaction as follows (this is called the Hubbard-Stratonovich trans-
formation, it is simply based on Gaussian integral techniques):

e
∑
ij Jijsisj = const.

∫
[
∏
k

dφk] e
− 1

4

∑
ij φiJ

−1
ij φj+

∑
i φisi .

Here, the φk’s are scalar variables at each site of the lattice. Once this identity is inserted into
the partition sum we can explicitly do the sum over the spin configurations (at fixed φ) using∑

[s]

e
∑
i(φi+hi)si =

∏
i

[2 cosh(φi + hi)] = const. e
∑
i log[cosh(φi+hi)].
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Hence, up to an irrelevant multiplicative constant (proportional to [det[J ]|−1), the Ising partition
sum reads

Z =

∫
[
∏
k

dφk] e
− 1

4

∑
ij φiJ

−1
ij φj+

∑
i log[cosh(φi+hi)],

Equivalently, we can change variables φi →
∑

j Jijφj) (at the prize of aJacobian proportional

to [det[J ]|) so that the first quadratic term is transformed in 1
4

∑
ij φiJijφj and the second term

into
∑

i log[cosh(hi +
∑

j Jijφj). The integral is convergent by construction (and the expansion
we are going to do are legitimate if we do not spoil this convergence property). This Ising
partition function can be thus written in the form

Z =

∫
[
∏
k

dφk] e
−S[φ;h],

with the action

S[φ;h] = −1

4

∑
ij

φiJijφj +
∑
i

log[cosh(hi +
∑
j

Jijφj)].

We have thus alternatively written the partition function in terms of scalar variables φk. This
defines a discrete field theory, alias it defines a probability measure on configuration of the
discrete field φ.

Let us look at what happens at hi = 0. Expanding log[cosh(x)] = x2

2 −
x4

12 + · · · , the action
for φ is then

S[φ] =
1

4

∑
ij

φiJijφj −
1

2

∑
ijk

φjJijJikφk + · · · = 1

4
〈φ, (J − 2J2)φ〉+ · · ·

The dots correspond to higher order terms which would induce interactions between the various
components of the field φ. Remember that the coup;ing constants Jij couple only neighbor sites
on the lattice (recall that the terms

∑
ij Jijsisj in the energy), i.e. for instance for a square

lattice Ĵij = J0
2 (δi,j−1 + δi,j+1) with the convention that adding one to the site index amounts

to move by one step on the lattice. We have Jij = J0
2 (∆ij + zIij) with ∆ the Laplacian on the

lattice (say square lattice), I the identity matrix and the number z related to the number of
neighbors. The action for the field φ can then be written as

S[φ] = const. 〈φ, (−∆ +M2)φ〉+ higher derivatives× higher order terms,

with M2 ∝ (1−J0z) ∝ (T −Tc). We recover the quadratic part of the Landau-Ginzburg action.
To be exact the action should include many more terms (actually, an infinite number of terms)
coming form the expansion log[cosh(h + J · φ)], or equivalently log[cosh(h + J0

2 (∆ + z) · φ)].
However, as we have discussed above, scaling arguments tell us that only the φ4 term matters,
if we are aiming at describing the long distance physics. We are thus back the action

S[φ] ∝
∫
dDx

[1

2
φ(−∆ +M2)φ+

g

4!
φ4
]
.

The difference with the Landau-Ginzburg mean field theory is that we are now know that we
have to take into account fluctuations of the field φ, at least for D < 4, with probability measure∫

[Dφ] e−S[φ].

Here the integration is over all configurations of the field φ. Field theory aims at making sense
of such measure.
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4.8 Symmetry breaking and Goldstone modes

Here we discuss why and how continuous symmetry breaking is associated with the emergence
of massless modes, called Goldstone bosons.

• U(1) symmetry breaking

Do first the standard example of U(1) broken symmetry with Mexican hat potential....
[....To be completed...]

• Goldstone modes and coset spaces.

We present here the semi-classical (alias mean field like) argument but for a general symmetry
group G broken to H. We consider situations in which the order parameter is a multi-component
field that we shall denote Φ again - we denote Φa the field component - with action

S[Φ] =

∫
dDx

[1

2
|∇Φ|2 + V (Φ)

]
.

The potential V depends on all components of the field (so it is a multi-variable function). We
assume that the field Φ takes values in a representation of the group G so that the group acts
linearly on it: Φ → g · Φ for g ∈ G. The action, both the kinetic and the potential terms, are
supposed to be invariant under this action. In particular

V (g · Φ) = V (Φ).

In absence of external potential, mean field solutions are minima of the potential V . Let us
pick one of this minima that we shall denote ϕ0: ∇V (ϕ0) = 0 or in components ∂aV (ϕ0) = 0. Let
us then suppose that this so-called vacuum solution is non trivial ϕ0 6= 0 so that the symmetry
G is broken, g · ϕ0 6= 0 for at least some g ∈ G, and let H ⊂ G be the subgroup that preserves
ϕ0 :

h · ϕ0 = ϕ0, h ∈ H ⊂ G.
H is supposed to be the maximal subgroup preserving ϕ0. We aim at looking at the fluctuations
around this solution. We set Φ(x) = ϕ0 + φ(x) and expand the action (to quadratic order):

S[ϕ0 + φ] =

∫
dDx

[1

2

∑
a

|∇φa|2 +
1

2

∑
a,b

φaHabφ
b + · · ·

]
, Hab := ∂a∂bV (ϕ0).

The Hessian matrix is thus the mass matrix of the fluctuating modes φ. The Goldstone theorem
asserts that these fluctuating modes contain massless modes, that is: the mass matrix Hab

possesses a number of zero eigen-values (and the eigen-vectors are the massless modes).
This properties comes from the G-invariance of the potential (with G a continuous group).

This invariance reads V (g ·Φ) = V (Φ). Let us apply this relation to the vacuum solution, hence
V (g ·ϕ0) = V (ϕ0) for g ∈ G. Take g infinitesimal g = 1+εX+ · · · , with X ∈ Lie(G) and ε� 1.
Expanding the relation to second order in ε, using the fact that ϕ0 is minimum, yields∑

a,b

Hab (Xϕ0)a (Xϕ0)b = 0, ∀X ∈ Lie(G).

However, Xϕ0 = 0 for X ∈ Lie(H) ⊂ Lie(G), because ϕ0 is preserved by the subgroup H. Let
us decompose Lie(G), as a vector space as,

Lie(G) = Lie(H)⊕ TG/H ,

70



where TG/H is the complement vector space of Lie(H) in Lie(G). (It is isomorphic to the
tangent space to the quotient G/H at the identity point and form a representation of H). For
any X ∈ TG/H , Xϕ0 6= 0 because H is supposed to be the maximal subgroup preserving ϕ0.

Hence, any element of TG/H is associated to a massless mode. In other words, the massless
zero modes of the G-invariant action broken to H ⊂ G are in correspondance with the quotient
G/H. If no other relevant physics play a role at intermediate scale, this implies that the large
distance phenomena are governed by this G/H-zero modes.
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4.9 Exercises

• Exercise 4.9.1: Mean field from a variational ansatz

The aim of this exercise is to derive the Ising mean field approximation form a variational
ansatz. We consider the Ising in homogeneous external field hi so that the configuration energy
is E[s] = −

∑
i,j Jijsisj −

∑
i hisi, with Jij proportional to the lattice adjacency matrix. The

Ising spins take values si = ±. Let Z[h] be its partition function. (Note that we introduce the
external magnetic field with a minus sign).

As an ansatz we consider the model of independent spins in an effective inhomogeneous
external field hoi with ansatz energy Eo[s] = −

∑
i h

o
i si , so that the ansatz Boltzmann weights

are Z−1
0 eβ

∑
i h
o
i si with Z0 the ansatz partition function.

(i) Show that Z0 =
∏
i[2 cosh(βhoi )].

(ii) Using a convexity argument, show that E0[e−X ] ≥ e−E0[X] for any probability measure E0

and measurable variable X.
(iii) Choose to be E0 the ansatz measure and X = β(E[s]− Eo[s]) to prove that

Z[h] ≥ Z0 e
−βE0[E[s]−Eo[s]],

or equivalently, F [h] ≤ F0−E0[Eo[s]−E[s]], with F [h] and F0 the Ising and ansatz free energy
respectively.

The best variational ansatz is that which minimizes F0 − E0[Eo[s]− E[s]].
(iv) Compute F0, E0[Eo[s]] and E0[E[s]] and show that the quantity to minimize is

F0[ho] +
∑
i

hoi m̄i −
∑
ij

Jijm̄im̄j −
∑
i

him̄i,

where m̄i = −∂F0[ho]
∂hoi

= tanh(βhoi ) is the local mean magnetization evaluated with the ansatz

measure. Show that this minimization problem reduces to the Ising mean field equations.

• Exercise 4.9.2: Thermodynamic functions and thermodynamic potentials

The aim of this exercise is to recall a few basic fact about generating functions, thermody-
namic functions and their Legendre transforms.

Let us consider a (generic) spin model and let E[{s}] be the energy of a spin configuration
{s} with local spin si. We measure the energy in unit of the temperature so that the Boltzmann
weights are e−β E[{s}]. Let Z[0] =

∑
{s} e

−β E[{s}] be the partition function.
(i) Explain why the partition function Z[h] in presence an external inhomogeneous external field
h is the generating function for spin correlations.
What is the expression for Z[h]?
Show that the generating function for this spin correlation functions can written as (with (s, h) =∑

i sihi)

E[e(s,h)] =
Z[h]

Z[0]
,

(ii) Let F [h] be the free energy and let W [h] = −
(
F [h]− F [0]

)
. Verify that

logE[e(s,h)] = W [h].
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(iii) Let Γ(m) be the thermodynamic potential defined as the Legendre transform of W [h].
Recall that

Γ(m) = (m,h∗)−W [h∗], with
∂W

∂h
[h∗] = m.

Verify that this transformation is inverted by writing

W [h] = (m∗, h)− Γ[m∗], with
∂Γ

∂m
[m∗] = h.

• Exercise 4.9.3: An alternative representation of the Ising partition function.

The aim of this exercise is to explicitly do the computation leading to the representation
of the Ising partition function in terms of a bosonic field. It uses a trick —representing the
interaction terms via a Gaussian integral over auxiliary varaibles— which find echoes in many
other problems.
(i) Prove the following representation of the Ising partition function given in the text (without
looking at its derivation given there):

Z =

∫
[
∏
k

dφk] e
−S[φ;h],

with the action

S[φ;h] = −1

4

∑
ij

φiJijφj +
∑
i

log[cosh(hi +
∑
j

Jijφj)].

(ii) Deduce what is the representation of the Ising spin variables si in terms of the bosonic
variables φi.

• Exercise 4.9.4: Mean field vector models

See the exercise booklet....
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5 Statistical field theory: free theory

The aim of this chapter is to present the basic concepts of free statistical field theories. These
are Gaussian theories. Basics tools, including the Wick’s theorem, its graphical representation,
are introduced. The connection between free statistical field theories and free quantum theories
via analytic continuation is outlined.

5.1 Classical field theory: basics

Before discussing statistical field theories, let us recall a few basic facts about classical field
theory. We shall only deal with scalar fields, that we generically denote φ. See the reference
books for more details. These fields are maps from a base –or world-sheet– manifold to some
target manifold. Unless otherwise specified, and to simplify matter, we take the base manifold
to be the flat Euclidean space RD and the target to be RN . That is: φ is a N -component map
x ∈ RD → φ(x) with each component φa taking real values. To each of those maps is associated
a (classical) action S[φ] which is assumed to tale the form

S[φ] =

∫
dDxL[φ; ∂φ],

with L[φ; ∂φ] the so-called Lagrangian density. Maps extremalizing this action are said to be
solution of the classical equations of motion. These equations are the Euler-Lagrange equations
which reads (for all a)

∂µ

( ∂L
∂(∂µφa)(x)

)
=

∂L
∂φa(x)

.

For a scalar field theory, the typical form of the action is

S[φ] =

∫
dDx

(1

2
(∇φ)2(x) + V (φ(x)

)
,

with the first kinetic term representing curvature effects and the second term local potential
effect. In this case the equations of motion are simply −∆φ + V ′(φ) = 0 with ∆ the D-
dimensional Euclidean Laplacian.

Let us now recall the Noether theorem. It codes for the consequences of symmetries. Let us
suppose that a classical action S[φ] is invariant under some continuous symmetries generated
by the field transformations φ(x)→ φ(x) + ε(δφ)(x) + · · · , for some variation δφ, with ε� 1 a
small formal parameter. If the Lagrangian density is invariant under such transformation –that
is δL[φ; ∂φ] = 0–, Noether’s theorem says that the following current, called the Noether current,

Jµ = (δφ)(x)
∂L

∂(∂µφ)(x)
,

is conserved, ∂µ J
µ = 0, on solutions of the classical equations of motion. This conservation

law can be checked directly using the Lagrange equations of motion and the invariance the
Lagrangian density.

The Noether current can also be identified by looking at infinitesimal but inhomogeneous
transformations φ(x) → φ(x) + ε(x)(δφ)(x) + · · · , with a position dependent small parameter
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ε(x). If the Lagrangian density is invariant, i.e. δL[φ; ∂φ] = 0 for constant ε, the variation of
the action for a non constant ε is going to be proportional to its derivative. One can check that

δS[φ] =

∫
dDx ∂µε(x) Jµ(x),

with Jµ the above Noether current. Notice that the fact that the action is extremal on solutions
of the equations of motion then implies that Jµ is conserved on those solutions.

This can be slightly generalized to cases in which the Lagrangian density is not invariant but
its variation is a total derivative so that the action is invariant. These cases englobe translation
invariance and the associated Noether current is then related to the so-called stress-tensor. See
the exercise Section.

The consequences of symmetries and Noether currents in statistical field theory will be
discussed in the following Chapter.

5.2 Euclidean free field theories

We aim at describing statistical sums whose configurations are the possible values of fields of
the form

Z :=

∫
[Dφ] e−S[φ],

where φ is a field x→ φ(x) defined over a base space of dimension D and taking value in some
target space (say RN for simplicity). If we view this integral sum as arising from a discrete
lattice statistical model, the continuous description applies if the typical correlation length ξ is
much bigger than the lattice space a, i.e. ξ � a.

The above statistical sum formally defines a measure on the random field configurations.
The least we can ask for giving a meaning to this measure is to specify what are the correlation
functions of the field at different points, that is

〈φ(x1) · · ·φ(xn)〉 :=
1

Z

∫
[Dφ] e−S[φ] φ(x1) · · ·φ(xn).

When dealing with field theory, we shall adopt the “standard” convention to denote expectation
vaues by 〈· · · 〉 instead of E[· · · ]. If we were more precise mathematically, we would have to define
more than just these n-points functions. This is actually beyond the present understanding of
generic field theory (except in some special cases). Nevertheless, n-point functions of local fields
is all what is needed as long as we don’t look at non-local properties (say property related to
extended objects or structures of field configurations).

Recall that or a scalar field theory, the typical form of the action is S[φ] =
∫
dDx

(
1
2(∇φ)2 +

V (φ)
)
, for some potential V .

We may imagine that the fields code for the shape of some kind of landscape or membrane,
say imbedded in some higher dimensional manifold and parametrized whose coordinate(s) are
the field components φ. We are then describing fluctuating shapes, a notion which may be view
as part of what random geometry can be. We may also want to describe magnetic material, the
coordinate will then be parametrizing the long wave length behavior of the local magnetization.
There are of course many other possibilities. The field can be a scalar, a vector, etc., with
multi-component, and/or take values in manifold with/without internal structures depending
on the physical problem. The form of the potential of course also depend on the physical setup,
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say on relevant symmetries. For instance, if we aim at describing the long distance physics
of Goldstone bosons associated to the symmetry breaking of a continuous group G down to a
subgroup H, the Goldstone field take values in the coset space G/H. These are then non free
field theory.

• Free field theory in continuous space.

In this chapter we restrict ourselves to Gaussian scalar free field theory (we shall deal with
interacting theory in the following Chapters). They correspond to quadratic potentials. One
sets V (φ) = 1

2m
2φ2, so that the action becomes

S[φ] =

∫
dDx

(1

2
(∇φ)2 +

1

2
m2φ2

)
. (34)

The classical equation of motion is linear. It is the well-known Klein-Gordon equation: −∆φ+
m2φ = 0, so that m is identified with (or more precisely called) the mass of the field. As
discussed in previous chapters, higher terms in the potential may be relevant (not all polyno-
mial are relevant but only the first few depending on the dimension) which mean that they
potentially modify the long distance behavior of the field configurations. These terms induce
self-interactions, we shall analyse in the following chapter.

By integration by part (with appropriate boundary condition), the action can be written as

S[φ] =
1

2

∫
dDxφ(x)

(
−∆x +m2

)
φ(x),

with ∆ = ∇2 the D-dimensional Laplacian. It is quadratic in the field φ. If we view the field φ
as an infinite dimensional vector with component φ(x), the action is a bilinear form with matrix
the positive operator (−∆ +m2). Of primordial importance is the Green function G(x, x′), the
inverse of this operator, defined by the differential equation

(−∆x +m2)G(x, x′) = δ(x, x′),

with δ(x, x′) the Dirac distribution (viewed as the identity operator acting on the space of
functions).

Since, the total action is quadratic, the field is going to be Gaussian (hence simple to describe)
with covariance the Green function. That is:

〈φ(x)〉 = 0, 〈φ(x)φ(x′)〉 = G(x, x′).

More will be described in a little while after a digression on Gaussian theories.

• Lattice free field theory.

Field theories emerging from statistical lattice models may also be defined on lattices. Let
us describe their free field version. For simplicity we consider theories on a square lattice aZD,
with a the lattice mesh (lattice spacing). Let eα, with α = 1, · · · , D, be unit vector basis in
RD. Let x = an be points of the lattice with n integer (i.e. point on ZD) and φx be the field at
that point. Notice that here x is the dimensional position, not the dimensionless integer n, as
otherwise we would use the notation φn. The lattice action simply reads

S[φ] =
aD

2

∑
x

φx [(−∆dis +m2)φ]x,
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with ∆dis the discrete analogue of the Laplacian defined through finite difference by:

[(−∆dis +m2)φ]x = a−2
∑
α

(
− φx+aeα + (2 + (am)2)φx − φx−aeα

)
.

Clearly the discrete Laplacian is an infinite dimensional matrix [−∆dis]x,x′ , indexed by points on
the lattice, which is symmetric with +2 on the diagonal and −1 on the first line off the diagonal.
The lattice action can alternatively be written as

S[φ] =
aD

2

∑
x,x′

φx [(−∆dis +m2)]x,x′ φx′ ,

from which it is clear that the theory is Gaussian.
This action is diagonalized via Fourier transformed.Let

φ̂k =
∑
x

e−ix·k φx, φx =

∫
BZ

dDk

(2π/a)D
eix·k φ̂k

where the integration is over the Brillouin zone. For a D-dimensional square lattice of mesh size
a, i.e. aZD, the Brillouin zone is the hyper-cube BZ ≡ [−π

a ,
π
a ]D. The Laplacian is of course

diagonal in the Fourier basis. The action becomes

S[φ] =
1

2

∫
BZ

dDk

(2π/a)D
φ̂−k(−∆dis +m2)k φ̂k.

In Fourier space, free field theory is thus a collection of i.i.d. Gaussian variables, indexed by the
momentum k, with mean and covariance determined by the discrete Laplacian. Notice however,
that there is no zero mode if m2 6= 0 but one in the massless case, and that if the model was
defined on the periodic torus the integration on the momentum would be replaced by a discrete
sum. See the exercise Section for further details.

5.3 Gaussian field theories

Here we summarize basic facts about Gaussian models. They all share the same structure, only
the explicit expressions for their two-point functions —their covariance— differ from model to
model.

• Discrete Gaussian models.

Let Λ be a lattice, or a domain on a lattice with a finite number of points (we may have then
to take the infinite volume limit to define the thermodynamic or scaling limit). To any point
j ∈ Λ we associate a (scalar) variable φj , which is the value of the field at point j. We assume
that this field is Gaussian (with zero mean), so that the measure is

1

Z

[ ∏
k∈Λ

dφk
]
e−S[φ],

with

S[φ] =
1

2

∑
j,k

φjMjkφk =:
1

2
(φ,Mφ), (35)
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withM a real positive definite symmetric matrix, Mjk = Mkj . The factor Z in the above formula,
which is identified as the partition sum, ensures the proper normalization of the measure –its
total sum is one. The set of φk’s form a (big) vector φ whose component are those φk’s. This is
a random vector, a Gaussian vector.

We need to collect basic information on multi-dimensional Gaussian variables.
— The first is about the partition sum. We have (by diagonalization and from the 1D result)

Z =

∫
[Dφ] e−

1
2

(φ,Mφ) = [det M ]−
1
2 , [Dφ] =

∏
k∈Λ

dφk√
2π
.

— The second is about the two point function. We have (by change of variable and contour
deformation)

E[φjφk] ≡notation 〈φjφk〉 = [M−1]jk =: Gjk,

with G = M−1 the inverse of the matrix M . The one point function vanishes: 〈φk〉 = 0.
— The third is about generating function (coding for higher moments and cumulants). Let u
be a dual vector (i.e. a vector in the dual space) with component uj so that 〈u, φ〉 =

∑
j u

jφj .
Then,

E[e−(u,φ)] ≡notation 〈e−(u,φ)〉 = e
1
2

(u,M−1u). (36)

The proof is done by change of variables and contour deformations; convergence of the integrals
has to be discussed but there is no problem if M is positive definite. In order to avoid any
convergence problem (in case one does not have a good explicit control on the measure) one
usually defines the generating function with a purely imaginary vector, that is through the
formula 〈ei(u,φ)〉, and look for its analytic continuation. See the Exercises section in Chapter 2.

Remark that this last expectation, as any correlation, can be viewed as the ratio of the two
partition functions, one with the external field, the other without

〈e−(u,φ)〉 =
Z[u]

Z[0]
,

with Z[u] the partition with u-dependent modified action

Z =

∫
[Dφ] e−S[φ;u], S[φ;u] = S[φ] + (u, φ).

The dual vector u plays the role of a source for the field φ.

• Gaussian generating functions.

The function Z[u] is a generating function for multi-point correlation functions in the sense
that its Taylor expansion near u = 0 yields the multi-point expectations:

〈φk〉 = − ∂

∂uk
〈e−(u,φ)〉

∣∣
u=0

= − ∂

∂uk
Z[u]

Z[0]

∣∣∣
u=0

,

〈φjφk〉 =
∂2

∂uj∂uk
〈e−(u,φ)〉

∣∣
u=0

=
∂2

∂uk∂uj
Z[u]

Z[0]

∣∣∣
u=0

,

〈φjφkφl〉 = − ∂3

∂uj∂uk∂ul
〈e−(u,φ)〉|u=0 = − ∂3

∂uj∂uk∂ul
Z[u]

Z[0]

∣∣∣
u=0

, etc.
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It is actually useful to deal with the generating function of the simpler correlation functions,
called connected correlation functions. Let W [u] defined by

e−W [u] := 〈e−(u,φ)〉 =
Z[u]

Z[0]
,

or alternatively
W [u] = − log(Z[u]/Z[0]).

By construction, it is the generating function of connected correlation functions:

〈φk〉c := 〈φk〉c = −∂ukW [u]
∣∣
u=0

,

〈φjφk〉c := 〈φjφk〉 − 〈φj〉〈φk〉 = ∂uj∂ukW [u]
∣∣
u=0

, etc.

It is sometimes alternatively called the ‘effective action’. The origin of the name ‘connected’
comes form the diagrammatic representation of the correlation functions in terms of Feynman
diagrams that we shall discuss in the following chapter. They correspond to connected diagrams,
those which can be split in parts without breaking one of the lines of the diagrams.

• Wick’s theorem and graph representations.

For Gaussian theory, W [u] is quadratic (cf above)

W [u] =
1

2
(u,M−1u) =

1

2
(u,Gu).

Thus, the two point function is the only non vanishing connected correlation function.
All the odd correlation functions vanish and for the even correlation functions – not neces-

sarily connected– can be written in terms of the two-point functions. Since Z[u]/Z[0] = e−W [u]

is the generating function of the correlation function, one has,

〈φj1φj2〉 = G(j1, j2),

〈φj1φj2φj3φj4〉 = G(j1, j2)G(j3, j4) +G(j1, j3)G(j2, j4) +G(j1, j4)G(j2, j3), etc.

To simplify the notation we write G(j, k) instead of Gjk, with G = M−1.
The way to compute the multi-point correlation functions in terms of the two-point func-

tion for Gaussian model is called the “Wick’s theorem”. It allows to compute explicitly, and
recursively, all correlation functions. The general formula is

〈φj1φj2 · · ·φj2n〉 =
∑

pairings

G(jσ1 , jσ2) · · ·G(jσ2n−1 , jσ2n) (37)

How many pairings do we have? To enumerate them, we pick (i) the number 1 and associate to it
another number, this yields (2n−1) possibilities, (ii) then we pick the next smallest number and
we associated to it another number left, this yields (2n− 3) possibilities, and so on. Altogether

there are (2n − 1)(2n − 3) · · · 3 · · · 1 pairings, or else (2n)!
2nn! pairings. For 2n = 2 this gives 1, for

2n = 4 this gives 3, for 2n = 6 this gives 15, etc. This number grows faster than exponentially:
the number of pairing of 2n fields/points is

√
2(2n/e)n asymptotically (thanks to the Stirling

formula n! ∼
√

2πn(n/e)n).
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One uses simple graphical representation expressing the relation between the multi-point
and 2-point functions. The multi-point functions are sum of monomials made of product of
the 2-point function G(j, k), say G(jσ1 , jσ2) · · ·G(jσ2n−1 , jσ2n). Each graph represent of those
monomial. The vertices of the graph label the field components and there is one line connecting
those vertices for each insertion of the 2-point function. The construction of the graph is better
explained by a few illustrative drawing than by words:

[...Give examples for

the 2 and 4 point and 6 functions...]

Feynman diagrams are made of those graphs.
As it is clear form the construction a Gaussian field is specified by its two-point function.

Thus, every statement made above apply to the Gaussian free field with the discrete index j
replaced by the continuous position x of the fields —or its momentum k if we work in Fourier
space— and with the Green function G(x, x′) as two-point function.

• Back the Gaussian free field theories.

All previous remarks apply directly to Gaussian field theories. For the lattice theories, the
mapping is {φj} → {φx} with x ∈ Λ in position space, or {φj} → {φk} with k ∈ BZ in Fourier
space, with the covariance matrix Gjk mapped to the Green function

G(k,p) =
1

(−∆dis. +m2)k
(2π/a)D δ(k + p)

in Fourier space.
For continuous theories defined over RD the mapping is {φj} → {φ(x)} with x ∈ RD, with

the covariance matrix Gjk mapped to the Green function G(x, x′) which is the kernel of the
massive Laplacian, so that

〈φ(x)φ(x′)〉 = [(−∆ +m2)]−1(x, x′) =: G(x, x′).

All higher order correlation functions are computed using Wick’s theorem.
Of course, continuous field theories over RD can also be formulated in Fourier space. See

below for explicit expression for the Green function in Fourier space.
Gaussian field theory can also be formulated on curve spaces (one then have to deal with

the Green function of the Laplacian defined using the curved metric) or on finite domain (one
then have to specify the field boundary conditions). See the exercise Section for examples.

• Another definition of Gaussian free fields.

One can use the previous remarks to present a variant definition (possibly more rigorous...) of
Gaussian free fields via its generating function against test function. Under suitable conditions,
the distribution of a random variable is specified by its characteristic function —one is the
Fourier transform of the other. In particular, given a Hilbert space V with norm ||f ||2 for
f ∈ V , on can defined a random Gaussian variable φ in V by defining its generating function as

E[ei(f,φ)] = e−
1
2
||f ||2 .
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We can apply this to the Gaussian free field: we choose the space of function with compact
support for V equipped with the norm

||f ||2 =

∫
dDxdDx′f(x)G(x, x′) f(x′),

with G(x, x′) the Green-function. The integral is convergent (except in the massless D = 2 case
in infinite volume in which an extra finite volume regularization is needed).

The random variables are values of the form f → (f, φ), so that the field φ is identified with
a distribution. The duality is implemented as usual by testing the distribution against f ,

(f, φ) =

∫
dDx f(x)φ(x).

As generic distribution, the value of the distribution at a point does not exist (although we use
the notation φ(x), as usual in physics literature). This is reflected that the 2-point function of
the field at coinciding points is infinite

〈φ2(x)〉 = G(x, x)→∞.

But the pairings (f, φ) makes mathematical sense.
More mathematically rigorous definitions of bosonic free field start from this type of con-

structions.

5.4 Green functions

Here we collect information on Green functions and propagators.

• Green functions in the continuum.

The Green function is the kernel of the inverse of the operator (−∆ + m2). Thus it is the
kernel G(x, x′) solution of the differential equation

(−∆x +m2)G(x, x′) = δ(x, x′).

In Fourier space, this reads

G(x, x′) = G(x− x′) =

∫
dDk

(2π)D
eik·(x−x

′) Ĝ(k),

with (recall that −∆ acts by multiplication by k2 in Fourier space)

Ĝ(k) =
1

k2 +m2
. (38)

Of course G is rotation invariant. Let r2 = x2. In radial coordinates we have (here k is the
norm of the momentum)

G(r) =
SD−1

(2π)D−1

∫
dk

2π

kD−1

k2 +m2

∫ π

0
dθ (sin θ)D−2 eikr cos θ.
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with SD = 2πD/2/Γ(D/2) the volume of the unit sphere in RD. We have∫
dθ (sin θ)2a eikr cos θ = Γ(a+

1

2
)Γ(

1

2
) (
kr

2
)−a Ja(kr)∫

dk ka+1 Ja(kr)

k2 +m2
= maKa(mr)

Here Ka(·) is the modified Bessel function. This gives the formula

G(x) = (2π)−D/2 (
m

r
)D−2KD−2

2
(mr). (39)

It is better and simpler to do the computation explicitly in dimension D = 2 and D = 3.
Let us start with D = 3. We then have

G(r) =
1

(2π)2

∫
k2dk

k2 +m2

∫ π

0
dθ sin θ eikr cos θ

=
1

(2π)2

∫
k2dk

k2 +m2

(eikr − e−ikr
ikr

)
=
−i

4π2r

∫ +∞

−∞
dk

k eikr

k2 +m2
.

We can further evaluate the integral using contour integral techniques. There is simple poles
in k-space at points ±im. To ensure the convergence of the integrals, we deform and close the
contour on the upper-half plane. By the residue theorem, we thus pick the residue at k = im
which yields

GD=3(r) =
1

4π

1

r
e−mr.

In D = 2, the formula does not simplify so much and we have

GD=2(r) =

∫
dk

(2π)2

k

k2 +m2

∫
dθ eikr cos θ =

1

2π
K0(mr),

which cannot be written in terms of elementary function.

• Short and large distance behaviors.

At short distances we have Gr(r) ∝ 1
rD−2 with a logarithmic divergence in dimension D = 2.

More precisely

GD=2(r) =
1

2π
log(

2

mr
) + · · · ,

GD=3(r) =
1

4πr
+ · · · ,

GD=4(r) =
1

4π2r2
+ · · · .

At large distances we have an exponential decrease if the mass is non vanishing

GD(r) ∝ e−mr

rD−2
, r � m−1,

This means that the correlation length (of the field with covariance G) can be identified as the
inverse of the mass: ξ = 1/m. This is important to remember.
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At m = 0 (and hence at infinite correlation length), G(x) =
∫

dDk
(2π)D

eik·x

k2 and

Gm=0
D (r) =

∫
kD−3 dkdΩ

(2π)D
eikr cos θ ∝ 1

rD−2
.

Note that the massless Green function are pure power laws. There is a logarithmic divergence
in dimension D = 2 (UV and IR divergence because GD=2(r) =

∫
|k|≤Λ

dk
k

∫
dθ

(2π)2 e
ikr cos θ). We

thus have to introduce the cut-off Λ ' 1/a and we have (or can choose)

Gm=0
D=2(r) =

1

2π
log(Λr).

It is easy to verify that (−∆x)G(x) = δ(x) in d = 2. The arbitrariness in choosing Λ comes
form the fact that the operator (−∆) possesses zero mode (the constant function).

• Lattice Green function.

On the lattice, the action is

S[φ] =
1

2

∫
BZ

dDk

(2π/a)D
φ̂k[−∆dis. +m2]k φ̂k.

and the Green function reads

G(x) =

∫
BZ

dDk

(2π/a)D
eik·x

[−∆dis. +m2]k
,

where [−∆dis. + m2]k = 2a−2
∑

α

(
η − cos(ak.eα)

)
, with η = (2 + a2m2)/2, is the discrete

Laplacian in Fourier space. We see that there is a natural momentum cut-off |k| ≤ Λ ' 1/a
with a the lattice mesh size. It is also important to realize that m has the dimension of the
inverse-length.

