
Chapter 3

The Renormalization Group
in Momentum Space

The alternative to the real-space RG methods discussed in the preced-
ing chapter is the momentum space formulation, where the degrees of
freedom of a system are represented in terms of Fourier modes. The
partition function is now expressed as a summation over fluctuations
over the full range of Fourier modes, so the partial summation of the
partition function is carried out by integrating over momentum shells
that correspond to the short-wavelength modes. This step corresponds
to coarse-graining in the real-space RG. The spatial variables are then
rescaled to restore the range of the momentum space integration to its
original value, which necessitates a concomitant rescaling of the degrees
of freedom to maintain the spatial dependence of the fluctuations. Mo-
mentum space RG is essentially a perturbative method in which the
central assumption is that physical quantities can be described as a
(renormalized) perturbation around the linear theory.

We begin this chapter by casting the Ising model as a field theory.
The mathematical machinery of the momentum space RG is then illus-
trated for the linear version of this theory. While making no attempt at
a quantitative description of the original model, the linear theory can
be solved exactly and the results compared with the results of the RG
calculation. We then describe a calculation that includes the leading
order linearity to show the nature of the perturbation expansion and
discuss several issues that arise in the context of this expansion.
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34 The Renormalization Group in Momentum Space

3.1 Field Theory for the Ising Model

The application of momentum space RG techniques to the Ising model
necessitates recasting the discrete spins on a lattice as a field theory for
continuous spins on a continuous space. We will carry out this process
in several stages, highlighting those that are exact and those that are
inherently perturbative.

3.1.1 The Hubbard–Stratonovich Transformation

The first step in transforming the Ising model into a field theory is
motivated by the following integral:

e
1
2Ks2

=

(
K

2π

)1/2 ∫ ∞

−∞
e−

1
2Kφ2+Ksφ dφ . (3.1)

For our purposes, the key point about this relation is that equality holds
for any value of s. In particular, s need not be a continuous variable.

To apply the integral in Eq. (3.1) to the Ising model, we write the
Hamiltonian for this model as

H = −1

2

N∑

i,j=1

Jijsisj , (3.2)

where, for reasons that will be made clear below, the sums over i and
j run over all N sites, which is the reason for the factor of 1

2 , but the
coupling constant has the values

Jij =

{
J, if i and j are nearest neighbors,

0, otherwise,
(3.3)

which preserves the standard form of the Ising Hamiltonian. We now
invoke the matrix analogue of Eq. (3.1) to write

exp

(
1

2

∑

ij

Kijsisj

)

=

[
det K

(2π)N

]1/2∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏

k=1

dφk exp

(
−1

2

∑

ij

φiKijφj +
∑

ij

siKijφj

)
,

(3.4)
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where K is the matrix with entries Kij = βJij. This is the Hubbard–
Stratonovich transformation1,2.

The partition function,

Z =
∑

{si=±1}

e
1
2

∑
ij Kijsisj , (3.5)

is calculated by observing that only the second factor in the exponential
on the right-hand side of Eq. (3.4) has a dependence on the si. Hence,

∑

{si=±1}

exp

(∑

ij

siKijφj

)
=

∑

{si=±1}

∏

i

exp

(
si

∑

j

Kijφj

)

=
∏

i

[
exp

(∑

j

Kijφj

)
+ exp

(
−

∑

j

Kijφj

)]

= 2N
∏

i

cosh

(∑

j

Kijφj

)

= 2N exp

{∑

i

ln

[
cosh

(∑

j

Kijφj

)]}
. (3.6)

We thereby obtain

Z =

[
det K

(1
2π)N

]1/2 ∫ ∞

−∞
· · ·

∫ ∞

−∞

N∏

k=1

dφk

× exp

{
−1

2

∑

ij

φiKijφj +
∑

i

ln

[
cosh

(∑

j

Kijφj

)]}
, (3.7)

as the partition function for the Ising model. This is an exact tran-
scription of the original model, but with the degrees of freedom on the
lattice sites expressed in terms of the continuous quantities φi.

