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Editorial

Always relevant

It has been around �fty years since 

Kenneth Wilson’s work on the 

renormalization group. Nature 

Physics celebrates this anniversary 

with a collection of Comments on its 

development and applications.

F
or the most part, studying physics is 

a continuous process of specializa-

tion. As part of postgraduate study, 

or the late part of undergraduate 

education, we choose specific top-

ics that lead us into different fields. This often 

results in physicists losing touch with other 

areas and, in some cases, in the lack of mutual 

understanding between specialists.

The renormalization group is a technique in 

theoretical physics that bucks this trend. Typi-

cally a graduate level topic, it provides tools to 

understand how physics changes at different 

length scales. Whether working to identify 

which microscopic laws are responsible for 

the world around us, or what can emerge from 

the laws we already know, the renormalization 

group is a language that is shared between 

seemingly disparate fields, such as particle 

physics and condensed-matter physics.

The modern formulation of the renormali-

zation group relies heavily on work by Kenneth 

Wilson in the 1970s, for which he was awarded 

the Nobel Prize1. In this Focus issue, we cel-

ebrate the 50th anniversary of his work on the 

topic with a group of Comments.

The collection begins with a piece from 

Philip Phillips reviewing the evolution of the 

renormalization group from its origins in the 

1930s to potential progress beyond the Wilso-

nian framework. Much of the work — including 

that of Wilson — took place during the Cold 

War, a time of fundamental developments 

in many-body theory but also of significant 

struggles in international collaborations. Nev-

ertheless, Soviet physicists had an important 

influence on Wilson’s work, as described by 

Premala Chandra.

The next four pieces describe different 

applications of this theoretical technique. For 

example, a challenge in finding a quantum 

theory of gravity is that perturbation theory 

cannot be applied in the same way as the other 

fundamental forces. Astrid Eichhorn surveys 

the role of nonperturbative renormalization 

group techniques in potentially identifying a 

microscopic theory of quantum gravity.

More abstractly, Jaewon Song discusses the 

use of renormalization group tools to explore 

the space of quantum field theories. When 

these tools are combined with supersymme-

try, it becomes possible to identify and study 

strongly coupled theories for which more 

common perturbative methods no longer 

work.

The renormalization group also makes close 

contact with current experiments. As Diogo 

Boito explains in the context of quantum chro-

modynamics, renormalization group methods 

enhance the precision of perturbative calcula-

tions used to test the standard model of par-

ticle physics.

Moving to larger length scales, Yuhai Tu 

discusses the application of the renormaliza-

tion group to non-equilibrium models and 

especially biological systems. He recounts the 

discovery that a two-dimensional model of 

flocking features long-range order at finite 

temperatures — a behaviour that is impossible 

in equilibrium low-dimensional systems.

Many tools of modern theoretical physics 

were developed using a degree of physical 

intuition often disregarding mathematical 

rigour. This includes the techniques involved 

in many renormalization group studies. In our 

final Comment, Antti Kupiainen summarizes 

efforts by mathematical physicists to put 

renormalization group schemes on a formal 

footing.

It would be impractical to cover all the pro-

gress and applications of the renormaliza-

tion group since the 1970s, and we did not 

attempt to do so. For example, the collection 

does not cover complex networks, where the 

formulation of renormalization methods is 

still an open problem2; or the density matrix  

renormalization group, which has provided 

many important advances in the understand-

ing of quantum chemistry and many-body 

systems3.

One of the striking implications of the 

renormalization group is that phase transi-

tions in many different models and physical 

systems can be classified in a relatively small 

group of universality classes. Interactions can 

be classed as relevant, irrelevant and marginal, 

depending on their significance at large length 

scales.

This categorization can give the impres-

sion of a research programme that provides 

a definitive answer and comes to an end. The 

broad — and growing — influence of the renor-

malization group instead suggests that it will 

always be relevant.
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Comment

Fifty years of Wilsonian renormalization  
and counting

Philip W. Phillips

Renormalization began as a tool to eliminate 

divergences in quantum electrodynamics, 

but it is now the basis of our understanding 

of physics at di�erent energy scales. Here, 

I review its evolution with an eye towards 

physics beyond the Wilsonian paradigm.

Despite their microscopic differences, all simple fluids undergo a 

transition to the gas phase with identical universal characteristics. By 

systematizing the underpinnings of this universality, Kenneth Wilson 

formulated a far-reaching renormalization group (RG) principle1, and in 

so doing established the tools for the modern understanding of phase 

transitions, critical phenomena and quantum field theory.

Pre-Wilson field theory
Before Wilson tackled the question of universality1, quantum field 

theory had been developed through efforts to combine quantum phys-

ics with special relativity. However, this introduced the problem of 

vacuum polarization.

Since the 1930s2 it had been known that the interaction of electro-

magnetic fields with the continuous distribution of ‘negative energy’ 

states (positrons) amends Coulomb’s law with a logarithmic divergence 

to linear order in the fine-structure constant. At short distances, the 

divergence obtains r ≪ �/mec = 3.86 × 10–13me, where me is the electron 

mass and c the speed of light.

Fortunately, this divergence can be eliminated by defining a new 

effective charge, which will depend on the energy scale. It is from this 

dependence that the idea of a ‘running’ coupling constant emerges. 

Murray Gell-Mann and Francis Low showed3 that to all orders in the 

fine-structure constant, the vacuum polarization at energy scales μ 

that are large relative to the mass of an electron, modifies the coupling 

constant g(μ) in accordance with the scale-invariant form:

ψ g μ ψ g μ

μ

μ

a

(1)

where a is a number and ψ is some function; neither are important for 

this discussion. This result shows that as the energy scale is varied, the 

new coupling constant is related to the original one by a scale-invariant 

or self-similar scale factor, (μ/μ′)a. Considering μ and μ′ as infinitesi-

mally separated leads to a differential equation that in its modern form  

is written:

dg

dlnμ

β g (2)

Years before this equation was derived, Heisenberg noted that 

the fine-structure constant α ≈ 1/137 ≈ 2-43-3 π to an accuracy of 10-4. 

The essence of Eq. (2) is that it is pointless to ruminate over any par-

ticular value for α. Instead, because of the charge renormalization, 

the fine-structure constant depends on the energy scale at which it 

is measured, typically represented by the momentum transferred by 

the interaction.

In pure quantum electrodynamics (QED) consisting of a single 

photon field and an electron, the solution to Eq. (2) predicts that the 

effective fine-structure constant,

α
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α
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(3)

depends explicitly on the transferred momentum, q, where -q2 > 0 is 

an increasing function of energy. This behaviour was directly observed 

in the Large Electron-Positron (LEP) collider in 1994. Although a full 

treatment with all the leptons and quarks is necessary to obtain the 

complete flow of αeff from α
eff

M

2

W

1 128 (MW the mass of the W-boson) 

to its low-energy value of approximately 1/137, Eq. (3) is sufficient to 

capture the deviation from the naive expectation that the local 

quasi-instantaneous physics and hence only the bare parameters in 

the Lagrangian should matter in the high-energy limit. This is not borne 

out in QED. Fig. 1 depicts that quantum chromodynamics (QCD) — the 

theory of strong interactions between gluons and quarks — stands in 

contradistinction to QED. This is one of the great triumphs of Wilson’s 

renormalization approach4.

Although a theory with photon fields is naturally scale-invariant, 

QED tells us that once matter is included, such scale invariance is lost by 

virtue of the running of the charge manifested in Eq. (3). Nonetheless, 

the presence of a logarithm in the β function reflects, to quote Wilson, 

“a problem lacking a characteristic scale”1. In fact, a similar logarithm 

arises in the theory for the ground-state energy of an electron gas, 

which features a Fermi sea of positive-energy electron states rather 

than the negative-energy positrons of the vacuum.

How are these two features of QED compatible? In QED and ele-

mentary particle theory in general, the only discernible energy scale 

is set by the rest mass of the constituents. Integrals of the form

m

e

c

2

dE

E

(4)

are logarithmically divergent precisely because all energy scales above 

mec2 contribute equally. Consider a scale E′ > mc2. The contribution to 

the integral from E′ to 2E′ is simply ln2, independent of the scale E′.