How the continuous limit is taken? First the limit is taken at x fixed. Since x = an is a
point on the lattice, this means we take the limit fixing the “physical” distance (not the lattice
distance defined as the minimal number of step to arrive at point x). The mass is also fixed in
this limit, which means that the correlation length, measured in terms of the physical distances
(not the lattice distance) is kept fixed. For instance, in 1D the continuous limit consists in the
limit a → 0, n → ∞ with x = an fixed. Similarly in [−∆dis. + m2]k, we keep m fixed, that is
we keep ξ = 1/m the ‘physical’ correlation length fixed (not the lattice correlation length which
would be the product am).

5.5 Products and composite operators

• Normal ordering and composite operators.

Product of operators at coincident points are singular. Let us for instance look at the product
of the Gaussian field φ at two neighbour points. Let us image inserting φ(x) and φ(y), with
x near y, in a correlation function containing many other insertions of φ at points at finite
distance away from x and y, say at points ξk. We can compute such correlation function using
the Wick’s theorem. There are then two kinds of Wick’s contactions: (a) those for which x and y
a contracted together producing the Green function G(x, y) and the other points are contracted
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together, and (b) those for which x is contracted to one of the points ξk and y with another one.
Since G(x, y) is singular as x→ y, the Wick’s contraction of the first type are singular as x→ y
whereas those of the second type are regular is that limit. Using G(x, y) ' const./|x− y|D−2 as
x→ y we can write

φ(x)φ(y) = G(x, y) + reg 'x→y const./|x− y|D−2 + · · · ,

where the ‘reg’ terms are regular at x = y.
Alternatively, we can give a name of this remaining part and write

φ(x)φ(y) = G(x, y)+ : φ(x)φ(y) :,

where : φ(x)φ(y) : is called to the ‘normal order’ of φ(x) and φ(y). This equation may be taken
as a definition of the normal order operator. Alternatively, : φ(x)φ(y) : may defined inside
any correlation functions as φ(x)φ(y) but without self Wick’s contractions. This normal order
product is now regular (because there is no self contraction) so that we can take the limit of
coincident points and define the product φ2 as

: φ2(x) : = : φ(x)φ(x) : = lim
y→x

(
φ(x)φ(y)−G(x, y)

)
.

There are actually some freedom on the way to define this product operator as its construction
only requires subtracting the singular part of the Green which is defined up to regular piece. It
is a good exercise to compute the correlation functions 〈: φ2(x) : : φ2(y) :〉.

Of course this can be extended to higher point functions and higher products. For instance,

: φ2(x) : φ(y) = 2G(x, y)+ : φ2(x)φ(y) :,

: φ2(x) : : φ2(y) : = 2G(x, y)+ : φ2(x)φ2(y) :,

where : φ2(x)φ(y) : means the insertion of the product φ2(x)φ(y) without self Wick’s contraction,
and similarly for : φ2(x)φ2(y) :. In particular we can now define the fourth power of φ as

: φ4(x) : = lim
y→x

(
: φ2(x) : : φ2(y) : −2G(x, y)

)
.

And ad-finitum, recursively.
From this analysis, we understand that field theory operators, or observables, are sensible to

—or are testing— the neighbourhood of the points they are attached to.

• Geometrical interpretation.

We now describe a geometrical interpretation of these operators in terms of random free path.
Recall the definition of random free path given in Chapter 2. There, we computed partition
function Zpath(0, x) (we call it Z(x) in that Chapter) as the Boltzmann sum over free paths from
the origin to the point x and we found that

Zpath(0, x) ∝ 〈0| I
I− µΘ

|x〉,

with Θ the lattice adjacency matrix and µ the fugacity. In the scaling limit (a→ 0, µ→ µc), it
satisfies (−∆ +m2)Zpath(0, x) = δ(x). We thus have the identification

Zpath(0, x) = 〈φ(x)φ(0)〉,
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with φ a massive Gaussian free field. Alternatively, by the expanding the inverse I/(I− µΘ) in
power of µ, we may view the Gaussian correlation function as a sum over paths (because the
N -th power of the adjacency matrix ΘN codes for the sum of paths of length N). We may then
interpret the field φ(x) as conditioning on a curve starting or arriving at the point x.

Similarly, given four points x1, x2, x3, x4, the partition function Zpath([x1, x2]; [x3, x4]) for
pairs of free (possibly intersecting) paths joining x1 to x2 and x3 to x4 respectively is

Zpath([x1, x2]; [x3, x4]) = G(x1, x2)G(x3, x4).

Thus, the partition sum Zpath(x1, x2, x3, x4) over free paths joining these points pairs, indepen-
dently of the set of connected pairs, is the four point functions

Zpath(x1, x2, x3, x4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉.

As a consequence we can identify the normal operator : φ2(x) : as conditioning on two curves
starting (or arriving) at point x.

Similar, the higher order normal ordered powers : φk: condition on k curves starting the
operator insertion point:

: φk(x) : = create/absord k curves at x.

The fact that : φ2 :, the operator creating two curves at a point, has scaling dimension D − 2
can be used to argue that the fractal dimension of free paths is Dfrac = 2. Notice also that we
may identify the diagrams representing the Wick’s contraction with the free path configuration
we are summing over.

5.6 Quantization of free field theories

We go back to Minkowski (real-time) quantum field theory and make connection with the Eu-
clidean and Minkowski versions of the field theory.

• Path integral quantization.

Remember that the weight of the QM path integral is e(i/~)S with S the action. We use the
notation x = (x, t) and D = d + 1. The Euclidean action was S[φ] =

∫
dDx

(
1
2(∇φ)2 + V (φ)

)
with V (φ) = 1

2m
2φ2 for a free field. The analytic continuation to go from the Euclidean time

tE to the Minkowski time t is t→ itE . The Minkoswki version of the action is

S[φ] =

∫
dtddxL =

∫
dtddx

(1

2
(φ̇)2 − 1

2
(∂xφ)2 − V (φ)

)
=

∫
dtddx

(1

2
(∇φ)2 − V (φ)

)
.

where here the gradient square (∇φ)2 is defined using the Minskowky metric. The Feynman
path integral reads ∫

[Dφ] e(i/~)S[φ].

The dynamical variables are the field configurations (at all space points x)

q → φ(x), p→ π(x).
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The canonical commutation relations are
[
φ(x) , π(y)

]
= i~δ(x − y). They are formally rep-

resented on functional of field configurations with the field operator acting by multiplication
and the conjugated momentum by derivative. We formally have a basis a state made of field
configuration |{φ(x)}〉 which are eigen-states of the field operator

φ(x0)|{φ(x)}〉 = φ(x0)|{φ(x)}〉.

If we give ourselves two configurations at two different times (at two different time slices),
{φ0(x)} at time t0 and {φ1(x)} at time t1, the quantum amplitude is (formally again) defined
by the path integral with specified boundary condition:

〈{φ1(x)}|U(t1, t0)|{φ0(x)}〉 =

∫
φ(x,t0)=φ0(x)
φ(x,t1)=φ1(x)

[Dφ] e(i/~)S[φ].

Of course the normalization is not very well specified, but this ill-defined normalisation cancels
when computing normalized correlation functions.

Below we shall argue that taking the limit t0 → −∞ and t1 → +∞ this amplitude projects
onto the vacuum state, that is the path integral from −∞ to +∞ (without specified boundary
condition) is the vacuum to vacuum amplitude. The simplest (naive) argument for the limit to
exist requires introducing an infinitesimal small imaginary part (or doing an analytic continu-
ation) to the time parameters which then produce the Euclidean transfer matrix which projets
on the vacuum at large time. See Chapter 3 and 4.

Unless otherwise specified, we now set ~ = 1.

• Canonical quantization.

The canonical momentum is π(x, t) = φ̇(x, t) with canonical commutation relation

π(x, t) = φ̇(x, t),
[
φ(x, t) , π(y, t)

]
= iδ(x− y).

The action can be written in the hamiltonian form

S[φ] =

∫
dtddx

(
π(x)φ̇(x)−H

)
,

with

H =

∫
ddxH =

∫
dtddx

(1

2
π(x)2 +

1

2
(∂xφ(x))2 + V (φ(x)

)
.

For free field theory of non-zero mass m2, this reads

H =
1

2

∫
dtddx

(
π2 + (∂xφ)2 +m2φ2

)
.

Let us go to Fourier space

φ̂(k) =

∫
ddx e−ik·xφ(x), φ(x) =

∫
dk

(2π)d
eik·xφ̂(k),

and similarly for the momentum. The canonical commutation relation now reads [π̂(k), φ(k′)] =
−i2πδ(k− k′). The hamiltonian (density) reads

H =
1

2

∫
ddk

(2π)d
(
π̂(k)2 + ω2

k φ̂(k)2
)
, ω2

k = k2 +m2.
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This hamiltonian codes for a collection of independent harmonic oscillators, indexed by the
momentum k. It is diagonalized by introducing annihiliation-creation operators Ak and A∗k
with commutation relation [

Ak , A
∗
p

]
= (2π)dδ(k− p),

defined by

π̂(k) =

√
ωk

2
(Ak +A∗k), φ̂(k) = −i

√
1

2ωk
(Ak −A∗k).

To be finite the hamiltonian needs renormalization by normal ordering. See any book on basics
quantum field theory for more detailed.

The representation of these commutations relations is done as usual on the Fock space
F ' ⊗kFk over the vacuum |0〉 annihilated by all Ak, that is

Ak|0〉 = 0, 〈0|A∗k = 0,

for all k. States in the Fock space are obtained by repeated action of the creation operators on
the vacuum: A∗k1

· · ·A∗kN |0〉.

Alternatively, we can solve directly the wave equation and ‘quantize’ them. The field φ
satisfies the wave equation (

− ∂2
t + ∂2

x +m2
)
φ(x, t) = 0.

Hence, by Fourier transform

φ(x, t) =

∫
ddk

(2π)d
1√
2ωk

(
ei(k·x−ωkt)Ak + e−i(k·x−ωkt)A∗k

)
The momentum π(x, t) = φ̇(x, t) is

π(x, t) = −i
∫

ddk

(2π)d

√
ωk

2

(
ei(k·x−ωkt)Ak − e−i(k·x−ωkt)A∗k

)
We impose the canonical commutation relation

[
Ak , A

∗
p

]
= (2π)dδ(k − p). They imply the

canonical commutation relation
[
φ(x, t) , π(y, t)

]
= iδ(x− y), as it should be.

We could alternatively set Ak = ak√
2ωk

(if ωk does not vanish). The formula for field φ looks

then a bit simpler because there is no square root:

φ(x, t) =

∫
ddk

(2π)d2ωk

(
ei(k·x−ωkt)ak + e−i(k·x−ωkt)a∗k

)
.

The operators ak then satisfy [
ak , a

∗
p

]
= (2π)d2ωk δ(k− p).

The representation of these canonical commutations relations is as above.

• Wick’s rotation and time ordering.

Let us compute the vacuum two point functions. We have (using only the commutation
relations of the creation-annihilation operators and the fact the defining property of the vacuum)

〈0|φ(x, t)φ(y, s)|0〉
∣∣
t>s

=

∫
ddk

(2π)d
1

2ωk
eik·(x−y) e−iωk(t−s),
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for t > s. We can (again) check that from this formula that the canonical commutation relations
are satisfied, that is 〈0|[φ̇(x, t) , φ(y, t)|0〉 = −iδ(x− y).

We now compare this formula to the analytic continuation of the Euclidean Green function.
Recall that (with τ denoting the Euclidean time)

GE(x− x′) =

∫
ddkdk0

(2π)D
eik·(x−x

′)+ik0(τ−τ ′) ĜE(k),

with

ĜE(k) =
1

k2 + k2
0 +m2

.

As above, we do the integration over k0 by contour integral. There is a pole at k0 = ±iωk. We
pick one or the other depending whether τ > τ ′ or the reverse (because the contour deformation
is chosen such that the integral converges). Since the Euclidean Green function is symmetric
under the exchange of x and x′, we are free to choose either case. Suppose τ > τ ′. For the
integral to converge we then have to close the contour on the upper half plane and pick the pole
at +iωk. Hence, for τ > τ ′,

GE(x− x′) =

∫
ddk

(2π)d
1

2ωk
eik·(x−y) e−ωk(τ−τ ′).

If τ ′ > τ , we have to close the contour in the lower half plane and pick the other pole, so that
we get the same result but with τ ′ and τ exchanged. That the general formula is with |τ − τ ′|,
that is

GE(x− x′) =

∫
ddk

(2π)d
1

2ωk
eik·(x−y) e−ωk|τ−τ ′|.

We now implement the analytic continuation. Remember that to go from real time quantum
mechanic to Euclidean time we had to set t = −iτ with τ > 0 (for convergence). That is, we
analytically continue the real time to its lower complex plane. The reverse it τ = it (but we
have to keep track of the imaginray part to keep track of the ordering). So let τ = i(t− iε) and
τ ′ = i(s− iε′). For ε > ε′ we have <(τ − τ ′) > 0, so the Euclidean integral produces e−ωk(τ−τ ′).
And hence the analytic continuation

lim
ε,ε′→0+

ε>ε′

GE(x, τ = it+ ε; y, τ ′ = is+ ε′) =

∫
ddk

(2π)d
1

2ωk
eik·(x−y) e−iωk(t−s)

= 〈0|φ(x, t)φ(y, s)|0〉
∣∣
t>s
.

Thus we learn that real time correlation functions are obtained by analytic continuation of the
Euclidean expectation values, and that the ordering of the operator is induced by the precise
way the analytic continuation is done.

The fact that we have to add a tiny negative imaginary part to order them has a natural
interpretation. Remember that when going to the unitary evolution e−itH to the Euclidean one
e−τH we had to set t = −iτ . So adding a negative imaginary part to t amount to slightly evolve
the operator forward in Euclidean time. We order the operator according to their Euclidean
time (e.g. as suggested by the transfer matrix formalism).
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This is summarized by the fact the analytic continuation of the Euclidean propagator gives
the Feynman propagator corresponding to time ordered correlation functions. Under the wick
rotation, x0 = τ = it and k0 = −iω, we have

GE → GF (x, y) =

(
i

∆−m2 + i0+

)
x,y

= 〈T · φ(x)φ(y)〉,

with ∆ = −∂2
t + ∂2

x the Minkowski Laplacian and T the time order operator. But one has to
be careful how the analytical continuation is done (cf the above discussion).
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5.7 Exercises

• Exercise 5.7.1: Translation invariance and the stress-tensor

The aim of this exercise is to see some aspect of the relation between translation invariance
and the stress-tensor. Let us consider classical scalar field theory with Lagrangian L[φ, ∂φ] and
action S[φ] =

∫
dDxL[φ, ∂φ].

(i) Consider an infinitesimal field transformation φ(x)→ φ(x) + ε(δφ)(x). Suppose that, under
such transformation the Lagrangian variation is δL[φ, ∂φ] = ε∂µG

µ so that the action is invariant.
Show that the following Noether current

Jµ = (δφ)
∂L

∂(∂µφ)
−Gµ,

is conserved on solutions of the equations of motion.
(ii) Let us look at translations x → x + ε a. How does a scalar field φ transforms under such
translation? Argue that if the Lagrangian density is a scalar, then δL = ε aµ∂µL. Deduce
that the action is then translation invariant and that associated conserved Noether current is
Jµa = Tµν aν with

Tµν =
∂L

∂(∂µφ)
(∂νφ)− δµν L.

This tensor is called the stress-tensor. It is conserved: ∂µT
µ
ν = 0.

(iii) Find the expression of the stress-tensor Tµν for a scalar field theory with action S[φ] =∫
dDx

(
1
2(∇φ)2 + V (φ)

)
.

• Exercise 5.7.2: Lattice scalar field and lattice Green function

Recall that lattice scalar free theory is defined by the action

S[φ] =
aD

2

∑
x,x′

φx [(−∆dis +m2)]x,x′ φx′ ,

where φx are the value of the field at point x on the lattice and ∆dis discrete Laplacian on that
lattice. We here consider only D-dimensional square lattice of mesh size a, i.e. aZD. Let us also
recall that the Fourier transforms in aZD are defined by

φ̂k =
∑
n

e−ix·k φx, φx =

∫
BZ

dDk

(2π/a)D
eix·k φ̂k

where the integration is over the Brillouin zone, which is the hyper-cube BZ ≡ [−π
a ,

π
a ]D.

i) Verify that the Laplacian acts diagonally in the Fourier basis, with

(−∆dis +m2)k = 2a−2
∑
α

(
η − cos(a kα)

)
,

with η = (2 + a2m2)/2 and kα the component of the momentum k in the direction α.
ii) Verify that in the Fourier basis the free field action reads

S[φ] =
1

2

∫
BZ

dDk

(2π/a)D
φ̂−k(−∆dis +m2)k φ̂k.
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(iii) Deduce that in Fourier space, a scalar free field is thus equivalent to a collection of i.i.d.
Gaussian variables, indexed by the momentum k, with mean and covariance

〈φk〉 = 0, 〈φkφp〉 =
1

(−∆dis +m2)k
(2π/a)D δ(k + p).

• Exercise 5.7.3: The Green function in 2D

[... To be completed...]

• Exercise 5.7.4: Fractal dimension of free paths.

The fractal dimension Dfrac of a set embedded in a metric space may be defined through the
minimal number Nε of boxes of radius ε need to cover it by Dfrac = limε→0 logNε/ log(1/ε).

(i) Prove that the fractal dimension of free paths is Dfrac = 2 using the fact that the composite
operator φ2, with φ a (massless) Gaussian free field, is the operator conditioning on two paths
emerging from its insertion point.

• Exercise 5.7.6: Two ways to compute the free energy

The aim of this exercise is to compute the free energy, or the partition function, of a massless
free boson in space dimension d = 1 at temperature T = 1/β. Let D = d + 1. Recall that the
partition function is defined as Z = Tr(e−βH) where the trace is over the quantum Hilbert space
with H the hamiltonian. Let us suppose that the quantum theory is define dover an interval I
of length L. We shall be interested in the large L limit.

(i) Argue (see Chapter 3) that the partition function is given by the Euclidean path integral on
the cylinder I× S1 with a radius β:

Z =

∫
φ(x,β)=φ(x,0)

[Dφ] e−S[φ].

We shall compute the partition function by quantizing the theory along two different channels
(see Figure):
(a) either taking the direction S1 as time, this Euclidean time is then period with period β;
(b) or taking the direction I as time, this time then runs from 0 to L with L → ∞. Global
rotation invariance implies that this to way of computing gives identical result. Let us check.
On the way this will give us a nice relation about the Riemann ζ-function.

(ii) Explain why the first computation gives Z = e−βLF(β), where F the free energy.
(iii) Explain why the second computation gives Z = e−LE0(β,A) with E0(β) = β E0(β) where E0

is the vacuum energy and E0 is the vacuum energy density (this is the Casimir effect).
(iv) Show that the free energy density of a massless boson in one dimension is:

F =
1

β

∫
dk

2π
log(1− e−β|k|) =

1

β2

∫ ∞
0

dx

π
log(1− e−x).

(v) Compute the integral to write this free energy density as

F = − 1

πβ2
ζ(2).
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We have introduce the so-called zeta-regularisation. Let ζ(s) :=
∑

n>0
1
ns . This function was

introduced by Euler. This series is convergent for <s > 2. It is defined by analytic continuation
for other value of s via an integral representation.
(iv) Show that the vacuum energy density is E0(β) = 1

β

∑
n

1
2

∣∣2nπ
β

∣∣. (v) This is divergent. Argue
that a regularization based on analytic continuation gives

E0(β) =
2π

β2
ζ(−1).

(vi) Conclusion: A remarkable fact is that ζ(2) = π2

6 and that the analytic continuation of ζ
gives ζ(−1) = − 1

12 . Thus

F(β) = E0(β) = − π

6β2
.

Actually, we could reverse the logic: physics tells us that ζ(−1) has to be equal to − 1
12 because

E0 has to be equal to F .

• Exercise 5.7.7: Radial quantization (at least in 2D).

[... To be completed...]
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6 Statistical field theory: interactions.

In this Chapter we go deeper in analysing the structures and the basic tools of statistical field
theories. We first write consequences of symmetries on correlation functions which are called
Ward identities. We then go one by introducing generating functions of multi-point correlations
functions and make the analogy with thermodynamic functions. This leads to the important
concept of effective action. We describe how perturbation theory can be formulated and how it
is can encoded in synthetic way in Feynman diagrams. We make the connection between the
irreducible components of the Feynman diagram expansion and the effective action. Finally, we
study in different ways –via loop expansion or via saddle point approximation– the O(N) model
at large N .

6.1 Preliminaries

For an interacting scalar theory the action is of the form S[φ] = S0[φ] + SI [φ] with S0[φ] the
free action. Standard examples are

S0[φ] =
1

2

∫
dDx[(∇φ)2 +m2φ2], SI [φ] =

∫
dDxV (φ),

with V a potential coding for self-interaction. The Boltzmann weights of field configurations
then read

[Dφ] e−S[φ] = [Dφ] e−S0[φ] e−SI [φ].

The first part is the Boltzmann measure for free Gaussian theory so that we can (formally)
factorize the measure of field configuration as

dP[φ] = dPfree[φ]× e−
∫
dDxV (φ).

This formula is however only formal for many reasons (the field φ is not a random function but
a random distribution, the interacting and free measures may be singular, etc). Making sense of
such formula is part of what statistical field theory is aiming at and the renormalization group
is a key tool to reach this goal. It requires introducing a UV cut-off that we may think as coding
for an underlying lattice. We shall implicitly assume below that such UV cut-off is present.

Keeping this prerequisite in mind, we can look at what constraints these measures, or the
correlation functions they code for, should satisfy. This is the purpose of the Ward identities
and the introduction of generating functions. Perturbation theory consists in developing the
interaction terms e−

∫
dDxV (φ) is power of V and analyzing each terms of this expansion. These

two techniques —symmetries and perturbative expansion— are two basic, fundamental, ways
of computing —or of making sense— of correlation functions in statistical field theory. A third
possible ways may be applied when there is a small parameter such that the statistical path
integral can be evaluated via a saddle point approximation —in a way analogous to the WKB
approximation in Quantum Mechanics or to the small noise problems we discussed in the first
Chapter. This last method will be applied to the O(N) model at large N at the end of this
Chapter.

Field configurations are random, by construction, and a way to test their statistics is to look
at expectations of functions, often called observables, of those configurations. If they depend
locally on the field configuration at a point x, those observables are called either local observables,
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operators or fields, indifferently. Standard (formal) observables are products of polynomials of
field values at given points, say monomials φp(x) with p integer, but we may aim at considering
any local functions of the field, say

F1[φ(x1)] · · ·FN [φ(xN )].

Of course these naive writings are purely formal since, on the one hand, statistical fields are
singular objects (in the previous Chapter dealing with Gaussian free fields we gave them a
meaning in terms of random distributions), and on the other hand, product of statistical field
at coinciding points is ill-defined (as discussed in previous Chapter in the case of free Gaussian
field) and we will have to give a meaning to such products. Again different strategies can be
developed to attain this goal, say either using symmetries to specify the properties of fields and
observables, or using perturbation expansions to recursively defined those observables, or else.

As mentioned in the previous Chapter we may look at more general theories with fields of
different types (scalar, vectors, etc) taking values in different manifolds (flat or curve spaces,
group manifolds or quotient spaces, etc.) with more or less simple structures. For instance, we
may consider theories not over the flat space RD but over a metric space M , equipped with a
metric g. For scalar field theories the kinetic term is then going to be 1

2

∫
dDx

√
|g| gµν∇µφ∇νφ,

with |g| the metric determinant. More generally, we may consider scalar fields taking values
in another target space E, equipped with a metric G, with local coordinates φA. The maps
x → φA(x) are then maps from the base space M —sometimes called the worldsheet— to the
target space E, and the statistical field theory codes from statistical properties of such maps. The
kinetic part of the action could for instance be chosen to be 1

2

∫
dDx

√
|g| gµν∇µφA∇νφB GAB,

which is not a free action if the metric G is φ-dependent. Such models are generically called
sigma-models.

Thus in general, statistical field theories and their expectations,

〈O1(x1) · · · 〉M,g;E,G,···,

depends on collection of data, of geometrical nature (say, spaces, metrics, etc), or not (say,
external fields, sources, etc).

Below, we shall restrict ourselves to scalar field (mostly with one component) on flat space.

6.2 Symmetries and Ward identities

In classical field theory, conservation laws are associated to symmetries –and reciprocally. If a
classical action is invariant under some symmetries, there exists an associated conserved Noether
current. The aim of this section is to understand how this translates in statistical field theory.

• Symmetry and invariance

Symmetries refer to invariances of statistical expectations or of correlations functions. There
are different kinds of transformations: those which leave the space points fixed and act only
the field components (for example, group symmetries, etc), and those which act on the space
point (for example, translation, rotation, etc). If all the geometrical data are preserved, the
transformations act on observables/operators and transform them as O(x)→ Ô(x) say. In this
case invariance of the correlation functions means that

〈O1(x1) · · · 〉M,g;··· = 〈Ô1(x1) · · · 〉M,g;···.
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The aim of this Section is to show some of consequences of these symmetries and their relations
with the (classical) symmetries of the action defining (maybe formally) the statistical field mea-
sure. These invariance relations give constraints on the correlation functions. Sometimes, the
logic can be reversed and the correlation functions in a symmetric enough field theory could be
defined from their symmetry properties (this is in particular the case in a large class of conformal
field theory in dimension two).

• Noether’s current and invariances.

Classically, symmetry and conservation law are tied, and if the classical action possesses some
symmetries then there exists a conserved Noether current Jµ, ∂µ J

µ = 0. The Noether current
is in general defined by looking at the the variation of the action. If the field is transformed
according to φ(x)→ φ(x) + ε (δφ)(x)), the variation of the action for a non constant ε is going
to be proportional to the derivative of ε, so that we may write the variation of the action for a
non constant transformation parameter as

δS[φ] = −
∫
dDx (∂µε)(x) Jµ(x) =

∫
dDx ε(x) (∂µJ

µ)(x),

by integration by part. This defines the Noether current, and it is a simple exercise in classical
field theory to check that it is conserved on solution of the classical equation of motion.

We now look at what are the consequences of this transformation law in the path integral
formulation of statistical field theory. Those will be consequences of a change of variables in the
path integral.

Let us start with the path integral
∫

[Dφ] e−S[φ], and let us image implementing the change of

variables φ(x)→ φ̂(x) with φ̂(x) = φ(x) + ε(x) (δφ)(x) with ε(x) small but position dependent.
The point to understand is : how does the path integral measure varies under such transfor-
mation? They are two contributions to this variation, one from the action, the other from the
change of variables.

Let us first look at the variation of the action S[φ] =
∫
dDxL[φ, ∂φ]. As we assumed above,

the variation of the action is

δS[φ] =

∫
dDx ε(x) (∂µJ

µ)(x). (40)

Here we are computing the variation of the action for any field configuration and not only for
solution of the classical equations of motion (because we are going to integrate over them), so
(∂µJ

µ) maybe non zero (it is a fluctuating quantity). Under the change of field variables, φ→ φ̂,
the path integral measure change according

[Dφ]e−S[φ] = [Dφ̂] e−S[φ̂] ×
∣∣∣Det

[Dφ]

[Dφ̂]

∣∣∣ [1− ∫ dDx ε(x) (∂µĴ
µ)(x)

]
,

where
∣∣∣Det [Dφ]

[Dφ̂]

∣∣∣ is the Jacobian of the transformation.

We will suppose that the Jacobian of the transformation φ→ φ̂ is trivial:

Hypothesis :
∣∣∣Det

[Dφ]

[Dφ̂]

∣∣∣ = 1.
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This is an important but delicate point. To be defined and evaluated, this determinant needs to
be regularized (say by discretizing the theory, by defining it on a lattice, etc). This regularization
amounts to discretize or regularize the path integral measure. It may happen that it is impossible
to regularize this measure in such way to preserve its symmetry. In such case the Jacobian will
not be trivial. This is call a (quantum) anomaly, see below.

Under this hypothesis, we get that

[Dφ]e−S[φ] = [Dφ̂] e−S[φ̂] ×
[
1−

∫
dDx ε(x) (∂µĴ

µ)(x) + · · ·
]
.

for (smooth enough) function ε(x). Integrating over φ (or φ̂) gives:

〈(∂µJµ)(x)〉 = 0. (41)

That is the current is conserved in mean (away from field insertions, see below). This is an
analogue of the Noether theorem. (See the Exercise section of Chapter 4 to see the lattice
analogue of this construction).

• Field insertions and Ward identities.

Things becomes more interesting when genralizing this construction with insertions of oper-
ators, say O(y), or products of such operators. This operator may be thought as a local function
of the field φ. We consider the expectation value:

〈O(y)〉 =
1

Z

∫
[Dφ] e−S[φ]O(y),

with Z the partition function,

Z =

∫
[Dφ] e−S[φ]O(y).

Let us do the change of variable φ → φ̂. Suppose that under such transformation the operator
O(y) transforms as O(y)→ O(y) + ε(y)(δO)(y). We then get (after renaming φ̂ into φ):∫

[Dφ]e−S[φ]
[ ∫

dDx ε(x) (∂µJ
µ)(x)

]
O(y) =

∫
[Dφ]e−S[φ] ε(y)(δO)(y),

for any ε(x). Hence
〈(∂µJµ)(x)O(y)〉 = δ(x− y) 〈(δO)(y)〉.

Generalization to products of operators is clear.
We can also use the Stoke’s theorem to write differently the same equation3. Let us pick a

ball B and integrate the current normal to the ball (i.e. evaluate the flux of this current through
B). Let us call this flux

∫
B n · J . Then:

〈
( ∫
B
n · J

)
·
N∏
k=1

Ok(yk)〉 =
∑

yk inside B
〈O1(y1) · · · (δOk)(yk) · · · ON (yN )〉. (42)

3This way of writing the Ward identities will be useful in conformal field theories, see Chapter 8.
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These relations are called “Ward identities”. They express the fact that (∂µJ
µ)(x) = 0 away

from field insertions but that there is a contact term coding for the field transformation when
the current is near to the operator:

(∂µJ
µ)(x)O(y) ' δ(x− y)(δO)(y), locally (43)

where (δO)(y) is the infinitesimal transformation of the field. Here, locally means inside any
correlation functions with other fields inserted at points away from x and y.

Ward identities are analogous to Gauss law in electrodynamic –but within statistical field
theory– because, if we view the variation (δO) of a field O as coding for its charge, we infer
from the Ward identities that the flux of the current through a ball B is equal to the sum of all
charges inside this ball. They give constraints and information on correlation functions.

• Charge currents.

Let us give a simple example: u(1) symmetry for a complex field φ with action

S[φ] =

∫
dDx

[1
2

(∂µφ)(∂µφ∗) + V (φφ∗)
]
.

The Lagrangian is clearly invariant under the u(1) symmetry φ → eiαφ with α real. The
infinitesimal transformation is φ → φ + iαφ and φ∗ → φ∗ − iαφ∗. It is clear that the measure
[Dφ] is invariant under this transformation, so that the Jacobian is one. The Noether current
is (we have absorbed a factor i)

Jµ = i(φ∂µφ∗ − φ∗∂µφ∗)

This current is conserved ∂µJ
µ = 0 away from operator insertions (and inside correlation func-

tions).
Let us look at what happens if there are field insertions. We start with the expectation values

〈φ(y1) · · ·φ(yp) · φ∗(z1) · · ·φ∗(zq)〉. When doing the change of variables, we have to implement
the field transformation. Hence we get

〈(∂µJµ)(x)φ(y1) · · ·φ(yp) · φ∗(z1) · · ·φ∗(zq)〉
= i
(∑

j

δ(x− yj)−
∑
k

δ(x− zk)
)
〈φ(y1) · · ·φ(yp) · φ∗(z1) · · ·φ∗(zq)〉.

That is, locally within any correlation functions (with other field insertions away from the point
x and y) we have

(∂µJ
µ)(x)φ(y) ' iδ(x− y)φ(y),

(∂µJ
µ)(x)φ∗(y) ' −iδ(x− y)φ∗(y), locally.

The operator φ has charge +1, its complex conjugated φ∗ charge −1. Note that if we integrate
the previous Ward identity over a ball of infinitely large radius, the l.h.s. vanishes (assuming
that Jµ decrease fast enough at infinite (which is a statement about the absence of symmetry
breaking – invariance of the vacuum), while the r.h.s. is proportional to (p−q). Hence the above
expectation is non-zero only if p = q, i.e. only if the total charge is balanced (a result that we
could have obtained directly from the invariance of the measure). This is charge conservation.
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• The stress-tensor.

Most of the field theories we are studying here are translation and rotation invariant. As
a consequence there are Ward identities associated to those symmetries. They are related –by
construction or by definition– to properties of the stress-tensor which codes for the response of
the action —or more generally for the statistical measure— under a small space diffeomorphism.
If we change variable x→ x+ ε ξ(x) with ε� 1 and ξµ(x) some vector field then, by definition,
the action varies as

δS[Φ] = ε

∫
dDx(∂µξ

ν(x))Tµν (x),

with the stress-tensor. See the exercise Section for an illustration.