1R. L. Stratonovich, “On a Method of Calculating Quantum Distribution Func-
tions”, Soviet Phys. Doklady 2 (1958), 416–419 (1958).

2J. Hubbard, ”Calculation of Partition Functions”, Phys. Rev. Lett. 3, 77–78
(1959)
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3.1.2 Regularization

The next step is to replace the lattice of the Ising model by a continuum
and make the corresponding changes in the partition function. We first
transform the expression

∑
j Kijφj because it appears in every term on

the right-hand side Eq. (3.7). Our analysis can be carried for a lattice of
any dimension, so we introduce the notation i = (i1, i2, . . . , id), where
the ik are integers, for the sites of a d-dimensional lattice. The nearest-
neighbor directions are denoted by an. On a d-dimensional cubic lattice
there are 2d such vectors:

(±a, 0, . . . , 0) , (0,±a, . . . , 0) , . . . , (0, 0, . . . ,±a) , (3.8)

in which a is the nearest-neighbor spacing. Thus, we have

∑

j

Kijφj =
∑

n

Ki,i+anφi+an = K
∑

n

φi+an , (3.9)

where we have invoked Eq. (3.3) for Kij.
The continuous lattice variable φi is now replaced by a smooth func-

tion φ(x), where x = (x1, x2, . . . , xd). We can now expand the factor
φi+an on the right-hand side of Eq. (3.9) as a Taylor series about x:

φi+an → φ(x + an)

= φ(x) +
∑

α

∂φ

∂xα
an,α +

1

2

∑

α,β

∂2φ

∂xα∂xβ
an,αan,β + · · · , (3.10)

in which we have used Greek indices for vector components. Substitu-
tion of this expansion into the right-hand side of Eq. (3.9) yields

K
∑

n

φi+an → K
∑

n

φ(x + an)

= K
∑

n

φ(x) + K
∑

α

∂φ

∂xα

(∑

n

an,α

)
+

+
K

2

∑

α,β

∂2φ

∂xα∂xβ

(∑

n

an,αan,β

)
+ · · · . (3.11)
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Referring to Eq. (3.8), we have that
∑

n

an,α = 0 ,
∑

n

an,αan,β = 2a2δα,β . (3.12)

Hence, the right-hand side of Eq. (3.11) reduces to

K
∑

n

φi+an → Kz φ(x) + Ka2 ∇2φ(x) + · · · , (3.13)

where z = 2d is the number of nearest neighbors in d dimensions and

∇2φ =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+ · · · + ∂2φ

∂x2
d

. (3.14)

Thus, the continuum limit of the first term on the right-hand side of
Eq. (3.7) is

∑

ij

φiKijφj → Kz

∫
φ2(x) dx + Ka2

∫
φ(x)∇2φ(x) dx + · · · . (3.15)

The other term on the right-hand side of Eq. (3.7) is regularized by
using the expansion

ln(cosh x) =
x2

2
− x4

12
+ · · · , (3.16)

to write
∑

i

ln

[
cosh

(∑

j

Kijφj

)]

=
1

2

∑

i

(∑

j

Kijφj

)2

− 1

12

∑

i

(∑

j

Kijφj

)4

+ · · · (3.17)

For the quadratic term on the right-hand side of this equation, we
have from Eq. (3.13) that

∑

i

(∑

j

Kijφj

)2

=
∑

i

(
K

∑

n

φi+an

)2

→ (Kz)2

∫
φ2(x) dx + 2K2a2z

∫
φ(x)∇2φ(x) dx + · · · , (3.18)



38 The Renormalization Group in Momentum Space

where we have explicitly retained only terms that contain up to two
derivatives.

For the quartic term on the right-hand side of Eq. (3.17), we retain
only the leading term:

∑

i

(∑

j

Kijφj

)4

=
∑

i

(
K

∑

n

φi+an

)4

→ (Kz)4

∫
φ(x)4 dx + · · · .