In practice, all field theories are defined up to a high-energy cutoff 

or equivalently a short-distance scale. Precisely the role played by the 

high-energy (short-distance) cutoff in an analysis of field theories lies at 
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spins are normalized by a rescaling factor to maintain the up-down or 

Z2 Ising symmetry.

The major conceptual leap in this approach is the assumption 

that the blocks, like the underlying spins, only have nearest-neighbour 

interactions. An initial system of N spins has Nb-d effective spins after 

blocking, each separated by ba. The correlation length ξ can be repre-

sented either in units of the initial lengthscale ξ = ξ1 × a or the blocked 

lengthscale ξ = ξb × ba. The rescaled correlation length ξb is smaller than 

the correlation length at the initial scale ξ1:

ξ ξ

b

ba ξ

1

a ξ

b

ξ

1

b

(6)

Consequently, the corresponding rescaled Hamiltonian for the bth 

iteration Hb lies further away from a critical point — where the correla-

tion length diverges — than the initial Hamiltonian H1.

This is reflected by the rescaled temperature and magnetic field 

parameters in the model, tb and hb, respectively. Let t and h, be the bare 

values of the temperature and magnetic field, respectively. A key 

assumption in the renormalization group procedure is that after rescal-

ing, these quantities satisfy power-law scaling laws, t
b

tb

y

t  and 

h

b

hb

y

h where yt and yh are both positive and can only be determined 

from the full renormalization transformations. This leads to a series 

of recursion equations that ultimately make it possible to sample the 

infinite hierarchy of fluctuations with only a finite number of degrees 

of freedom at each step.

Power counting
A revolution came with Wilson’s momentum-space translation1 of the 

Kadanoff real-space coarse graining7. It represented the degrees of 

freedom in the Ising model as fields in continuous space. This approach 

brought the physics of critical phenomena into quantum field theory, 

and through renormalization established what field theory looks like 

in the statistical continuum limit.

The notion of renormalizabilty is in general ill-posed as normally 

stated, as one must mention the space of operators within which a 

theory is renormalizable. More explicitly, consider a certain theory 

described by a classically local action S ϕ

i

 of some fields ϕ
1

ϕ

n

. 

Suppose the field theory is valid up to some energy scale E0 and we seek 

a theory valid for energies below this scale, E < E0. To do this, one intro-

duces a cutoff scale Λ E

0

 and ‘integrates out’ fields whose energy is 

higher than Λ to obtain an effective action SΛ that depends only on 

low-energy degrees of freedom. This is the energy- and 

momentum-space equivalent process to the blocking step of Kadanoff’s 

procedure.

Operationally, this is done by splitting the field into high and 

low-energy components

ϕ ω

ϕ

L

ω ω Λ

ϕ

H

ω ω Λ

where ω is the energy, and performing an integration over the 

high-energy (H) modes in the partition function to obtain the effec-

tive low-energy (L) theory:

Dϕe

iS ϕ

Dϕ

L

e

iSΛ ϕ

L

(7)

the heart of Wilson’s approach to renormalization. As we will show, what 

Wilson clarified is that low-energy theories depend on short-distance 

physics through operators classified as relevant, marginal and, in some 

cases, irrelevant depending on the energy scale being probed. It is from 

this dependence that universality arises.

To set this up, we note that in field theory it is not the value of a field 

at any point that matters, but rather correlation functions of the under-

lying fields. A key precursor to Wilson’s work was the Callan-Symanzik5,6 

equation,

μ

∂

∂μ

β g

∂

∂g

nγ g G

n

μ g γ 0 (5)

which established that any n-point correlation function G is independ-

ent of the cutoff through two universal functions that communicate 

the shift in the coupling constant, β(g), and the field strength, γ(g), in 

such a way to counteract the shift made in the energy scale, μ.

Block renormalization
The story of renormalization thus far, prior to 1971, is more tied to 

removing infinities that arise in computing Feynman graphs than it 

is to some universal physical principle involving collective degrees 

of freedom. Wilson provided1 this missing link by focusing on how 

systems with fluctuations on all length scales, such as a boiling pot of 

water, can be studied without forgoing locality.

One of the simplest models featuring a phase transition is the Ising 

model for the onset of ferromagnetism. In this model, spins with either 

an up or down degree of freedom occupy sites with a separation of a 

on a d-dimensional lattice and interact with nearest-neighbour interac-

tions. In this context, Leo Kadanoff introduced a block coarse-graining 

renormalization scheme7 for the Ising model in which the entire system 

is divided into cells of edge length ba (b > 1). This approach provides an 

operational way to build in fluctuations smaller than the correlation 

length, ξ.

A new coarse-grained spin variable is introduced to represent the 

average of the bd  spins in each block. The Hamiltonian can then be 

rewritten to take the same form at each iteration as long as the block 

QED

QCD
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Fig. 1 | Running of the coupling constants. Illustrative plot of the β functions 

for the coupling constants in QED, Eq. (3), and QCD, Eq. (13), as a function of the 

energy scale, t . While both flow under renormalization, they do so in opposite 

directions. QED becomes more strongly coupled at high energy while QCD does 

just the opposite. At high energy, QCD is asymptotically free as the coupling 

constant vanishes. Confinement of the basic constituents, quarks and gluons, 

obtains at low energy in QCD.
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where

SΛ ϕ

L

i log Dϕ

H

e

iS ϕ

L
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H

(8)

is the outcome of the integration.

In the analysis of running coupling constants there are special 

values known as fixed points for which β 0 in Eq. (2). Defining 
S

  

as the action at a particular fixed point, one can write the action for a 

different set of parameters as

SΛ S d

d

x

i

g

i i

(9)

for some set of field operators 
i

 that are local despite the integration 

of high-frequency fields, because we focus on fields with ω Λ.

As with the block renormalization approach, we can consider the 

behaviour of the model under length rescaling,

x

μ

λ

1

x

μ

(10)

If, under such a transformation, an operator x  can be written as

x λ

d

λ

1

x (11)

we interpret d  as the dimension of .

Under a rescaling, the action can be organized based on the expo-

nent of λ in each term, a procedure known as power counting. In the 

λ→∞ limit, each operator will either remain invariant, vanish or diverge. 

The rule is as follows. Because of the d-dimensional spacetime measure 

in the action, operators with d d 0 are irrelevant and do not influ-

ence the low-energy physics. Relevant operators correspond to 

d d 0.

Operators with d d 0 are marginal. In these cases, all scales 

are important and such operators are the origin of logarithms in the  

β function.

The core of renormalization is in the observation that there is a 

dimension D above which the operators are irrelevant. Furthermore, 

the number of local operators Oi whose dimension is less than (or equal) 

to D is finite. This obtains because classically local operators are poly-

nomials in the fields ϕ and their derivatives. Since there are finitely 

many of these, one can make sense of such theories. Wilsonian renor-

malization rests on the simple principle that the low-energy physics is 

determined only by the relevant or marginal interactions, or in rare 

cases, irrelevant couplings but only at low enough scales. That the 

details of renormalization are determined by the dimension of opera-

tors rather than the nature of the microscopic features of the interac-

tions or the cutoff is the origin of universality in the Wilsonian approach.

There are subtleties8 in evaluating SΛ, which typically has to be 

performed perturbatively. However, these can be overcome by a slight 

recasting8 of the problem set forth by Wilson. We can imagine integrat-

ing out high-energy modes one small energy slice at a time. First we 

remove the modes with energies in the range Λ ω Λ dΛ, then 

Λ dΛ ω Λ 2dΛ and so on. At each stage the effective action SΛ 

changes, which is described by the Wilson equation,

∂SΛ

∂Λ
F SΛ (12)

where F  is a well-defined functional that can be calculated.

As the Wilson equation represents a flow in an infinite dimensional 

space, examining its properties for a range of operators can be accom-

plished entirely from the eigenvalue spectrum. Irrelevant operators 

correspond to negative eigenvalues, which represent benign converg-

ing flows. If the functional is linearized around zero-coupling, the 

eigenvalues are precisely the numbers d d  obtained from power 

counting. As F SΛ  is a smooth function of the couplings, there is no 

place8 for singularities to obtain especially since we are performing a 

path integral over a narrow range of energy with both a low- and 

high-energy cutoff. Hence, if an eigenvalue is negative in the free the-

ory, the same holds for the interacting theory. Power counting then 

rules even if the dimension can change at strong coupling, for example 

in the Thirring model; hence the claim of marginality or relevance is 

the crux of the matter.