• Anomalies.

We here make a few comments on cases for which the Jacobian associated to the change of
variable φ→ φ̂ is non-trivial. In such case, the current is not anymore conserved. This is call a
(quantum) anomaly 4.

Recall that the transformations we look at are local in the field variables. They are of the
form φ(x)→ φ̂(x) = φ(x) + ε(x)(δφ)(x) + · · · . Thus it is natural to expect that the default for
the Jacobian to be trivial is going to be local in the small parametr ε(x). That is: we expect to
first order in ε(x) that

Det
[Dφ
Dφ̂

]
= Det

[
I− εDδφ

Dφ̂
+ · · ·

]
= 1 +

∫
dDx ε(x)F (x) + · · · ,

for some field functional F (x). Such ansatz is justified by using a formal generalization to infinite
determinant of the expansion Det[1+εM ] = 1+εTr(M)+· · · valid for finite dimensional matrices.
To compute F (x) is of course much harder, it requires regularizing the infinite dimensional
Jacobian, and it is very much model dependent.

Going back to the previous derivation of the Ward identities but taking this non-trivial
Jacobian into account, it is easy to deduce (following exactly the same steps) that the following
relation,

∂µJ
µ(x) = F (x),

is valid inside any correlation functions (with other fields inserted away from point x). That
is: due to the non-triviality of the Jacobian, the current conservation law is transformed into
the new equation of motion above. This is call an anomaly: something which was expected
to be zero by classical consideration turns not to vanish in the statistical theory because of
fluctuations.

6.3 Generating functions

We consider Euclidean field theory with action (typically) of the form S[φ] =
∫
dDx

(
1
2(∂φ)2 +

V (φ)
)

and its generalizations (with more field components, non-trivial background, etc...). In
this Section we introduce standard generating function for field correlation functions. They are

4A baby example illustrating this fact has been described in the Chapter 2: there, we have seen that the
irregularity of the Brownian path requires regularizing the stochastic integrals and this induces possibly non
trivial Jacobians, depending on the regularization scheme.
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analogous to generating functions of random variables and/or to thermodynamical functions of
statistical physics.

• Generating functions.

QFT or SFT deals with random objects and their statistics. The random variables are the
fields and the field configurations. As for any random variables one may introduce their gener-
ating functions (which almost characterize their distributions). Here it amounts to introduce a
source so that the action now becomes (by definition)

S[φ; j] := S[φ]−
∫
dDx j(x)φ(x).

One defines the partition function in presence of the source

Z[j] :=

∫
[Dφ] e−S[φ;j]. (44)

A convenient normalization is Z[j = 0] = 1 which fixes the normalization of the measure (but
this may hides some properties, say the dependence on the background metric,...). Alternatively
one may not normalize the generating function but consider the ration Z[j]/Z[0]. It may be
worth comparing this definition with that of the generating functions in the case of the free field.

This is a generating function for correlation functions. The latter can be obtained by differ-
entiation:

〈φ(x1) · · ·φ(xN )〉 =
1

Z[0]

δNZ[j]

δj(x1) · · · δj(xN )

∣∣∣
j=0

.

As for random variables, one may (preferably) introduce the generating function of the
cumulants which in diagrammatic perturbation theory are going to correspond to connected
correlation functions. It is usually denoted as W [j] and defined by

W [j] = logZ[j], Z[j] = eW [j], (45)

normalized by W [j = 0] = 0 (that is: we use the normalization Z[j = 0] = 1 as otherwise we
would have to consider the ratio Z[j]/Z[0]). It is the generating function of (so-called) connected
correlation functions:

〈φ(x1) · · ·φ(xN )〉c =
δNW [j]

δj(x1) · · · δj(xN )

∣∣∣
j=0

.

We could alternatively write W [j] as a series expansions:

W [j] =
∑
N≥0

1

N !

∫
dDx1 · · · dDxN 〈φ(x1) · · ·φ(xN )〉c j(x1) · · · j(xN ).

Of course there is an analogy with thermodynamical potentials: Z[j] is the partition function,
and W [j] is minus the free energy (up to a coefficient proportional to the temperature). Hence
(as usual in thermodynamics) we expect W [0] to be proportional to the space volume, and
W [j]−W [0] to be finite if the source are localized in space.

Of course one can write all these formula in Fourrier space. See below.
Before closing this subsection, let us recall the formula for the generating function in the

case of Gaussian free field

Z[j] = exp
[1
2

∫
dDxdDy j(x)G(x, y) j(y)

]
,

99



with G(x, y) the Green function. Hence W [j] is quadratic for a free Gaussian theory.

• The effective action.

One may introduce other functions via Legendre transform as done with thermodynamic
functions. In field theory, a particularly important one is the so-called effective action (or vertex
function) defined as the Legendre transform of W [j]:

Γ[ϕ] :=

∫
dDx j(x)ϕ(x)−W [j], ϕ(x) =

δW [j]

δj(x)
. (46)

The field ϕ(x) is sometimes called the background field. One may of course expand the effective
action in power of ϕ:

Γ[ϕ] =
∑
N

1

N !

∫
dDx1 · · · dDxN ϕ(x1) · · ·ϕ(xN ) Γ(N)(x1, · · · , xN ),

or equivalently

Γ(N)(x1, · · · , xN ) =
δNΓ[ϕ]

δϕ(x1) · · · δϕ(xN )

∣∣∣
ϕ=0

.

The functions Γ(N) are called the N -point vertex functions. In perturbation theory they will be
related to one-particle irreducible diagrams (see below).

The effective action contains all the information on the theory, in a synthetic way if not the
most possible compact way.

• The effective potential and vacuum expectation values.

As usual with Legendre transform, the inverse formula for reconstructing the function W [j]
from its Legendre transform Γ[ϕ] is:

W [j] =

∫
dDx j(x)ϕ(x)− Γ[ϕ], j(x) =

δΓ[ϕ]

δϕ(x)
.

The relation j(x) = δΓ[ϕ]
δϕ(x) , or reciprocally ϕ(x) = δW [j]

δj(x) allow to express the source j as a function
of the background field ϕ, or reciprocally the background field as a function of the source j.

Let ϕvac(x) := 〈φ(x)〉|j=0 be the field expectation value (in absence of external source),

also called the vacuum expectation value. Because 〈φ(x)〉|j=0 = δW [j]
δj(x) |j=0 by definition of the

generating function W [j], we have :

ϕvac(x) = ϕ(x)|j=0 = 〈φ(x)〉|j=0.

From the relation j(x) = δΓ[ϕ]
δϕ(x) taken at j = 0 we learn that the field expectation at zero external

source is a minimum of the effective action:

δΓ[ϕ]

δϕ(x)

∣∣∣
ϕvac

= 0. (47)

Hence the name of effective action: the field expectation value is the minimum of the effective
action.
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One also defines the effective potential Veff(v) as the effective action evaluated on constant
field configuration (in particular in case of translation invariance). For a constant field con-
figuration the effective action is expected to be proportional to the space volume (by analogy
with thermodynamic function which are extensive and thus proportional to the volume of the
system). The definition of the effective potential is

Γ[ϕ]|ϕ(x)=v = Vol. Veff(v), (48)

with Vol. the volume of the system. For homogeneous system, the vacuum expectation value is
thus the minimum of the effective potential. This is important –and very useful– in analyzing
physical phenomena, in particular in case of symmetry breaking (because then the existence of
non trivial minimum of the effective potential will be the sign of symmetry breaking).

In case of non-homogeneous background, the vacuum expectation 〈φ(x)〉 is not uniform, it
may be x-dependent. Eq.(47) then yields a series of equations satisfied by ϕvac(x), which may be
thought of as the equations of motion for ϕvac(x). In general, these equations may be non-local
in space because the effective action can be non-local. However, if we are only looking at slowly
varying vacuum configurations, so that ϕvac(x) is a smooth, slowly varying, function we may
(sometimes) do a gradient expansion of the expansion and approximate it by truncating this
expansion to lowest order.

• Generating functions in Fourier space.

Of course we can write all these generating function in Fourier space. For instance for
the effective action, we decompose the background field on its Fourier components via ϕ̂(k) =∫
dDx e−ik·x ϕ(x), and reciprocally ϕ(x) =

∫
dDk

(2π)D
eik·x ϕ̂(k). Then the effective action becomes

Γ[ϕ] =
∑
N

1

N !

∫
dDk1

(2π)D
· · · d

DkN
(2π)D

ϕ̂(−k1) · · · ϕ̂(−kN ) Γ̃(N)(k1, · · · , kN ),

with N -point functions

Γ(N)(x1, · · · , xN ) =

∫ N∏
j=1

dDkj
(2π)D

N∏
j=1

eikj ·xj Γ̃(N)(k1, · · · , kN ),

If translation invariance holds (which is often the case) then

Γ̃(N)(k1, · · · , kN ) = (2π)D δ(k1 + · · ·+ kN ) Γ̂(N)(k1, · · · , kN ).

by momentum conservation (imposing the conservation law k1 + · · ·+ kN = 0 is a consequence
of translation invariance).

Similar formula hold for the other generating functions, say that of connected correlation
functions.

• Two-point correlation and vertex functions.

There are of course relations between the vertex functions and the connected correlation
functions. We shall see below that all correlation functions can (perturbatively) reconstructed
from the vertex functions, so that the latter contain all the information on the theory. Let us

start from the two point functions. We have the connected 2-point function G
(2)
c (x, y) and the
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2-point vertex function Γ(2)(x, y). By translation invariance, we can write them in Fourier space
as (we have extracted the delta-function ensuring momentum conservation).

G(2)
c (x, y) =

∫
dDk

(2π)D
eik·(x−y) Ĝ(2)

c (k), Γ(2)
c (x, y) =

∫
dDk

(2π)D
eik·(x−y) Γ̂(2)(k).

We wrote G
(2)
c (k, p) = (2π)D δ(k + p) Ĝ

(2)
c (k), and similarly for Γ, in order to extracte the

delta-function ensuring momentum conservation.
We are now going to prove that these two functions are kernels of inverse operators. In

Fourier space this translates into

Γ̂(2)(k) Ĝ(2)
c (k) = 1. (49)

Thus knowing Γ̂(2)(k) is enough to reconstruct the connected two-point function. Indeed recall

that ϕ(x1) = δW [j]
δj(x1) . Differentiating this relation with respect to ϕ(x2) and then taking the limit

j = 0 yields:

δ(x1 − x2) =
δ

δϕ(x2)

δW [j]

δj(x1)

∣∣∣
j=0

=

∫
dDy

δj(y)

δϕ(x2)

δ2W [j]

δj(x1)δj(y)

∣∣∣
j=0

=

∫
dDy 〈φ(x1)φ(y)〉c δj(y)

δϕ(x2)

∣∣∣
j=0

=

∫
dDy 〈φ(x1)φ(y)〉c Γ(2)(y, x2) =

∫
dDy G(2)

c (x1, y) Γ(2)(y, x2)

In the first line we used the chain rule to compute the derivative. In the second and third line
we used the fact that W [j] and Γ[ϕ] are the generating function of the connected and vertex

functions, respectively. In Fourier space, this gives the above relation Γ̂(2)(k) Ĝ
(2)
c (k) = 1.

6.4 Perturbation theory and Feynman rules

There is not so many ways to evaluate a path integral: if it is not gaussian, the only available
generic methods are either via saddle point approximations, via symmetry arguments, or via
perturbation theory. One has to remember that, although generic and sometimes useful, per-
turbation theory give, at best, series which are only asymptotic series (not convergent series)
and they miss all non perturbative effects (say exponentially small but important effect).

We shall examplify the perturbation theory in the case of the φ4 theory for which the
interaction potential is V (φ) ∝

∫
dDxφ4(x).

• Perturbative expansion.

To compute perturbatively we split the action in its quadratic part plus the rest:

S[φ] = S0[φ] + SI [φ].

In the case of φ4 theory, the interacting part is

SI [φ] =
g

4!

∫
dDy φ4(y).
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Let 〈· · · 〉0 denote the expectation with the measure defined by the unperturbed action S0[φ]. We
may be interested in computing the partition function and the N -point functions. The partition
function reads

Z =

∫
[Dφ] e−S0[φ]−SI [φ] = Z0 〈e−

g
4!

∫
dDy φ4(y)〉0,

with Z0 = 1 by convention. The partition function Z is also called the vacuum expectation.
The correlation functions are

〈φ(x1) · · ·φ(xN )〉 =
〈φ(x1) · · ·φ(xN ) e−

g
4!

∫
dDy φ4(y)〉0

〈e−
g
4!

∫
dDy φ4(y)〉0

Notice that one has to divide by the partition function in the formula for the N -point functions
in order to preserve the normalization (the expectation value of 1 is 1).

It is convenient to introduce the “un-normalized” expectation values:

G(N)(x1, · · · , xN ) := 〈φ(x1) · · ·φ(xN ) e−
g
4!

∫
dy φ4(y)〉0,

so that
〈φ(x1) · · ·φ(xN )〉 = G(N)(x1, · · · , xN )/Z.

Expanding in power of g we get the perturbative series:

G(N)(x1, · · · , xN ) =
∑
k≥0

(−g)k G(N)
k (x1, · · · , xN ),

G(N)
k (x1, · · · , xN ) =

1

k!
(

1

4!
)k
∫
dDy1 · · · dDyk 〈φ(x1) · · ·φ(xN )φ4(y1) · · ·φ4(yk)〉0

Of course we can write similar formula for the perturbative series in Fourier space.
They are evaluated using Wick’s theorem with propagator G0(x − y). It is important to

remember that the theory comes equipped with its UV cut-off (a the lattice spacing or Λ = 1/a
the momentum cut-off). The unperturbed propagator is

G0(x− y) =

∫
|k|<Λ

dDk

(2π)D
eik·(x−y)

k2 +m2
.

It is convenient to denote its Fourier transform by ∆(k):

∆(k) =
1

k2 +m2
. (50)

It is called the propagator.
Notice that doing this expansion amounts to exchange (path) integration and series expan-

sion, a process which is (often) ill-defined. In general we are going to get, at best, series which
are only asymptotic series (not convergent series) missing non perturbative effects.

• Feynman rules.

The perturbation expansion is going to be coded into diagrams representing the different
terms or contractions involved in Wick’s theorem.
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Figure 1: First order expansion of the partition function and the connected two-point function.

Let us look at the first few terms. The first order in the vacuum expectation is

Z = 1− g

4!

∫
dDy 〈φ4(y)〉0 + · · · .

To evaluate this integrated expectation value, it is better and simpler to imagine splitting the
four coincident points in four neighbor points at position y1, · · · y4. Then we need to evaluate
〈φ(y1)φ(y2)φ(y3)φ(y4)〉0 using Wick’s theorem. We get three terms,

〈φ(y1)φ(y2)〉0〈φ(y3)φ(y4)〉0 + 〈φ(y1)φ(y3)〉0〈φ(y2)φ(y4)〉0 + 〈φ(y1)φ(y3)〉0〈φ(y2)φ(y4)〉0.

It is better to draw the diagrams with the four points slightly split (because then the enumeration
of those diagrams is simpler). We now remember that the points are actually coinciding, so that
we get three times the same diagrams corresponding to 〈φ(x)φ(x)〉20. Hence (by translation
invariance)

Z = 1− g

8

∫
dDy G0(0)2 + · · · = 1− g

8
Vol. G0(0)2 + · · · .

Recall that

G0(0) =

∫
|k|<Λ

dDp

(2π)D
1

p2 +m2
.

Notice that G0(0) ' SD−1

(2π)D
ΛD−2 + · · · at large Λ, with SD the volume of the unit sphere in

dimension D: SD = 2πD/2/Γ(D/2). Hence it diverges for D > 2.
Let us now look at the two point function. At first order we have

G(2)(x1, x2) = G0(x1 − x2)− g

4!

∫
dDy 〈φ(x1)φ(x2)φ4(y)〉0 + · · · .

Again, each term is evaluate using Wick’s theorem which is done by pairing the points. To
correctly count the number of pairings it is again simpler to slightly split the point y into
y1, · · · , y4. They are two type diagrams: connected or disconnected (the disconnected one are
cancelled when dividing by the vacuum expectation value). The number of ways to get the
disconnected diagrams is 3 (the same as above for Z), the number of ways to obtained the
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connected diagram is (4 · 3) (use the splitting method to avoid mistake when counting the
number of ways to obtain a given diagram). Hence

G(2)(x1, x2) = G0(x1 − x2)− g

8
G0(x1 − x2)G0(0)2 − g

2

∫
dDy G0(x1 − y)G0(y − x2)G0(0) + · · ·

The factor 1
8 comes from 1

4! × 3 and 1
2 comes from 1

4! × (4 · 3). We are only interested in the
connected diagrams as the other ones can be deduced form those. See Figure 6.4 for the graphical
representation of this formula.

We can understand what are the Feynman rules in position space for connected diagrams.
We write them for the φ4 theory (but the generalization is clear):
(i) draw all topologically distinct connected diagrams with N external lines and each internal
vertex attached to 4 lines;
(ii) to each line associate a factor G0(x−x′) (where x and x′ can be either an internal or external
vertex);
(iii) to each internal vertex associate a factor (−g);
(iv) integrate over internal vertices with measure

∫ ∏
k d

Dyk;
(v) multiply by the symmetry factor 1/(integer) (this symmetry factor is more easily computed
by splitting virtually the internal points: it combines the number of equivalent pairings with the
factor k!(1/4!)k coming form the expansion).

The elements, line and vertices, of the Feynamn graphs are:

x y = G0(x− y) ; y1
y2
×y3
y4

= (−g) .

The convention is to sum over all internal labels ykwith the measure
∏
k d

Dyk.
A way to draw all diagrams may consist in drawing all external points as small circles with

on leg emerging from each of them, all internal vertices with dots at the center of small four legs
crossing (or a different number of legs if the interaction is different from φ4), and connect these
seeds of legs in all possible ways. Given a diagram obtained that way, the symmetry factor is
k!(1/4!)k times the number of ways of obtaining it by connection the emerging legs. It may a
good idea to practice a bit.

• Feynman rules in momentum space.

We can write the perturbative expansion in momentum space. Let us look only at the
connected diagrams. Consider for instance the connected two-point functions.

G(2)
c (x1, x2) =

∫
dDk

(2π)D
eik·(x1−x2) G(2)

c (k),

Recall its perturbative expansion given above. If Fourier space, this reads

(k2 +m2)G(2)
c (k) = 1− g

2
∆(k)G0(0) + · · ·

= 1− g

2
(

1

k2 +m2
)

∫
|k|<Λ

dDp

(2π)D
1

p2 +m2
+ · · ·

with ∆(k) = 1/(k2 + m2). The important point is that integration on the internal positions
imposes momentum conservation at the vertex.
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Figure 2: Second order expansion of the 2 and 4 point connected functions.

We then get the Feynman rules in the momentum space for the connected diagrams (again
we write them for the φ4 theory):
(i) draw all topologically distinct connected diagrams with N external lines and each internal
vertex attached to 4 lines;
(ii) assign momenta flowing along each line so that the external lines have momenta kj and
momentum is conserved at each internal vertex;
(iii) to each internal vertex associate a factor (−g);
(iv) integrate over remaining loop momenta with measure

∫ ∏
k d

Dpk/(2π)D;
(v) multiply by the symmetry factor 1/(integer)

We can look at more diagrams, say at some of the order two diagrams for the four-point
functions. See Figure 6.4.

Another way to read the Feynman diagram in Fourier space is to write directly the ac-
tion is Fourier space. Recall that we define the Fourier components of the field via φ(x) =∫

dDk
(2π)D

eik·x φ̂(k). We can write the free and the interaction parts of the action as

S0[Φ] =

∫
dDk

(2π)D
φ̂(−k)(k2 +m2)φ̂(k),

SI [Φ] =
g

4!

∫
dDk1

(2π)D
· · · d

Dk4

(2π)D
(2π)Dδ(k1 + k2 + k3 + k4) φ̂(k1)φ̂(k2)φ̂(k3)φ̂(k4).

From which we read the graphical representation:

k → ←p = (2π)Dδ(k + p) ∆(k) ; k1
k2
×k3
k4

= (−g) (2π)Dδ(k1 + k2 + k3 + k4).

The convention is to sum over al the internal labels pk with the measure
∏
k d

Dpk/(2π)D.
A point which could be tricky sometimes (it actually is often tricky...) is the symmetry

factor. One can give a formal definition, by look at the order of the symmetry group of the
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Figure 3: Second order expansion of the 2 and 4 point vertex functions.

diagram (based on the fact that indexing the point in the splitting method amounts to index
the lines arriving at a vertex). But this is probably not useful at this level as one can always go
back to the Wick’s theorem expansion to get it (via the splitting method).

6.5 Diagrammatics

• Connected and one-particle irreducible (1-PI) graphs.

It is clear that the generating function of connected graph is the logarithm of the generating
function of all graphs (connected and disconnected). This simply follows usual combinatorics
encoded into the exponential function. Let us recall the order two expansion (at order g2

included) of the 2 and 4 point connected functions. See Figure 6.4.
We see that diagrams of higher order includes sub-diagrams of lower order. This leads to

the following definition of irreducible graphs, also called one-particle irreducible diagrams and
denote 1-PI. By definition, the irreducible graphs are the connected graphs which do not become
disconnected if one of their lines is cut. See Figure 6.5.

All these diagrams have external legs, which are simple multiplicative factors in the mo-
mentum representation. These factors are the propagators ∆(k)−1 with k the momentum of
the corresponding leg. Thus we define the truncated irreducible diagrams as the irreducible
diagrams but with the external legs removed (i.e. truncated). We represent these truncated
diagrams by erasing the external propagators but indicating the incoming momenta by arrows.

Finally, we define the irreducible N -point functions. Their differ for N = 2 and N ≥ 2:
— For N 6= 2: the irreducible N -point functions is “minus” the sum of the N -point irreducible
diagrams;
— For N 6= 2: we add to this sum the zeroth order contribution so that the irreducible 2-point
functions is the propagator minus the sum of all 2-point irreducible diagrams.

These generating functions are also called vertex functions.

• Two-point functions

It can be proved that the effective action Γ[ϕ] is the generating function of the irreducible
N -point functions. See below and the exercise Section. This justifies that we denote them with
the same letter.
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Figure 4: Series expansion of the 2 point connected functions.

The last statement can be checked on the two point function. According to the above
definition, let us decompose the two-point vertex function as

Γ̂(2)(k) = Γ̂
(2)
0 (k)− Σ(k), (51)

with Γ̂
(2)
0 (k) = ∆−1(k) the propagator, so that Σ(k) is the sum of irreducible graphs containing

at least one loop which remains once the external legs have been removed.

We now explain the relation between Σ(k) and the connected two-point function Ĝ
(2)
c (k).

Let us look at their diagram expansions. Each time we cut a link which disconnect a diagram
of the two point functions, we produce two diagrams with two external line each, that is we
produce two diagrams which contribute to the diagram expansion of these functions. Hence,
cutting all the lines up to the point we reach the irreducible components produces product of
diagrams of Σ(k). As a consequence, the connected two-point function can be decomposed as a
chain of Σ joined by intermediate propagators. See Figure 6.5.

In equation, this translates into

Ĝ(2)
c (k) = ∆(k) + ∆(k)Σ(k)∆(k) + ∆(k)Σ(k)∆(k)Σ(k)∆(k) + · · ·

=
1

∆−1(k)− Σ(k)
= Γ̂(2)(k)−1.

Thanks to the relation Γ̂(2)(k) Ĝ
(2)
c (k) = 1, this shows that the diagrammatic definition of the

2-point irreducible function coincide with the vertex function defined via the effective action.
We will see below that this statement hold for all N -point functions.

• Effective action and 1-PI diagrams

First let us observe that any connected diagram can be decomposed uniquely as a tree
whose vertices are its 1-PI components (some of the irreducible components may reduced to
single vertex). This simplest proof is graphical. As a consequence, all connected correlation
functions can written as tree expansion with propagator the two-point connection function Γ(2)

and as vertices the irreducible 1-PI vertex functions Γ(N). See Figure 6.5.
One can prove that the effective action is the generating function for 1-PI diagrams. See the

exercise Section. All correlation functions, connected or not, can but recursively reconstructed
from the 1-PI diagrams. Thus those diagrams contain all information on the theory, and all
information on the theory is contained in the effective action or equivalently in the irreducible
functions.

See the exercise Section for a proof of the equivalence between the generating function of
1-PI diagrams and the effective action.

We stop here for the (slightly boring) diagrammatic gymnastic.
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Figure 5: The 3 and 4 point connected functions in terms of the vertex functions.

• The Euler characteristic of a graph and two useful formula.

The give here two tools which are often useful in analysing perturbative graphs: one re-
lates the topology of the graph to its order of the perturbative expansion, the other is useful
representation of elements of Feynman loop integrants.

— Let G be a graph, and let V its number of vertices, E its number of edges and F its
number of faces. Then the Euler characteristic is defined as χ(G) = V − E + F . One has
χ(G) = 2 − g where g is the so-called genus g ≤ 0). This number codes the topology of the
surface on which the graph can be drawn: g is the (minimal) number of handle of that surface,
g = 0 corresponds to the sphere, g = 1 to the torus, etc. One has to pay attention that in this
formula one has to count the external vertices —so that V the number of internal vertices (equal
to the order in the perturbative expansion) plus the number of external points— as well as the
external face of the graph —so that F is the number of loops plus one. For instance, for a tree
the number of faces is 1. It is a good exercise to check this on examples.

— Two useful formulas to compute Feynman integral:

1

p2 +m2
=

∫ ∞
0

du e−u(p2+m2),

1

a1 · · · an
=

1

(n− 1)!

∫
[xj>0]

n∏
j=1

dxj
δ(x1 + · · ·xn − 1)

[x1a1 + · · ·xnan]n
.

This leads to the so-called parametric representation of the Feynman graphs.

6.6 One-loop effective action and potential

Here, we compute the effective action at one-loop (i.e. first order in perturbation theory) for

the φ4 theory with action S[φ] =
∫
dDx

(
1
2(∂φ)2 + m2

2 φ
2 + g

4!φ
4
)
. This amounts to a Gaussian

integral around the solution of the classical equations of motion. We are going to prove that, to
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leading order in the loop counting parameter ~ (see below), the effective action is:

Γ[ϕ] = S[ϕ] +
~
2

Tr log
[
S′′[ϕ]

]
+O(~2), (52)

where S′′[ϕ] is the Hessian of the action (i.e. the matrix operator of double derivatives) evaluated
at the field configuration ϕ. Thus, the correction to the effective action at one-loop is given
by the logarithm of the Hessian of the classical action (in a way very similar to the WKB
approximation).

• The one-loop effective action

The strategy, which follows closely the definition, is to first compute the generating function
W [j] as function of the external source and then do the Legendre transformation. The partition
function with source is

Z[j] =

∫
[Dφ] e−

1
~ S[φ;j], S[φ; j] := S[φ]− (j, φ).

We have introduce the notation (j, φ) :=
∫
dDx j(x)φ(x), and the coefficient ~ which serves as

loop counting parameter. It justifies the saddle point approximation (one-loop) as ~→ 0. The
classical equation of motion (for φc) is,

j(x) =
δS[φ]

δφ(x)

∣∣∣
φc
.

In the case of φ4 this reads

−∇2φc +m2φc +
g

3!
φc = j.

We expand around this classical solution (saddle point): φ = φc + ~φ̂. We only keep the term
quadratic in φ̂. Then (here the dots refer to higher order in ~)

S[φc + φ̂; j] = S[φc; j] +
~2

2

∫
dDxdDy φ̂(x)S′′[φc](x, y) φ̂(y) + · · ·

The quadratic term S′′ is the Hessian of S. It defines a kernel acting on functions. At this order
(one-loop) the integration over φ̂ is Gaussian. ,

Z[j] = Z[0]×
[
Det[S′′[φc]]

]−1/2
e−

1
~ S[φc;j] .

Since W [j] = ~ log(Z[j]/Z[0]) (here we put back the factor ~ in the definition), we thus have

W [j] = −S[φc] + (j, φc)−
~
2

Tr log
[
S′′[φc]

]
+O(~2).

To compute the effective action, we have to implement the Legendre transform. The background
field ϕ is determined by

ϕ(x) :=
δW [j]

δj(x)
=

δ

δj(x)

(
(j, φc)− S[φc]

)
− ~

2

δ

δj(x)
Tr
[
S′′[φc]

]
+O(~2).
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Recall that here φc is viewed as function of j. Thanks to the equations of motion, j(x) = δS[φ]
δφ(x)

∣∣
φc

,
it is easy to verify that

δ

δj(x)

(
(j, φc)− S[φc]

)
= φc.

The second term is of order ~. Hence, at this one-loop order, the background field is the classical
field:

ϕ(x) :=
δW [j]

δj(x)
= φc(x) +O(~).

Then we compute the effective action by Legendre transform: Γ[ϕ] := 〈j, ϕ〉 −W [j]. We use
the fact that S[ϕ] = S[φc] + (ϕ− φc, S′[φc]) +O(~) and j = S′[φc], to get the announced result:
Γ[ϕ] = Γ1−loop[ϕ] +O(~2) with

Γ1−loop[ϕ] = S[ϕ] +
~
2

Tr log
[
S′′[ϕ]

]
.

One can compute diagrammatically this action for φ4. The Hessian S′′[ϕ] is an operator
acting on function via

f(x)→
(
S′′[ϕ] · f

)
(x) := −∇2f(x) +m2f(x) +

g

2
φ2(x) f(x).

We aim at computing Tr log
[
S′′[ϕ]

]
. We factorize the free part so that

Γ1−loop[ϕ] =
1

2
Tr log

[
−∇2 +m2

]
+

1

2
Tr log

[
1 +

g

2
(−∇2 +m2)−1ϕ2

]
We can then expand (perturbatively) the logarithm in power series of g. Then (up to the trivial
pre-factor, trivial in absence of background)

Γ1−loop[ϕ] =
∞∑
k=1

gk

2k+1

(−)k+1

k
Γ

(k)
1−loop[ϕ],

with Γ
(k)
1−loop[ϕ] = Tr log

[
(−∇2 +m2)ϕ2

]k
, or else

Γ
(k)
1−loop[ϕ] =

∫
dDx1 · · · dDxk ϕ2(x1)G0(x1 − x2)ϕ2(x2) · · ·G0(xk−1 − xk)ϕ2(xk)G0(xk − x1).

with G0 the Green function (the inverse) of (−∇2 +m2). These are closed polygonal diagrams
with k vertices. They also are all the irreducible one-loop diagrams with k vertex and two trun-
cated external lines at each vertex. These diagrams can be computed for a constant background
field which is enough to determine the effective potential.

Notice that for a general potential V (φ) we would just have to replace m2 + g
2ϕ

2 by V ′′(ϕ)
in the previous formula.

• One-loop effective action for the Φ4 theory

The effective action can be computed for a constant background field ϕ. This determine the
effective potential. This Section can be viewed as part of the main text or as an exercise (in
that case the reader is advise not to read the answer before trying to compute independently
the one-loop effective potential).
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Recall that the effective action is Γ1−loop[ϕ] = S[ϕ] + ~
2Tr log

[
S′′[ϕ]

]
with S′′[ϕ] = −∇2 +

V ′′(ϕ). We will specify the potential to the φ4 theory in a little while. For constant back-ground
field, the effective action is proportional to the volume of the space and the proportionality
coefficient is by definition the effective potential:

Γ1−loop[ϕ] = Vol. V eff
1−loop(ϕ).

For constant back-ground field the trace of the differential operator can be computed by going
to Fourier space. Thus the one-loop correction to the effective potential is

V eff
1−loop = V (ϕ) +

~
2

∫
dDk

(2π)D
log
[
k2 + V ′′(ϕ)

]
.

This is clearly UV-divergent. We have to introduce a cut-off Λ and write:

V eff
1−loop = V (ϕ) +

~
2

∫
|k|<Λ

dDk

(2π)D
log
[(
k2 + V ′′(ϕ)

)
/Λ2

]
. (53)

We have introduced the cut-off scale Λ2 in the logarithm to make it dimensionless.
Let now fix the dimension D = 4. Recall that SD/(2π)D = 2/(4π)2 in D = 4. We can then

explicitly do the integral over the momentum to obtain 5

V eff
1−loop(ϕ) = V (ϕ) +

~
32π2

[
const.Λ + Λ2 V ′′(ϕ) +

1

2
[V ′′(ϕ)]2 log

[V ′′(ϕ)

Λ2

]
− 1

4
[V ′′(ϕ)]2 +O(Λ−2)

]
.

Here const.Λ is a Λ-dependent diverging constant.