(3.19)

Thus, collecting terms, we obtain the continuum expression of the par-
tition function as

Z =

[
det K

(1
2π)N

]1/2 ∫
Dφ(x) exp

{
−

∫ [
rφ2(x) − Dφ(x)∇2φ(x)

+uφ4(x) + · · ·
]
dx

}
, (3.20)

where

r = 1
2Kz(1 − Kz) , D = −1

2Ka2(1 − 2Kz) , u = 1
12(Kz)4 .

(3.21)

In writing this expression, we have made the identification
∏

k

dφk → Dφ(x) , (3.22)

whereby the N -fold product of integration elements for the φ is trans-
formed into a functional integral over the φ(x). Our explicit inclusion of
only the leading-order terms in the continuum limit will find justifica-
tion in the RG calculations we will carry out later in this chapter.

Finally, a word about the signs of the coefficients r, D, and u.
Clearly, u ≥ 0. For r and D, we use the mean-field estimate of the
transition temperature, kBTc = Jz, so that we can write Kz = Tc/T ,
in which case

r =
Tc

2T 2
(T − Tc) , D =

a2Tc

2T 2
(2Tc − T ) . (3.23)

Thus, the sign of r is the sign of T − Tc, and r → 0 as T → Tc.
Similarly, as T → Tc, D → 1

2a
2 and, sufficiently near Tc, D > 0. The

overall stability of the theory is guaranteed by u being positive.
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3.2 The Gaussian Model

If only the terms quadratic in φ(k) are retained in Eq. (3.20), the result
is called the Gaussian theory:

Z =

[
det K

(1
2π)N

]1/2 ∫
Dφ(x) exp

{
−

∫ [
rφ2(x) − Dφ(x)∇2φ(x)

]
dx

}
,

(3.24)

The absence of the terms of order φ4 renders this theory meaningful
only for r ≥ 0, so the approach to the critical point at t = 0 is from
the disordered side of the transition.

The functional Gaussian integrals in Eq. (3.24) are carried out by
transforming to a Fourier representation of decoupled modes. For a
finite volume V = Ld, the Fourier transform φk of φ(x) is given by

φk =

∫

V

dxφ(x)e−ik·x , (3.25)

where, since φ(x) is real, we have that φ−k = φ∗
k. The inverse Fourier

transform is

φ(x) =
1

V

∑

k

φke
ik·x . (3.26)

The largest wavevector in this summation is Λ ≡ 2π/a and the smallest
is 2π/L, which approaches zero as L → ∞. These are referred to as
ultraviolet and infrared cutoffs, respectively. Critical quantities should
not depend on the values of these cutoffs. Since there is one wavevector
per volume (2π/L)d in k-space, summations over k are converted into
integrals according to

∑

k

=

∫
dk

(
L

2π

)d

= V

∫
dk

(2π)d
. (3.27)

This transcription is exact only in the thermodynamic limit (V → ∞).
The transformed partition function thereby reads

Z =

[
det K

(1
2π)N

]1/2 ∫ ∏

k

dφk exp

[
− 1

V

∑

k

(r + Dk2)|φk|2
]

. (3.28)
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The Gaussian integrals can be evaluated as

∫ ∏

k

dφk exp

[
− 1

V

∑

k

(r + Dk2)|φk|2
]

=
∏

k

∫
exp

[
− 1

V
(r + Dk2)|φk|2

]
dφk

=
∏

k

(
πV

r + Dk2

)1/2

. (3.29)

Thus, the Helmholtz free energy F = −kBT lnZ of the Gaussian model
is given by

F = −1
2kBT ln

[
det K

(1
2π)N

]
− kBT ln

[∏

k

(
πV

r + Dk2

)1/2]

= −1
2kBT ln

[
det K

(1
2π)N

]
− 1

2kBT
∑

k

ln(πV ) + 1
2kBT

∑

k

ln(r + Dk2) .

(3.30)

Thus, by invoking Eq. (3.27), the singular part of the free energy fs per
unit volume is obtained from the last term in this expression:

fs =
1

2
kBT

∫
dk

(2π)d
ln(r + Dk2) . (3.31)

Note that when r → 0, then the k = 0 mode causes the free energy to
diverge, while the free energy for all other modes remains finite.