The β function
The evolution of the action as high momentum states are integrated 

out is precisely what is described by the running of the coupling con-

stants in the β function. What Wilson added beyond the Gell-Mann/

Low flow equation, Eq. (2), is that the β  function is governed by 

power-counting, coupled with integration of the high-energy modes 

and rescaling.

In the theory of QCD, perturbative treatment of non-Abelian 

Yang-Mills gauge theories4,9 yields a β function of the form

β g bg

3

g’

2

g

2

0

1 2bg

2

0

t

(13)

where t  is proportional to the energy transferred and b is a numerical 

constant. At high energies, t , the coupling constant, g, flows to 

zero, producing the phenomenon known as asymptotic freedom 

whereby quarks and gluons become weakly interacting and treatable 

using perturbation theory. The opposite is true at low energies, where 

instead confinement of quarks and gluons takes place, producing a 

divergence of the coupling constant and the general breakdown of the 

whole perturbative scheme4,9.

Similar phenomena occur for the seemingly unrelated problem 

of a localized magnetic spin engaging in spin-flip scattering with a 

non-interacting band of conduction electrons, which is known as the 

Kondo problem. The spin-flip scattering operator is marginal, and the 

coupling strength flows from an initial value of g
0

 according to the  

β function

β g g

2

g’

g

0

1 g

0

lnE

0

E

(14)

where E
0

 and E  are the initial and final energy scales, respectively. If 

the initial interaction is antiferromagnetic, g
0

0, the flow is towards 

strong coupling, yielding a divergent coupling constant signalling the 

formation of a bound state between the impurity and the conduction 

electrons.

In both QCD and the Kondo problem, the formation of new degrees 

of freedom at low energies is obtained through a cross-over rather than 

a phase transition. A key triumph of Wilson’s treatment of the Kondo 

problem is that it captured the universal scaling that transpires below 

a characteristic temperature T
k

 at the g  fixed point, where the 

local moment is completely screened. As fixed points are characterized 

by scale invariance, the Kondo temperature is obtained by imposing 
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the scale-invariant condition D∂T
k

g ∂D 0, where D is the bandwidth 

of the conduction electrons. The universal physics of all properties 

such as resistivity, magnetism and thermodynamics below the 

cross-over scale T
k

 is a consequence of this scale-invariant condition 

at the strongly coupled fixed point of the theory.

Beyond Wilson
Fifty years on, it is natural to wonder if there is any physics beyond the 

Wilsonian paradigm. This could arise from a theory in which as the 

high energy is probed features emerge in the scattering matrix that 

are distinct from the poles that correspond to particles. For exam-

ple, in the case of a doped Mott insulator10 scattering matrix zeros 

describing non-propagating or incoherent degrees of freedom have 

been identified.

Before we get to the Mott problem, consider quantum gravity. As 

pointed out previously11, probing high energy in a gravitational theory 

should produce black hole information, which cannot be represented 

as simple poles in the scattering matrix. This would lead to a failure of 

the Wilsonian separation of energy scales and provide an example of 

ultraviolet/infrared (UV/IR) mixing, which is well studied in the context 

of non-commutative field theories12. Precisely how such UV/IR mixing 

plays out in a theory of quantum gravity remains an open question.

So far, our best understanding of quantum gravity stems from 

gauge–gravity duality, also known as the AdS/CFT conjecture13. But 

even this conjecture has an effective Wilsonian interpretation at its 

core arising from the locality of energy in the β function. The central 

claim of the gauge–gravity duality is that some strongly coupled con-

formally invariant field theories in d  dimensions are dual to a theory 

of gravity in a d 1 spacetime that is asymptotically described by an 

anti de Sitter (AdS) metric parameterized by

ds

2

R

2

z

2

η

μν

dx

μ

dx

ν

dz

2

(15)

where R and z  are the radius and radial coordinates of the AdS space-

time, respectively. This spacetime is invariant under the transformation 

x

μ

Λx
μ

 and z zΛ and hence satisfies the requisite symmetry for 

the implementation of the gauge–gravity duality, although not the full 

symmetry of the conformal group. The conformal field theory is viewed 

as lying on the z 0 boundary of the AdS spacetime.

Our current understanding of the radial coordinate z  is that it 

represents the flow in the energy scale during renormalization. The 

scale change, x
μ

Λx
μ

 increases the radial coordinate, z zΛ. Con-

sequently, moving towards greater z  in the bulk of the geometry 

increases the corresponding projection onto the boundary, as depicted 

in Fig. 2. The limit of z  therefore represents the full low-energy or 

IR limit of the strongly coupled theory. The AdS/CFT conjecture thereby 

provides a complete geometrization of the renormalization group 

procedure.

The second area where a possible breakdown of the Wilsonian 

paradigm might arise is the strange metal14 phase in the cuprate super-

conductors, which all start out as Mott insulators. In the strange metal, 

the resistivity increases way beyond the limit set by a scattering length 

determined by the physics of the underlying lattice constant. As such a 

length scale determines the cutoff for particle scattering, the strange 

metal with its non-saturating resistivity requires physics beyond the 

Fermi liquid quasiparticle picture. In terms of the standard field theory 

for a Fermi surface8,15, no operator in any effective Lagrangian exists 

that can account for a non-saturating resistivity from the lowest tem-

peratures to temperature scales where the particle-picture breaks 

down. This physics ultimately arises from the incoherent part of the 

spectrum, that is, zeros of the scattering matrix, which has no Wilsonian 

formulation at present. So indeed, these two examples indicate that 

much physics possibly lies beyond the Wilsonian paradigm.
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Soviet influences on Kenneth Wilson’s 
renormalization group work

P. Chandra

Kenneth Wilson worked on the renormali-

zation group during the Cold War, when 

communication between scientists in the 

Soviet Union and in the West was restricted. 

Nevertheless, Soviet physicists had a strong 

in�uence on Wilson’s work.

Despite the barriers imposed by the Cold War, Kenneth Wilson’s work 

on renormalization was significantly influenced by physics from the 

Soviet Union, as he acknowledged on several occasions. In his Nobel 

Lecture1, Wilson cited several independent Soviet efforts2–10 in the 

pre-1971 period that were closely related to his own renormalization 

work. Indeed Wilson made several trips to Moscow around 197011–14, 

and the fact that he did so frequently (Fig. 1) suggests that he found 

these visits very beneficial.

Already as a young researcher, Wilson was influenced by Soviet 

physicists; he later admitted11 to learning about renormalization in 

quantum electrodynamics15 from the book of Nikolay Bogoliubov and 

Dmitry Shirkov16, which is said to have made his thesis advisor, Murray 

Gell-Mann, quite annoyed. The aim of this Comment is to convey a flavor 

for the Soviet influences on Wilson’s renormalization group work with 

references for the interested reader who would like to pursue more detail.

Soviet developments
It is reported that Lev Landau himself considered his mean field theory 

of phase transitions to be incomplete, as it could not describe ordered 

systems with significant fluctuations13,17,18. In addition, the exact solu-

tion of the two-dimensional Ising model gives singular thermodynamic 

behaviour19. This cannot be reproduced using Landau theory.

In the early 1960s Alexander Voronel and his colleagues at the 

Institute of Physical and Technological Measurements in Moscow inves-

tigated the specific heat of argon near its critical point. They discovered 

an anomaly that bore striking similarity to that observed earlier at the 

superfluid transition of liquid helium20. This removed the possibility 

that the critical point behaviour in helium was a quantum effect.

Voronel shared his results with many researchers including several 

abroad21–23. This was a bold step at a time when scientific exchange 

between the Soviet Union and the West was restricted. Voronel had 

been arrested at age fourteen for his political activities22 and was known 

to support dissidents24; he was thus most probably on a Soviet watch 

list. Still Voronel was eager to tell the international community about his 

findings. Michael Fisher recognized their importance immediately and 

requested Voronel’s numerical data21–23. Here the influence of the Cold 

War is evident: it seems that the Fisher–Voronel correspondence was 

compromised as these researchers did not receive all of each other’s 

letters22. To prevent further loss of information, in a break with the usual 

protocol of the time, Voronel included the requested numerical data at 

the end of a journal article so that it would be publicly accessible22. In 

later years Fisher often showed Voronel’s specific heat singularity in his 

talks as a key motivation for the study of classical critical phenomena22.