Let us now go back to the φ4 theory to write explicitly V (ϕ) =
m2

0
2 ϕ

2 + g0

4!ϕ
4 and V ′′(ϕ) =

m2
0 + g0

2 φ
2. (We introduce the notation m0 and g0 for consistency with the following discussion

on renormalization). Let us introduce an arbitrary scale µ2 in order to extract the logarithmic

divergence by writing log
[V ′′(ϕ)

Λ2

]
= log

[V ′′(ϕ)
µ2

]
− log

[
Λ2

µ2

]
. Gathering all the terms, the one-loop

effective potential can be written as

V eff
1−loop(ϕ) =

1

2!
AΛ ϕ

2 +
1

4!
BΛ ϕ

4 +
~

(8π)2
V ′′(ϕ) log[

V ′′(ϕ)

µ2
], (54)

with

AΛ = m2
0 +

~g0

2

( Λ2

(4π)2
− m2

0

(4π)2
log(

Λ2

µ2
)
)

+O((~g0)2),

BΛ = g0 − ~g2
0

3

2(4π)2
log(

Λ2

µ2
) +O(g0(~g0)2)

All the diverging terms are at most of degree 4 in ϕ. They can thus be absorbed in a renormal-
ization of the mass m and the coupling constant g, see following Chapter. It is an interesting
exercise to analyse this potential, its minima, as a function of the parameters m0, g0 and Λ.

5After a change of variable to x = k2, the integral to reduce to
∫
xdx log(x+a). This is evaluated by integration

by part and using
∫
x2dx
x+a

= x2

2
+ a2 log(x+ a)− ax.

112



6.7 The O(N) vector models

We here present basic properties of the O(N) vector model at large N . It provides an instance
of models which can be solved via a saddle point approximation —a method which is a valuable
tool in statistical field theory. This approximative method, which can be applied when there
exist an appropriate small parameter —in a way similar to the small noise problem in stochastic
diffusion equations— becomes exact when N →∞.

The action of the O(N) vector model is

S[~Φ] =

∫
dDx

[1

2
(∇~Φ)2 +

1

2
m2

0
~Φ2 +

g

4!
(~Φ2)2

]
,

where ~Φ = (Φ1, · · · ,ΦN ) is a N -component scalar field.
There are various ways to solve this model. We can for instance use diagrammatic expansion

techniques and derive exact equations for the propagator which are valid in the large N limit. See
the Exercise Section for detail computations concerning this diagrammatic approach. Another
way consists in using a saddle point approximation and this is the method we shall pursue.

• The Hubbard-Stratonovich transform.

This is a technique, based on Gaussian integrals, which allows to disentangle the interaction
at the prize of introducing an extra field. It is similar to the trick we used when representing the
lattice Ising partition function in terms of a scalar field. It amounts to represent the contribution
of the interaction terms

∫
dDx (~Φ2)2 by a Gaussian integral. So, let σ(x) be a scalar field. Then,

by a standard Gaussian integral we have:

e−
g
4!

∫
dDx (~Φ2)2

=

∫
[Dσ] e−

∫
dDx
[
N
2
σ2+i
√

g
12
~Φ2σ
]
.

As a consequence, instead of dealing with a theory field with a single field ~Φ with a quadratic
interaction, we can deal with a theory involving two fields with action

S[~Φ;σ] =

∫
dDx

[N
2
σ2 +

1

2
(∇~Φ)2 +

1

2
m2

0
~Φ2 + i

√
g

12
~Φ2σ

]
.

The advantage we gain is that now the action is quadratic in ~Φ, although there is an interaction
term between ~Φ and σ.

• Saddle point approximation.

Since the action S[~Φ;σ] is quadratic in ~Φ, we can easily integrate over this field. The part

of the action involving ~Φ is 1
2

∫
dDx ~Φ

[
−∆x +m2

0 + i
√

g
3 σ(x)

]
~Φ, with ∆x = ∇2

x the Laplacian.

By integrating over ~Φ we thus get the following contribution to the Boltzmann weights:

[Dσ] e−
N
2

∫
dDxσ(x)2 ×

∣∣∣Det
[
−∆x +m2

0 + i

√
g

3
σ(x)

]∣∣∣−N/2,
or equivalently, we get the following effective action for σ:

Seff [σ] =
N

2

(∫
dDxσ(x)2 + log Det

[
−∆x +m2

0 + i

√
g

3
σ(x)

] )
.
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The noticeable point is that this action is proportional to N so that the σ-path integral can be
evaluated via a saddle point approximation in the large N limit.

It is clear that the saddle point is for a uniform configuration σ(x) = σc0. For such config-
uration the effective reads (by using the formula log DetM = Tr(LogM) and representing the
action of the Laplacian in Fourier space):

Seff [σ] =
N

2
Vol.

(
σ2

0 +

∫
dDk

(2π)D
log
[
k2 +m2

0 + i

√
g

3
σ0

] )
.

The saddle is thus for σc0 with

σc0 + i

√
g

3

∫
dDk

(2π)D
1

k2 +m2
R

= 0,

with m2
R = m2

0 + i
√

g
3 σ

c
0. This equation is analysed in the Exercise Section, and we recommend

to do the corresponding exercise.
Let us just comment, that inserting the saddle point value σc0 in the action S[~Φ, σ] yields an

effective action for the field ~Φ,

Seff [~Φ] =

∫
dDx

[1
2

(∇~Φ)2 +
1

2
m2
R
~Φ2
]
,

with again m2
R = m2

0 + i
√

g
3 σ

c
0, so that mR is the renormalized mass. The critical theory is for

mR = 0 (because the physical correlation length is ξ = 1/mR). The above saddle point equation
fixes the value of the bare critical mass mc

0 as a function of the cut-off and the interaction
strength g. By looking at the behaviour of the correlation length as m0 approach its critical
value mc

0 one get information on the correlation length critical exponent ν, which here takes the
value ν∞ = 1.

A refined analysis of this model, including the diagrammatic expansion, the analysis of the
critical theory, as well as a study of fluctuations around the saddle point approximation and 1/N
corrections, is given in a dedicated exercise (that we recommend!). See the Exercise Section.
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6.8 Exercises

• Exercise: Ward identities for the stress-tensor.

The aim of this exercise is to derive the Ward identities associated to translation symmetry.
This will allows us to make contact with the stress tensor.

We consider a scalar field φ in D-dimensional Euclidean flat space with action

S[φ] =

∫
dDx

[1
2

(∇φ)2 + V (φ)
]
.

Translations act on the field as φ(x)→ φ(x−a) for any vector a. The infinitesimal transformation
is φ(x)→ φ(x)− εaµ(∂µφ)(x).
(i) let us consider an infinitesimal transformation φ(x) → φ(x) − εµ(x)(∂µφ)(x) with the space
dependent vector fields ε(x).
Prove that the variation of the action is (assuming that the boundary terms do not contribute)

δS[φ] = −
∫
dDx (∂µεσ)(x)Tµσ(x) =

∫
dDx εσ(x) (∂µTµσ)(x),

with Tµσ(x) the so-called stress-tensor (gµσ is the Euclidean flat metric):

Tµσ(x) = ∂µφ∂σφ− gµσ
[1
2

(∇φ)2 + V (φ)
]
.

(ii) Prove that the stress tensor is conserved, that is: ∂µ Tµν(x) = 0 inside any correlation
functions away from operator insertions.
(iii) Prove the following Ward identities (here we use the notation ∂νj = ∂/∂yνj ):

〈(∂µ T νµ )(x)φ(y1) · · ·φ(yp)〉 =
∑
j

δ(x− yj) ∂νj 〈φ(y1) · · ·φ(yp)〉,

in presence of scalar field insertion of the form φ(y1) · · ·φ(yp).
(iv) Do the same construction but for rotation symmetry.

• Exercise: Ward identities for dilatation.

Consider a free massless Gaussian field in dimension two with action S[φ] = 1
2

∫
d2x (∇φ)2.

(i) Show that action is dilatation invariant.
Prove that the associated Noether current for dilatation is Dµ = Tµσx

σ.
Show that its conservation imposes that the stress-tensor is traceless: ∂µDµ = Tµµ = 0.
(ii) Derive the Ward identities associated to dilatation.

• Exercise: Two-point correlation and vertex functions.

Prove that the two-point connected correlation function and the two-point vertex function
are inverse one from the other, that is:

Γ̂(2)(k) Ĝ(2)
c (k) = 1,

as mentioned in the text.
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• Exercise: The effective potential and magnetization distribution functions

The aim of this exercise to probability distribution function of the total magnetization is
governed by the effective potential — and this gives a simple interpretation of the effective
potential.

Let Mφ :=
∫
dDxφ(x) be the total magnetization. It is suppose to be typically extensive so

let mφ be the spatial mean magnetization, mφ = Vol.−1Mφ.
(i) Find the expression of the generating function of the total magnetization, E[ezMφ ], in terms
of the generating function W [·] of connected correlation functions.
Recall that if the source J(x) is uniform, i.e. J(x) = j independent of x, then W [J ] is extensive
in the volume: W [J(x) = j] = Vol. w(j).
(ii) Let P (m)dm be the probability density for the random variable mφ. Show that at large
volume, we have

P (m) ' e−Vol. Veff(m),

with Veff(m) the effective potential, defined as the Legendre transformed of w(j).
This has important consequence, in particular the most probable mean magnetization is at

the minimum of the effective potential, and phase transition occurs when this minimum changes
value.

• Exercise: Effective action and one-particle irreducible diagrams.

The aim of this exercise is to prove the equality between the effective action and the gener-
ating function of 1PI diagrams. To simplify matter, we consider a ‘field’ made of N (N � 1)
components φj , j = 1, · · · , N . We view φj as random variables.

Let us define a ‘partition function’ Zε[J ] by

Zε[J ] =

∫
[Dφ] e−ε

−1
[
Γ[φ]−(J,φ)

]
, with [Dφ] = [

∏
j

dφj√
2πε

]

with J a source (J, φ) = Jjφ
j , and Γ[φ] an action which we define via its (formal) series expansion

(summation over repeated indices is implicit):

Γ[φ] =
1

2
Γ

(2)
jk φ

jφk −
∑
n≥3

1

n!
Γ

(n)
j1···jnφ

j1 · · ·φjn .

We shall compute this partition function in two different ways: via a saddle point approxi-
mation or via a perturbation expansion.

(i) Justify that this integral can be evaluating the integral via a saddle-point when ε→ 0.
Prove that

logZε =
1

ε
W [J ]

(
1 +O(ε)

)
,

whereW [J ] is the Legendre transform of the action Γ: W [J ] = (J, φ∗)−Γ(φ∗) with φ∗ determined
via ∂Γ

∂φj
(φ∗) = Jj .

Hint : Do the computation formally which amounts to assume that the integral converges and
that there is only one saddle point.

Let us now compute Zε[J ] in perturbation theory. Let us decompose the action as the sum

of its Gaussian part plus the rest that we view as the interaction part: Γ[φ] = 1
2Γ

(2)
jk φ

jφk − Γ̂[φ].
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(ii) Write

Zε[J ] =

∫
[Dφ] e−

1
2ε

Γ
(2)
jk φ

jφkeε
−1 Γ̂[φ] eε

−1 (J,φ).

We view J/ε as source, and we aim at computing the connected correlation function using
Feynman diagrams perturbative expansion.

Show that the propagator is εGjk with G = (Γ(2))−1 and the vertices are ε−1 Γ
(n)
j1···jn with n ≥ 3.

(iii) Compute the two-, three- and four-point connected correlations G(n), n = 1, 2, 3, at the
level tree, defined by

Gj1···jn(n) =
∂n

∂Jj1 · · · ∂Jjn
logZε[J ]

∣∣∣
tree

.

Show that they are of order ε−1. Draw their diagrammatic representations (in terms of prop-
agators and vertices) and compare those with the representations of the connected correlation
functions in terms of 1PI diagrams.
(iv) Prove that, when ε→ 0, the leading contribution comes only from the planar tree diagrams
and that all these diagrams scale like 1/ε. That is:

logZε[J ] =
1

ε

(
planar tree diagrams +O(ε)

)
.

Hint : Recall that, for a connected graph drawn on a surface of genus g (i.e. with g handles,
g > 0), one has V − E + L + 1 = 2 − g with V its number of vertices, E its number of edges
and L its numbers of loops (this is called the Euler characteristics). Then, argue that each
Feynman graph contributing to the N point connected functions is weighted by (symbolically)
(εG)E (−ε−1 Γ(n))Vint (ε−1 J)N with Vint +N total number of vertices.

(v) By inverting the Legendre transform, deduce the claim that the effective action is the gen-
erating function of 1-PI diagrams.

• Exercise: Computation of the one-loop effective potential.

Prove the formula for the one-loop effective potential of the φ4-theory given in the text.
Namely

V eff
1−loop(ϕ) =

1

2!
AΛ ϕ

2 +
1

4!
BΛ ϕ

4 +
~

(8π)2
V ′′(ϕ) log[

V ′′(ϕ)

µ2
],

with

AΛ = m2
0 +

~g0

2

( Λ2

(4π)2
− m2

0

(4π)2
log(

Λ2

µ2
)
)

+O((~g0)2),

BΛ = g0 − ~g2
0

3

2(4π)2
log(

Λ2

µ2
) +O(g0(~g0)2)

with µ2 an arbitrary scale that we introduced by dimensional analysis.
[...Analyse this potential and conclude...]

• Exercise: Computation of one-loop Feynman diagrams.

[...To be completed...]

• Exercise: The O(N) vector model in D = 3.

[... See the exercise booklet...]
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7 Conformal field theory: basics

This chapter deals with field theory invariant under conformal transformations, called conformal
field theory. These are important because they are fixed point of the renormalization group.
They describe statistical field theory with infinite correlation length. They have numerous ap-
plications. They will also provide simple examples of statistical field theory which will illustrate
basics (but fundamental and generic) properties of statistical field theories.

7.1 The group of conformal transformations

Conformal transformation act locally as dilatation and rotation, but with dilatation coefficients
and rotation angles which may vary from point to point. We first look at the group of conformal
transformations and its structure, which is different in dimension two and higher.

• Conformal transformations in dimension D

A conformal transformation on metric manifold, —that is on a manifold equipped with a
metric allowing to measure locally distances and angles— is a transformation which locally
modify the metric by a dilatation factor possibly depending on the position the manifold.

To simplify matter, let us consider the Euclidean space in dimension D, equipped with the
flat Euclidean metric ds2 = dx2

1+· · ·+dx2
D. The metric tensor gµν , is defined by ds2 = gµνdx

µdxν

where the summation over the repeated indices is implicit, gµν = δµν with δµν Kronecker symbol.
Under a diffeomorphism x → y = f(x), the metric tensor transforms as gµν → ĝµν :=

∂xσ

∂yµ
∂xρ

∂yν gσρ. A conformal transformation is thus a transformation x→ y = f(x), locally defined

on Rd, such that the two metrics ĝ and g are locally proportional with a proportionality coefficient
which may vary from point to point, namely

ĝµν(x) = (
∂xσ

∂yµ
)(
∂xρ

∂yν
) gσρ(x) = e2ϕ(x) gµν(x),

where ϕ is the local dilatation factor, called the conformal factor. Clearly, such transformation
preserves angles, locally.

Our aim is now to identify the set of conformal transformations in RD, equipped with the Eu-
clidean metric. Clearly, conformal transformations form a group, because they can be composed
and the composition of two conformal transformations is again a conformal transformation. We
look at infinitesimal transformations xµ → xµ + ε ξµ(x) + · · · generated by a vector field ξµ(x).
To first order in ε, the condition for conformal invariance reads

∂µξν + ∂νξµ = 2(δϕ) δµν , (55)

with e2ε(δϕ) the infinitesimal dilatation coefficient and ξµ := ξνδνµ. The dilatation factor is
not independent from the generating vector field ξµ. Indeed, contracting the indices yields
D(δϕ) = (∂µξ

µ).
Identifying all possible infinitesimal conformal transformations amounts to find the general

solution of this condition. This can be done via simple manipulation (e.g taking derivatives,
contracting indices, etc). See the exercise Section for a more detailed description. The outcome
is that all infinitesimal conformal transformations, xµ → xµ+ ε ξµ(x) + · · · , in dimension D > 2,
are generated by vector field ξµ of the form:

ξν(x) = aν + kxν + θνσx
σ + [(b · x)xν −

1

2
(x · x)bν ], (56)
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where aν , k, bµ and θνσ = −θσν are constant and parametrize the infinitesimal transformations.
The infinitesimal dilatation factor is (δϕ) =

(
k + (b · x)

)
.

Each in term in the above equation for ξµ possesses a simple interpretation:
— the first correspond to translation: xν → xν + aν ,
— the second to dilatation: xν → xν + kxν ,
— the third to rotation: xν → xν + θνσx

σ,
— the last to so-called special conformal transformation: xν → xν + [(b · x)xν − 1

2(x · x)bν ].

The dimension of the group of conformal transformation is thus D + 1 + D + D(D−1)
2 =

1
2(D+1)(D+2). One can show –the exercise Section– that this group is isomorphic to so(D+1, 1).

• Conformal transformations in D = 2

In dimension D = 2, the special conformal transformations are the so-called homographic
transformations, also called the Mobius transformations. In complex coordinates z = x + iy
they read

z → f(z) =
az + b

cz + d
, a, b, c, d ∈ C.

These are the only holomorphic bijections of the complex plane with a point at infinity added
(it is important to add the point at infinity; with this point added the complex plane is isomor-
phic to the 2D sphere). By composition, they form a group isomorphic to the group of linear
transformation of C2 with unit determinant whose elements are:( a b

c d

)
∈ SL(2,C)/{±1} = PSL(2,C).

Looking back to the previous analysis of the conformal transformations, we see that in
dimension D = 2 the dilatation factor as to be a harmonic function: ∆(∂ · ξ) = 0. Hence locally
(∂·ξ) = ∂zv(z)+∂z̄ v̄(z̄) with v(z) holomorphic. This corresponds to infinitesimal transformations

z → z + εv(z)

with v(z) locally holomorphic. These transformations are in general defined only locally, not
globally on the sphere, because there is no holomorphic vector on the sphere except vn(z) = zn+1

with n = 0, ±1.
As a consequence, conformal transformations in 2D are locally holomorphic transformations:

z → w = f(z)

Let z1 = z0 + δz1 and z2 = z0 + δz2 two neighbour points of z0. The two small vectors δz1 and
δz2 joining z0 to z1 or z2 are transformed into two vectors δw1 and δw2 joining w0 = f(z0) to
w1 = f(z1) or w2 = f(z2). To first order, we have:

δw1 = f ′(z0) δz1, δw2 = f ′(z0) δz2.

The angle between the vectors δw1 and δw2 is therefore identical to that between the vectors δz1

and δz2. Each of these vectors has been rotated, by an angle equal to the argument of f ′(z0),
and has been dilated proportionally to the modulus of f ′(z0). Conformal transformations act
locally as rotations and dilatations but with dilatation factors or rotation angles which may vary
from point to point.
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Let us give a few examples of (simple) conformal transformations:
— The transformation

z → w =
z − i
z + i

is holomorphic, without singularity, on the upper half-plane H = {z ∈ C, Imz > 0}, and the
image of the upper half-plane is the unit disk centred at the origin, D = {w ∈ C, |w| < 1}.

More generally, Riemann’s theorem asserts that any planar domain with the topology the
unit disk, i.e. any connexe, simply connected, open set of the complex plane, different from C, is
in conformal bijection with the unit disk, and hence also in bijection with the upper half-plane.
— The transformation

z → w = β log z, w → z = ew/β

maps the complex z-plane (with the point at the origin and at infinity removed) to the the
w-cylinder with radius β. The circle of radius eτ centred at the origin in the complex plane if
mapped to the circle loop of the cylinder at azimutal altitude τ/β.

• A classical application of conformal transformations.

Les transformations conformes trouvent de nombreuses applications dans tous les problèmes
de physique classique régis par l’équation de Poisson-Laplace en deux dimensions,

∆zφ(z, z̄) = 0 avec ∆z = ∂2
x + ∂2

y = 4 ∂z∂z̄.

Toute solution de cette équation est appelée une fonction harmonique. Comme le laplacien se
factorise en ∆z = 4 ∂z∂z̄, les fonctions harmoniques se décomposent en la somme d’une fonction
holomorphe et d’une fonction anti-holomorphe,

φ(z, z̄) = ϕ(z) + ϕ̄(z̄).

De cette décomposition découle l’invariance conforme de l’équation de Poisson-Laplace. En effet
si φ(z, z̄) est solution, alors φ(f(z), f(z)) est aussi solution. Alternativement, si w = f(z), le
laplacien dans les coordonnées w s’écrit simplement en terme du laplacien dans les coordonnées
z: ∆w = 4∂w∂w̄ = |f ′(z)|2 ∆z.

Cette équation s’applique évidemment aux problèmes d’électrostatique où φ est le potentiel
électrostatique dans le vide. Ces derniers sont généralement formulés sous la forme de problèmes
de Dirichlet pour lesquels on cherche la valeur du potentiel électrostatique dans un domaine
planaire D, qui est l’extérieur d’un conducteur parfait, sachant la valeur φ|D de ce potentiel au
bord du domaine, c’est à dire sur le conducteur.

Elle s’applique également en mécanique des fluides à la description des mouvements bidi-
mensionnels de fluides incompressibles et irrotationnels. En effet, si la vorticité ω = ∇ ∧ u est
nulle, le champ des vitesses u dérive d’un gradient u = −∇φ et la condition d’incompressibilité
∇ · u = 0 impose alors ∆φ = 0. Les conditions aux limites, appelées conditions de Neumann,
dépendent de la forme du domaine dans lequel le fluide se déplace. Elles imposent que le gradient
de φ soit tangent à la surface du domaine de sorte que l’écoulement soit tangent à cette surface.

7.2 Conformal invariance in field theory

The aim of this section is to understand the basic simple echoes of conformal invariance in
statistical field theory. One of the take-home message is that conformal invariance fixes the
structures and the values of the one, two and three point field correlation functions.
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Before starting let us first recall that to any symmetry correspond conserved currents. For
conformal symmetries, there are three conserved currents respectively associated to translation,
dilatation and special conformal transformation. They are of the form Jµξ = Tµνξ

ν with ξν any
of the vector fields generating conformal transformations, i.e. ξν(x) = aν + kxν + θνσx

σ + [(b ·
x)xν − 1

2(x · x)bν ] and Tµν the stress-tensor. (Recall that the stress-tensor is the generator of
diffeomorphisms). The conservation laws are:

∂µ(Tµνξ
ν) = 0.

This equivalent to the conservation for Tµν and for its traceless-ness:

∂µTµν = 0, Tµµ = 0.

Thus a conformal field theory is characterized by a trace-less, conserved, stress-tensor. Of
course, these relations are valid away from field insertions (cf. the discussion about symmetries
and Ward identities).

• Global conformal invariance and the 2-point functions

We first describe simple consequences of conformal invariance on the two and three point
functions. We first use a step-by-step constructive approach, that we shall formalize/generalize
later.

Let us first look at 2 point functions. Pick two field φ1 and φ2 located at x1 and x2 and
consider their correlation functions (in flat space, with the Euclidean matric)

G(2)(x1, x2) := 〈Φ1(x1)Φ2(x2)〉.

By definition a conformal field theory is such that the correlation functions of local fields are
invariant under the global conformal transformation.

To simplify matter, let assume that the fields are scalar fields (no spin). We shall generalize
later, especially in dimension 2. We shall prove that the two point functions of ‘scaling fields’
have to be of the following form:

〈Φ1(x1)Φ2(x2)〉 =
const.

|x1 − x2|2h1
δh1;h2 .

the number h1 and h2 are the so-called scaling dimension of the fields Φ1 and Φ2 respectively.
What re scaling fields and how scaling dimensions are are defined is explained in a few lines.
In particular, the 2-point functions in a conformal field theory are non vanishing only if the
two fields have identical scaling dimension. We can (usually) normalize the fields such that the
above constant is 1.

Global translation is easy to implement: it says that 〈Φ1(x1)Φ2(x2)〉 = 〈Φ1(x1+a)Φ2(x2+a)〉
for any shift a. To write the condition of rotation invariance, we have to specify how the fields
transform under rotation (say, whether they are scalar, vectors, etc). To do that, we have to
associate a representation of the rotation group SO(D) to each fields (or more precisely to each
multiplet of fields), so that the fields under rotation as Φ(x)→ (ρ(R) ·Φ)(R−1x), with R→ ρ(R)
the representation of rotation group associated to the field Φ. Rotation invariance is then the
statement that

〈Φ1(x1) Φ2(x2)〉 = 〈ΦR
1 (R−1x1) ΦR

2 (R−1x2)〉, ΦR
j = ρj(R) · Φj ,
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for any rotation R ∈ SO(D). A scalar field transform trivially under rotation so that Φ = ΦR,
by definition. Then, translation and rotation invariance impose that the two point functions of
for scalar fields depends only in the distance between the two points,

G(2)(x1, x2) = F2(r), r2 = |x1 − x2|2.

Now to use symmetry under dilatation, we have to specify how fields transform under di-
latation. Again this depends on the nature of the field –that is: how it transform under the
conformal group. For scalar field, this is specified by a number, called the field scaling dimension.
Namely, by definition a field of scaling dimension h transform under dilatation x→ y = λx as

Φ(x)→ Φ̂(y) = λ−h Φ(x = y/λ).

Dilatation invariance is then the statement that

〈Φ1(y1)Φ2(y2)〉 = λ−h1−h2 〈Φ1(y1/λ)Φ2(y2/λ)〉.

By taking derivative with respect to λ and integrating the resulting differential equation, it is
easy to verify that this implies that

G(2)(x1, x2) = const. r−(h1+h2).

Notice that the above transform law tells that the scalar field of scaling dimension h transform
as Φ(x)→ Φ̂(x) = Φ(y) + ε(δΦ)(y) with (δΦ)(y) = [h+ yν∂ν ]Φ(y) for an infinitesimal dilatation
x→ y = x+ εx.

Next we should impose invariance under global special conformal transformation. These are
infinitesimal diffeomorphism transformation xµ → yµ = xµ+ε ξµ(x), for which distances (defined
via the metric) are scaled by a factor δϕ = D(∂.ξ). So, we impose that the field transforms as
above but with a position dependent scaling factor, that

Φ(x)→ Φ̂(y) =
[
eϕ(x(y))

]−h
Φ(x(y)), xµ(y) = xµ − ε ξµ(y) + · · · .

with ϕ = εδϕ. For infinitesimal transformation this corresponds to:

Φ(x)→ Φ̂(y) = Φ(y)− ε [h(δϕ)(y) + ξµ(y)∂µ]Φ(y).

Of course this reproduces the above transformation for translation, rotation or dilatation. For
special conformal transformation, ξν(x) = (b · x)xν − 1

2(x · x)bν and δφ = (b · x) this gives the
field varaition

δΦ(x) = ε
[
h(b · x) + [(b · x)xν − 1

2
(x · x)bν ]∂ν

]
Φ(x).

Such fields are called ‘scalar conformal fields’ (or pseudo-primary fields, or scaling fields) and h
is their scaling dimensions. Not all fields are scaling fields, for instance if Φ is a scaling fields its
derivatives are not.

The invariance of the two point then under conformal then reads

〈Φ1(y1) Φ2(y2)〉 = e−h1ϕ(x(y1)) e−h2ϕ(x(y2)) 〈Φ(x(y1)) Φ(x(y2))〉,

This yields an extra condition onG(2). Since we already know thatG(2)(x1, x2) = const. r−(h1+h2),
it gives a constraint on the scaling dimensions h1 and h2 which is that G(2) vanishes unless
h1 = h2. Thus we get

G(2)(x1, x2) = const. r−(h1+h2) δh1;h2 .
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See the exercise Section for a detailed proof of all the technical steps. Notice that global dilatation
invariance only is not enough we need the special conformal transformation to prove that two
scaling dimensions have to be identical.

• Global conformal invariance and 3-point functions

Similar computations can be done for 3-point functions:

G(3)(x1, x2, x3) = 〈Φ1(x1)Φ2(x2)Φ3(x3)〉.

We look for the correlation of scalar conformal fields Φj , j = 1, 2, 3, of respective scaling dimen-
sions hj . These are fields which, by definition, transform as follows under infintesimal conformal
transformations x→ y = x+ εξ(x):

Φ(x)→ Φ̂(y) = Φ(y)− ε [h (δϕ)(y) + ξµ(y)∂µ]Φ(y),

with h the scaling dimension fo the field Φ and (δϕ)(y) = D−1(∂µξ
µ)(y) the infinitesimal con-

formal factor. Invariance of the 3-point functions then demands that∑
j=1,2,3

[
hj (δϕ)(xj) + ξµ(xj)∂

µ
j

]
G3(x1, x2, x3) = 0.

It is a simple matter of computation to verify that this determines the three point functions as
(See the exercise Section)

G3(x1, x2, x3) =
c123

|x1 − x2|h1+h2−h3 |x2 − x3|h2+h3−h1 |x1 − x3|h1+h3−h2
,

with c123 a constant (which depends on the structure of the theory). No condition is imposed
on the scaling dimension h1, h2 and h3. Whether the three point function is non vanishing and
what is the value of the above constant depend on the specific theory one is considering. Note
that once the fields Φj have been normalized by their two point functions the above constant is
specified (there is no freedom to redefine it).

Notice that these results for the 2- and 3-point functions are valid in any dimensions.

• Invariance

In previous Chapters, we discussed symmetries and associated Ward identities, but we re-
stricted ourselves to cases in which the symmetry transformations were preserving the geomet-
rical data involved in the specification of the statistical field theory. We here go back to this
point but for symmetry transformation involving the geometrical data.

We aim at comparing statistical field theory over two spaces M0 and M, respectively
equipped with a metric g0 and g. As data, we have series of field correlation functinos of
the form

〈Φ1(y1) · · · 〉M,g, 〈Φ1(x1) · · · 〉M0,g0 .

with y1, · · · points in M and x1, · · · points in M0. These series of objects cannot be compared
because they are not defined over the same set. So let us give ourselves a mapping from M0 to
M, say x→ y = f(x), or reciprocally the inverse mapping y → x from M to M0. As discussed
above, via this mapping we get a metric ĝ0 on M by transporting that from M0:

dŝ2 = ĝ0
µνdy

µdyν = g0
σρ(

∂xσ

∂yµ
)(
∂xρ

∂yν
)dyµdyν .
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We can then use it to push forward all correlation functions 〈Φ1(x1) · · · 〉M0,g0 into correlation
functions over M, by viewing the points x in M0 as function of the point y in M. Along such
transformation the field Φ are transformed into Φ → Φ̂ —we will make explicit this trans-
formation below in the meantime you may think about how vectors, forms, etc, transform on
diffeomorphism. Thus from the correlation functions in M0 we get correlation functions

〈Φ̂1(x(y1)) · · · 〉M0,g0 , yj ∈M,

which are correlation functions over M. In these correlation functions, distances are measured
with the metric ĝ0 defined above, by construction. Hence, by pushing forward the correlation
functions from M0 to M, we got to series of correlations functions over M differing by the metric
used to measure distances (one is the original one g, the other is the induced one ĝ0).

Conformal invariance is the statement that these correlation functions are identical if the
two metrics g and ĝ0 are conformally equivalent, that is ĝ0(y) = eϕ(y)g(y):

〈Φ1(y1) · · · 〉M,g = 〈Φ̂1(x(y1)) · · · 〉M0,g0 , if ĝ0 = eϕg.

We have to specify how the fields transform. As discussed above, for scalar conformal fields of

scaling dimension h, Φ̂1(x(y)) =
[
eϕ(x(y))

]−h
Φ(x(y)) so that conformal invariance reads

〈Φ1(y1) · · · 〉M,g = 〈
[
eϕ(x(y1))

]−h
Φ1(x(y1)) · · · 〉M0,g0 , if ĝ0 = eϕg.

This means that, if conformal invariance holds, we can transport correlation functions from M0

equipped with the metric g0 to M equipped with the metric g, provided that the metric ĝ0 and
g are conformally equivalent.

The important special case we consider above is when M and M0 are both the D-dimensional
Euclidean space and g and g0 are both the Euclidean flat metric.

7.3 Fields and operator product expansions

We now introduce an important concept in field theory (which turns out to be especially powerful
in two dimensional conformal field theory). Let us look at two operators at nearby positions x
and y. Say x = R + r and y = R − r with r � R. When viewed from a point far away from x
and y, this product operator looks as defined at medium point r or equivalent at one of the two
points, say y. Thus it is ‘natural’ to expect that this product can be expanded in all the other
local operators. That it is, we expect —or assume— that we can write the expansion:

Φj(x) Φk(y) =
∑
l

C ljk(x, y) Φl(y),

where the sum is over all set of local operators. Such expansion is called the operator product
expansion (OPE).

The existence of the operator product expansion is one of the basics assumption of statistical
field theory (which may either view as a tautological statement or as axiom, impossible to prove
but part of the definition of what a statistical field theory could be...).

The group of conformal transformations acts on the space of local fields of a conformal field
theory (by definition and/or constitutive properties of a conformal field theory). We can hence
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group the fields into conformal multiplets, forming representation and of the group of confor-
mal transformations, and we can organize the space of fields as sum of those representations
(assuming complete reducibility).