To study the behavior of the free energy at the critical point, we will
simplify the integration in Eq. (3.31) by approximating the integration
over the Brillouin zone by a d-dimensional hypersphere of radius 2π/a.
The k-space integration thereby factors into a radial integral over k =
|k| and an angular integration over d-dimensional hypersphere:

∫
dk

(2π)d
=

1

(2π)d

∫
kd−1 dk

∫
dΩd , (3.32)
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where dΩd is the element of surface area of a d-dimensional hypersphere.
This expression generalizes circular polar coordinates in 2D and spher-
ical polar coordinates in 3D to any dimension. The integral over k
ranges from k = 2π/L to k = 2π/a. For an infinite system, L → ∞
and the lower limit of the integral is zero. Thus, Eq. (3.31) becomes

fs =
1

2
kBTKd

∫ Λ

0

ln(r + Dk2) kd−1 dk

=
1

2
kBTKd

∫ Λ

0

[
ln r + ln

(
1 +

D

r
k2

)]
kd−1 dk , (3.33)

where Kd = (Sd/(2π)d and Sd is the area of unite sphere in d dimen-
sions. Changing variables to x = k(D/r)1/2 yields

fs =
1

2
kBTKd

(
r

D

)d/2 ∫ Λ(D/r)1/2

0

[
ln r + ln(1 + x2)

]
xd−1 dx , (3.34)

from which we see that the dominant singular contribution to the free
energy is fs ∼ td/2, so that the specific heat exponent

α+ = 2 − d

2
, (3.35)

where the subscript “+” indicates that the exponent is defined only
from the disordered side of the transition, i.e. where T > Tc. Notice
that α+ depends on the spatial dimension. For d = 1, 2, 3, α+ > 0,
while d ≥ 4, α+ ≤ 0. This suggests that d = 4 plays a special role in
this theory. We will return to this point later.

3.3 Renormalization Group Analysis of the
Gaussian Model

The RG will be applied to the momentum space representation of the
partition function of the Gaussian model, which we write as

Z =

∫
Dφ(k) exp

[
−

∫ Λ

0

dk

(2π)d
(r + Dk2)|φ(k)|2

]
, (3.36)
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in which we have omitted the prefactor of the partition function, which
does not affect the singular behavior of the partition function. We
have also changed the partition function to a functional integral by
replacing the integration measure in Eq. (3.28) with Dφ(k) to account
for the fact that we are now considering an infinite system. As in the
preceding section, we have replaced the Brillouin zone integration with
an integration over a d-dimensional hypersphere.

The RG transformation in momentum space consists of three steps:
(i) coarse-graining, by integrating over degrees of freedom correspond-
ing to large k, (ii) rescaling of the wavevector to restore the original
range of the degrees of freedom, and (iii) renormalization of the spin
variables to restore the spatial dependence of the fluctuations. We con-
sider the application of each step in turn to Eq. (3.36) in the following
sections.

3.3.1 Coarse Graining

In the coarse graining step of the

/b

Figure 3.1: The shell in momentum
space (indicated by shading) that is in-
tegrated out during the coarse graining
step of the RG.

RG, Fourier modes correspond-
ing to the largest values of k,
Λ/b < k < Λ, where b > 1, are
removed by integration into the
partition function (Fig. 3.1). In
real space, this eliminates fluc-
tuations over length scales a <
x < ba, and is therefore anal-
ogous to the decimation of the
Ising model.

The coarse graining of the
partition function in Eq. (3.36)
is carried out by first separat-
ing φ(k) according to whether
k < Λ/b or k > Λ/b:

φ(k) =

{
φ<(k), 0 < k < Λ/b;

φ>(k), Λ/b < k < Λ .
(3.37)
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The partition function can be expressed in terms of φ< and φ> as

Z =

∫
Dφ<(k)

∫
Dφ>(k) exp

[
−

∫ Λ/b

0

dk

(2π)d
(r + Dk2)|φ<(k)|2

]

× exp

[
−

∫ Λ

Λ/b

dk

(2π)d
(r + Dk2)|φ>(k)|2

]

= Z>

∫
Dφ<(k) exp

[
−

∫ Λ/b

0

dk

(2π)d
(r + Dk2)|φ<(k)|2

]
, (3.38)

where Z> represents the degrees of freedom that have been integrated
out and is given by an expression similar to that in Eq. (3.29).