At roughly the same time, Jan Sengers in the Netherlands was 

also challenging the conventional van der Waals–Landau approach to 

criticality with his transport measurements21. These two sets of experi-

ments contributed to the growing collective feeling everywhere that 

Gaussian fluctuations around mean-field theories were not enough to 

describe many classical critical phenomena21.

Subsequent developments in the West during the 1960’s have been 

well documented, particularly by Cyril Domb25. In this Comment the 

focus will therefore be on the lesser-known theoretical progress in clas-

sical criticality during that time period in the Soviet physics community.

According to Alexander Polyakov12–14, the modern development of 

this subject started with the work of Alexander Patashinski and Valery 

Pokrovsky2,3. Their approach was inspired by a proposal by Landau in 

the late 1950s to express the partition function as a path integral where 

the Landau free energy emerges as a saddle-point solution18.

Patashinski and Pokrovsky put forward the idea that the physics 

of the critical point is scale-invariant2,3. This produces scaling relations 

of the exponents describing the singularities of different thermody-

namic functions at the critical point. It also explains universality, the 

emergence of identical singular behaviour in different systems, such 

as the cases of superfluid helium and argon. Similar ideas about critical 

phenomena were developed independently and roughly concurrently 

in the West by Fisher, Domb, Leo Kadanoff and their collaborators26–28.

 Check for updates

Fig. 1 | Bertrand Halperin, Kenneth Wilson and Mark Azbel in Moscow in 

1977. Wilson continued to visit Moscow after the 69–70 trips discussed in this 

Commentary and he spoke at a ‘Sunday seminar’ for ‘refuseniks’32 in 1977.  

Image courtesy of James S. Langer.
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by the Soviet authorities, and indeed Wilson was detained at the Mos-

cow airport for several hours after he stated the purpose of his visit32.

Wilson clearly believed that scientific discussions with his Soviet 

colleagues contributed significantly to the development of his work 

on the renormalization group; furthermore he refused to be deterred 

by the tense Cold War relations between the Soviet Union and the West 

at the time. It seems fitting to end this Commentary with the words of 

Wilson himself at his Nobel Banquet34: “The hardest problems of pure 

and applied science can only be solved by the open collaboration of 

the world-wide scientific community. Scientists under all forms of 

government must be able to participate fully in international efforts.”

These sentiments continue to be important and relevant today.

P. Chandra     

Department of Physics and Astronomy, Rutgers University,  

Piscataway, NJ, USA.  
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The results of Patashinski and Pokrovsky2,3 convinced the Soviet 

physics community of universality, since they had shown that the 

problem of classical criticality does not depend on details of a system’s 

short-range physics12,14. At the same time, work by Polyakov4 and by 

Alexander Migdal5 demonstrated the close connection between critical 

phenomena and relativistic quantum field theory.

The confluence of universality, quantum field theory and critical 

phenomena is apparent in a pioneering study of the four-dimensional 

Ising model by Anatoly Larkin and David Khmelnitskii6. It was already 

known that Landau theory breaks down for the Ising model in four or 

fewer dimensions, and that the model’s universal behaviour is equiva-

lent to ϕ4  field theory. Exploiting this link, Larkin and Khmelnitskii 

applied the renormalization methods of quantum electrodynamics to 

the ϕ4 model, finding clear singularities in the exponents of the specific 

heat and other quantities. Finally, they noted that the four-dimensional 

Ising model is realized in a three-dimensional uniaxial ferroelectric; 

here anistropic dipolar interactions effectively add an extra dimen-

sion6. This was the first exact calculation of a non-mean field exponent 

in an experimentally realizable system, with later measurements con-

firming the predictions29,30.

Wilson’s visits to the Soviet Union
Given their shared interests in critical phenomena and relativistic field 

theory, it is not surprising that Wilson visited his colleagues in the 

Soviet Union, particularly Migdal and Polykov11, in 69–70 even though 

such trips were still quite unusual for US citizens at that time. Polyakov 

reflects that he and Migdal were very keen to learn more about Wil-

son’s renormalization work, even though it was based on an approxi-

mate recursion scheme13,14. Polyakov writes13: “Trying to understand 

it, I derived it by some crude truncation of Feynman’s diagrams. Ken 

liked the derivation (and generously included it in his later review31, 

but I thought it just showed that the recursion formula was too primi-

tive. However, later it helped Ken to develop a general approach to the 

renormalization group and epsilon expansion.”

Philosophically, Wilson was not deterred by approximate expres-

sions, particularly as he could solve them computationally; here he may 

well have been influenced by his father who was a theoretical chemist11. 

Polyakov notes that quantum field theory was considered by many in 

the Soviet high-energy community at that time to have pathological 

technical issues. It was thus refreshing for both Polyakov and Migdal to 

see that Wilson shared their belief in the natural connection between 

particle physics and critical phenomena13,14. Polyakov also comments13: 

“In spite of our different ‘ideologies’, I was very impressed by the power 

and depth of Ken’s arguments, and learned lots of subtle things from 

our discussions.”

During Wilson’s later visits to Moscow, he also spoke at a ‘Sunday 

seminar’ for ‘refuseniks’32 organized by Voronel and his colleague 

Mark Azbel. Refusenik was the unofficial term for a person, typically a 

Soviet Jew, who was denied permission to emigrate, usually to Israel. 

Since that time the word refusenik has entered the colloquial English 

lexicon to mean a person who refuses to follow the law particularly as 

a form of protest. In the former Soviet Union, refuseniks usually lost 

their jobs, which for scientists meant exclusion from their community 

in all forms. In Moscow, Voronel and Azbel organized regular seminars 

to provide mutual support and intellectual sustenance for the refuse-

nik scientists24,32,33. In 1977 Voronel and Azbel organized a meeting on 

collective phenomena in physics to mark the fifth anniversary of the 

Moscow seminar series, and Wilson was among the invited speakers 

from abroad. These international visitors were given a chilly welcome 
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The microscopic structure of quantum 
space-time and matter from a 
renormalization group perspective

Astrid Eichhorn

The correct microscopic theory of quantum 

gravity may be an interacting, scale-invariant, 

‘asymptotically safe’ model. This Comment 

discusses the renormalization group’s role in 

de�ning asymptotic safety and understanding 

its consequences.

The tools of the renormalization group enable us to study theories on 

different length scales, including those far below experimental reach. 

They provide us with a mathematical analogue of a microscope to probe 

the structure of space-time and matter.

By applying renormalization group methods to a theory, we can 

understand how its interaction coupling constants ‘flow’ as the length 

scale is changed. Crucially, these renormalization group flows can fea-

ture fixed points at which the zooming of the renormalization group 

‘microscope’ does not lead to changes.

Renormalization group fixed points
At a fixed point, the properties and response of a system are the same 

at all length scales. Scale symmetry of this kind provides a compelling 

paradigm for a fundamental symmetry. If this applies, then no new 

particles, dimensions or structures can exist at microscopic scales, 

because a scale-symmetric theory is self-similar and must look the same 

at all scales that are described by the fixed-point regime. However, the 

presence of quantum fluctuations can break scale symmetry and it is 

not guaranteed that a microscopic fixed point can be found, making 

scale symmetry challenging to achieve.

Scale symmetry at microscopic length scales can be achieved 

in two different ways. The first happens when the interactions in a 

theory tend to zero, which removes the effect of quantum fluctua-

tions; this produces a fixed point that corresponds to a non-interacting 

model. This phenomenon is known as asymptotic freedom, which is an 

important feature of quantum chromodynamics and other theories in 

high-energy physics.

A second way happens when quantum fluctuations balance the 

finite coupling strengths. In this scenario, a genuine quantum version 

of scale symmetry, known as asymptotic safety, emerges. In asymptoti-

cally safe theories the fixed point of the renormalization group occurs 

at nonzero values of the couplings — an interacting fixed point.