By a choice of basis, we order the basis field Φl according to their scaling dimension (under
global dilatation). Scaling invariance then fixes the way the function C ljk(x, y) scales: C ljk(x, y) ∝
|x− y|hl−hj−hk (if all the fields involved are spinless). Hence

Φj(x) Φk(y) =
∑
l

cljk

|x− y|hj+hk−hl
Φl(y) + · · · ,

The numbers cljk are called the OPE coefficients. Of course they coincide with the coefficient of
the three point functions. Here the dots refers to contribution to spin full fields (say derivative
of spinless fields) that we do not write explicitly because their writing is a bit cumbersome (but
without any conceptual difficulties).

This OPE can be checked on the three point functions. Let G(3)(x1, x2, x3) be the expecta-
tions of three scalar conformal fields, Φ1, Φ2 and Φ3 of respective scaling dimension h1, h2 and
h3, at three different positions. Its explicit expression was just derived above. Let us then fuse
x1 → x2 in this formula and observe the result. We get

G(3)(x1, x2, x3) 'x1→x2

1

|x1 − x2|h1+h2−h3

c123

|x2 − x3|h3
+ · · ·

'x1→x2

1

|x1 − x2|h1+h2−h3
c123〈Φ3(x2)Φ3(x3)〉+ · · ·

Hence, the fusion of Φ1(x1) and Φ2(x2) effectively generate the field Φ3 if the OPE coefficient
c123 does not vanishes. This coefficient is then identified with the three point normalization
coefficient. Recall that conformal fields with different scaling dimension have vanishing two
point function so that only the contribution from Φ3 in the OPE survives when computing the
limit of three point function when x1 → x2.

The OPE can be used to write series expansion for correlations. As explained above, the
two- and three- point functions of a CFT are fixed by conformal symmetry. Let us thus look at
a four-point function

〈Φ1(x1)Φ2(x2)Φ3(x3)Φ4(x4)〉.
We can image evaluating this correlation function by series expansion by fusing using the OPE
the fields Φ1 and Φ2 in one hand and Φ3 and Φ4 on the other hand. We then are reduced to
compute two-point functions of the fused fields. The result is∑

k,l

Ck12(x1, x2) δk;l|x2 − x4|−hk+hl C l34(x3, x4).

We can alternatively choose to fuse the fields Φ2 and Φ3 in one hand and Φ1 and Φ4 on the
other hand. The result is then∑

k,l

Ck23(x2, x3) δk;l|x3 − x4|−hk+hl C l14(x1, x4).

This is two expressions have to equal. This yields a relation fulfilled by the OPE coefficients. In
many respect, it is similar to the condition for associativity of a product algebra. This relation
is called crossing symmetry.

We will encounter examples of OPE in the following sections.
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7.4 Massless gaussian free field in 2D

We aim at describing the statistical field theory of a massless free bosonic field in two dimension.
This is the simplest example of 2D conformal field theory. We will explicit the transformation
properties of the basic fields of the theory, the structure of both the Ward identities and the
operator product expansion.

We are going to use complex coordinate z = x + iy, z̄ = x − iy and ∂z = 1
2(∂x + i∂y),

∂z̄ = 1
2(∂x − i∂y).

• Action and Green function

We aim at describing the statistical field theory of a free scalar bosonic field φ defined by
the action S

S[φ] =
g

4π

∫
d2x (∂µφ)(∂µφ) =

g

π

∫
dzdz̄ (∂zφ)(∂z̄φ),

Here we made a slight abuse of notation: d2x is the Lebesgue measure on R2 (d2x is the
infinitesimal flat area dA) which we denote in complex coordinate as dzdz̄. The (classical)
equation of motion is ∆φ = 0 which is conformally invariant in 2D. It is in particular simple to
verify that the action is invariant under dilatation, if we assume that φ is a scalar field, invariant
under dilatation (recall that a scalar field a scaling dimension (D − 2)/2 in dimension D).

The parameter g is dimensionless. It depends on the chosen normalization of the field φ. To
simplify the notation we shall choose g = XXXXX.......

The action S is actually invariant under conformal transformation z → w = w(z), if we
assume that the field transforms as

φ(z, z̄)→ φ̂(w, w̄) = φ(z(w), z̄(w̄)).

Indeed, we have (we put g = XXXX)

S[φ̂] =
g

π

∫
dwdw̄ (∂wφ̂)(∂w̄φ̂) =

g

π

∫
dzdz̄ |∂zw(z)|2(∂wφ̂)(∂w̄φ̂)

=
g

π

∫
dzdz̄ (∂zφ)(∂z̄φ) = S[φ].

where we use, on one hand, the Jacobian to change variable from w to z is |∂w/∂z|2 (recall that
d2x is the infinitesimal area), and one the other hand, the chain rule to write ∂zφ = (∂w/∂z)∂wφ̂
and similarly for the complex conjugate.

Recall the 2D Green function (of the Laplacian):

G(z, w) = − log |z − w|2, up to a constant.

It satisfies (−∆)G = 2π δ(2)(z − w). The Green function is only determined up to a constant
because the Laplacian possesses a constant zero mode. The Laplacian is not invertible and
we cannot define/compute the gaussian integral. We thus have to deal with this constant zero
mode. A way to it is to define the theory on a finite domain and then let the size of this domain
increases infinitely. The simplest is to consider the theory on a disc DR of radius R and impose
Dirichlet condition at the boundary, that is φ = 0 at the boundary. By integration by part, we
can alternatively write the action as (with ∆ the Laplacian)

S[φ] = − g

4π

∫
d2xφ(x) (∆φ)(x),
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because there is no contribution from the boundary terms thanks to the Dirichlet boundary
condition. With the Dirichlet boundary condition, the Laplacian is invertible (there is then no
zero mode because an harmonic fonction which vanish at the boundary is zero). The Green
function is then

GR(z, w) = −2 log
( R|z − w|
|zw −R2|

)
.

Note it has the same short distance expansion GR(z, w) ' − log |z − w|2 + reg(z, w), and it
satisfies (−∆)GR = 2π δ(2)(z − w) with the boundary condition GR(z,R) = 0. In the large R
limit we have

GR(z, w) 'R→∞ − log(|z − w|2/R2).

Since the theory is Gaussian, the expectation values of product of fields (or vertex operators)
are computable using the two point function,

〈φ(z, z̄)φ(w, w̄)〉DR = GR(z, w),

using Wick’s theorem. As discussed in previous Chapter, the generating function can (of course)
be computed exactly

〈e−
∫
d2x J(x)φ(x)〉DR = e−

1
2

∫
d2xd2y J(x)GR(x,y)J(y).

The factor R is going to be irrelevant as long as we consider correlation functions invariant
under translation of the field φ. That is the large volume limit R →∞ (IR limit) exists for all
correlation functions invariant under translation of the field (and this invariance is going to be
related to some u(1) symmetry). We shall denote these correlation functions as 〈· · · 〉C.

• u(1) current.

The theory possesses two conserved currents Jµ := ∂µφ and Ĵµ := εµν∂νφ (one is topological,
the other is the Noether current associated to a u(1) symmetry): ∂µJµ = 0 and ∂µĴµ = 0. In
complex coordinate, this translates into two currents, J and J̄ , defined by:

J = i∂zφ , ∂z̄J = 0,

J̄ = −i∂z̄φ , ∂zJ = 0

Thus, J holomorphic: it only depends on the z-coordinate, J(z), while J̄ is anti-holomorphic,
it only depends on the z̄ coordinate, J̄(z̄). This conservation law are equivalent to the equation
of motion ∂z∂z̄φ = 0.

As usual in the statistical field theory, these conservation laws are going to be valid when
inserted in correlation functions provided all other fields are located away from the current
position. For instance

∂z̄〈J(z) J(w1) · · ·Vα1(v1, v̄1) · · · 〉DR = 0,

with Vα1(v1, v̄1) some operator (constructed using the field φ). This equation can be checked
explicitly by computing using Wick’s theorem these correlation functions (one the operator
Vα1(v1, v̄1) has been specified) and using the fact the Green function is a harmonic function.
This equation is similar to those we proved when looking at symmetries and associated Ward
identities.
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We can compute explicitly all the current correlation functions. Since the currents are
invariant under a translation o fφ, these correlation functions have a large volume limit R→∞.
To simplify matter, we only consider those. The current two point function reads

〈J(z1)J(z2)〉C = −∂z1∂z2G(z1, z2) =
1

(z1 − z2)2
,

as a result of the Wick’s contraction between the two currents. This is (of course) compatible
with the fact that the chiral/holomorphic current has dimension one (recall that J = i∂φ where
φ has scaling dimension zero and ∂ scaling dimension one). All other multipoint correlation
functions can be computed using the Wick’s theorem.

We can as well use the Wick’s theorem to find the operator product expansion (OPE) between
two currents. Indeed, inside any correlation functions

J(z1)J(z2) =
1

(z1 − z2)2
+ : J(z1)J(z2) :,

where, again, the double dots : · · · : means normal ordering (forbidding self-contraction of the
field inside the double dots). This is proved by imaging how the Wick’s theorem would apply in-
side a correlation function (via Wick’s contractions). Since : J(z1)J(z2) := − : ∂z1φ(z1)∂z2φ(z2) :,
we can expand this formula in Taylor series and write the current-current OPE

J(z1)J(z2) =
1

(z1 − z2)2
+ J2(z2)− 1

2
(z1 − z2)∂z2J

2(z2) + · · · ,

with J2(z) = − : (∂zφ)2(z) : by definition of the operator we name J2. This computation
illustrate how operator product expansions arise in statistical field theory (and it proves its
existence in this peculiar example). We may notice that it involves composite operators, such
as (∂φ)2, made of regularized version of product of operators.

Because φ is a scalar, the current J = i∂zφ transform like a holomorphic one form: under a
conformal transformation z → w = w(z), it transforms as

J(z)→ Ĵ(w) = [z′(w)] J(z(w)).

because ∂wφ̂(w) = (∂z/∂w) ∂φ(z(w)), as a direct consequence of the chain rule for derivative.
This may also be written in a more geometrical way as dw Ĵ(w) = dz J(z), a formula which
encodes the fact the current a holomorphic one form.

• The stress-tensor and its OPE

The classical stress tensor, deduced form the action, is Tµν = ∂µφ∂νφ − 1
2gµν(∂φ)2. By

construction it is conserved ∂µTµν = 0 (because of the equation of motion) and traceless gµνTµν =
0 (because gµνgµν = 2 in dimension two). The traceless-ness of the the stress-tensor ensures
the conservation law of the current Dµ = Tµνx

ν associated to dilatation: ∂µDµ = 0. Actually
the conservation law and the traceless-ness of the stress-tensor ensures the conservation law of
all the Noether currents Dξ

µ := Tµνξ
ν associated to conformal transformations xµ → xµ + εξµ,

because the vector fields ξµ satisfy ∂µξν + ∂νξµ = (δφ)δµν .
In complex coordinates z and z̄, we have:

Tzz = −1

2
(∂zφ)2, Tz̄z̄ = −1

2
(∂z̄φ)2, Tzz̄ = 0.
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The conservation law ∂µTµν = 0 then becomes

∂z̄Tzz = 0, ∂zTz̄z̄ = 0,

which are of course consequences of the equation of motion ∂z∂z̄φ = 0.
Since product of fields at same points these have to be regularized/renormalized in the

statistical field theory. This can be done by normal ordering, in a way similar as what we did
with the vertex operators. That is, in the statistical/quantum field theory we defined the stress
tensor for a massless bosonic field by

Tzz = −1

2
: (∂zφ)2 :, Tz̄z̄ = −1

2
: (∂z̄φ)2 : .

Since normal ordering amounts to cancel all the self contraction in the Wick theorem, this
is equivalent to regularized the product (∂zφ)(∂zφ) by slightly splitting the two field apart at
nearby position z and w → z and subtracting the Wick contraction between these two field.
Hence

T (z) := Tzz(z) =
1

2
lim
z′→z

[
− ∂zφ(z)∂zφ(z′)− 1

(z − z′)2

]
,

T̄ (z̄) := Tz̄z̄(z̄) =
1

2
lim
z′→z

[
− ∂z̄φ(z̄)∂z̄φ(z̄′)− 1

(z̄ − z̄′)2

]
.

It is worth comparing this definition with the structure of the OPE of the currents. In particular
we see that the stress tensor is the first regular term in the OPE of two currents. Correlation
function of product of the stress tensor can be computed. For instance there two point function
is

〈T (z1)T (z2)〉 =
c/2

(z1 − z2)4
, with c = 1.

This is of course compatible with the fact that T is a chiral (holomorphic) field of dimension 2
(because it is the product of two derivatives of the scalar field φ).

We leave as an exercice to compute the OPE between two stress tensor (c = 1):

T (z1)T (z2) =
c/2

(z1 − z2)4
+
[ 2

(z1 − z2)2
+

1

(z1 − z2)
∂z
]
T (z2] + · · · .

This is an important formula for the general theory of conformal field theory. See below (or in
a more advance course).

The stress tensor has dimension h = 2. Because φ is a scalar and T = −1
2(∂φ)2 it naively

resemble a holomorphic 2-form. However, the regularization/subtraction we use to define it mod-
ifies the way it transforms: under a conformal transformation z → w = w(z), the holomorphic
component of the stress-tensor transforms as (c = 1):

T (z)→ T̂ (w) = [z′(w)]2 T (z(w)) +
c

12
S(z;w),

where S(z;w) is the so-called Schwarzian derivative

S(z;w) =
[z′′′(w)

z′(w)

]
− 3

2

[z′′(w)

z′(w)

]2
.
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Let us do the computation. Recall that the definition of T which is the w-coordinate reads

T̂ (w) =
1

2
lim
w′→w

[
Ĵ(w)Ĵ(w′)− 1

(w − w′)2

]
.

The important point is that we use the same subtraction as before but in the w-coordinate,
i.e. −1/(w − w′)2. Now, recall that φ is scalar so that φ̂(w) = φ(z(w)) and hence Ĵ(w) =
z′(w) J(z(w)). Thus

Ĵ(w)Ĵ(w′) = [z(w)z′(w′)] J(z(w))J(z(w′)).

Recall now the OPE of the currents found above only involves J2 at leading orders and thus
can be written as J(z1)J(z2) = (z1 − z2)−2 + 2T (z2) + · · · . Hence

1

2
Ĵ(w)Ĵ(w′) = [z′(w)]2 T (z(w)) +

[z′(w)z′(w′)]

2(z(w)− z(w′))2
+ reg · · ·

Equivalently,

T̂ (w) = [z′(w)]2 T (z(w)) +
1

2
lim
w′→w

[ [z′(w)z′(w′)]

(z(w)− z(w′))2
− 1

(w − w′)2

]
.

The extra term has a finite limit equals to the Schwarzian derivative (as it is easy to verify by
Taylor expansion z(w + δw)− z(w) = (δw)z′(w) + 1

2(δw)2z
′′
(w) + 1

6(δw)3z
′′′

(w) + · · · ).
This is an example of an anomaly, or extra contribution, arising as echoes of renormalization,

which is due to the fact the regularization breaks the symmetry. Here, the definition of the
stress-tensor needs the regularization consisting in subtracting 1/(z − z′)2. But the quantities
subtracted is not invariant under the transformation symmetry. That is: the subtraction in
the image space 1/(w − w′)2 is not equal to the image of the subtraction 1/(z − z′)2. There
is this extra contribution because the conformal transformation has distorted the quantities we
subtracted. This reflects —or originates from— the fact that the fields are not ultra-local on
the lattice but codes configuration on a small neighbourhood around their position.

• Vertex operators and their correlation functions

Vertex operators are operators of the form Vα(z, z̄) = eiαφ(z,z̄). As these are defined from
product of field localized at identical position they need to be regularized (this is an UV regu-
lairzation, not to be confused with the previous, armless, IR regularization).

By Gaussian integration (or by definition of the generating function of Gaussian variables)
we have:

〈
∏
j

eiαjφ(zj ,z̄j)〉 = exp
(
− 1

2

∑
j,k

αjαkG(zj , zk)
)
.

To be able to take the IR limt R → ∞ we have to impose that
∑

j αj = 0 (which is charge
neutral condition).

We have a divergence fro the diagonal term in the sum, that if of he form 1
2

∑
j α

2
jG(zj , zj).

This is infinite. So we have to regularized it by defining the theory on a lattice (and then taking
the limit in which mesh of the lattice shrinks to zero). On the (say a square) lattice the Green

function at coincident point is finite and equal to log(1/a2). This yields a diverging factor
∏
j a

α2
j

which can be absord in the definition of the operator/observable.
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Thus we define the (re-normalized) vertex operator as the UV limit

Vα(z, z̄) =: eiαφ(z,z̄) := lim
a→0

a−α
2
eiαφ(z,z̄)|lattice.

The double dots : ... : are usually called ‘normal order’, this terminology refers to the operator
formalism. It amounts to suppress all self contractions in the Wick’s theorem.

Naively, since φ is a scalar field, eiαφ should also be a scalar field. But this naive guess forget
about the renormalization procedure which will modify the transformation laws of the vertex
operators under conformal transformation. One has to take into account the renormalization
procedure which amounts to multiply by a−α

2
. Recall the definition of the renormalized operator

above. This definition is formulated in the z-plane. In the image w-plane the definition reads,

V̂α(w, w̄) = lim
â→0

âα
2
eiαφ(z(w),z̄(w))|lattice,

where â in the UV lattice cut-off in the image w-plane. However, this short distance cut-off is
not the same the initial cut-off a in the z-plane because such transformations dilate distances.
We have for an operator located at point z we ratio of the distances is a/â = |z′(w)|. As a
consequence,

V̂α(w, w̄) = |z′(w)|α2
Vα(z(w), z̄(w̄)),

The ‘anomalous’ factor |z′(w)|α2
are again an echo of the renormalization procedure does not

transform covariantly under the conformal transformation. From there we read the scaling
dimension of the vertex operator Vα is α2.

This can be alternatively (more rigorously) by using a regularization directly defined in the
continuum (not calling the lattice formulation of the model) which amounts to smear the field
over a small neighbourhood. See the exercice Section.

The correlation functions of the vertex operators are (recall that
∑

j αj = 0):

〈
∏
j

Vαj (zj , z̄j)〉 = exp
(
− 1

2

∑
j 6=k

αjαkG(zj , zk)
)

=
∏
j<k

|zj − zk|2αjαk

In particular we have the formula for the two point functions:

〈Vα(z, z̄)V−α(w, w̄)〉 = |z − w|−2α2
.

Again we read that the scaling dimension of Vα is hα = α2. Remark that this (so called
‘anomalous’) scaling dimension (which would naively be zero because φ is dimensionless) is an
echo of the renormalization procedure used in the definition of the operator.

From these formulas we can read the operator product expansion (OPE) of vertex operators.
Indeed, let us single out two vertex operators Vα1(z1, z̄1) and Vα2(z2, z̄2) in the above N -point
correlation functions. Since normal ordering amounts to suppress all self contractions in the
Wick’s theorem, we learn that insertion of the product Vα1(z1, z̄1)Vα2(z2, z̄2) is equivalent to the
insertion of the normal order product |z1 − z2|2α1α2 : eiα1φ(z1,z̄1)+iα2φ(z2,z̄2) :. Hence, by Taylor
expansion we have the operator product expansion:

Vα1(z, z̄)Vα2(w, w̄) = |z − w|2α1α2 : eiα1φ(z,z̄)+iα2φ(w,w̄) :

= |z − w|2α1α2
(
Vα1+α2(w, w̄) + · · ·

)
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We localized one of the field at the origin (without loss of generalities by translation invariance).
This OPE holds true in any correlation function.

In particular for α1 = −α2 = α:

Vα(z, z̄)V−α(0, 0) = |z|−2α2
: eiα(φ(z,z̄)−φ(0,0)) :

= |z|−2α2(
1 + iα(z∂zφ(0, 0) + z̄∂z̄φ(0, 0)) + · · ·

)
We leave as an exercice to compute the higher order term (but remember that ∂∂̄φ = 0 in any
correlation function).

For later use, let us compute the OPE between the vertex operators and the u(1)-current or
the stress-tensor. For instance, we have

J(z) Vα(w) ' α

z − w
Vα(w) + · · · ,

a formula which can be derived from the Wick’s theorem or from the z-derivative at ε = 0 of
the OPE between the two vertex operators Vε(z, z̄) and Vα(0). Similarly, one has

T (z)Vα(w) ' α2/2

(z − w)2
Vα(w) +

1

z − w
∂Vα(w) + · · · ,

which again follow from Wick’s theorem and T (z) = 1
2 : J2(z) :.

7.5 2D conformal field theory

Here we extract the basics principles and structures of the 2D massless boson field theory which
remain valid for generic/arbitrary conformal field theory. These structures emerge from the
Ward identities associated to the conformal transformations.

In 2D the conservation laws, ∂µTµν = 0 and Tµµ = 0, arising form conformal invariance read
in complex in complexe coordinates

Tzz̄ = 0, ∂z̄Tzz = 0, ∂zTz̄z̄ = 0,

These relations are valid away from field insertions.

• Ward identities and primary field OPEs

Recall the Ward identities (or its generalized form with product of operators) for translation,
rotation and dilatation symmetries. Recall also that (scalar) conformal field transformations
read δξΦ(y) =

[
h (∂ · ξ)(y) + ξµ(y)∂µ

]
Φ(y) or equivalently as Φh(z) → |z′(w)|2h Φh(w). Write

them in complex conformal coordinates. This leads to the integral form of the (chiral) ward
identities: ∮

dzε(z)〈T (z)Φ(y)〉 = 〈δεΦ(y)〉.

This is equivalent to the following OPE between primary fields and the stress-tensor:

T (z)Φh(w) =
h

(z − w)2
Φh(w) +

1

z − w
∂wΦh(w) + · · ·

Give a few consequences of these relations, e.g. for multipoint correlation functions with a single
stress-tensor.
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• The stress-tensor, its OPE and the Virasoro algebra

Explain the stress-tensor OPE:

T (z1)T (z2) =
c/2

(z1 − z2)4
+
[ 2

(z1 − z2)2
+

1

(z1 − z2)
∂z2
]
T (z2] + · · · .

Here c is the so-called central charge (and c 6= 1 in general, c = 1 only for free massless boson).
Explain the relation between this OPE and the transformation rules of the stress-tensor

under conformal transformations:

T (z)→ T̂ (w) = [z′(w)]2 T (z(w)) +
c

12
S(z;w),

or its infinitesimal version.
Elements of consequences: determine all correlation functions of the stress tensor (on the

sphere/plane) using its analytic and pole structure. For instance:

〈T (z1)T (z2)〉 =
c/2

(z1 − z2)4
,

〈T (z1)T (z2)T (z3)〉 = ....

Idem for multipoint correlation functions T and Φ insertions.

• The Casimir effect (again)

7.6 Operator formalism in 2D

• Bosonic free field

• Virasoro representations and field spaces

• Null vectors and differential equations

[.... It is probably better to reserve this last section to a more advanced course.....]
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7.7 Exercises

• Exercise 7.7.1: Conformal mappings in 2D.

(i) Verify that the map z → w = z−i
z+i is holomorphic map from the upper half plane H = {z ∈

C, Imz > 0} to the unit disc D = {w ∈ C, |w| < 1} centred at the origin 0.
(ii) Similarly verify that the map w → z = ew/β is holomorphic map from the cylinder with
radius β to the complex z-plane with the origin and the point at infinity removed.

• Exercise 7.7.2: The group of conformal transformations.

The aim of this exercise is to fill the missing steps in determining all infinitesimal conformal
transformations in the flat Euclidean space RD. Recall that an infinitesimal transformation
xµ → xµ + ε ξµ(x) + · · · is conformal if ∂µξν + ∂νξµ = 2(δϕ) δµν with D(δϕ) = (∂µξ

µ).

(i) Take derivatives of the previous equation to deduce that D∆ξν = (2 −D)∂ν(∂ · ξ), with ∆
the Euclidean Laplacian.
(ii) Take further derivatives, either w.r.t ∂ν or w.r.t. ∂µ, to get two new equations: (D−1)∆(∂ ·
ξ) = 0, and 2(2−D) ∂µ∂ν(∂ · ξ) = D∆(∂µξν + ∂νξµ).
(iii) Deduce that (2 − D)∂µ∂ν(∂ · ξ) = 0, and hence that, in dimension D > 2, the conformal
factor δϕ(x) is linear in x.

Let us write δϕ(x) = k + bνx
ν with k and bν integration constantes. We thus have

∂µξν + ∂νξµ = 2(k + bσx
σ) δµν .

A way to determine ξ consists in getting information on the difference ∂µξν − ∂νξµ.
(iv) By taking derivates of the previous equation w.r.t ∂σ and permuting the indices, deduce
that ∂ν(∂σξµ − ∂µξσ) = 2(bσδµν − bµδνσ), and hence, by integration, that

∂σξµ − ∂µξσ = 2(bσxµ − bµxσ) + 2θµσ,

where θσµ = −θµσ are new integration constants.
(v) Integrate the last equations to prove that

ξν(x) = aν + kxν + θνσx
σ + [(b · x)xν −

1

2
(x · x)bν ],

where aν are new, but last, integration constants.
(vi) Find the explicit formula for all finite –not infinitesimal– conformal transformations in
dimension D.
(vii) Verify that the Lie algebra of the group of conformal transformation in dimension D is
isomorphic to so(D + 1, 1).

• Exercise 7.7.3: The two- and three-point conformal correlation functions.

The aim of this exercise is to fill the missing steps in determining the two and three point
function of conformal fields in conformal field theory. Let G(2)(x1, x2) = 〈Φ1(x1)Φ2(x2)〉 be the
two point function of to scalar conformal fields of scaling dimension h1 and h2 respectively.
(i) Prove that translation and rotation invariance implies that G(2) is a function of the distance
r = |x1 − x2| only.
(ii) Prove that dilatation invariance of the 2-point function demands that

[h1 + x1 · ∂1 + h2 + x2 · ∂2]G2(x1, x2) = 0.

134



Deduce that G2(x1, x2) = const. r−(h1+h2).
(iii) Prove that invariance under special conformal transformations (also called inversions) im-
plies that ∑

j=1,2

[
hj(b · xj) + [(b · xj)xνj −

1

2
(xj · xj)bν ]∂xνj

]
G2(x1, x2) = 0.

Deduce that G(2)(x1, x2) vanishes unless h1 = h2.
Let us now look at the three point functions of scalar conformal fields. Let G(3)(x1, x2, x3) =

〈Φ1(x1)Φ2(x2)Φ3(x3)〉, be their correlation functions.
(iv) Prove that invariance under infinitesimal conformal transformations demands that∑

j=1,2,3

[
hj D

−1(∂.ξ)(xj) + ξµ(xj)∂xµj

]
G(3)(x1, x2, x3) = 0,

for any conformal vector ξµ(x). See previous exercise.
(v) Integrate this set of differential equations to determine the explicit expression ofG(3)(x1, x2, x3)
up to constant.

• Exercise 7.7.4: Diff S1 and its central extension.

The aim of this exercise is to study the Lie algebra Diff S1 of vector fields in the circle
and its central extension the Virasoro algebra. Let z = eiθ coordinate on the unit circle. A
diffeomorphism is on application θ → f(θ) from S1 onto S1. Using the coordinate z, we can
write it as z → f(z) so that it is, at least locally, identified with a holomorphic map (again locally
holomorphic). They act on functions φ(z) by composition: φ(z) → (f · φ)(z) = φ(f−1(z)). For
an infinitesimal transformation, f(z) = z + ε v(z) + · · · avec ε� 1, the transformed function is

(f · φ)(z) = φ(z) + ε δvφ(z) + · · · , with δv φ(z) = −v(z) ∂zφ(z).

(i) Take v(z) = zn+1, with n integer. Verify that δvφ(z) = `nφ(z) with `n ≡ −zn+1∂z. Show t[
`n, `m

]
= (n−m) `n+m.

This Lie algebra is called the Witt algebra.
(ii) Let us consider the (central) extension of the Witt algebra, generated by the `n and the
central element c, with the following commutation relations[

`n, `m
]

= (n−m)`n+m +
c

12
(n3 − n)δn+m;0, [c, `n] = 0.

Verify that this set of relation satisfy the Jacobi identity. This algebra is called the Virasoro
algebra.
(iii) Prove that this is the unique central extension of the Witt algebra.

• Exercise 7.7.5: The stress-tensor OPE in 2D CFT

Let φ be a massless Gaussian free field in 2D with two point function 〈φ(z, z̄)φ(w, w̄)〉 =
− log(|z − w|2/R2). Recall that the (chiral component of the) stress-tensor of a massless 2D
Gaussian field is T (z) = −1

2 : (∂zφ)2(z) :. Prove, using Wick’s theorem, that it satisfies the
OPE

T (z1)T (z2) =
c/2

(z1 − z2)4
+
[ 2

(z1 − z2)2
+

1

(z1 − z2)
∂z
]
T (z2] + reg.
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• Exercise 7.7.6: Transformation of the stress-tensor in 2D CFT.

Recall that the transformation rules for the stress-tensor in 2D CFT, under a conformal
transformation z → w = w(z). :

T (z)→ T̂ (w) = [z′(w)]2 T (z(w)) +
c

12
S(z;w),

with z′(w) the derivative of z w.r.t. w and S(z;w) the Schwarzian derivative: S(z;w) = [ z
′′′(w)
z′(w) ]−

3
2 [ z
′′(w)
z′(w) ]2.

(i) Let us consider two conformal transformations z → w = w(z) and w → ξ = ξ(w) and their
composition z → ξ = ξ(z). Prove that consistency of the stress-tensor transformation rules
demands that:

S(z; ξ) = S(w; ξ) + [ξ′(w)]2 S(z, w).

Verify this relation from the definition of S(z;w).
(ii) Use this formula to compute the stress-tensor expectation for a CFT defined over a infinite
cylinder of radius R. Show that

〈T (z)〉cylinder = −c π

12R2
.

• Exercise 7.7.7: Regularization of vertex operators

In the text, we use the connection with lattice model to argue for the anomalous trans-
formation of vertex operators in gaussian conformal field theory. The aim of this exercise is
to derive (more rigorously) this transformation within field theory (without making connection
with lattice models).

Let φ(z, z̄) a Gaussian free field normalized by 〈φ(z, z̄)φ(w, w̄)〉 = − log(|z − w|2/R2) with
R the IR cut-off tending to infinity. In order to regularized the field we introduce a smeared
version φε of φ defined by integrating it around a small circle, of radius ε, centred at z:

φε(z, z̄) =

∫ 2π

0

dθ

2π
φ(zε(θ), z̄ε(θ)),

with zε(θ) be point on this circle, 0 < θ < 2π. The small radius ε play the role of UV cutoff.

(i) Prove that (notice that we consider the smeared at the same central position z but with two
different cutoff ε and ε′)

〈φε(z, z̄)φε′(z, z̄)〉 = min(log(R/ε)2, log(R/ε′)2).

In particular 〈φε(z, z̄)2〉 = log(R/ε)2.
(ii) Verify that 〈eiαφε(z,z̄)〉 = (ε/R)α

2
, for α real. Let us define the vertex operator by

Vα(z, z̄) = lim
ε→0

ε−α
2
eiαφε(z,z̄).

Argue that this limit exists within any expectation values.
(iii) Let us now consider a conformal transformation z → w = w(z) or inversely w → z = z(w).
Show that a small circle of radius ε̂, centred at point w, in the w-plane is deformed into a small
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close curve in the z-plane which approximate a circle of radius ε = |z′(w)| ε̂, centred at z(w).
Deduce that under such conformal transformation the vertex operator transforms as follows:

V̂α(w, w̄) = |z′(w)|α2
Vα(z, z̄).

That is: the anomalous scaling transformation of the vertex operator arises from the fact that
the regularization scheme/geometry is not preserved by the conformal transformations.

• Exercise 7.7.8: Free field in a finite domain

...Dirichlet Green function in a finite domain and free field in this domain...
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8 The renormalisation group

The aim of this important chapter is to present the basics ideas of the renormalization group
(RG), the techniques associated to its implementation, and the output of its analysis. Following
K. Wilson, RG transformations will be introduced by doing real space renormalization via block
spin transformations. This amounts to find iteratively the effective hamiltonians coding for
the interactions of coarse grained blocks of spins of increasing sizes. It may alternatively be
viewed as arising from a partitioning of the configuration space though a conditioning procedure
(the conditioning amounts to fix the effective spins labelling the block spin configurations).
The way the interacting hamiltonians evolve under RG transformations is embedded into so-
called beta functions which generate the RG flows on the space of coupling constants. RG field
transformations are coded into so-called matrices of anomalous dimensions. Critical theories are
in correspondence with fixed points of the renormalization group. Their existence explains the
origin of scaling exponents and scaling functions and the universality of critical phenomena. RG
transformations can be analyzed perturbatively around fixed points. At leading orders closed
to a fixed point RG data are given by simple data of the corresponding conformal field theory
(scaling field dimensions, OPE coefficients). The analysis of the RG transformations yields a
scheme to define renormalized field theories via scaling limits of lattice regularized theories.

8.1 Block spins and RG transformations

• Block-spin transformations in the 1D Ising model.