3.3.2 Rescaling

The partition function in Eq. (3.38) for the modes φ<(k) is similar to
the original partition function Eq. (3.36), except that the upper cutoff
has decreased to Λ/b. The rescaling k′ = bk, which corresponds to the
rescaling x′ = x/b in real space, restores the cutoff to its original value.
The transformed partition function becomes

Z = Z>

∫
Dφ<(k′) exp

[
−

∫ Λ

0

dk′

(2π)d
b−d(r + b−2Dk′ 2)|φ<(k′)|2

]
.

(3.39)

3.3.3 Renormalization

To motivate the necessity of the renormalization of the φ<(k′), consider
the behavior of the correlations 〈φ(q)φ(q′)〉:

〈φ(q)φ(q′)〉 =
1

Z

∫
Dφ(k)φ(q)φ(q′) exp

[
−

∫ Λ

0

dk

(2π)d
(r + Dk2)|φ(k)|2

]

=
δ(q + q′)

r + Dq2
. (3.40)

Under rescaling of the momenta, this quantity rescales according to

〈φ(bq)φ(bq′)〉 =
δ(bq + bq′)

r + Db2q2
=

b−dδ(q + q′)

r + Db2q2
. (3.41)
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As r → 0,

〈φ(bq)φ(bq′)〉 → b−(d+2) δ(q + q′)

Dq2
. (3.42)

Hence, to preserve the scale of the fluctuations, we must renormalize
the φ according to

φ<(k′) = b(d+2)/2φ′(k′) , (3.43)

in which case the transformed partition function reads

Z = Z>

∫
Dφ′(k′) exp

[
−

∫ Λ

0

dk′

(2π)d
b−d(r + b−2Dk′ 2)|bd+2φ′(k′)|2

]

= Z>

∫
Dφ′(k′) exp

[
−

∫ Λ

0

dk′

(2π)d
(b2r + Dk′ 2)|φ′(k′)|2

]
, (3.44)

where we have neglected the Jacobian factor induced by the renormal-
ization of φ. Thus, the net effect of the RG transformation is a rescaling
of r.

3.3.4 Recursion Relations

The coefficients in the Hamiltonian of the Gaussian model transform
under the RG as

r′ = b2r , D′ = D .

Note that the critical point r∗ = 0 is unstable. Any initial deviation is
sent toward r∗ → ∞, at which which point the spins become uncorre-
lated.

According to Eq. (3.23), r is proportional to the temperature differ-
ence from the critical temperature, r ∼ T − Tc, the RG transformation
of the singular part of the free energy is

fs(t) ∼ b−dfs(b
2t) , (3.45)

or, by choosing b2t = 1,

fs(t) ∼ td/2 , (3.46)

which agrees with Eq. (3.34). In particular, we find the same specific
heat exponent α+ as in Eq. (3.35).
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3.3.5 Scaling Exponents of Perturbations

The rescaling and renormalization that was used in the preceding sec-
tion can be used to assess the scale dimensions of various terms that
have been neglected in the passage from the Ising model to its field-
theoretic representation. Consider the following term:

un1···np
p

∫
∇n1φ(x) · · ·∇npφ(x) dx . (3.47)

The behavior of this quantity under rescaling and renormalization can
be determined from the following transformations for x,

x → bx′ , dx → bd dx′ , (3.48)

the corresponding changes for derivatives,

∂

∂x
→ 1

b

∂

∂x′ , ∇nk → b−nk∇′nk , (3.49)

and renormalization,

φ′(x′) → b(d−2)/2φ(x′) , φ(x′) → b−(d−2)/2φ′(x′) . (3.50)

Thus, un1···np
p scales according to

u′n1···np
p = bdb−n1 · · · b−npb−p(d−2)/2un1···np

p . (3.51)