Although the existence of an asymptotically safe fixed point has 

long been regarded as a somewhat exotic possibility in particle physics, 

condensed matter theory contains numerous examples. Interacting 

fixed points appear at second-order phase transitions, because these 

are characterized by a diverging correlation length. When this happens, 

there is no longer any distinct scale in the system so it must become 

self-similar and therefore correspond to a renormalization group fixed 

point. Because the couplings of such a system are generically nonzero, 

the fixed point must be an interacting one.

Many interacting fixed points have been identified in two- 

or three-dimensional quantum field theories, depending on the 

condensed-matter system at hand. Only recently have asymptotically 

safe fixed points been found in four dimensions1.

The standard model of particle physics and 
renormalization group fixed points
Perhaps the most famous four-dimensional theory is the standard 

model of particle physics. There are a priori three possibilities for its 

microscopic behaviour: it may be asymptotically free, asymptotically 

safe or not ‘ultraviolet complete’ (which means it becomes invalid at 

small length scales).

Although some components of the standard model, such as quan-

tum chromodynamics, are asymptotically free, this is not true of the 

whole theory. Because quantum fluctuations of charged-matter fields 

screen the coupling constant of the Abelian gauge interaction, the 

coupling constant decreases towards large length scales and cannot 

become asymptotically free. Asymptotic safety is harder to rule out 

because it can occur in strongly interacting regimes that are difficult 

to study theoretically. However, so far no evidence for asymptotic 

safety has been found and it appears that the standard model may not 

be an ultraviolet-complete theory without introducing new physics.

This theoretical argument for new physics is supported by obser-

vational arguments. For example, right-handed neutrinos were not 

part of the original standard model but must exist to explain neutrino 

oscillations. Other beyond-the-standard-model particles may exist, 

although the evidence is less definitive. For example, dark matter is 

often attributed to a new kind of particle, or there may be additional 

particles that play a part in the emergence of matter–antimatter asym-

metry in the earlier Universe, a process known as baryogenesis.

However, another fundamental force is already known to exist 

beyond the three forces that are part of the standard model: gravity. 

We may therefore conjecture that a complete theory of the standard 

model coupled to quantum gravity flows from an interacting fixed 

point at short length scales to the known physics at large length scales. 

Testing this conjecture is fundamental to investigating whether grav-

ity and matter can together be described by an asymptotically safe 

standard model.

Asymptotically safe gravity
Gravity is difficult to quantize. Perturbative methods produce increas-

ing numbers of divergences, which require higher-order interaction 

terms to be introduced to cancel them, each of which comes with new 
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coupling, although more work is needed to definitely confirm this 

result8.

The ratio of the cosmological constant to the square of the Planck 

mass is tiny. This is often considered a problem to be solved in quantum 

gravity because the Planck mass is expected to be the characteristic 

scale of all couplings in quantum gravity, including the cosmologi-

cal constant. However, the observed ratio is in fact compatible with 

asymptotic safety, although the ratio is not predicted by the theory. 

In fact, different renormalization group trajectories starting from the 

microscopic fixed point lead to different possible values of the cosmo-

logical constant, one of which could describe our Universe (see Fig. 1a).

Although the field of asymptotically safe gravity has achieved 

encouraging results, important research questions remain. Resolv-

ing these is important to establishing the validity of this approach to 

quantum gravity.

One challenge in studying theories of gravity with the renormali-

zation group is the proper treatment of space-time. A first difficulty 

arises because, in the renormalization group, a cutoff is imposed on 

the momentum associated with the Fourier modes of quantum fluctua-

tions. This is easily possible for the spatial momentum, but not effective 

with the four-momentum, whose absolute value can be close to zero, 

even if the spatial momentum is large. In non-gravitational quantum 

field theory, this is dealt with by a Wick rotation of the time direction, 

which effectively converts time into just another spatial dimension. In 

quantum gravity, the Wick rotation is not well defined and calculations 

have to date mostly been done in purely spatial settings. Recently, first 

hints were obtained that asymptotic safety extends to space-time 

settings9.

A second difficulty arises because the definition of a cutoff relies 

on the space-time metric, which determines the length and momen-

tum scales. In quantum gravity, the space-time metric is subject to 

quantum fluctuations. This raises the question of which metric we 

couplings. This makes gravity a ‘non-renormalizable’ theory, meaning 

that its predictivity is lost.

The non-renormalizability of gravity has prompted the develop-

ment of various non-quantum field theory approaches to quantum 

gravity that postulate that the physics at small distances is radically 

different. Most prominent among them are perhaps string theory, 

which postulates that elementary particles are not pointlike, but are 

excitations of nonlocal objects (the strings), and loop quantum gravity, 

which postulates that space-time is fundamentally discrete, such that 

the quantization procedure is modified at small length scales.

Although perturbative renormalizability is a necessary prerequi-

site for asymptotic freedom, it is logically independent of asymptotic 

safety. In 1976, it was conjectured that asymptotic safety may describe 

the high-energy regime of quantum gravity2. It took twenty years before 

the development of functional renormalization group techniques 

made it possible to study the conjecture in four-dimensional gravity3.

Following the breakthrough in functional renormalization group 

methods, asymptotic safety in gravity has become a well established 

field of study (see ref. 4 and references therein). Multiple studies 

have identified an interacting fixed point (reviewed in refs. 4–6), with 

non-zero couplings corresponding to the dimensionless counterparts 

of the Newton coupling, the cosmological constant and also various 

higher-curvature couplings that become important when describing 

gravity in conditions with large energy densities.

A key question is how many of these couplings are truly independ-

ent, and which can be determined as functions of the others. If just a 

finite number of the couplings are truly independent, then asymptotic 

safety can solve the predictivity problem raised by the result of per-

turbative renormalizability. Numerous papers provide evidence that 

asymptotically safe quantum gravity has three free parameters (see 

ref. 7, for example), which can be fixed by the low-energy value of the 

Newton coupling, the cosmological constant and a curvature-squared 
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Fig. 1 | Renormalization group flow of gravity and standard model couplings. 

a, The renormalization group flow in the plane spanned by the dimensionless 

counterparts of the Newton coupling GN and the cosmological constant Λ, which 

are the leading-order gravitational couplings. The asymptotically safe fixed point 

(magenta dot) has many renormalization group trajectories emanating from it. A 

special trajectory, which passes very close to the non-interacting fixed point (red 

dot), reproduces the measured values of the Newton constant and cosmological 

constant. b, The renormalization group flow of gravity, encoded in GN and Λ, 

together with standard model couplings g1 (Abelian gauge coupling),  

g2 (SU(2) gauge coupling), g3 (SU(3) gauge coupling), yt (top quark Yukawa 

coupling), yb (bottom quark Yukawa coupling) and λ4 (Higgs quartic coupling).  

At trans-Planckian energies, gravitational fluctuations generate asymptotic 

safety in those couplings which do not become asymptotically free. At the Planck 

scale, gravitational fluctuations decouple and the renormalization group flow 

of the standard model couplings changes. Figure adapted from ref. 19 under a 

Creative Commons licence CC BY 4.0.
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should choose to measure lengths and define the cutoff. In functional 

renormalization group techniques, an auxiliary background metric is 

chosen, and work is now being conducted to show that the results are 

independent of this choice5,10.

Another open question concerns the dynamical properties of an 

asymptotically safe theory, which requires higher-curvature terms. 

These terms are an extension to the established Einstein action of 

general relativity. These interactions could produce new degrees of 

freedom with properties that are inconsistent with a theory of gravity, 

such as predictions of negative probability. However, such higher-order 

terms may also simply modify the behaviour of the quantized gravita-

tional field, without introducing new degrees of freedom11.

Given these challenges, it is critical to develop further methods 

that could corroborate asymptotic safety in gravity. Lattice techniques 

are an important example, including causal dynamical triangulations12; 

and functional renormalization group techniques have also been con-

nected to other methods, such as minimal subtraction schemes13.

The standard model and asymptotic safety
An asymptotically safe model of gravity could possibly provide an ultra-

violet completion of the standard model. At energies above the Planck 

scale, quantum fluctuations of gravity could alter the renormalization 

group flow of the standard model to induce asymptotic safety, as found 

within the approximations made in refs. 14–16.