We start with 1D Ising hamiltonian H[s] = −J
∑

i sisi+1 with si = ± (we absorb the inverse
temperature β in the energy scale J so that J ∝ 1/T ). The partition sum is Z =

∑
[s] e
−H[s].

There are many ways to solve this (trivial) problem, say by using the transfer matrix formalism.
But here we will do it using a complicated method to illustrate the idea of the RG.

Imagine grouping the spins by blocks of size 3, i.e. (· · · ][s1s2s3][s4s5s6][· · · ). Each blocks
may be in 23 = 8 configurations. We can group these eight configurations in two disjoint sets to
which we assign an effective spin s′. We can for instance choose the majority rule so that s′ = +
if the three internal spins of the block are [+ + −] or a permutation thereof, and s′ = − if the
internal spins are [− − +] up to permutation. It actually will be simpler if choose to assign to
each block the spins of the middle site, so that the effective spin for the block [s1s2s3] is s′ = s2,
or alternatively s′ = ± for the configurations [s1±s3]. We then imagine computing the partition
function in two steps: first summing over the internal spins of each blocks conditioned on their
effective spins and second on the block effective spins.

Consider two adjacent blocks, say (· · · ][s1s2s3][s4s5s6][· · · ), and denote by s′1 := s2 and
s′2 := s5 the two block spins. Doing the partial sum induces effective interaction between the
block spins. The Boltzmann weights are of the form:

· · · eJs1s′1 × eJs′1s3 eJs3s4 eJs4s′2 × eJs′2s6 · · · .

We sum over s3 and s4 at s′1 and s′2 fixed (the other spins s1, s6, · · · do not play a role). Using
eJss

′
= cosh J(1 + xss′) with x = tanh J , we may write this as the product of three terms

(cosh J)3(1+xs′1s3)(1+xs3s4)(1+xs4s
′
2). The sum is done by expanding this product. It yields

22(cosh J)3 (1 + x3 s′1s
′
2).

138



Up to a multiplicative constant (independent of the spins) this expression for the interaction
between the blocks spins (the local Boltzmann weights) is of the same form as that for the spin
of the original model but with a new interaction constant J ′

x′ = x3, i.e. tanh J ′ = (tanhJ)3.

The (new) hamiltonian for the block spin is thus identical the original 1D Ising hamiltonian up
to an irrelevant constant,

H ′([s′]) = Ne(J)− J ′
∑
i

s′is
′
i+1,

with log e(J) = 22/3(cosh J)/(cosh J ′)1/3. The original partition function can thus be rewritten
as

Z(J) =
∑
[s]

e−H[s] =
∑
[s′]

e−H
′[s′] = e−Ne(J) Z(J ′).

We thus have effectively reduced the number of degrees of freedom from 2N to 2N/3.
By iteration the effective coupling transforms as xn → xn+1 = x3

n at each step. There is only
two fixed points: x = 1 which corresponds to zero temperature and x = 0 which corresponds
to infinite temperature. Since x < 1, unless T = 0, the effective couplings xn converge to zero,
and the effective temperature increases towards infinite temperature. Hence, the long distance
degrees of freedom are effectively described by an infinite temperature: they are in the disordered
paramagnetic phase (a statement that we already knew: no phase transition in 1D).

Since the system is in the disordered phase, its correlation length is finite. The ‘physical’
correlation length has of course the dimension of a length, but we can measure it in units of the
lattice spacing a. This dimensionless correlation length only depends on J , or equivalently on
x′. Since the block spin transformations preserve the long distance physics, the dimension-full
correlation length is preserved by these transformations. Since the lattice size has be dilated by
a factor 3, i.e. a→ λa (λ = 3), the dimensionless correlation length transform as

ξ(x′) =
1

3
ξ(x).

Since x′ = x3, this implies that

ξ(x) =
const.

log x
=

const.

log(tanh J)
.

Of course it is always finite (because the system is in the disordered phase) but it diverges
exponentially close to zero temperature: ξ ' econst./T near T → 0.

• Framework for a general theory: RG transformations.

Consider a lattice model with spin variables si on each lattice site (of mesh size a) with
hamiltonian H (again the inverse temperature is included in H). As we will soon see, we
need to think about the hamiltonian as having all possible interactions included (compatible
with the symmetry). That is: we have to think as H being the “more general hamiltonian”
H([s]|{g}) with coupling constants {g} (a possibly infinite number) of the form (if it preserves
the symmetry)

H([s]|{g}) =
∑
ij

g
(2)
ij sisj +

∑
ijkl

g
(4)
ijkl sisjsksl + · · · .
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Let us do a block spin transformation. Each block is supposed to be of dimensionless size
λ (this is its size measured in lattice units), i.e. its ‘physical’ size is λa. At each block we
affect an effective spin sλ, say by the majority rule or via the middle spin. Each effective spin
corresponds to a set of configuration of the original spins (in each block). That is, each block
spin configuration [sλ] indexes a partition of the set of original spin configurations. So we can
decompose the sum of the original spin configurations as∑

[s]

(· · · ) =
∑
[sλ]

∑
[s]↓[sλ]

(· · · ), (57)

where [s] ↓ [sλ] means that the configuration [s] belongs to the set of configurations indexed by
[sλ], i.e. the configuration [s] yields the block spin configuration [sλ]. What we have done here
is simply to partition (or to condition) the configuration space, the partition being indexed by
the [sλ].

In particular for the partition function we have

Z[{g}] =
∑
[s]

e−H([s]|{g}) =
∑
[sλ]

∑
[s]↓[sλ]

e−H([s]|{g}) =
∑
[sλ]

Z ′([sλ]|{g}),

with Z ′([sλ]|{g}) the conditioned partition function obtained by conditioning

Z ′([sλ]|{g}) :=
∑

[s]↓[sλ]

e−H([s]|{g}).

We may define an effective hamiltonian H ′ for the effective block spins via H ′([sλ]|{g}) :=
− logZ ′([sλ]|{g}).

The RG hypothesis (which is here a bit tautological as we consider the most general hamil-
tonians) is that this hamiltonian H ′ is of the same nature as the orginal one (up to an additive
constant) but for new coupling constant {gλ}:

H ′([sλ]|{g}) = Neλ({g}) +H([sλ]|{gλ}), (58)

or equivalently

Z ′([sλ]|{g}) = e−Neλ({g}) e−H([sλ]|{gλ}),

In other words, Z ′ is the new Boltzmann weight for the effective block spins (Boltzmann weights
and partition functions are always defined up to a multiplicative factor, so the function e does
not matter much).

The RG transformation is the map from {g} to {gλ}:

{g} → {gλ} = Rλ({g}). (59)

Of course, we can iterate these transformations. We can first group spins into blocks of λ and
then group the new effective spins into blocks of size λ′. This will of course be equivalent to
group the spins in blocks of size λ · λ′ (dilatation factors multiply). Hence

Rλ′·λ = Rλ′ · Rλ,

and the RG transformations form a group (a pseudo-group has they cannot be inverted: λ > 1
always).
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Since they form a (pseudo)-group, the RG transformations are generated by the infinitesimal
transformations. Here, we are implicitly making the assumption that we can view the scaling
factor λ as a continuous variable (initially, on the lattice this scale factor was discrete but may
assume that when describing the long distance physics we may take it to be continuous). So let
gα coordinates for the set of coupling constants and define the vector field

βα({g}) := λ∂λg
λ
α

∣∣
λ=1

.

These are called “beta-functions” (they are actually vector fields). They generate the RG map
{g} → {gλ} in the sense that {gλ} is solution of the flow equation

λ∂λg
λ
α = βα({gλ}), (60)

with initial condition {gλ=1} = {g}. The solutions gλ are called the “running coupling con-
stants”.

As in the case of the 1D Ising model, the physical correlation length remains unchanged
under RG transformations (because this is just a reorganization of the statistical sum). However
the lattice mesh is rescaled from a to λa under the transformation. Hence, the dimensionless
correlation length satisfies

ξ({g}) = λ ξ({gλ}).
In practice we can never compute Rλ acting on an infinite set of variables. So we will

have to do approximations (constructive field theory and/or exact renormalization group aims
at controlling exactly these RG transformations) by truncating the set of coupling constant
(keeping only the relevant ones, or those which are expected to be the most relevant ones).

Of course we cannot iterate the RG group ad-finitum, we have to stop once the size of the
block is comparable to the correlation length, that is a � λ a � aξ. This is self consistent
because spin inside a block of size much smaller than aξ are correlated (they are a distance
much smaller that the correlation length) and hence behave almost collectively. This is the
physical rational behind the renormalization group idea.

The understanding of many physical phenomena, ranging from fundamental interactions
to classical or quantum extended systems, requires extracting the relevant large-scale degrees
of freedom, which can manifest themselves in different guises, say collectives modes, shapes,
structures or variables. Extracting these relevant variables is of course one of the main aim
of the renormalization group, but making the RG work often requires having recognized the
appropriate setup (in the opposite case, one cannot make the RG transformations contracting
towards a relevant effective model, and as an illustration, the absence of such appropriate setup
is for instance why the RG has not been yet successfully applied to turbulence).

8.2 Momentum RG transformations in field theory

We can alternatively formulate the RG transformations in momentum space. This idea is then
to integrate recursively over shells of high momenta and to rescale space appropriately.

To make it more precise let us assume that we look at a scalar field φ with action

S[φ] = S0[φ] + S1[φ].

where S0 is a free quadratic action and S1 is coding for the interaction. To simplify matter,
we choose S0 to be the action of a massless scalar field in dimension D > 2 with a (smooth)
momentum cut-off Λ = 1/a.
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The field theory defined by S0 is therefore Gaussian with two-point function

G(x− y) = 〈φ(x)φ(y)〉|S0 =

∫
dDk

(2π)D
eik·(x−y)

k2
ϕΛ(|k|),

where ϕΛ(|k|) is the smooth cut-off function: ϕΛ(k) ' 1 for |k| ≤ Λ and ϕΛ(k) ' 0 for |k| ≥ Λ,
that is: ϕΛ varies only abruptly from 1 to 0 when |k| crosses the cut-off value Λ. Let us denote
by dµG[φ] this Gaussian measure: (in)-formally dµG[φ] = [Dφ] e−S0[φ]. The partition function
of the interacting theory is Z =

∫
dµG[φ] e−S1[φ].

To implement the RG idea, we want to pick a rescaling factor λ > 1 and to integrate over
all modes with momenta in the shell between λ−1Λ and Λ. The part of the Gaussian covariance
with support in this shell is Γλ, with

Γλ(x) =

∫
dDk

(2π)D
eik·(x−y)

k2

[
ϕΛ(|k|)− ϕΛ(λ|k|)

]
,

because the difference ϕΛ(|k|)−ϕΛ(λ|k|) is significantly non zero only for |k| ∈ [λ−1Λ,Λ]. Note
then that G = Gλ + Γλ with Gλ(x) = λ−(D−2)G(x/λ), by construction. This decomposition
of the covariance tells us that we can decompose the field φ as a sum φ = φ̂λ + ϕλ where φ̂λ
and ϕλ have covariances Gλ and Γλ respectively (because the sum of two independent Gaussian
variables is a Gaussian variable with covariance equals to the sum of the two covariances).

Since Gλ is defined from G be rescaling, we can construct the field φ̂λ by taking an inde-
pendent copy of φ, which we denote φ̂, and set φ̂λ(x) = λ−(D−2)/2 φ̂(x/λ). We thus get the
decomposition of the Gaussian measure as

dµG[φ] = dµG[φ̂] dµΓλ [ϕλ], φ = φ̂λ + ϕλ,

with dµG[φ̂] the initial Gaussian measure but for the independent variable φ̂ and dµΓλ [ϕλ] the
Gaussian measure with covariance Γλ.

With all this preparation we can now integrate over the modes with momenta in the shell
[λ−1Λ,Λ] by integrating over the field ϕλ. This indeed gives a precise formulation of integrat-
ing over the high momenta and rescaling space appropriately. For the Boltzmann weights, or
equivalently for the action, this yields the definition of the flow S1 → Sλ by

e−Sλ[φ̂] =

∫
dµΓλ [ϕλ] e−S1[φ̂λ+ϕλ].

As above with block spin transformations, this map is such that it preserves the partition
function:

Z =

∫
dµG[φ] e−S1[φ] =

∫
dµG[φ] e−Sλ[φ],

by construction. This defines the RG flow of the (interacting) part of the action: Rλ : S1 → Sλ.
As above it forms a semi-group under composition: Rλ◦Rλ′ = Rλλ′ . The RG flow is here defined
on the space of actions and not on the space of coupling constants, but these two formulations are
equivalent because coupling constants are simply all possible parameters specifying an action.

Anticipating a little on what we are going to describe in lattice models, we can also describe
how operators/observables evolve under RG transformations. Let F1[φ] be some functional
of the field which we identify with an observable. We can again define its RG transform by
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decomposing the field as φ = φ̂λ + ϕλ and by integrating over the modes ϕλ. This yields the
definition of the transformed observable Fλ as

Fλ[φ̂] = e+Sλ[φ̂] ×
∫
dµΓλ [ϕλ] e−S1[φ̂λ+ϕλ] F1[φ̂λ + ϕλ].

Note the presence of the prefactor e+Sλ[φ̂] which ensures that the identify function is mapped to
the identity. This transformation is such that expectations are preserved, namely

〈F1[φ]〉|S0+S1 = 〈Fλ[φ̂]〉|S0+Sλ .

These rules are analogous to those for RG transformation of operators in lattice models, see
eq.(66).

8.3 RG fixed points and universality

We now look at what are the consequences of the existence of fixed points of the RG trans-
formations. To simplify matter we assume that the RG flow is defined on a set of N coupling
constant (”rigorously” this number is, or could be, infinite). We also assume that the RG trans-
formations have enough analytical properties (smoothness, regularities,...) to justify the formal
developments we are going to make.

• RG fixed points.

A fixed point (in the coupling constant manifold) is a point {g∗} such that

Rλ({g∗}) = {g∗}.

Fixed points are zero of the beta-functions (because the beta-functions are the vector field
generating the RG transformations):

βα({g∗}) = 0. (61)

At a fixed point the correlation length is either infinite or zero (because it satisfies ξ({g∗}) =
λξ({g∗}) and by iteration ξ({g∗}) = λn ξ({g∗}) for any λ > 1). Fixed points with zero correlation
length are called trivial fixed point. Critical fixed points are those with infinite correlation length.

• RG eigenvalues at a fixed point.

We aim at describing the behaviour of the RG flow closed to a fixed point (this is actually a
standard exercice in dynamical systems). Let us linearize the flow in the vicinity of the point.
Let {gα} be some local coordinates in the space of all couplings). We can then linearize the RG
flow (to first order) and write near a fixed point (with coordiantes {gα∗ })

Rλ({gα∗ + ε δgα + · · · }) = {ε
∑
σ

Bλασ δgσ + · · · },

with gα = gα∗ +ε δgα+ · · · . The matrix Bλασ is simply the matrix of derivatives of Rλ at the fixed
point. The nature of the flow locally around the fixed point is determined by the eigenvalues
of Bλασ, because we can then change variables locally to diagonalize the flow. Indeed, let ψi be
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Figure 6: Schematic representation of coupling constant RG flow.

the left eigenvectors, with component ψiα. These eigenvalues are necessarily of the form λyi for
some yi because of the group law of the RG transformation:

∑
α ψ

i
α Bλασ = λyi ψiσ. Let us define

locally new coordinates ui by ui =
∑

α ψ
i
αδg

α. The new coordinates transform diagonally (at in
a small neighbourhood of the fixed point)

Rλ({ui}) = {λyi ui}.

The number yi are called the RG eigenvalues and the ui scaling variables (or scaling fields).
There are three cases:

— yi > 0: the ui are said to be “relevant”. These directions are pushed away from the fixed
point from by the RG flow;
— yi = 0: the ui are said to be “marginal”. The nature of the flows depends on the higher order
terms: it can be marginally relevant or marginally irrelevant.
— yi < 0: the ui are said to be “irrelevant”. These directions are attracted to the fixed point
by the RG flow;

Suppose that they are n relevant directions (n finite!). These n directions flow away from
the fixed points, the N − n remaining ones are attracted by the fixed point. Suppose that n is
relatively small (or at least finite!... and this is always the case we shall consider —it corresponds
to renormalizable field theories). Then, there is, locally around the fixed point, a hypersurface
of (high) dimension N −n whose points flow towards the fixed point under RG transformations.
This hypersurface is called the “critical surface”. For all points on this surface the long distance
physics is critical and described by the fixed point because all those points flow towards the
fixed points. In the remaining directions the flow moves the point away from the fixed points.
Thus n (relevant) parameters have to be adjusted for the system to be critical (to be on the
critical surface). For instance, for the Ising model, two parameters have to be adjusted, the
temperature T and the magnetic field h, so there are two relevant directions whose coordinates
can be named ut and uh.

The very large dimensionality of the critical hypersurface explains (or expresses) the uni-
versality of the critical phenomena: all points on this hypersurface possess the same critical
behavior, i.e. all hamiltonians on the hypersurface, irrespective of the interactions they encode,
have the same critical behavior. See Figure 6.
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• Operator scaling dimensions.

We now relate the RG eigenvalues to the scaling dimensions of the operators at the conformal
point. The continuum theory corresponding to a fixed point has no typical scale and it is scale
invariant. It is thus described by a conformal field theory (with an action that we denote S∗).
That is: conformal field theories are fixed point of the renormalization group. Exploring the
neighbour of the critical point amounts to perturb the critical action S∗ with by some operators
Oα.

S = S∗ +
∑
α

(δg)α
∑
n

Oα(n),

with n labeling the integer points on the lattice. However, we can change basis of operators.
Recall that a conformal field theory comes equipped with its set of operators Φi(x) of scaling
dimension ∆i. They transform homogeneously under dilatation Φi → λ−∆iΦi. Using this basis,
we can alternatively write

S = S∗ +
∑
i

ui
∑
n

Φi(n).

the behaviour near a critical point is thus governed by scaling operators at the critical point. In
particular the critical exponents directly are related to the scaling dimension of the operators
at the critical point. This statement is made more precise by looking at the RG transform close
to a fixed point.

A comment about the normalization of the field on the lattice and on the continuum is needed.
We initially start with dimensionless fields defined on the integer lattice point, say Φlatt

i (n) where
n refers to the integer point of lattice of mesh size a (and we temporally added the label ‘latt’
to specify that these fields are defined within the lattice model). At the fixed point, their two
point functions are power law with unit normalization (because they are dimensionless), i.e.

〈Φlatt
i (n)Φlatt

i (m)〉∗ =
1

|n−m|2∆i
.

In the continuous limit (a→ 0), the scaling field are defined as (recall how we define the scaling
limit of free random paths or how we define the renormalized vertex operators in conformal field
theory)

Φcont.
i (x) = lim

a→0,n→∞
x=an fixed

a−∆i Φlatt(n) = lim
a→0

a−∆i Φlatt(x/a).

They are now dimension-full (with the dimension of [length]−∆i) with finite two-point correlation
functions (defined in the fixed point conformal field theory) normalized to

〈Φcont.
i (x)Φcont.

i (y)〉∗ =
1

|x− y|2∆i
.

Away from the critical point the action can thus be written as

S = S∗ +
∑
i

ui
∑
n

Φlatt
i (n) = S∗ +

∑
i

ui a∆i−D
∫
dDxΦcont.

i (x).

The two above expressions are equivalent (in the limit a→ 0) because the discrete sum over lat-
tice points approximates the integral: aD

∑
n Φlatt

i (n) = aD
∑

n a
∆iΦcont.

i (n) =
∫
dDxΦcont.

i (x).
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The prefactor a∆i−D makes the action dimensionless (because ui is dimensionless while Φi as
dimension ∆i).

Under dilatation (RG transformation) the scaling variable transforms as ui → λyiui, hence
consistency of the coupling tells us that

yi = D −∆i. (62)

Critical exponents are thus encoded in the scaling dimensions of the operators at the conformal
points. Operators are gathered in three classes:
— Relevant operators have dimension ∆i < D;
— Marginal operators have dimensions ∆i = D;
— Irrelevant operators have dimension ∆i > D.

8.4 Scaling functions and critical exponents

We now explained why RG transformations and the existence of fixed points imply that the
existence of scaling functions and critical exponents. These exponents are going to be related
to the RG eigenvalues as we are going to explain.

• Universal scaling functions.

Let us go back to the basic definition of the RG transformations coding the way the partition
function decomposes. Let f({g}) be the free energy per site, so that the partition function for
N site is Z[{g}] = e−Nf({g}). We now prove that RG transformations imply that

f({g}) = eλ({g}) + λ−D f({gλ}),

with eλ({g}) a function, which is expected to be smooth, representing a local contribution to
the free energy. The factor λ−D comes from the fact that a RG transformation by a scale λ
reduces the number of sites from N to Nλ−D.

Recall that
Z[{g}] =

∑
[sλ]

Z ′([sλ]|{g}),

with Z ′([sλ]|{g}) = e−Neλ({g}) e−H([sλ]|{gλ}), so that

Z[{g}] = e−Neλ({g})
∑
[sλ]

e−H([sλ]|{gλ}).

Doing the sum of the block spin [sλ] but remembering that the number of blocks is Nλ−D proves
the result.

The function eλ({g}) is expected to be non singular because it comes from summing over
the spins inside the blocks (so it comes from finite sum of Boltzmann weights and hence cannot
developed singularities). As a consequence the singular part in the free energy transforms
homogeneously under RG transformations:

fsing({g}) = λ−D fsing({gλ}).

After a few iterations of the RG transformations, we may expect to be close to a fixed point.
There we can use the scaling variables. The relation then becomes

fsing({ui}) = λ−D fsing({λyi ui}). (63)
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Similarly for the correlation length

ξ({ui}) = λ ξ({λyi ui}). (64)

When iterating the RG transformations (λ increases) only the relevant and marginal variables
with positive eigen-values remain (See the section to corrections to scaling to look for the effect
of the irrelevant variables).

There are many ways to express these above relations. Let us for instance single out one of
the variable, say ut (recall that the set of {ui} refers to a collection of scaling variables uT , uh
associated to external parameters, the temperature, the magnetic field, etc...). Then let us pick

λ = |uT |−1/yT so that λyTuT = ±1 (or any other reference point u
(0)
T still in the perturbative

domain). Then we get

ξ(uT , {uj}j 6=T ) = |uT |−1/yT ξ(±1, { uj

|uT |yi/yt
}j 6=T ) =: |uT |−1/yT ξ̂±({ uj

|uT |yi/yT
}j 6=T ),

and

fsing(uT , {uj}j 6=T ) = |uT |D/yT fsing(±1, { uj

|uT |yi/yT
}j 6=T ) =: |uT |D/yT f̂±({ uj

|uT |yi/yT
}j 6=T ).

Recall that we only kept the relevant variables.
The simplest case if when there is only one relevant scaling variable. Let us still denote it

uT . Then, the correlation length ξ is a scaling function of that variable:

ξ(uT ) ∝ |uT |−1/yT .

This is the only scale of the problem (if we are dealing with an infinite volume system) and all
physical quantities can be expressed in terms this scale. That is: we can measure everything in
terms of the correlation length instead of the scaling variable uT .

In cases with only two relevant scaling variables, say uT and uh as in the Ising model, we
have

ξ(uT , uh) = |uT |−1/yT ξ̂±(
uh

|uT |yh/yT
),

and
fsing(uT , uh) = |uT |D/yT f̂±(

uh
|uT |yi/yT

).

The functions ξ̂±, f̂± are called “universal scaling functions”.

• Critical exponents.

The existence of critical exponents follows from these relations.
— At zero magnetic field uh = 0 and the correlation length scales like ξ ' |uT |−1/yT , so that

ν = 1/yT .

— The specific heat at zero magnetic field is ∂2f/∂u2
T |uh=0 ' |uT |D/yT−2, so that

α = 2−D/yT .
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— The spontaneous magnetization is ∂f/∂uh|uh=0 ' |uT |(D−yh)/yT so that

β = (D − yh)/yT .

— The magnetic susceptibility is ∂2f/∂u2
h|uh=0 ' |uT |(D−2yh)/yT so that

γ = (2yh −D)/yT .

— The magnetization at critical temperature is ∂f/∂uh|uT=0. To compute requires knowing the
behaviour of f̂± at infinity. Demanding that fsing(uT , uh) has finite limit as uT → 0 requires

that f̂±(x) ' xD/yh (so that the various powers of |uT | cancels). Hence ∂f/∂uh|uT=0 ' uD/yh−1
h ,

so that
δ = yh/(D − yh).

Since the renormalization eigenvalues yi are given by the dimensions of the operators at the
fixed point, all critical exponents are determined from these dimensions.

8.5 Corrections to scaling and finite size effects

Corrections to scaling comes from taking irrelevant variables into account. Finite size effects
are treated by looking at the RG transformation fixing the size of the system L fixed. Let us
concentrate on the finite size effects.

Suppose that we consider a critical system but in a finite size box of linear system L, say a
square box L×L×L. The free energy is going to depend on the coupling constants {g} and on
the size L. But, since L is dimension-full, the dependence of the free energy on L comes via the
ratio L/a with a the lattice microscopic mesh size – or alternatively the free energy depends on
the coupling constants {g} and on the number of lattice sites N = (L/a)D. Let us now imagine
implementing a RG transformation –say a block spin transformation– scaling a to λa at L fixed.
As explained above, this reduces the number of lattice sites –and hence of degrees of freedom–
from N to λ−DN , or equivalently L/a → λ−1 L/a. Hence, under a RG transformation, the
singular part of the free energy transforms as

fsing({g}, L/a) = λ−D fsing({gλ}, λ−1L/a),

with gλ the RG dressed coupling constants. Here we are implicitly making the hypothesis that
the coupling constants transform in the same way in infinite and finite volume. Similarly, the
correlation length transform as

ξ({g}, L/a) = λ ξ({gλ}, λ−1L/a).

As in infinite volume, we may expect that we approach a fixed point after a few iterations of
the RG transformations. There we can use the scaling variables and write the above relation as

fsing({ui}, L/a) = λ−D fsing({λyi ui}, λ−1 L/a),

ξ({ui}, L/a) = λ ξ({λyi ui}, λ−1 L/a).

As in infinite volume, the scaling form can found by singling out on variable, say uT , and
choosing the RG scale λ = |uT |−1/yT .
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Let us for instance assume that there is only one relevant scaling variable, again say uT .
Then the scaling relation for the correlation length, in finite volume, reads

ξ(uT , L/a) = |uT |−1/yT ξ̂±(|uT |1/yT L/a) = |uT |−1/yT ξ̂±(L/ξ∞),

where we introduce the (dimension-full) correlation length in infinite volume ξ∞ = a |uT |−1/yT .
In other words, the correction to infinite volume limit is obtained by comparing the only two
relevant macroscopic length: the size of the system and the system correlation length.

Similarly, the behaviour the finite size correction to the critical behaviour of the specific heat
can be obtained form the scaling relation fsing(uT , L/a) = λ−D fsing(λyT uT , λ

−1 L/a), in case
there is only one relevant variable. For the specific heat χ ∼ ∂2f/∂2uT this gives

χ ∼ |uT |−α ϕ±(L/ξ∞) = |uT |−α ϕ±(|uT |ν L/a),

with again ξ∞ = a |uT |−ν the infinite volume correlation length (with ν = 1/yT the correlation
length exponent). The infinite volume is recovered in the limit L→∞ so that ϕ(∞) is supposed
to be finite. At finite volume, there is no sharp phase transition (because there is then a finite
number of degrees of freedom and the partition is a polynomial in the Boltzmann weights),
and the heat capacity is non singular so that ϕ(x) ∼ xαyT for x → 0. As a consequence, the
heat capacity is not singular in finite volume, but it becomes a rounded fonction of uT with a
maximum value scaling as Lα/ν and a width scaling as L−1/ν .

8.6 Field transformations

We now look at how operators transform under the RG. This will give us access to the anomalous
dimensions.

• Block-spin transformation on observables.

Recall that an observable O is some kind of function (a measurable function), [s] → O([s])
on the configuration space. In a way similar to what has been done with the partition function,
RG transformations for observables O → Oλ can be defined using conditioned sums as follows

Oλ([sλ]) =
1

Z ′([sλ]|{g})
∑

[s]↓[sλ]

e−H([s]|{g})O([s]). (65)

Of course the transformed operators depend on both on the scale transformation factor λ and
on the coupling constants. Recall that we set Z ′([sλ]|{g}) = e−Neλ({g}) e−H([sλ]|{gλ}) and that
Z({g}) =

∑
[sλ] Z

′([sλ]|{g}). Hence by construction, the transformed operators are such that

1

Z({g})
∑
[sλ]

e−Neλ({g})e−H([sλ]|{gλ})Oλ([sλ]) =
1

Z({g})
∑
[s]

e−H([s]|{g})O([s]).

The l.h.s. is the expectation with respect to the transformed action with coupling constants
{gλ}, the r.h.s. is the original expectation with the original action with coupling constant {g}.
The relation thus tells us that expectations of the transformed operators Oλ with respect to the
transformed hamiltonian is the same as the expectation of the initial operator with the initial
hamiltonian:

〈Oλ〉{gλ} = 〈O〉{g}. (66)
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This is a simple but important equation.

• Local field transformations and mixing matrix.

Suppose now that the observable is a product of local observables Φk, localized at different
lattice points (say nk):

O =
∏
k

Φk(nk),

where each Φ is a local operator sensitive to the local configuration of the spin variables (hence
the definition of local operators involved open neighborhoods of their insertion points). It is
reasonable to expect that the transformed operators are still going to be quasi-local (because if
the rescaled lattice λa is much smaller than the correlation length ξ, the spins inside a block
behave almost collectively). It can thus be decomposed on the set of local operators so that we
have (or more precisely we expect)

Φλ(n) = Γλ({g}) · Φ(n/λ),

where Γλ is a matrix – coding for the decomposition of the transformed operator on the basis of
the original operators. It is called the mixing matrix. We wrote the above equation in a matrix
form: if we prefer to keep indices it reads Φλ

α(n) =
∑

σ[Γλ]σα Φσ(n/λ) where α, σ indexes all
possible local operators. The rescaling of the position of the operators comes about from the
same argument for the rescaling of the correlation length: After a block spin transformation the
dimensionless distances between the operators (counted by the number of lattice site to cross
to go from operator to the other) as been divided by λ. (Here n is the integer dimensionless
distance, counted in unit of lattice spacing).

The mixing matrices clearly depend both on the rescaling factor λ and on the coupling
constant, so that we should have more precisely written Γλ({g}). They inherit a composition
law —more precisely a cocycle structure— from that of the RG transformations. Applying
successively twice a block spin transformations on the operators implies

Γλ
′
(g) · Γλ(gλ

′
) = Γλλ

′
(g).

Of course Γλ=1(g) = I. At a fixed point Γλ acts multiplicatively and Γλ = λ−∆i on a scaling
field of dimension ∆i.

The same relation applies (locally) if we consider an operator made of products of operators
localized at different position, say ⊗kΦk(nk). Under RG transformations, each of this operators
transforms as above with an associated Γλk matrix. For operators and their expectations the
fundamental RG relation is thus the equality:

〈
∏
k

Γλk(g) · Φk(nk/λ)〉{gλ} = 〈
∏
k

Φk(nk)〉{g}. (67)

Again: this tells that the expectations of the transformed operators, at the transformed positions
and with the transformed action, is the original expectations. This is a fundamental relation
(the lattice analogue of the so-called Callan-Symanzik equation, see below).

The matrix Γλ(g) is called the matrix of anomalous dimensions. If we sit at a fixed point g∗
then it si transformed multiplicatively: Γλ

′
(g∗) · Γλ(g∗) = Γλλ

′
(g∗). The scaling operators Φi of

the fixed (conformal) theory are those diagonalising this matrix so that

Φλ
i (n) = Γλ(g∗) · Φi(n/λ) = λ−∆i Φi(n/λ),
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with ∆i the scaling dimension of Φi.

• Relation with the beta-functions.

The mixing matrices are not independent of the beta functions, because local operators are
dual to coupling constants. Let us slightly deformed the initial action/hamiltonian into

H({g})→ H({g + δg}) = H({g}) +
∑
α

δgα
∑
n

Φα(n).

To first order in δg the expectation values are

〈[· · · ]〉{g+δg} = 〈[· · · ]〉{g} −
∑
α

δgα
∑
n

〈[· · · ]Φα(n)〉{g}.

Let us now do a block spin transformation with scale factor λ. By taking into account factors
λD coming from the dilatation of the volume, consistency gives

Rλ(g + δg)α = Rλ(g)α +
∑
σ

δgσ λD [Γλ(g)]ασ + · · · ,

This means that the mixing matrix Γλ(g) is, up to a factor λD the derivative of the renor-
malization group, a non so-surprising result in view of the duality between local fields and
coupling constants. Let us define the so-called “matrix of anomalous dimensions” γ(g) (whose
interpretation will be further developed below) by

γ(g) = −λ∂λΓλ(g)||λ=1.

Recall the definition of the beta-function, β(g) = λ∂λg
λ|λ=1. Then, we have the relation

∂αβ
σ(g) = Dδσα − γσα(g). (68)

At a fixed point, it is reduces to the relation yi = D −∆i between the RG eigenvalues and the
dimensions of the scaling fields.