In particular, the coefficient of the leading polynomial correction to the
Gaussian theory,

u4

∫
φ4(x) dx , (3.52)

transforms as

u′
4 = bdb−2(d−2)u4 = b4−du4 . (3.53)

Thus, for d > 4, u4 has a negative scale dimension and is therefore an
irrelevant variable, but for d < 4 is a relevant variable.
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Consider now the leading derivative correction in the Gaussian the-
ory:

u0,4
2

∫
φ(x)∇4φ(x) dx . (3.54)

The coefficient of this term transforms as

u′ 0,4
2 = bdb−4b−(d−2)u0,4

2 = b−2u0,4
2 , (3.55)

which is an irrelevant variable in all spatial dimensions. Since adding
additional fields and/or derivatives to the terms considered here pro-
duces greater negative scaling exponents, we conclude that the Gaus-
sian theory is stable in d > 4 dimensions in that all perturbations cal-
culated in Sec. 3.1.2 are irrelevant. We now consider the perturbative
RG for d < 4.

3.4 Perturbative Renormalization Group

We will calculate the correction to the Gaussian theory based upon the
quartic term in Eq. (3.20) whose partition function, in the momentum
representation, is written as

Z =

∫
Dφ(k)e−(H0+U) , (3.56)

where we introduced the abbreviations

H0 =

∫ Λ

0

dk

(2π)d
(r + Dk2)|φ(k)|2 . (3.57)

U = u

∫ Λ

0

dk1

(2π)d
· · ·

∫ Λ

0

dk4

(2π)d
φ(k1) · · ·φ(k4)(2π)dδ(k1 + · · ·k4) . (3.58)

The implementation of the perturbative RG proceeds as in the preced-
ing section by carrying out coarse graining, rescaling, and renormaliza-
tion.
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3.4.1 Coarse Graining

We first partition the range of wavevectors as in Eq. (3.37) and label the
φ accordingly as φ<(k) or φ>(k). The effect on the partition function
in Eq. (3.56) of carrying out the integration over the φ>(k) can be
represented as

Z =

∫
Dφ<(k)e−H0{φ<(k)}

∫
Dφ>(k)e−H0{φ>(k)}−U{φ(k)}

= Z>
0

∫
Dφ<(k)e−H0{φ<(k)}

[
1

Z>
0

∫
Dφ>(k)e−H0{φ>(k)}−U{φ(k)}

]

= Z>
0

∫
Dφ<(k)e−H0{φ<(k)}〈e−U{φ(k)}〉

{φ>(k)} , (3.59)

where we have used Z>
0 to denote the contribution of the φ>(k) to

the Gaussian part of the partition function as in Eq. (3.38), and 〈·〉
represents the average with respect to these Gaussian fields. We can
write the right-hand side of this equation in a more useful form as

Z = Z>
0

∫
Dφ<(k) exp

[
−H0{φ<(k)} + ln

〈
e−U{φ(k)}〉

{φ>(k)}

]
. (3.60)

The renormalization of the Hamiltonian necessitates the expansion
of the second term in the exponential, which is a cumulant expansion:

ln
〈
e−U

〉
= −〈U〉 + 1

2

(〈
U2

〉
−

〈
U

〉2)
+ · · ·

=
∞∑

k=1

(−1)k

k!

〈
Uk

〉
c
, (3.61)

where 〈·〉c denotes cumulant. In general, each of the terms in this
expansion will contribute to the renormalized Hamiltonian, but we will
consider only the first term, which is

−〈U〉{φ>(k)} = − 1

Z>
0

∫
Dφ>(k)Ue−H0{φ>(k)} . (3.62)

Only terms that have an even number of factors of φ>(k) contribute
to this average. There are three possibilities to consider and we will
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denote by Un the contribution to U with n factors of φ>(k). If there
are no such factors, then the corresponding term ,

U0 = u

∫ Λ/b

0

dk1

(2π)d
· · ·

∫ Λ/b

0

dk4

(2π)d

×φ<(k1)φ<(k2)φ<(k3)φ<(k4)(2π)dδ(k1 + · · · + k4) , (3.63)

is unaffected by the averaging and therefore will simply lead to the
presence of the bare interaction u. The term with four factors of φ>(k),