There is evidence that coupling to gravity improves the behaviour 

of the standard model, so that its divergent couplings instead flow 

from a fixed point at small length scales. However, the combination 

of gravitational and standard model quantum fluctuations can only 

balance out at specific values or within specific ranges of couplings. 

This balance generates structures in how the couplings flow at different 

energy scales (Fig. 1b)17.

Gravitational fluctuations decouple from the standard model 

below the Planck scale. However, the structures imprinted on the 

standard model couplings at the Planck scale are mapped by the renor-

malization group flow to structures at much lower energies, close to 

those of the electroweak scale. This procedure achieves something 

that is rarely achieved in quantum gravity: a potential confrontation 

with experimental data. Examples include a prediction of the ratio 

of the Higgs mass to the electroweak scale18, an upper bound on the 

Abelian gauge coupling17 and the top Yukawa coupling19 as well as on 

the ratio of the top to the bottom Yukawa couplings20 (see also ref. 21 

and references therein).

Comparisons between experimental data and calculations explor-

ing asymptotic safety have been encouraging, because the predicted 

structures broadly match observations, albeit within large systematic 

uncertainties in the theory. A refinement of existing predictions by 

reducing the systematic uncertainties is an obvious next step for the 

field. It should then be possible to discover whether predictions for the 

standard model match experimental results. This would considerably 

strengthen the case for an asymptotically safe fixed point.

There is scope for additional predictions beyond the standard 

model, most importantly in the dark matter sector. These run along 

two distinct lines: first, not all dark-matter models may be amenable to 

an asymptotically safe ultraviolet completion with quantum gravity22. 

Those which are not amenable give rise to the first prediction of asymp-

totically safe gravity: that such forms of dark matter should not exist.

Second, dark matter models that do fit into the asymptotic-safety 

paradigm should be described by an interacting fixed point and should 

therefore be scale-symmetric at small length scales. As discussed above 

for the standard model, the renormalization group flow may fix or 

bound the values of couplings, resulting in corresponding predictions 

at energies accessible to experiment23.

Making quantitatively precise predictions for physics beyond the 

standard model is an important new frontier of the field and may at 

the same time address a key challenge of particle physics beyond the 

standard model, namely the large number of models that exist. The 

asymptotic-safety paradigm may greatly reduce the number of theo-

retically viable models and make concrete predictions for experimental 

programmes such as dark matter searches.
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Supersymmetric renormalization group flow

Jaewon Song

Supersymmetric quantum �eld theories  

have special properties that make them  

easier to study. This Comment discusses  

how the constraints that supersymmetry 

places on renormalization group �ows have 

been used to study strongly coupled �eld 

theories.

Ken Wilson’s work on the renormalization group taught us that  

quantum field theories (QFT) are defined according to a character-

istic energy or length scale. Typically, we start with a microscopic or  

ultraviolet description of a QFT. Renormalization group transforma-

tions then enable us to coarse-grain the theory. In the renormaliza-

tion group procedure, the parameters of a theory ‘flow’ to produce 

an effective field theory that is valid at low energies or long distances.  

However, in most cases, renormalization group equations cannot be 

solved exactly. Therefore, results are often calculated by approximat-

ing the effect of small perturbations from solvable non-interacting 

theories.

In high-energy physics, so-called gauge theories play a particularly 

important role. These QFTs are characterized by an invariance under 

local symmetry transformations called a gauge transformation. For 

example, the fundamental strong, weak and electromagnetic forces 

are known to be described by gauge theories.

Some gauge theories, such as the one that describes the strong 

force, are asymptotically free. This means that at high energies, the 

fields become non-interacting. Conversely, in the low-energy or infra-

red limit, the interaction strength grows, and it becomes impossible to 

use perturbative approximation methods to determine the low-energy 

limit of the gauge theory.

A low-energy effective field theory must still satisfy the symmetry 

properties of the original microscopic theory. Ensuring that the sym-

metry is respected can constrain the dynamics of the strongly coupled 

effective theory.

Supersymmetry is a space-time symmetry between bosons and 

fermions. QFTs with supersymmetry enjoy constraints from holo-

morphy1, which restrict the allowed terms in the effective field theory. 

This property made it possible to discover the phenomenon of infra-

red duality2, meaning that distinct gauge theories describe the same 

physics at low energies (infrared) upon renormalization group flow. 

Moreover, developments in recent decades3 have made it possible to 

analytically compute other observables, such as supersymmetric parti-

tion functions. These features allow us to test the infrared dynamics of 

supersymmetric theories with high precision.

In this Comment, we describe how supersymmetry helped us to 

better understand certain features of renormalization group flows. 

Supersymmetry enables some exact predictions, providing valuable 

insights into the physics of strongly coupled theories. We will focus 

mainly on the theories with four space-time dimensions.

a-maximization
Let us consider a supersymmetric gauge theory in the ultraviolet. 

Generally the theory flows in the infrared to a fixed point at which  

the theory’s parameters no longer change under renormalization  

group transformations. The fixed point can be trivial, with an energy 

gap between the ground state and the lowest-energy excitations. More 

interestingly, the theory can be gapless, with ‘massless’ degrees of 

freedom.

The constraints imposed by supersymmetry and invariance under 

renormalization mean that a massless theory must be a superconformal 

field theory (SCFT). The symmetry of a four-dimensional SCFT is 

described by the superconformal group SU(2, 2|N), where N  denotes 

the number of independent supersymmetry transformations the SCFT 

has. In this section, we will restrict ourselves to the case of minimal 

supersymmetry, that is, N = 1.

The superconformal group SU(2, 2|1)  contains a bosonic 

subgroup:

SO(4, 2) × U(1)

R

⊂ SU(2, 2|1) (1)

where SO(4, 2) is the conformal group containing the Poincaré group 

of space-time symmetries and the dilation generator associated with 

the scaling symmetry. The additional U(1)
R

 group is the so-called 

R-symmetry, and this symmetry has a crucial role in the physics of 

SCFTs. For example, the scaling dimensions of certain operators in the 

SCFT are constrained by how they transform under the R-symmetry.

The stress tensor T of a conformal field theory represents the 

quantities that are conserved owing to translational invariance. In flat 

space, its trace is zero, but in curved space, it is non-vanishing with the 

following form:

⟨T

μ

μ

⟩ = cW

2

− aE

4

(2)

where W is the Weyl tensor and E4 is the Euler density of the space-time 

manifold, both of which reflect the curvature. The coefficients a and 

c are called conformal anomalies or central charges. In particular, a is 

known to measure the degrees of freedom, since it decreases along the 

renormalization group flow4,5. Supersymmetry relates the conformal 

anomalies to the R-symmetry.

 Check for updates

N = 2 fixed point

N = 1 ultraviolet Lagrangian

N = 1 elsewhere

Weak-coupling description

Fig. 1 | N = 1 theory flows in the infrared to a point on a conformal manifold of 

N ≥ 2 theory. A non-Lagrangian N = 2 theory may be marginally deformed to an 

N = 1 theory with a weakly coupled dual description.
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fundamental chiral multiplets. This model flows to an interacting SCFT 

with a number of decoupled free fields. In the large-N limit, the scaling 

dimensions of gauge-invariant operators at the fixed point form a dense 

set11, meaning that the gap in the operator dimensions scales as 1/N, 

owing to the large quantum corrections to the dimensions of the fun-

damental fields that are non-perturbative. This ‘dense spectrum’ con-

trasts sharply with typical gauge theories whose scaling dimensions 

are discrete in the large-N limit.

By considering all possible relevant deformations, including the 

decouplings, we can extend the space of renormalization group flows 

in a given gauge theory. Even for a very simple field theory with SU(2), 

the gauge group reveals a large set of non-trivial fixed points12. These 

non-trivial fixed points exhibit various non-trivial phenomena — emer-

gent symmetry, decoupling of operators, and narrow distribution of 

the central charges a/c. Some of these fixed points even display super-

symmetry enhancement, which we discuss below.