It is important to note that the fundamental relation 〈Oλ〉{gλ} = 〈O〉{g}, which involve
both for the coupling constants and the fields renormalization, codes the fact that these renor-
malization/redefinition ensures that the correlation functions are cut-off independent, at leat
asymptotically as a→ 0.

8.7 The perturbative renormalization group

The aim of this section is to compute the β-function perturbatively near a fixed point and to
analyse the consequences of this formula.

• One-loop beta-functions.

A fixed point is described by a conformal field theory. Let S∗ be its action. Away from the
critical point, the field theory action is a perturbation of S∗ by some operators Φi:

S = S∗ +
∑
i

gi a
∆i−D

∫
dDxΦi(x).
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The operators Φi are supposed to be relevant operators (as otherwise they don’t change the
long distance physics) of dimensions ∆i. The factors a∆i−D have introduced to make the action
explicitly dimensionless. The operators Φi are assumed to be normalized by their two point
function

〈Φi(x)Φj(y)〉∗ =
1

|x− y|2∆i
δi;j .

Here and below 〈· · · 〉∗ refers to the expectation values at the fixed point. A conformal field
theory is characterized by its operator product expansion (OPE):

Φi(x)Φj(y) =
∑
k

Ckij
|x− y|∆i+∆j−∆k

Φk(y) + · · · .

The coefficients Ckij are the structure constant of the OPE, they are determined by the 3-point
functions of the scaling operators at the conformal point (see Chapter 8). Existence of OPE
is expected in any conformal field theory but not really proved in full generalities (unless we
tautologically put the existence of OPEs as part of the axioms defining a conformal field theory).

We are going to prove that to lowest orders, the beta function is given by:

βk(g) := a∂ag
k = (D −∆k)g

k − SD
2

∑
ij

Ckij g
igj + · · · . (69)

We see that the one-loop beta-function is fully determined by the OPE structure of the conformal
fixed point. We even can absorb the factor SD in a redefinition of the coupling constant. The
rules is that all relevant operators compatible with the symmetries which can be generated under
OPE should be included in the beta function.

Let us now imagine computing the partition functions by perturbing the conformal field
theory. (We will deal with the correlation function a bit later. That is we first deal with the
‘measure’ and then with the observables.). It is defined by the action S,

Z × 〈O(z) · · · 〉 :=

∫
[Dϕ] e−S Z × 〈O(z) · · · 〉 =

∫
[Dϕ] e−S∗−

∑
i gi a

∆i−D
∫
dDxΦi(x)O(z) · · · .

We expand in perturbation theory up to second order (also called ”one-loop” order).

Z × 〈O(z) · · · 〉 = 〈O(z) · · · 〉∗ −
∑
i

gi a∆i−D
∫
dDx 〈Φi(x)O(z) · · · 〉∗

+
1

2!

∑
ij

gigj a∆i−Da∆j−D
∫
dDx1d

Dx2 〈Φi(x1)Φj(x2)O(z) · · · 〉∗ + · · ·

We insert operators O(z) · · · just to remember that we are dealing with the measure but do
not really take care of them yet (we shall do it just in a while when computing the matrix of
anomalous dimensions). The integrals are (of course) UV divergent because of the singularity
in the OPE (due to large fluctuations in the microscopic model). They are actually also IR
divergent, those divergency can be treated by defining the systems is in finite box. But all we
are interested in to understand the RG behavior closed to the fixed point are the UV divergences
so we will not care about the IR divergences. To cure the UV divergences we imagine that the
system is defined on a lattice so that the field insertions are always at a distance a away each
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other. That is: the integral have to be understand with a short distance cut-off (and implicitly
also an IR cut-off), namely:∫

|x1−x2|>a
dDx1d

Dx2 〈Φi(x1)Φj(x2) · · · 〉∗

The renormalization problem consists now in answering the following question: How to make
the coupling constant a-dependent such that the partition function is unchanged when slightly
dilating the cut-off a → λa with λ = 1 + ε close to one? This is equivalent to answering
the question: How make the coupling constants a-dependent in order to compensate for these
divergences? Thus let us replace gi → gi(a) and demands that the derivative of the partition
function vanishes. We get (keeping only the important terms, the others terms either do not
contribute or contribute but to higher orders to the beta functions or to higher terms in the
perturbative expansion such as ΦiΦj but already renormalized by the lower order terms in the
beta functions):

0 =
[
−
∑
i

(a∂ag
i) a∆i−D

∫
dDxΦi(x) −

∑
i

gi (∆i −D) a∆i−D
∫
dDxΦi(x)

−1

2

∑
ij

gigj a∆i−Da∆j−D
∫
dDx1d

Dx2 δ(|x1 − x2| − a) Φi(x1)Φj(x2) + · · ·
]

The last term comes from slightly moving the short distance cut-off (say, the Dirac δ-function
δ(|x1−x2|−a) comes form the derivative of the Heaviside function Θ(|x1−x2|−a) defining the
cut-off integrals6: this term reflects the block spin transformation). As a → 0 we can evaluate

the last integrals using the OPE Φi(x + a)Φj(x) ' Ckij

|a|∆i+∆j−∆k
Φk(x). The Dirac δ-function

δ(|x1−x2|−a) reduces the integral to the angular variables over the D-dimensional sphere with
volume aDSD, with SD = 2πD/2Γ(D/2). Hence to lowest order, the term linear in

∫
dDxΦk(x),

are

0 =
[
−
∑
i

(a∂ag
i) a∆i−D

∫
dDxΦi(x) −

∑
i

gi (∆i −D) a∆i−D
∫
dDxΦi(x)

−1

2

∑
ijk

Ckijg
igj a∆k−D SD

∫
dDxΦk(x) + · · ·

]
Demanding this to vanish yields the announced claim. Computing the beta function to higher
order is more complicated (in particular the short distance cut off we use is not very much
adapted and easy to deal with at higher orders).

• One-loop anomalous dimensions.

We now perturbatively compute the matrix of anomalous dimension. The computation is
very similar. As we know there is operator mixing. We have to consider families of operators

6Be careful with the signs: ∂aΘ(|x − y| − a) = δ(|x − y| − a), or equivalently
∫
|x−y|>a+da

−
∫
|x−y|>a =

−
∫
a+da>|x−y|>a
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Figure 7: Graph of a beta function with a nearby zero; Schematic representation of a RG flow
between two fixed points, from UV to IR.

Oα, of dimension ∆α, whose correlation function are perturbatively defined by the expansion

〈Oα(y) · · · 〉 = 〈Oα(y) · · · 〉∗ −
∑
α

gi a∆i−D
∫
dDx 〈Φi(x)Oα(y) · · · 〉∗

+
1

2!

∑
ij

gigj a∆i−Da∆j−D
∫
dDx1d

Dx2 〈Φi(x1)Φj(x2)O(y)α · · · 〉∗ + · · ·

We know look how to redefined them and the coupling constants,

gi → gi(a), Oα → a−∆α Γσα(a)Oσ,

such as to compensate the a-divergences. We adopt the same computational strategy as before.
The cut-off integral

∫
dDxΦi(x)Oα(z) yields Φi(y + a)Oα(y) which can be evaluated using the

OPE structure

Φi(y + a)Oα(y) ' Cσiα
|a|∆i+∆α−∆σ

Oσ(y).

Looking at the terms linear in Oσ in the a-derivative of the expectation of 〈Oα(y) · · · 〉 give to
lowest order

(a∂aΓ · Γ−1)σα + ∆α δ
σ
α + SD

∑
i

giCσiα = 0.

Hence, the matrix of anomalous dimensions at one-loop order is

γσα = ∆α δ
σ
α + SD

∑
i

giCσiα + · · · . (70)

Again it is completely determined by the OPE structure of the fixed point. Not that we have
γji = Dδji − ∂iβj as we should. Again higher order in the coupling constant are more difficult to
computed (and are not encoded in simple universal structures as the OPEs coefficients).

8.8 The Wilson-Fisher fixed point

Use the perturbative expression of the beta-function to perturbatively learn about new (nearby)
fixed point.

• Almost marginal perturbations.
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Consider perturbing a fixed point by an almost marginal operator Φ of dimension ∆ = D− ε
with ε � 1. The beta function is then of the form β(g) = ε g + O(g2). The one-loop terms
depend on the OPE structure at the fixed point. Suppose for simplicity the OPE is such that
Φ× Φ = Φ and that no other operator is generated by the RG. The beta function is then

β(g) = ε g − SD
C

2
g2 + · · · .

The flow is as described in the Figure. The remarkable fact is that this beta function vanishes
for g of order ε so that we can trust the approximate one-loop beta function. The new fixed
point is at point g∗,

g∗ =
1

SDC
ε+O(ε2),

whose sign depends on the sign of the OPE coefficient C. If g has the appropriate sign, the
large distance physics of the system is governed by this new fixed point. The new anomalous
dimension of the operator Φ at the new IR fixed point is obtained by linearizing te beta function
at the new fixed point (or by using the relation γ = D − ∂β): β(g∗ + δg) = −εδg + · · · . The
operator Φ is thus irrelevant at the new fixed point (as it should be because we are approaching
this new fixed point by the operator) with new dimension δ∗ = D + ε.

• The Wilson-Fisher fixed point.

We look at the φ4 theory with action

S =

∫
dDx

[ 1

2!
(∇φ)2 +

1

2
g2 φ

2 +
1

4!
φ4
]
,

which we view as a perturbation of the massless gaussian fixed point with action S∗ = 1
2

∫
dDx(∇φ)2.

In the Gaussian theory, perturbative expectation can be computed using Wick’s theorem. The
massless Green function in dimension D is

〈φ(x)φ(y)〉∗ =
1

|x− y|D−2
.

Thus φ has dimension (D − 2)/2 at the Gaussian fixed point. To avoid self Wick’s contract
we define the operator φ2 and φ4 by normal ordering. This amounts to subtract their vacuum
expectation (self contractions), so that

: φ2 := φ2 − 〈φ2〉∗, : φ4 := φ4 − 3〈φ2〉∗ φ2.

At the massless Gaussian fixed point, the dimension of the operator φn :=: φn : is n(D − 2)/2.
For 3 < D < 4, the operators φ2 =: φ2 : and φ4 =: φ4 : are the only even relevant operators. So
the action is

S = S∗ +

∫
dDx

[ 1

2!
g2 φ2 +

1

4!
g4φ4

]
.

We should actually also included (∇φ)2 which is marginal with dimension D but it has no effect
at one-loop. It is a simple exercice to compute the OPE between φ2 and φ4 to get:

φ2 × φ2 = 2 I + 4φ2 + φ4,

φ2 × φ4 = 12φ2 + 8φ4,

φ4 × φ4 = 24 I + 96φ2 + 72φ4.
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We did not write terms corresponding to operators φn with n > 4 or to higher derivatives. The
coefficients here comes from Wick’s theorem and thus from computing the number of different
pairings.

Let D = 4 − ε so that φ2 has dimension 2 − ε and φ4 has dimension 4 − 2ε (it is almost
marginal). The beta functions are (we absorb the factor S4/2 in the coupling constant):

β2 = a∂ag2 = 2 g2 − 4 g2
2 − 24 g2g4 − 96 g2

4 + · · ·
β4 = a∂ag4 = ε g4 − 72 g2

4 − 16 g2g4 − g2
2 + · · ·

For ε� 1 there is a nearby fixed with g∗4 = O(ε) and g∗2 = O(ε2):

g∗4 =
ε

72
+O(ε2), g2 = O(ε2).

The dimension of the operator φ2 at the new fixed point can be read from the linearization of
the beta function at this fixed point: β2 = (2− 24 g∗4)g2 + · · · = 2(1− ε

6)g2 + · · · . The operator
φ2 is coupled to the temperature so that g2 ∼ δT . We thus have yT = 2(1 − ε

6) and hence the
critical exponent

ν =
1

yT
=

1

2
+

ε

12
+O(ε2).

This is the critical exponent for the Ising model in dimension 4−ε which, once (naively) extended
to dimension 3 by setting ε = 1, is in reasonably good agreement with the exponent obtained by
numerical simulations. Other exponents are found by computing the dimension of the operators
(say φ which is coupled to the magnetic field) at the new fixed points. Those are obtained from
the OPE coefficient as explained above. We leave this computation as an exercise.

8.9 Scaling limits and renormalized theories

Constructing, or defining, the renormalized theory amounts to define the theory in the continuum
by taking the limit of vanish lattice spacing. As we will see this requires approaching simulta-
neously the critical surface is such way as to preserve the dimension-full correlation length. The
finit continuous theory is called the renormalized theory.

• Real space correlation length and scaling limit.

Suppose for a little while that there is only one relevant scaling variable uT . The (dimension-
less) correlation length diverges as ξ ' |uT |−1/yT when close to the fixed point (i.e. |uT | → 0).
The physical dimension-full correlation length thus behaves as a|uT |−1/yT with a the lattice
mesh size. If we aim at defining a continuous theory with a physical finite correlation length we
thus have to take the limit a → 0, |uT | → 0, with a|uT |−1/yT fixed. Equivalently we may take
the continuous limit a→ 0 fixing a mass scale (inverse of length scale):

m := a−1|uT |1/yT .

That is: to define the continuous field theory with fixed finite mass scale we have to simultane-
ously approach the critical hyper-surface, uT → 0 and uh → 0, as we take the small lattice size
limit. This is called a double scaling limit: a → 0, uT → 0 with a−1 |uT |1/yT fixed. Doing this
we fix a dimension-full correlation length ξ̂,

ξ̂ = m−1 = a |uT |−1/yT ,
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or equivalently, we scale ut appropriately as a→ 0,

uT (a) = |am|yT , as a→ 0.

Recall how we defined the continuous (scaling) limit of free random path in Chapter 2.
If ξ is the dimensionless correlation length, the two point functions behave as G(n) ' e−|n|/ξ

with ξ ' |u|−1/yT . Here |n| is the dimensionless distance, counted in unit of the lattice mesh,
so that the ‘physical distance’ is |x| = a|n|. The double scaling limit ensures that the existence
of the continuous two-point functions

G(x) = lim
a→0,n→∞
|x|=a|n| fixed

G(n) 'x large lim
a→0,n→∞
|x|=a|n| fixed

e−|n||u
1/yT
T ' e−m|x|.

If there are more than one relevant coupling constant, say two uT and uh, we have to take
simultaneously the scaling limit in order to approach the critical surface as a→ 0, that is

a→ 0, with mT = a−1 |uT |1/yT and mh = a−1 |uh|1/yh fixed.

The continuous theory will then depend on the two independent mass scales mT and mh, or
alternatively on one mass scale, say mT , and on the scale invariant ratio of the scaling variables,
say |uT |

yh

|uh|yT '
|T |yh
|h|yT .

We can alternatively write these scaling relations in terms of RG transformations. Recall that
the scaling variables scale homogeneously under RG transformation, say uT → uλT = λyT uT . If
we pick uT (a) = (amT )yT as initial condition as required for the double scaling limit, then the
running coupling constant at scale λ = `R/a is fixed, that is:

uT (a)λ=`R/a = (`RmT )yT .

The new length `R (which makes λ = `R/a dimensionless) can be chosen at will. It is called
the renormalization scale. In terms of generic coupling constants the scaling limit thus requires
taking the continuous limit a → 0 with coupling constants g(a) with fixed values at scale
λ = `R/a, i.e.

a→ 0, with g(a)λ=`R/a = gR fixed.

Imposing this condition imposes to the coupling constants g(a) to approach the critical hyper-
surface.

• Scaling limits of fields.

To define the continuous limit of expectation of products of operators we have to take their
anomalous dimension into account. Consider first scaling operators Φi of scaling dimension ∆i.
At the fixed point, the lattice two point functions are

〈Φi(n)Φi(m)〉latt
∗ =

1

|n−m|2∆i
.

The continuous theory is defined by taking the limit a → 0, n → ∞ with x = an fixed. This
demands to define the scaling operator in the continuous theory by

Φcont.
i (x) = lim

a→0
a−∆i Φlatt

i (n =
x

a
).
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This shows that to take the continuous limit we have to dress the field in a-dependent way
according to their anomalous dimensions. Hence, away from the fixed point we have to combine
this dressing with the running of the coupling constant g(a) explained above. The best we can
hope for, is that there exist matrices (acting on the set of operators) Γ(a) such that the following
limits:

lim
a→0,nk→∞
xk=ank fixed

〈
∏
k

Γ−1
k (a) · Ok(nk)〉latt

g(a) exist,

for any operators Ok. Alternatively, we look for a matrix Γ(a) (acting on the set of operators)
such the field operators in the continuous theory are defined from the lattice ones by

Ocont.(x) = lim
a→0,

g(a)λ=`R/a=gR fixed

Γ−1(a) · Olatt(n =
x

a
).

This relation is simply the (formal) generalization of the relation Φcont.(x) = a−∆i Φlatt
i (n = x/a)

in case of scaling fields.
We shall show that we can construct this matrix from the mxing matrices of the RG trans-

formation. Namely, choosing,
Γ(a) = Γλ=`R/a(g(a)),

ensures that the correlation functions 〈
∏
k Γ−1

k (a) ·Ok(nk)〉latt
g(a) are (formally) independent of the

lattice cut-off a, asymptotically as a→ 0 at xk = ank fixed.
If these limits exist, we could define the ‘renormalized’ continuous theory as (see below)

〈
∏
k

Ok(xk)〉RgR = lim
a→0

g(a)λ=`R/a=gR fixed

〈
∏
k

Γ−1
k (a) · Ok(nk =

xk
a

)〉latt
g(a).

Let us argue that the RG transformation (formally) ensures that such limits exist (if the
mixing matrices of the RG transformations can be sufficiently controlled, see previous section).
Recall from previous sections that RG transformations on fields yield that (or amounts to assume
that the following relation holds):

〈
∏
k

Γλk(g) · Ok(nk/λ)〉latt
{gλ} = 〈

∏
k

Ok(nk)〉latt
{g}

for a small enough, and where Γλ are the RG mixing matrices. Picking nk = xk
a and λ = `R/a

yields

〈
∏
k

Γ
λ=1/a
k (g) · Ok(

xk
`R

)〉latt
{gλ=`R/a} = 〈

∏
k

Ok(nk =
xk
a

)〉latt
{g}.

Choosing now the coupling constant to be g(a) such that g(a)λ=`R/a = gR fixed and multiplying
both sides of the equation by Γ−1

k (a) = [Γλ=`R/a(g(a))]−1 we get that

〈
∏
k

[Γ
λ=`R/a
k (g(a))]−1Ok(nk =

xk
a

)〉latt
{g(a)},

is independent of a, at least for a small (a→ 0) as claimed.

• Renormalized correlation functions.
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The renormalized continuous theory is thus (tentatively) defined by

〈
∏
k

Ok(xk)〉RgR := lim
a→0

g(a)λ=`R/a=gR

〈
∏
k

[Γ
λ=`R/a
k (g(a))]−1 · Ok(nk =

xk
a

)〉latt
g(a). (71)

It is fully defined from data encoding the RG transformation for critical system. Of course
proving rigorously that the limit exist requires more work (and this is clearly much beyond the
scope of this simple introduction). By construction, the renormalized expectations are functions
of the renormalized parameters gR but not of the lattice coupling constants g(a).

Renormalization procedures to construct continuous field theory encode all the information
about critical systems, and reciprocally RG transformations are the data needed construct con-
tinuous field theory. The relation between the renormalized and lattice correlation functions can
be inverted, so that

〈
∏
k

Ok(nk =
xk
a

)〉latt
g(a) ∼ 〈

∏
k

Γk(a) · Ok(xk)〉RgR , with g(a)λ=`R/a = gR,

for a → 0. Hence, the renormalized correlation functions code for the large distance behav-
ior of the lattice correlation functions, provided the coupling constants approach the critical
hypersurface (in the appropriate double scaling limit) as the distance are scaled away.

Let us assume that there is only one relevant variable uT . Then the scaling relation is uT (a) =
(am)yT with ξ̂ = m−1 the dimensionfull correlation length, which is the only renormalized
parameter / coupling constant of the theory. If Φi are scaling fields, then the RG mixing matrix
is Γλ = λ−∆i so that Γi(a) = Γλ=1/ma = (ma)∆i and

〈
∏
i

Φi(xi)〉latt
uT (a) ' 〈

∏
i

(ma)∆i Φi(xi)〉cont
ξ̂=1/m

.

This is again another way to express that Φcont
i = a−∆iΦlatt

i . It expresses that the correlation
length is the only relevant macroscopic length (if we are dealing the system in infinite volume).

• RG transformations and the Callan-Symanzik equation.

The renormalization scale `R at which we fixed the running constant is arbitrary: a change
in the renormalization scale `R → λ′`R can be compensate by a change in the renormalized
coupling constant gR → gλR since

g(a)λ=λ′`R/a = [g(a)λ=`R/a]λ
′

= gλ
′
R .

For instance, if the coupling constant is a scaling variable ut then ut(a)λ=λ′`R/a = (λ′`R/a)yt ut(a) =
(`Rmt)

yt and changing the scale λ′ amounts to change the renormalized mass.
This implies that the renormalized expectations also satisfy a RG invariance. Let us first

state this invariant relation and then prove it. Namely, the invariance says that

〈
∏
k

Γλ
′
k (gR) · O(

xk
λ′

)〉R
gλ
′
R

λ′ − independent. (72)

This equation reflects the fact that the renormalization length scale `R was not present in the
initial formulation of the problem. It expresses the covariance of the renormalized expectations
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w.r.t. to new arbitrary length scale. Taking the derivative w.r.t to λ′ gives the so-called Callan-
Symanzik equations

[ N∑
k=1

yk · ∂yk +
N∑
k=1

γ(k)(gR)−
∑
i

βi(gR)∂giR

]
〈O1(y1) · · · ON (yN )〉R{gR} = 0,

with, as before,
β(gR) = λ∂λg

λ
R|λ=1, γ(g) = −λ∂λΓλ(gR)|λ=1.

A (maybe not so usual) way to derive this equation is by using the composition law for the
RG mixing matrices. Let start as above with a RG invariance of the lattice expectations but
for scale dilatation λλ′ instead of λ′. We have (as above)

〈
∏
k

Γλλ
′

k (g) · Ok(nk/λλ′)〉latt
{gλλ′} = 〈

∏
k

Ok(nk)〉latt
{g}

Recall the composition law for the mixing matrices Γλ(g) · Γλ′(gλ) = Γλλ
′
(g). In particular for

λ = `R/a and g(a)λ=`R/a = gR, this becomes,

Γλ=`R/a(g(a)) · Γλ′(gR) = Γλ
′/a(g(a)).

Hence RG invariance now reads

〈
∏
k

Γλ=1/a(g(a)) · Γλ′(gR) · Ok(xk/λ′`R)〉latt
{gλ′R }

= 〈
∏
k

Ok(nk =
xk
a

)〉latt
{g(a)},

for a-small enough. Multiplying by [Γλ=1/a(g(a))]−1 as above, and taking (formally) the limit
a→ 0, we get

〈
∏
k

Γλ
′
k (gR) · Ok(

xk
λ′

)〉R{gλ′R }
= 〈
∏
k

O(xk)〉R{gR}.

as claimed.

• Solutions of the RG equations.

Let us assume that there is only one coupling constant g with beta-function β(g). Given the
beta-function, the RG flow equation is λ∂λg(λ) = β(g(λ)) whose solution (with initial condition
g(λ = 1) = g is:

λ = exp
[ ∫ g(λ)

g

dg′

β(g′)

]
.

Reciprocally this defines a mass scale m(g) solution of β(g)∂gm(g) = m(g):

m(g) = exp[

∫ g dg′

β(g′)

]
.

This is the only scale of the problem. It is an interesting exercise to compute it for a relevant
perturbation with β(g) = ε g + · · · or for a marginally relevant/irrelevant perturbation β(g) =
cg2 + · · · . See the exercise Section.

By construction the integrated form of the Callan-Symanzik equation is that given above.
Let us detailed it in the case of a two-point function of scalar fields and for a scalar matrix of
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anomalous dimension with only one coupling constant (i.e. there is no mixing and γ(g) is a pure
number). Let G be the two-point function:

G(|x− y|; g) = 〈Φ(x)Φ(y)〉Rg .

In this case the Callan-Symanzik equation reads

[r∂r + 2γ(g)− β(g)∂g]G(r; g) = 0.

Its solutions are of the form
G(r; g) = Z2(g) Ĝ(m(g)r),

with Z(g) solution of β(g)∂gZ(g) = γ(g)Z(g), explicitly Z(g) = e
∫ g γ(g′)

β(g′)dg
′
. It is called the wave

function renormalization factor. And m(g) clearly defines a mass scale. It is by construction
RG covariant in the sense that

G(r/λ; g(λ)) = Ẑ2(λ)G(r; g), for all λ,

with Ẑ(λ) = Z(g(λ)) solution of λ∂λ log Ẑ(λ) = γ(g(λ)). This equation allows to decipher the
IR and/or UV behaviours.

Simple, but important, examples of beta functions and solutions of the Callan-Symanzik
equations are detailed in the Exercise Section.

8.10 Perturbatively renormalized φ4 theory

We now look at the perturbative RG analysis of the φ4 theory. For 3 < D < 4 the two operators
φ2, φ4 are relevant and (∇φ)2 is marginal. We have to included them in the action which then
reads:

S = S∗ +

∫
dDx

[z0

2
(∇φ)2 +

m0

2
φ2 +

g0

4!
φ4
]
,

with S∗ the Gaussian massless action S∗ = 1
2

∫
dDx (∇φ)2. Alternatively, we may write

S =

∫
dDx

[1
2
Z0 (∇φ)2 +

1

2
m0 φ

2 +
1

4!
g0 φ

4
]

We have introduced a cut-off that we are going to represent as a momentum cut-off Λ = 1/a. To
renormalized the theory we have to find how to make all coupling constants Λ-dependent such
that the limit Λ→∞ exists. That is we have to find the functions Z0(Λ), m0(Λ) and g0(Λ) in
such way to cancel all possible divergencies in the limit Λ→∞.

Let G(N)(x1, · · · , xN ) be the N -point functions 〈φ(x1) · · ·φ(xN )〉. The functions Z0(Λ),
m0(Λ) and g0(Λ) are such the N -point correlation functions

Z
N/2
0 (Λ)G(N)({xj}; g0(Λ),m0(Λ),Λ), finite

have a finite limit when Λ → ∞ (here Z0, g0 and m0 are implicit functions the cut-off Λ). To
make these finite we have to identify physical parameters and re-express Z0, g0 and m0 in terms
of these physical parameters.

• Perturbative one-loop renormalization in D = 4.
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Let us do it explicitly, to first order (i.e. one-loop) in dimension D = 4. All correlation
functions are computed perturbatively using Wick’s theorem. We regularized them by introduc-
ing a momentum cut-off Λ. We just quote the results when needed. At one-loop the two-point
functions is (recall that Γ(2)(p) = G(2)(p)−1): [... Draw the diagrams...]

Γ(2)(p) = p2 +m0 +
g0

2
I2(m0; Λ) +O(g2

0),

where

IΛ
2 (m) =

∫
|p|<Λ

dDp

(2π)D
1

p2 +m2
=

Λ2

(4π)2
− m2

(4π)2
log(

Λ2

m2
) +O(1).

This divergence may be cancelled by setting

m2 = m2
0 +

g0

2

( Λ2

(4π)2
− m2

(4π)2
log(

Λ2

µ2
)
)

+O(g2
0),

where µ is an arbitrary mass scale. Since I2 does not depend on the external momentum, there
is no p-dependent divergencies to cancel and hence there is not need for a renormalization of
Z0, i.e.

Z0 = 1 +O(g2
0).

To compute the four point function is a bit more complicated. According to the perturbative
Feynman graphs, its structure is: [... Draw the diagrams...]

Γ(4)(pj) = g0 −
g2

0

2

[
IΛ

4 (p1 + p2;m0) + IΛ
4 (p1 + p3;m0) + IΛ

4 (p1 + p4;m0)
]

+O(g3
0).

The function IΛ
4 (p;m) are given by a Feynman diagram and can be computed to be (See the

Exercise Section)

IΛ
4 (p;m) =

∫
|k|<Λ

dDk

(2π)D
1

(k2 +m2)((p+ k)2 +m2)
=

1

(4π)2
log(

Λ2

m2
) +O(1).

This divergence may be cancelled by setting

g = g0 −
3

2
g2

0

( 1

(4π)2
log(

Λ2

µ2
) +O(1)

)
+O(g3

0).

where again we have introduced the arbitrary mass scale. Notice the possible extra O(1) term
which is related to the way we choose to defined the physical coupling constant. The statement
of renormalizability is now that if m0, g0 are expressed in terms of m and g, then all correlation
functions are finite in the limit Λ→∞ (at m and g fixed).

The procedure becomes simpler (especially at higher orders) if we adopt a slightly different
strategy. We start as above from the action with Z0, m0 and g0 but we write

m2
0 = m2

R + δm2, g0 = gR + δg, Z0 = 1 + δz,

and we treat the term δm2, δg and δz as perturbation, so that the Feynman propagator con-
tains the mass m. The corrections δm2, δg and δz are perturbatively computed to cancel the
divergences. The 2 and 4 point functions are then (at one-loop order)

Γ(2)(p) = p2 +mR +
(g

2
IΛ

2 (mR) + δm2 + p2δz
)

+O(g2
R),

Γ(4)(pj) = gR +
(
−
g2
R

2

[
IΛ

4 (p1 + p2;mR) + IΛ
4 (p1 + p3;mR) + IΛ

4 (p1 + p4;mR)
]

+ δg
)

+O(g3
R).
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As above, the 2-point function is made finite (renormalized) by setting

δz = 0 +O(g2
R),

δm2 =
gR
2

(
− Λ2

(4π)2
+

m2
R

(4π)2
log(

Λ2

µ2
)
)

+O(g2
R).

The renormalized 2-point functions Γ
(2)
R is defined by the limit Λ→∞ at m2

R and gR fixed. It is

Γ
(2)
R (p) = p2 +m2

phys +O(g2
R) with the physical mass is (the p-dependance is more complicated

at higher order):

m2
phys = m2

R + gR
m2
R

2(4π)2
log(

m2
R

µ2
) +O(g2

R).

The 4-point function is renormalized by setting as above (we do not include the extra O(1) term
because it is included in choosing m2

R not egal to m2
phys)

δg = g2
R

3

2(4π)2
log(

Λ2

µ2
) +O(g3

R).

The renormalized 4-point function is similarly defined by the limit Λ→∞ at m2
R and gR fixed.

It is (of course) finite and Γ
(4)
R (pj) = gR−

g2
R
2

∑4
k=2 I

R
4 (p1 + pk;mR) +O(g3

R). It may be checked

(by power counting) that this is enough to make all N -point function Γ(N) finite at one-loop.
The renormalized N -point of course dependent on gR and mR but also on the arbitrary scale µ.

• Renormalization of the φ4 theory.

The renormalizability of the φ4 theory is that this construction extends to arbitrary higher
order. The logic is the same as above. We look for three functions Z0(Λ), m0(Λ) and g0(Λ) such

the N -point correlation functions Z
N/2
0 G({xj}; g0,m0,Λ) have a finite limit when Λ→∞ (here

Z0, g0 and m0 are implicit functions the cut-off Λ). Since there is three functions, fixing them
requires imposing three conditions: two conditions involve the two-point functions for Z0 and
m0 and the third involve the 4-point function for g0 at some reference momenta. For instance,
we can choose

Γ(2)(p)|p2=−mR = 0;

∂Γ(2)(p)

∂p2
|p2=µ2 = 1;

Γ(4)(pi)|pi=pref
i

= gR, |pref
1 + pref

2 |2 = µ2.

These conditions are parametrized by the renormalized coupling constant mR and gR. The
need for references momenta introduce the reference scale µ, called the renormalization scale.
There are some freedom in choosing these renormalization conditions. Specifying them specify
a (so-called) ‘renormalization scheme’. Changing them amounts to reparametrization of the
renormalized coupling constants (and the theory is covariant under those reparametrization).
The renormalized correlation functions are then defined as

G
(N)
R ({xj};mR, gR, µ) = lim

Λ→∞
Z
N/2
0 G(N)({xj}; g0,m0,Λ).
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This is analogue of the equation above defining renormalized correlation functions from the lat-
tice data, with Λ playing the role of the (inverse of the) lattice cut-off a and the renormalization
scale µ that of the scale `R. To prove that this procedure works to all orders is of course much
more complicated than the one-loop computation we did!

The renormalization scale is arbitrary (as was `R in the previous section) and there is an
equation coding for the covariance under changes of µ. It follows by writing that the ‘bare’
correlation functions G(N)({xj}; g0,m0,Λ) are independent of µ. Indeed the wave function
renormalization Z0 dependence of the parameter and we may choose to express it as function of
mR, gR and µ. Then we have

µ∂µ

[
Z
−N/2
0 (mR, gR, µ) G

(N)
R ({xj};mR, gR, µ)

]
= 0.