U4 = u

∫ Λ

Λ/b

dk1

(2π)d
· · ·

∫ Λ

Λ/b

dk4

(2π)d

×φ>(k1)φ>(k2)φ>(k3)φ>(k4)(2π)dδ(k1 + · · · + k4) , (3.64)

is integrated out and thereby provides a contribution to the partial par-
tition function. For the purposes of examining the critical properties,
we do not need to consider this term further in our discussion.

The remaining term contains two factors of φ>(k):

U2 = 6u

∫ Λ

Λ/b

dk1

(2π)d

∫ Λ

Λ/b

dk1

(2π)d

∫ Λ/b

0

dk1

(2π)d

∫ Λ/b

0

dk4

(2π)d

×φ>(k1)φ>(k2)φ<(k3)φ<(k4)(2π)dδ(k1 + · · · + k4) , (3.65)

where the factor of 6 accounts for the equivalent permutations of the
φ. Using the fact that

〈φ>(k1)φ>(k2)〉 =
(2π)dδ(k1 + k2)

r + Dk2
1

, (3.66)

we obtain

〈U2〉{φ>(k)} = 6u

(∫ Λ

Λ/b

dk

(2π)d

1

r + Dk2

) ∫ Λ/b

0

dk

(2π)d
|φ<(k)|2 . (3.67)

To summarize, the perturbative coarse graining of the partition
function in Eq. (3.56) has resulted in a quartic term [Eq. (3.63)], which
was present in the original Hamiltonian, and an additional (constant)
quadratic term [Eq. (3.67)], which will provide a correction to r. Had
we retained higher-order terms in the cumulant expansion in Eq. (3.61)
higher-order products of the ψ would have been generated along with
corrections to D.
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3.4.2 Rescaling

The rescaling k′ = bk leads to the following changes to H0, U0, and
〈U2〉{φ>(k)}:

H0 → b−d

∫ Λ

0

dk′

(2π)d
(r + b−2Dk′ 2)|φ<(k′)|2 , (3.68)

U0 → b−3du

∫ Λ

0

dk′
1

(2π)d
· · ·

∫ Λ

0

dk′
4

(2π)d

×φ<(k′
1)φ<(k′

2)φ<(k′
3)φ<(k′

4)(2π)dδ(k′
1 + · · · + k′

4) , (3.69)

where the rescaling of the arguments of the δ-function cancels one of
the factors obtained from the rescaling of the volume elements dki, and

〈U2〉{φ>(k)} → 6b−du

(∫ Λ

Λ/b

dk

(2π)d

1

r + Dk2

) ∫ Λ

0

dk′

(2π)d
|φ<(k′)|2 . (3.70)

The factor in parenthesis is a pure number and is therefore unaffected
by this rescaling.

3.4.3 Renormalization

The final step in the RG transformation is the renormalization of the
φ according to Eq. (3.43):

φ<(k′) = b(d+2)/2φ′(k′) , (3.71)

We therefore obtain the following expressions for the terms in the trans-
formed Hamiltonian:

H0 →
∫ Λ

0

dk′

(2π)d
(b2r + Dk′ 2)|φ′(k′)|2 , (3.72)

U0 → b4−du

∫ Λ

0

dk′
1

(2π)d
· · ·

∫ Λ

0

dk′
4

(2π)d

×φ′(k′
1)φ

′(k′
2)φ

′(k′
3)φ

′(k′
4)(2π)dδ(k′

1 + · · · + k′
4) , (3.73)
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and

〈U2〉{φ>(k)} → 6b2u

(∫ Λ

Λ/b

dk

(2π)d

1

r + Dk2

) ∫ Λ

0

dk′

(2π)d
|φ′(k′)|2 . (3.74)