Supersymmetry-enhancing renormalization group flows
A QFT is usually introduced by writing a Lagrangian, which defines how 

the fields behave and interact. However, different theoretical tech-

niques make it possible to identify QFTs that do not have a known (or 

useful) Lagrangian description. These 'non-Lagrangian' theories are 

difficult to study quantitatively because most methods are based on 

analysing the terms of a Lagrangian. In many cases it is not clear whether 

a QFT is genuinely non-Lagrangian or whether the Lagrangian is simply 

as yet undiscovered.

However, there exists an unambiguous notion of ‘non-Lagrangian’ 

SCFTs for which it is impossible to write a Lagrangian exhibiting the 

system’s full amount of supersymmetry. For example, Argyres–Douglas 

theory13 is an N = 2 SCFT, whose operator contents are inconsistent 

with the constraints imposed by an N = 2 supersymmetric Lagrangian. 

Similarly, there can be no purely N = 3 Lagrangian theory, and would-be 

N = 3 supersymmetric theories actually have larger N = 4 supersym-

metry. Nevertheless, many non-Lagrangian N = 2,3 SCFTs have been 

constructed using techniques from string theory14,15, and the list of 

such theories continues to grow16,17.

Recently, it was found that certain non-Lagrangian theories can 

arise as renormalization group fixed points of Lagrangian theories 

with minimal (N = 1) supersymmetry. A superconformal fixed point 

of a particular N = 1 gauge theory was found to match the minimal 

Argyres–Douglas theory13, which has N = 2 supersymmetry18. This 

discovery means we have an N = 1 ultraviolet Lagrangian description for 

a non-Lagrangian N = 2 SCFT. From this gauge theory description, we 

can compute important physical quantities, such as supersymmetric 

partition functions, that were previously unknown. Importantly, the 

ultraviolet fixed point contains ‘dangerously irrelevant’ operators 

whose coupling gets smaller during the initial renormalization group 

flow but that eventually becomes relevant and grows, drastically alter-

ing the fixed point of the flow.

Many other examples of such supersymmetry-enhancing renor-

malization group flows have now been discovered. More-general 

Argyres–Douglas theories can be constructed by choosing ultravio-

let theories with different gauge groups. Lagrangians with singular, 

divergent couplings have also been used19 to obtain N = 2 SCFTs with 

flavour symmetry described by the exceptional Lie groups14.

Sometimes we can deform an N = 2 SCFT via N = 1 supersymmetry- 

preserving marginal operators. This means that we have a family of 

N = 1 SCFTs parameterized by the couplings to the marginal operators 

(or a continuous family of fixed points, called a conformal manifold) 

Treating a global symmetry as a gauge symmetry introduces  

an inconsistency, whose nature should be the same in both the weakly 

coupled ultraviolet microscopic theory and in the strongly interacting 

infrared effective theory. This inconsistency can be quantified and is 

called the ‘t Hooft anomaly. The ‘t Hooft anomaly is invariant under 

the renormalization group flow, which allows us to use perturbative  

ultraviolet calculations to draw conclusions about the low-energy 

strongly coupled theory. This procedure is called ‘t Hooft anomaly 

matching6. For an SCFT, the central charges are conveniently com-

putable using the ‘t Hooft anomaly involving the R-symmetry, 

because the stress tensor and the R-symmetry currents are related by 

supersymmetry7.

However, it is not always clear what form of R-symmetry will 

emerge at a strongly coupled infrared fixed point. SCFTs may have 

additional U(1) symmetries, which can mix together to give multiplet 

candidates of R-symmetry. In these cases, the so-called a-maximization 

principle8 applies: among the set of possible U(1)
R

 symmetries, the 

superconformal R-symmetry should maximize the a-function.

Performing a-maximization reveals whether the fixed point of the 

renormalization group flow is an SCFT or not. First, to have an SCFT at 

the fixed point, there must be a real solution to the a-maximization 

problem. Second, the SCFT must be unitary, which puts constraints 

on the R-charges of the operators. If an R-symmetry that satisfies these 

conditions exists, the infrared fixed point can be given by a non-trivial 

SCFT. Moreover, knowing the exact R-charge enables us to compute 

detailed properties of the SCFT’s operators.

Similar procedures to determine the superconformal R-symmetry 

exist in other space-time dimensions: c-extremization in two dimen-

sions9 and F-maximization (or Z-extremization) in three dimensions10.

Landscape of SCFTs
Armed with a-maximization, we can explore the space of renormaliza-

tion group flows and the superconformal fixed points obtainable from 

a supersymmetric gauge theory. Once an infrared fixed point has been 

identified, we can enumerate all the relevant operators.

Additional renormalization group flows are triggered by deform-

ing the original gauge theory via gauge-invariant operators. If they  

are relevant, they create flows to different fixed points. Relevant 

operators also typically break some of the initial global symmetry, 

so to find new fixed points, we maximize the trial a-function over 

smaller symmetries, which results in a smaller value of a. This provides 

a supersymmetric demonstration of the so-called a-theorem, which is 

the conjecture that a should always decrease along renormalization 

group flows. However, this argument has caveats, as pointed out in 

the original paper8.

The a-maximization procedure involves identifying all the U(1) 

symmetries that can mix with the R-symmetry. However, such U(1) 

symmetries can emerge along the renormalization group flow. Huge 

quantum corrections can cause some of the operators in the theory to 

decouple from the rest of the system and become free fields. These 

operators are then associated with an accidental U(1) global symmetry 

that acts only on them. This process invalidates a-maximization calcula-

tions based solely on symmetries that are manifest in the initial ultra-

violet theory. Another caveat is that the trial a-function is only a local 

maximum, so it may happen that a larger maximum exists in the 

restricted parameter space.

Considering the decoupled operators carefully, we also find a 

non-canonical type of gauge theory. For example, consider SU(N) gauge 

theory with an adjoint chiral multiplet and a small number of 
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connected to the N = 2 SCFT we started with. This sometimes allows 

us to find a dual N = 1 Lagrangian gauge theory, which can be smoothly 

connected to N = 2 or N = 3 non-Lagrangian theories20–22. (See Fig. 1 for 

an illustration.) As a final example, a particular N = 1 theory built out of 

non-Lagrangian SCFTs has been shown to flow in the infrared to a point 

in the conformal manifold of a maximally supersymmetric N = 4 super 

Yang–Mills theory23, exhibiting the largest possible supersymmetry 

enhancement.

Conclusion
As we have discussed here, supersymmetry provides a valuable theo-

retical laboratory in which to explore the strong-coupling dynamics 

of QFTs. It has been a particularly fruitful approach for discovering 

non-trivial aspects of the renormalization group, such as infrared dual-

ity, conformal manifolds, decoupling of operators, emergent (super)

symmetry, and so on. Some of these phenomena have then been found 

in non-supersymmetric models as well. We expect that supersymmetry 

will continue to provide insights and tools that help us to understand 

this universal language of physics — QFT — better.

Jaewon Song     

Department of Physics, Korea Advanced Institute of Science and 

Technology, Daejeon, Korea.  

 e-mail: jaewon.song@kaist.ac.kr
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Consequences of the renormalization group 
for perturbative quantum chromodynamics

Diogo Boito

The renormalization group is a key ingredient 

in methods of improving perturbative 

computations in particle physics. Here I brie�y 

discuss its role in perturbative quantum 

chromodynamics and particularly the running 

of its coupling constant.

Ken Wilson’s interpretation of renormalization had profound impli-

cations for particle physics and quantum chromodynamics (QCD) in 

particular. Wilson’s picture assumes that quantum field theory has a 

high-energy, or ultraviolet, cutoff Λ. The physical origin of this cutoff 

depends on the theory in question. In some cases, there is a natural 

cutoff related to the inverse of a fundamental distance scale such as 

the atomic or the lattice spacing, which is usually the case in condensed 

matter physics. In particle physics such a cutoff could reflect a funda-

mental scale of the Universe.

Wilson’s main observation was that physics at low energies must be 

independent of fluctuations that take place at high energies. One can 

obtain an effective theory that only describes the low-energy degrees 

of freedom by ‘integrating out’ the high-energy modes, removing fluc-

tuations above a certain energy cutoff. In this procedure the coupling 

constants that describe the physical interactions have to change so 

that the effective theory describes the same low-energy physics as the 

full theory. Wilson’s renormalization group equations describe the 

modifications to the couplings that are due to infinitesimal changes 

in the cutoff, which are realized in terms of differential equations.