This is the Callan-Symanzik equation we discussed in previous section.

• Back to the effective potential

The renormalization procedure can also be implemented —or read— on the effective poten-
tial. Recall that in a previous Chapter we computed the effective potential for the φ4 theory.
We got, to one-loop order, that (see the formula eq.(54) in which we set ~ = 1)

V eff
1−loop(ϕ) =

1

2!
AΛ ϕ

2 +
1

4!
BΛ ϕ

4 +
1

(8π)2
V ′′(ϕ) log

[V ′′(ϕ)

µ2

]
,

with V (ϕ) =
m2

0
2 ϕ

2 + g0

4!ϕ
4, the bare potential, and

AΛ = m2
0 +

g0

2

( Λ2

(4π)2
− m2

0

(4π)2
log(

Λ2

µ2
)
)

+O(g2
0),

BΛ = g0 − g2
0

3

2(4π)2
log(

Λ2

µ2
) +O(g3

0)

All the diverging terms are in the terms of degree 2 or 4 in ϕ. They can thus be absorbed in a
renormalization of the mass and the coupling constant. So, let m2

0 = m2
R+δm2 and g0 = gR+δg.

As above, the one-loop effective potential is made finite by choosing

δm2 = −gR
2

( Λ2

(4π)2
−

m2
R

(4π)2
log(

Λ2

µ2
)
)

+O(g2
R),

δg = +g2
R

3

2(4π)2
log(

Λ2

µ2
) +O(g3

R)

These are —of course— the exact counter-terms that we had to choose for renormalizing the
2 and 4 point vertex functions at one loop. The renormalized one-loop effective potential then
reads

V eff;R
1−loop(ϕ) = VR(ϕ) +

1

(8π)2
V ′′R(ϕ) log[

V ′′R(ϕ)

µ2
],

with VR(ϕ) = 1
2!m

2
Rϕ

2 + 1
4!gRϕ

4. By looking at the ϕ2 term we can read what the physical mass
is:

m2
phys = m2

R

(
1 +

2

(8π)2
gR log

(m2
R

µ2

)
+O(g2

R)
)
.
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It of course coincides with that found by looking at the 2-point vertex function.
In other words, the same procedure works for renormalizing the effective action —to be more

precise we should had looked at the complete effective action, not only at the effective potential.
This had to be expected because the effective action is the generating function of the vertex
functions.
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8.11 Exercises

• Exercise 8.11.1: Ising on the triangular or hierarchical lattice.

[... Cf. the exercise booklet...]

• Exercise 8.11.2: Correction to scaling.

The aim of this exercise is to understand how the irrelevant variables induce sub-leading
corrections to scaling behaviours. To simplify matter, let us suppose that the critical system
possesses only one relevant scaling variable, say ut with RG eigen-value yt > 0, and one irrelevant
variable, say uirr with RG eigen-value yirr < 0. (Of course generic physical systems have an
infinite number of irrelevant variables but considering only one will be enough to understand
their roles).
(i) By iterating RG transformations as in the main text, show that the singular part of the free
energy can be written as

fsing = |ut|D/yt ϕ±(u0
irr |ut||yirr|/yt),

where ϕ± are functions possibly different for ut > 0 or ut < 0, and u0
irr is the initial value (before

RG transformations) of the irrelevant coupling.
(ii) Argue (without formal proof) that the functions ϕ± may raisonnably be expected to be
smooth.
Under this assumption, prove that

fsing = |ut|D/yt
(
A0 +A1 u

0
irr |ut||yirr|/yt + · · ·

)
,

where A0 and A1 are non-universal constants.

• Exercise 8.11.3: Change of variables and covariance of RG equations.

Let us consider a theory with a finite number of relevant coupling constants that we generi-
cally denote {gi}. Let us write the corresponding beta functions as (no summation in the first
term)

βi(g) = yig
i − 1

2

∑
jk

Cijkg
jgk + · · · .

(i) Prove that, if all yi are non-vanishing, then there exist a change of variables from {gi} to
{ui}, with ui = gi + O(g2), which diagonalizes the beta functions, up to two loops, i.e. such
that βi(u) = yiu

i +O(u3).
(ii) Prove that, if all yi are zero, then the second and third Taylor coefficient are invariant under
a change of variables from {gi} to {ui}, with ui = gi +O(g2).
That is: For marginal perturbation, the second and third loop beta function coeffcients are
independent on the renormalization scheme (alias on the choice of coordinate in the coupling
constant space)
(iii) Let expand the beta functions to all orders in the coupling constants:

βi(g) = yig
i −
∑
n>0

∑
j1,··· ,jn

Cij1,··· ,jng
j1 · · · gjn .

Prove that, if there is no integers pi, pj such that piyi − pjyj ∈ Z, for i 6= j (in such cases, one
says they that there is non resonances), then there exists a change of variables from {gi} to
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{ui}, with ui a formal power series in the gi’s, with ui = gi+O(g2), which diagonalizes the beta
functions as a formal power series in the ui’s.
That is: There exist scaling variables, at least as formal power series.

• Exercise 8.11.4: Explicit RG flows.

The aim of this exercise is to study simple, but important, examples beta functions and
solutions of the Callan-Symanzik equation.
(i) Consider a field theory with only one relevant coupling constant g and suppose that its beta
function is β(g) = yg.
Show that the RG flow, solution of λ∂λg(λ) = β(g(λ)) is g(λ) = g1 λ

y.
Show that the RG mass scale, solution of β(g)∂gm(g) = m(g) is m(g) = m∗ g

1/y.
Consider the two point function G(r; g) of a scaling field Φ of scaling dimension ∆, i.e. G(r, g) =
〈Φ(r)Φ(0)〉g. Prove (using the Callan-Symanzik equation) that

G(r; g) = r−2∆ F (m(g)r),

with m(g) the RG mass scale defined above.
(ii) Consider a field theory with only one marginal coupling constant g and suppose that its beta
function is β(g) = cg2 (c > 0 corresponds to marginally relevant, c < 0 to marginally irrelevant).
Prove that the RG flow, solution of λ∂λg(λ) = β(g(λ)) is g(λ) = gµ/(1− cgµ log(λ/µ)).
Notice that gλ → 0+, if c < 0, while gλ flows up if c > 0, as λ → ∞ (with gµ > 0 initially).
Prove that the RG mass scale, solution of β(g)∂gm(g) = m(g) is m(g) = m∗ e

−1/cg.
Notice that this mass scale is non perturbative in the coupling constant.
Consider the two point function G(r; g) of a scaling field Φ whose matrix of anomalous dimension
is γ(g) = ∆+γ0g. Prove (using the Callan-Symanzik equation) that G(r/λ; g(λ)) = Z(λ)2G(r, g)
with

Z(λ) = const. λ∆ [g(λ)]γ0/c.

Deduce from this that, in the case marginally irrelevant perturbation (i.e. c < 0) and asymp-
totically for r large,

G(r; ga) ' const. r−2∆ [log(r/a)]γ0/c.

This codes for logarithmic corrections to scaling.

• Exercise 8.11.5: Anomalous dimensions and beta functions.

(i) Prove the relation γσα(g) = Dδσα − ∂αβσ(g) between the matrix of anomalous dimensions and
the beta functions.
(ii) Give two proofs of the formula γσα(g) = ∆αδ

σ
α + SD

∑
i g
iCσiα for the matrix of anomalous

dimensions to first order in perturbation theory (Here gi are the perturbative coupling constant
and SD the volume of the D-dimensional unit sphere): one proof comes from using the previous
result, the second proof comes from analysing the perturbative expansion of the correlation
functions.

• Exercise 8.11.6: Renormalisation of φ3 in D = 6.

[... Cf. the exercise booklet...]
• Exercise: Current-current perturbations and applications.

[...To be completed...]
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• Exercise: Disordered random bound 2D Ising model.

[...To be completed...]
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9 Miscellaneous applications

9.1 The XY model

• The physics of the XY model and the Kosterlitz-Thouless transition

...... Bla Bla....

The rest of this section is a problem whose aim is to study the XY model using techniques
from lattice statistical physics and from statistical field theory. The problem is divided in three
parts:
IA/IB- The XY model on a lattice;
II- The role of vortices in the XY field theory;
IIIA/IIIB- The XY field theory and the sine-Gordon model.
The lattice models we shall consider are defined on the two dimensional square lattice Λ with
mesh size a, Λ = (aZ)2, that we shall view as embedded in the Euclidean plane. statistical field
theories we shall consider are defined in the 2D Euclidean space R2.

• I- The XY model on a lattice

The XY model is a statistical spin model with spin variables ~Si, on each site i of the lattice
Λ, which are two component unit vectors, ~S2

i = 1. The energy of a configuration [~S] is defined

as E[~S] = −
∑

[ij]
~Si · ~Sj where the sum runs over neighboor points on Λ. Parametrising the unit

spin vectors ~Si by an angle Θi defined modulo 2π, we write the configuration energy as

E[~S] = −
∑
[ij]

cos(Θi −Θj).

The partition function is Z =
∫

[
∏
i
dΘi
2π ] exp

(
β
∑

[i,j] cos(Θi−Θj)
)

with β = 1/kBT the inverse

temperature.

• IA- High temperature expansion

The aim of this section is to study the high temperature (β � 1) behavior of the XY model.
It is based on rewriting the Boltzmann sums in terms of dual flow variables.

IA-1 Explain why we can expand eβ cos Θ in series as eβ cos Θ = I(β)
(
1 +

∑
n 6=0 tn(β)einΘ

)
,

where I(β) and tn(β) are some real β-dependent coefficients. We set t0(β) = 1.
IA-2 By inserting this series in the defining expression of the partition function and by

introducing integer variables u[ij] on each edge [ij] of the lattice Λ, show that the partition

function can be written as Z = I(β)Ne · Ẑ with Ne the number of edges and

Ẑ =
∑

[u], [∂u=0]

∏
[ij]

tu[ij]
(β),

where the partition sum is over all configurations [u] of integer edge variables u[ij] such that, for
any vertex i ∈ Λ, the sum of these variables arriving at i vanishes, i.e.

∑
j u[ij] = 0.

Remark: The variables u are attached to the edge of the lattice and may be thought of as
‘flow variables’. The condition that their sum vanishes at any given vertex is a divergence free
condition. The divergence at a vertex i of a configuration [u] is defined as (∂u)i :=

∑
j u[ij].
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IA-3 Let i1 and i2 be two points of Λ and 〈~Si1 · ~Si2〉 be the two-point spin correlation function.
Explain why 〈~Si1 · ~Si2〉 = Re〈e−i(Θi1−Θi2 )〉.
Show that,

〈e−i(Θi1−Θi2 )〉 =
1

Ẑ
·

∑
[u]

[∂u=δ·;i1−δ·;i2 ]

∏
[ij]

tu[ij]
(β),

where the sum is over all integer flow configurations such that their divergence is equal to +1
at point i1, to −1 at point i2, and vanishes at any other vertex.

IA-4 Show that tn(β) = t−n(β) ' βn

2nn! as β → 0.
Argue, using this asymptotic expression for the tn(β)’s, that the leading contribution to the spin
correlation functions at high temperature comes from flow configurations with u = 0 or u = ±1
on each edge of the lattice.

IA-5 Deduce that, at high temperature, the correlation function 〈~Si1 · ~Si2〉 decreases expo-
nentially with the distance between the two points i1 and i2.
Show that the correlation length behaves as ξ ' a/ log(2/β) at high temperature.

• IB- Low temperature expansion

The aim of this section is to study the low temperature (β � 1) behavior of the XY model.
It consists in expanding the interaction energy cos(Θi−Θj) to lowest order in the angle variables
so that we write the configuration energy as (up to an irrelevant additive constant)

E[~S] = const.+
1

2

∑
[i,j]

(Θi −Θj)
2 + · · · .

This approximation neglects the 2π-periodicity of the angle variables.
IB-1 Argue that the higher order terms in this expansion, say the terms proportional to∑

[i,j](Θi −Θj)
4, are expected to be irrelevant and can be neglected.

IB-2 Write the expression of the partition function Z of the model within this approximation.
Explain why, in this approximation, the theory may be viewed as a Gaussian theory.

IB-3 Let Gβ(x) be the two-point function of this Gaussian theory. Show that Gβ(x) =
β−1G(x) with

G(x) =

∫ +π/a

−π/a

d2p

(2π/a)2

eip·x

4− 2(cos ap1 + cos ap2)
,

with p1, p2 the two components of the momentum p and a the lattice mesh.
IB-4 Let i1 and i2 be two points on Λ and x1 and x2 be their respective Euclidean positions.

Let Cα(x1, x2) = 〈eiα(Θi1−Θi2 )〉 with α integer. Show that

Cα(x1, x2) = e
−α

2

β

(
G(0)−G(x1−x2)

)
.

IB-5 Explain why G(x) is actually IR divergent7 and what is the origin of this divergence,
but that G(0)−G(x) is finite for all x. Show that

G(0)−G(x) =
1

2π
log(|x|/a) + const.+O(1/|x|).

7So that, when defining G(x), we implicitly assumed the existence of an IR cut-off, say |p| > 2π/L with L the
linear size of the box on which the model is considered.
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IB-6 Deduce that the correlation functions Cα decrease algebraically at large distance ac-
cording to

Cα(x1, x2) ' const. (a/|x1 − x2|)α
2/2πβ.

Compare with the high temperature expansion.

• II- The role of vortices in the XY field theory

The previous computations show that the model is disordered at high temperature but
critical at low temperature with temperature dependent exponents. The aim of this section is
to explain the role of topological configurations, called vortices, in this transition.

We shall now study the model in continuous space, the Euclidean plane R2, but with an
explicit short distance cut-off a. We shall consider the XY system in a disc of radius L.

In the continuous formulation, the spin configurations are then maps Θ from R2 to [0, 2π]
modulo 2π. The above Gaussian energy is mapped into the action

S0[Θ] =
κ

2

∫
d2x(∇Θ)2,

with a coefficient κ proportional to β.
II-1 Argue that the coefficient κ cannot be absorbed into a rescaling of the field variable Θ?
II-2 A vortex, centred at the origin, is a configuration such that Θ±v (z) = ±Arg(z), with z

the complex coordinate on R2, or in polar coordinates8, Θ±v (r, φ) = ±φ.
Show that Θ±v is an extremum of S0 in the sense that ∇2Θ±v = 0 away from the origin.
Show that

∮
C0
dΘ±v = ±2π for C0 a small contour around the origin.

II-3 Let a0 be a small short distance cut-off and let D(a0) be the complex plane with small
discs of radius a0 around the vortex positions cut out. Prove that, evaluated on Θ±v , the action
S0 integrated over D(a0) (with an IR cut-off L) is

S
(1)
vortex =

κ

2

∫
D(a0)
d2x (∇Θ±v )2 = πκ log

[
L/a0

]
.

Give an interpretation of the divergence as a0 → 0.
II-4 What is the entropy of single vortex configurations? Show that the contribution of single

vortex configurations to the free energy is

e−F
(1)
vortex ' const.

( L
a0

)2
e−πκ log[L/a0]

Conclude that vortex configurations are irrelevant for πκ > 2 but relevant for πκ < 2.

• III- The XY field theory and the sine-Gordon model

The aim of this section is to analyse this phase transition using renormalization group argu-
ments via a mapping to the so-called sine-Gordon field theory.

We shall consider a gas of vortices. The field configuration Θ
(M)
v for a collection of M vortices

of charges qa centred at positions xa is given by the sum of single vortex configuration:

Θ(M)
v =

M∑
a=1

qa Arg(z − za).

8We recall the expression of the gradient in polar coordinates: ∇Θ = (∂rΘ,
1
r
∂φΘ). The Laplacian is ∇2F =

1
r
∂r(r∂r)F + 1

r2
∂2
φF .
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We shall admit that the action of such configuration is

S
(M)
vortex = −2π(

κ

2
)
∑
a6=b

qaqb log
( |xa − xb|

a0

)
+ 2π(

κ

2
)(
∑
b

qb)
2 log

( L
a0

)
+
∑
a

βεc,

where εc is a ‘core’ energy (which is not taken into account by the previous continuous descrip-
tion).

• IIIA- Mapping to the sine-Gordon theory

This mapping comes about when considering a gas of pairs of vortices of opposite charges
±, so that the vortex system is neutral (

∑
a qa = 0). We denote x+

j (resp. x−j ) the positions of
the vortices of charge + (resp. −).

The vortex gas is defined by considering all possible vortex pair configurations (with arbitrary

number of pairs) and fluctuations around those configurations. We set Θ = Θ
(2n)
v + θsw and

associate to each such configuration a statistical weights e−S with action given by

S = S
(2n)
vortex[x+

j , x
−
j ] + S0[θsw],

with S0[θsw] the Gaussian action κ
2

∫
d2x(∇θsw)2. We still assume a short-distance cut-off a.

IIIA-1 Write the expression of the action S
(2n)
vortex[x+

j , x
−
j ] for a collection of n pairs of vortices

at positions x±j , j = 1, · · · , n.
IIIA-2 Argue that the partition function of the gas of vortex pairs is given by the product

Z = Zsw × Zvortex with Zsw the partition function for the Gaussian free field θsw and

Zvortex =
∑
n≥0

µ2n

n! · n!
×
∫

(
n∏
j=1

d2x+
j

n∏
j=1

d2x−j )

∏
i<j(|x

+
i − x

+
j |/a)2πκ(|x−i − x

−
j |/a)2πκ∏

i,j(|x
+
i − x

−
j |/a)2πκ

,

with µ =
(
a0
a

)πκ
e−βεc .

IIIA-3 The aim of the following questions is to express Zvortex as a path integral over an
auxiliary bosonic field ϕ. Let S̃κ[ϕ] = 1

2κ

∫
d2x(∇ϕ)2 be a Gaussian action. Show that, computed

with this Gaussian action,

〈ei2πϕ(x)e−i2πϕ(y)〉S̃κ =
1

|x− y|2πκ
.

Hint: The Green function associated to the action S̃κ[ϕ] is G(x, y) = − κ
2π log

(
|x− y|/a

)
.

IIIA-4 What is the scaling dimension (computed with the Gaussian action S̃κ[ϕ]) of the
operators (∇ϕ)2 and cos(2πϕ)?
Deduce that the perturbation cos(2πϕ) is relevant for πκ < 2 and irrelevant for πκ > 2.
Is the the perturbation (∇ϕ)2 relevant or irrelevant?

IIIA-5 Show that Zvortex can be written as the partition function of Gaussian bosonic field
with action SsG[ϕ],

Zvortex =

∫
[Dϕ] e−SsG[ϕ],

where the action SsG is defined as

SsG[ϕ] =

∫
d2x
[ 1

2κ
(∇ϕ)2 − 2µ cos(2πϕ)

]
.
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This is called the sine-Gordon action.
Hint: Compute perturbatively the above partition function as a series in µ while paying attention
to combinatorial factors.

• The renormalization group analysis

IIIB-1 We now study the renormalization group flow of the action SsG for κ close to the
critical value κc = 2/π. We let κ−1 = κ−1

c − δκ and write

SsG[ϕ] = S̃κc [ϕ]−
∫
d2x
[1

2
(δκ)(∇ϕ)2 + 2µ cos(2πϕ)

]
Show that, to lowest order, the renormalization group equations for the coupling constants

δκ and µ are of the following form:

˙(δκ) = `∂` (δκ) = b µ2 + · · ·
µ̇ = `∂` µ = a (δκ)µ+ · · ·

with a and b some positive numerical constants.
Hint: It may be useful to first evaluate the OPE of the fields (∇ϕ)2 and cos(2πϕ).

IIIB-2 We redefine the coupling constants and set X = a (δκ) and Y =
√
ab µ such that the

RG equations now reads Ẋ = Y 2 and Ẏ = XY .
Show that Y 2 −X2 is an invariant of this RG flow.
Draw the RG flow lines in the upper half plane Y > 0 near the origin.

IIIB-3 We look at the flow with initial condition XI < 0 and YI .
Show that if Y 2

I −X2
I < 0 and XI < 0, then the flow converges toward a point on the line Y = 0.

Deduce that for such initial condition the long distance theory is critical. Compare with section
I-B.

IIIB-4 Show that if Y 2
I −X2

I > 0 and XI < 0, the flow drives X and Y to large values.
Let Y 2

0 = Y 2
I −X2

I with Y0 > 0. Show that the solution of the RG equations are

log
( `
a

)
=

1

Y0

[
arctan

(X(`)

Y0

)
− arctan

(XI

Y0

)]
.

IIIB-5 The initial condition XI and YI are smooth functions of the temperature T of the XY
model. The critical temperature Tc is such that XI + YI = 0. We take the initial condition to
be near the critical line XI + YI = 0 with XI < 0. We let XI = −YI(1 + τ) in which τ � 1 is
interpreted at the distance from the critical temperature: τ ∝ (T − Tc).
For τ > 0, we define the correlation length as the length ξ at which X(`) is of order 1.
Why is this a good definition?
Show that

ξ/a ' const. econst./
√
τ .

IIIB-6 Comment and discuss.

9.2 Self avoiding walks

...... Bla Bla....

The rest of this section is a problem whose aim is to study the self-avoiding walks using
techniques from lattice statistical physics and from statistical field theory. This problem deals
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with statistical properties of random curves (say polymers) and their connections with statistical
field theory. It contains two parts (which are almost independent):
I- Non-interacting paths and their scaling limit;
II- Self-avoiding walks and the O(n→ 0) model.

All lattice models we shall consider are defined on the D dimensional square lattice Λ with
mesh size a: Λ = (aZ)D. We let ej , j = 1, · · · , D be a basis of orthornormal vectors in RD, so

that points x ∈ Λ are x = a
∑D

j=1 njej with nj integers.
A path Γ in Λ is an ordered collection of neighbour points in Λ, i.e. Γ = (x0, · · · ,xi, · · · ,x|Γ|)

with xi,xi+1 neighbour on the lattice. We let |Γ| be the number of bonds of the path Γ, so that
a|Γ| is its length. A loop in Λ is a closed path with x0 = x|Γ|.

A self avoiding walk Γsaw is a path such that all xi are distinct9.
The statistical field theories we shall consider are defined in RD.

• I- Non-interacting paths and their scaling limit

Non-interacting paths are random paths whose statistics is specified by assigning a Boltz-
mann weight wΓ := µ|Γ| to each path Γ, with µ a real number (µ > 0). Let x ∈ Λ. We shall deal
with paths Γ starting at the origin 0 and ending at point x, i.e. paths Γ = (x0, · · · ,xi, · · · ,x|Γ|)
with x0 = 0 and x|Γ| = x. Let Z(x) be the partition function conditioned on paths from 0 to x:

Z(x) =
∑

Γ: 0→x

µ|Γ|.

The probability of a given path Γ from 0 to x is µ|Γ|/Z(x).

• IA: The discrete lattice model

IA-1: Show that

Z(x) =
∑
N≥0

µN W free
N (x) = δx;0 +

∑
N>0

µN W free
N (x),

with W free
N (x) the number of paths from 0 to x with N bonds.

IA-2: Show (without long computation) that Z(x) satisfies the following difference equation:

Z(x) = δx;0 + µ

D∑
j=1

(
Z(x + aej) + Z(x− aej)

)
.

IA-3: Compute the Fourier transform of Z(x) and give an explicit expression of Z(x) as an
integral over the Brouillon zone.

IA-4: Let ∆dis. be the discrete Laplacian and write ∆dis. = Θ − 2D I with Θ the lattice
adjacency matrix and I the identity matrix. We view Θ as acting on functions via (Θ · f)(x) =∑D

j=1

(
f(x + aej) + f(x− aej)

)
. Show that:

Z(x) = 〈0| 1

I− µΘ
|x〉,

9Hence, none of the points of a self-avoiding walk Γsaw is visited twice by Γsaw.
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with |x〉 the δ-function peaked at x, i.e. 〈y|x〉 = δy;x.

IA-5: Prove that there exists a critical µc such that Z(x) converges for |µ| < µc but diverges
as µ→ µc. What is the value of µc?

• IB: The scaling limit

We now study the continuous limit a→ 0 of the above discrete model.

IB-1: Show that, for µ and x fixed, lima→0 a
−D Z(x) = const. δ(x), with an explicit formula

for the ‘const.’ to be determined. Give a geometrical interpretation of this result.

The continuous limit is thus meaningful only if we scale µ appropriately as a→ 0. Let G(x)
be defined by

G(x) =
1

2D
lim
a→0

a2−D Z(x),

where the limit is understood with µ an appropriate function of a to be determined below.

IB-2: Show that (
−∆x +m2

)
G(x) = δ(x),

with ∆x the D-dimensional Laplacian, if µ approaches µc such that µ−1−µ−1
c = a2m2 as a→ 0

with m fixed.

IB-3: Verify that the scaling limit – i.e. the limit a→ 0, µ→ µc with a−2(µ−1 − µ−1
c ) = m2

fixed – of the explicit expression of Z(x) found above is a solution of this equation.

IB-4: Show that Z(x) can be written in the scaling form Z(x) ' (ma)D−2F (mx), for some
function F , when µ→ µc at mx fixed.

• II- Self-avoiding walks and the O(n→ 0) models

This part develops the connection between self-avoiding walks and a specific O(n → 0)
lattice model on one hand, and between large distance properties of self-avoiding walks and an
O(n→ 0) field theory10 on the other hand.

The O(n) lattice model is defined as follows: a spin variable ~Sx, of dimension n, is attached to
each lattice site x ∈ Λ with components Sax, a = 1, · · · , n. The statistical Boltzmann weight of a
spin configuration is

∏
〈x,x′〉(1+µ ~Sx · ~Sx′) where the product is over neighbour sites (i.e. product

over lattice edges) and µ a real number. The sum over the spin configurations is represented by
an integration with measure d[S] on spin configurations so that the partition function Zn is

Zn =

∫
d[S]

∏
〈x,x′〉

(1 + µ ~Sx · ~Sx′),

We choose the measure to be factorized over lattice points, d[S] =
∏

x dm(~Sx), so that spins at
different positions are uncorrelated under the measure d[S] and any integral of products of spins
(Sa1

x1
· · ·Saqxq) factorizes into products of integrals over spins localized at the same position. The

measure and spin variables are normalized such that∫
d[S] (SaxS

b
y) = δabδx;y and

∫
d[S] = 1.

10This connection was first revealed by P.G. de Gennes.
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We shall further assume that all higher moments of spins at a given point x vanish11 so that∫
d[S] (Sa1

x · · ·S
ap
x ) = 0 as soon as p 6= 2.

The O(n) field theory we shall consider is a Φ4-theory whose action is given below.

• IIA: The O(n) lattice model and self-avoiding walks

IIA-1: By expanding the product
∏
〈x,x′〉(1 + µ ~Sx · ~Sx′) into a sum of clusters of occupied

edges (declaring that an edge is occupied if it is weighted by µ), show that Zn can be written
as a sum over non-crossing loop configurations12 of the form

Zn =
∑

C: non crossing loops

n`(C) µ|C|,

where |C| is the total number of bonds forming C and `(C) the number of connected components
(i.e. the number of loops).

Hint: It may help to draw a picture of the lattice (say in D = 2) representing each term of
this expansion with the edges occupied marked (say with a bold line) and to look at which of
those graphs survive after integration over the spin variables.

This formula shows that we can define Zn for any number n and any fugacity µ by analytic
continuation13. We adopt this definition from now on.

IIA-2: Show that Zn→0 = 1.

We now consider the spin correlation function 〈Sa0Sbx〉 between spins at the origin 0 and a
point x in Λ. It is defined by:

〈Sa0Sbx〉 =
1

Zn

∫
d[S]

∏
〈y,y′〉

(1 + µ ~Sy · ~Sy′) (Sa0S
b
x).

Global O(n)-invariance implies that 〈Sa0Sbx〉 = δabGn(x).

IIA-3: Write Gn(x) as a weighted sum of non-crossing loops C in Λ and a self-avoiding walk
Γsaw from 0 to x:

Gn(x) =
∑

C+(Γsaw:0→x)

n`(C) µ|C|+|Γsaw|.

IIA-4: Show that the analytical continuation of this two point function can be written as a
sum over self-avoiding walks Γsaw from 0 to x: Gn→0(x) =

∑
Γsaw: 0→x µ

|Γsaw|.
Show that, as a consequence,

Gn→0(x) =
∑
N≥0

µN W saw
N (x)

with W saw
N (x) the number of self-avoiding walks with N bonds from 0 to x.

11This is actually an approximation, but it can be shown that higher moments vanish as n→ 0, so that we can
(hopefully legitimately) neglect them in the limit n→ 0 we are interested in.

12A loop is said to be non-crossing if all of its edges and vertices are distinct.
13Positivity of the Boltzmann weights is then no guaranteed.
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• IIB: An O(n) statistical field theory

We now consider the O(n)-invariant Φ4 field theory in RD with action

S =

∫
dDx

[1
2

(∇~Φ)2 +
1

2!
µ(~Φ · ~Φ) +

1

4!
g(~Φ · ~Φ)2

]
.

The field ~Φ has n components Φa, a = 1, · · · , n.

IIB-1: Explain why symmetry and universality arguments allow us to restrict to a (~Φ · ~Φ) +
(~Φ · ~Φ)2 interaction.

IIB-2: What are the Feynman rules (in momentum space) for this theory?

IIB-3: Compute the beta functions βµ and βg at one loop (i.e. at order g2, µ2 and gµ) for
the mass µ and coupling constant g renormalization and show that :

βµ = 2µ− 8(n+ 2)gµ− 4µ2 − 32(n+ 2)g2 + · · ·
βg = (4−D)g − 8(n+ 8)g2 − µ2 − 16gµ+ · · ·

Hint: It may be useful to first evaluate the OPE of the perturbing fields φ2 =: (~Φ · ~Φ) : and
φ4 =: (~Φ · ~Φ)2 :.

Assume that the renormalization of (∇~Φ)2 can neglected at this order.
Remark: Only the first coefficients (proportional to µ and to gµ in βµ and to g and g2 in βg are

going to be relevant. If time is lacking, you may restrict in proving that βµ = 2µ−8(n+2)gµ+· · ·
and βg = (4−D)g − 8(n+ 8)g2 + · · · , and argue that the other terms are indeed irrelevant.

IIB-4: Show that there is a pertubative IR fixed point in dimensionD = 4−ε at µc = 0+O(ε2)
and gc = g∗ε+O(ε2) for some g∗.

What is the value, to first order in ε, of the correlation length scaling exponent ν defined by
ξ ' |µ− µc|−ν with ξ the correlation length?

• IIC: Scaling theory of self-avoiding walks

Based on universality arguments we may claim that the large distance behaviour of self-
avoiding walks is encoded into the O(n → 0) field theory. We make this hypothesis in the
following.

IIC-1: Let WN (x) be the number of walks with N bonds, free or self-avoiding, from 0 to
x: WN (x) = W free

N (x) for free paths, WN (x) = W saw
N (x) for self-avoiding walks. Let W (x) =∑

N≥0 µ
N WN (x). Show that

WN (x) =

∮
dµ

2iπ
µ−N−1W (x),

where the integration is over a small contour around the origin.

Note: We shall admit the following technical result: If a series f(µ) =
∑

N>0 µ
NcN is

analytic for |µ| < µc but singular at µc with f(µ) ' const. (µc − µ)−γ−1 as µ → µc, then
cN ' const. Nγ µ−Nc for N large.
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IIC-2: Explain why the hypothesis of a scaling theory implies that, for µ→ µc, the function
Z(x) behaves as

W (x) ' ξ−2∆ F (|x|/ξ),

with ξ the correlation length and F a smooth function. What is the meaning of ∆?
How does the correlation length ξ depend on µ close to the critical point µc?

IIC-3: Let 〈R2〉N be the mean square distance defined by

〈R2〉N =

∑
x |x|2WN (x)∑

xWN (x)
.

Show that if the scaling hypothesis applies then

〈R2〉N ' const. N2ν

for N large, with ν the correlation length exponent.
Hint: It may be useful to consider both generating functions

∑
xW (x) and

∑
x |x|2W (x).

IIC-4: What is the value of ν for free paths?
What is the value of ν for self-avoiding walks in dimension D = 4 − ε to first order in ε,

assuming that the O(n→ 0) field theory describes the scaling theory of self-avoiding walks?
Compare this value with the exact value ν = 3/4 in D = 2 and the approximate numerical

value ν ' 0.588 · · · in D = 3.

IIC-5: The fractal dimension Dh of a set embedded in a metric space may be defined through
the minimal number Nr of boxes of radius r needed to cover it by Dh = limr→0 logNr/ log(1/r).

Use the previous scaling theory to find an estimate of the fractal dimension of self-avoiding
walks in dimension D = 4− ε.

9.3 Et un...

9.4 Et deux...

9.5 Et trois...

9.6 Zero...
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10 Fermionic techniques

10.1 Fermions and Grassmannian variables

10.2 The 2D Ising model again

10.3 Dirac fermions

10.4 Chiral anomaly

10.5 Fermionisation-Bosonisation

10.6 Exercises

11 Stochastic field theories and dynamics

12 Exercise corrections
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