3.4.4 Recursion Relations

By comparing the original Hamiltonian in Eqs. (3.57) and (3.58) with
the renormalized terms in Eqs. (3.72)-(3.74), the recursion relations for
the coefficients r, D, and u are obtained as

r′ = b2r + 6b2u

(∫ Λ

Λ/b

dk

(2π)d

1

r + Dk2

)
, (3.75)

D′ = D , (3.76)

u′ = b4−du . (3.77)

The analysis of these equations is simplified if we convert these dis-
crete recursion relations, obtained from a finite value of b, to differen-
tial equations obtained from an infinitesimal renormalization parameter
b = eδ%, in which δ( is a small quantity. Thus,

b2 = e2δ% = 1 + 2δ( + · · · , (3.78)

b4−d = e4−d)δ% = 1 + (4 − d)δ( + · · · . (3.79)

and we obtain immediately

u′ = b4−du =
[
1 + (4 − d)δ( + · · ·

]
u , (3.80)

which can be rearranged to obtain

lim
δ%→0

(
u′ − u

δ(

)
=

du

d(
= (4 − d)u , (3.81)

as the differential recursion relation for u.
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To determine the differential recursion relation for r, we first eval-
uate the integral on the right-hand side of Eq. (3.75):

∫ Λ

Λ/b

dk

(2π)d

1

r + Dk2
=

∫ Λ

Λe−δ"

dk

(2π)d

1

r + Dk2

= Kd

∫ Λ

Λe−δ"

kd−1dk

r + Dk2

= Kd

(
kd−1

r + Dk2

)∣∣∣∣
k=Λ

(
Λ− Λe−δ%

)

=
KdΛd

r + DΛ2
δ( . (3.82)

Proceeding as in Eq. (3.81), the differential recursion relation for r is
obtained as

dr

d(
= 2r +

12uKdΛd

r + DΛ2
. (3.83)

3.4.5 Fixed Points and Trajectories

We are now in a position to analyze fixed points and RG trajectories.
The fixed points are determined by

2r∗ +
12u∗KdΛd

r + Λ2
= 0 , (4 − d)u∗ = 0 . (3.84)

which has the solution r∗ = 0 and u∗ = 0, which is the same as the
Gaussian model. The recursion relations can be linearized about this
fixed point by setting r = r∗ + δr and u = u∗ + δu and retaining terms
only to first order in the deviations from the fixed-point values:

d

d(

(
δr

δu

)
=

(
2 12KdΛd−2s−1

0 4 − d

) (
δr

δu

)
. (3.85)
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Figure 3.2: RG trajectories generated by the differential recursion relations
in Eqs. (3.81 and (3.83). For d > 4 the Gaussian fixed point (u∗ = 0, r∗ = 0)
has only one unstable direction, which is associated with yr and therefore
correctly describes the phase transition. For d < 4, however, both eigenval-
ues are positive and the Gaussian is therefore unstable.

Since the lower left entry of the matrix is zero, the eigenvalues are diag-
onal entries: yr = 2 and yu = 4− d. The corresponding eigendirections
are u = 0 and

r =
12uKdΛd−2

D(2 − d)
, (3.86)

respectively.
The RG trajectories, obtained by integration the differential re-

cursion relations in Eqs. (3.81 and (3.83) are shown in Fig. 3.2. For
spatial dimensions d > 4, the Gaussian fixed point (u∗ = 0, r∗ = 0) has
an unstable direction associated with the positive eigenvalue yr = 2.
The critical “surface” of this model is the trajectory that approaches
the Gaussian fixed and separates the trajectories into those for which
r → ∞ (the disordered phase of the Ising ferromagnet) and r → ∞,
which is the ordered phase. Therefore, this provides the correct frame-
work for describing the phase transition.

For d < 4 spatial dimensions, however, an altogether different sce-
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nario emerges. There are now no stable directions near the fixed point,
since yr = 2 and yu = 4−d are both positive. Thus, all RG trajectories
emanate away from the Gaussian fixed point so that this fixed point is
unstable. The recursion relations have no other fixed points with finite
values of r and u, so we must look to higher-order terms in the cumu-
lant expansion (3.61) to obtain a description of critical phenomena in
d < 4 dimensions.