Wilson’s formulation of the renormalization group was funda-

mental for our understanding of quantum field theory and for the 

conceptual development of effective theories — it is one of the main 

tools in the present-day toolbox. In some practical applications to par-

ticle physics, however, this formulation of the renormalization group 

is not particularly convenient. We need to understand how quantities 

related to physical observables — not just coupling constants — behave 

under the renormalization group.

When working with the standard model of particle physics, most of 

the calculations of interest are done perturbatively using the celebrated 

Feynman diagrams, in which lines represent propagating particles and 

vertices represent interactions (see Fig. 1). Higher precision requires 

going beyond the leading order, introducing Feynman diagrams with 

loops, which require integration over the momenta flowing in the loops.

An immediate connection to the Wilsonian renormalization group 

equations could be made by introducing a cutoff Λ in the momentum 

integrals, removing the short-wavelength, high-energy fluctuations. 

A characteristic feature of loop calculations is the appearance of 

non-analytic logarithms that involve ratios of scales. Calculations with 

a sharp ultraviolet cutoff Λ produce terms such as log (
Λ

2

−p

2

)

, where p2 

is some energy-characteristic scale of the process. The ultraviolet 

divergence of the theory is regulated by the cutoff and would be mani-

fest in the limit Λ → ∞. Unfortunately, calculations with a sharp ultravio-

let cutoff are very inconvenient because the cutoff can break gauge 

symmetries of the Lagrangian that are central to our understanding of 

gauge fields and interactions.

Dimensional regularization
The preferred alternative approach to isolating — or regularizing —  

loop-integral divergences while preserving gauge symmetries is 

known as dimensional regularization1. In dimensional regularization, 

momentum integrals are always performed assuming the cutoff Λ → ∞.  

Divergences are avoided instead by performing the integrals in 

non-integer space-time dimensions D = 4 − ϵ and later expanding for ϵ ≈ 0.  

For example, in the one-loop diagram of Fig. 1, one needs to compute 

the following integral:

μ

(4−D)

∫

d

D

l

(2π)

D

1

l

2

−m

2

1

(l − q)

2

1

(k + l)

2

−m

2

, (1)

with m being the muon mass, k the momentum of the external photon 

and q the momentum of the incoming muon. One must introduce a 

renormalization scale μ to preserve the correct physical dimensionality 

of the predicted observables.

In dimensional regularization it is the scale μ that appears in the 

logarithms as log (
μ

2

−p

2

)

 and, in order to avoid large logarithms, μ2 must 

be of the order of the typical scale for the process, p2. The logarithms 

always appear in combination with a term 2/ϵ that encodes the ultra-

violet divergences in the limit ϵ → 0, which is equivalent to Λ → ∞. After 

the integrals have been properly regularized, the next step is to remove 

 Check for updates

+

µµ µµ

γ γ

γ

Fig. 1 | Dominant Feynman diagrams for the computation of muon magnetic 

moment. In such diagrams, solid lines correspond to muons μ and wave lines are 

photons γ. Vertices between lines represent interactions. The second diagram is 

a one-loop diagram first calculated17 in 1948, and represents one of the first major 

successes of quantum electrodynamics: the prediction of the leading-order 

anomalous magnetic moments of leptons.
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dependence of αs is the QCD β function, which can be obtained per-

turbatively, as a series in increasing powers of αs corresponding to 

Feynman diagrams with increasing numbers of interaction vertices. 

The renormalization group implies that

μ

2

dα

s

(μ)

dμ

= β(α

s

) = β

0

α

2

s

(μ) + β

1

α

3

s

(μ) +⋯ (2)

because β0 <0, αs(μ) decreases with increasing μ. The interaction 

becomes less intense at high energies and we say that the theory 

becomes asymptotically free.

When the β function’s first term, the one-loop coefficient β0, was 

first calculated in 1973 (refs. 4,5), it provided an explanation for an 

effect known as Bjorken scaling, observed in the scattering of elec-

trons on nucleons. Asymptotic freedom is one of the most important 

features of QCD and its discovery was the subject of the 2004 Nobel 

Prize in Physics.

Making progress in multi-loop calculations in realistic quantum 

field theories, and in QCD in particular, is notoriously difficult. At 

present, 50 years after the publication of the result for β0, the QCD β 

function is now known at five loops6–8. Only recently in 2016 was the 

five-loop result, involving the computation of 1.5 million Feynman 

diagrams, finally published.

With the current level of precision, we are able to stringently con-

strain the scale dependence of αs(μ) predicted by the renormalization 

group equations. However, theory alone cannot give us the actual value 

of the coupling at any scale. The μ dependence of the coupling tells us 

that it is not a physical quantity, but it can be determined within a given 

renormalization convention (here the modified minimal subtraction 

scheme) from the careful comparison of state-of-the-art computations 

with experimental results for QCD observables or using first-principles 

lattice QCD simulations.

There are many determinations of αs at different renormalization 

scales (Fig. 2). The agreement between the theory curve and the αs 

determinations is excellent and spans three orders of magnitude in 

energy. The determination of αs from the τ lepton decays (filled red 

square in Fig. 2) is particularly notable because it provides the most 

stringent test of the renormalization group equations at low energies. 

Asymptotic freedom is manifest in the fact that αs(μ) slowly goes to 

zero at high energies.

Another important feature is the divergence of the coupling at 

low energies. The point of divergence is known as the Landau pole and 

it occurs at a characteristic energy scale of the order of a few hundred 

megaelectronvolts (the precise value depends on the renormalization 

scheme). Because of this behaviour, perturbative QCD ceases to be 

valid for p ≲ 1.0 GeV. The existence of the Landau pole may be connected 

to the non-perturbative phenomenon of quark confinement, which is 

still not fully understood.

Although physical quantities should be independent of μ, in prac-

tice all we have in perturbative QCD computations are truncated power 

series in αs(μ). The results obtained from these series retain a residual μ 

dependence. The key point is that this residual renormalization-scale 

dependence should become smaller at higher orders, because the 

perturbative series is systematically improvable by going to a higher 

number of loops.

For some time, this residual dependence was considered an 

unwanted feature that should be eliminated. A valuable theory effort 

was devoted to finding a unique, optimal, renormalization scale or 

scheme9–11. At present, however, the attitude of a significant part of the 

the 1/ϵ divergences by suitable redefinitions of the Lagrangian param-

eters, leading to finite physical predictions at D = 4. The most frequently 

used renormalization scheme for these redefinitions is known as modi-

fied minimal subtraction. Here we assume that calculations are per-

formed with dimensional regularization in the modified minimal 

subtraction scheme.

In the language of dimensional regularization, the dependence 

of coupling constants on the cutoff Λ translates into a dependence on 

the renormalization scale μ. However, the renormalization scale is not 

a physical quantity and physical predictions should not depend on it.

The independence of physical quantum field theory predictions 

with respect to the renormalization scale is the essence of the renor-

malization group in this context and it was first proved by Callan2 

and Symanzik3. It is realized as non-trivial cancellations between the 

μ-dependent logarithms that appear during loop computations and 

those that arise from the μ dependence of coupling strengths and other 

Lagrangian parameters.

Quantum chromodynamics
We focus now on the case of QCD, denoting by αs the strong cou-

pling, which can be thought of as the strong-interaction equivalent 

of the fine-structure constant. The function that governs the scale 

α
s(
p

)

p (GeV)

τ decay (N3LO)

low Q2 cont. (N3LO)

HERA jets (NNLO)

Heavy quarkonia (NNLO)

e+e– jets/shapes (NNLO + res)

pp/pp (jets NLO)

EW precision fit (N3LO)

pp (top, NNLO)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 10 100 1,000

αs(Mz) = 0.1179 ± 0.0009

Fig. 2 | Running of the QCD coupling. Determinations of αs(p) at different 

characteristic scales p. The solid lines represent the result obtained (within 

one uncertainty) from the world average of αs(mZ), solving the renormalization 

group equation (see equation (2)) with the β function calculated including 

terms up to five loops. The boundary condition is the average value of αs(mZ), 

obtained after evolving each individual determination to the Z boson mass 

scale. NLO, next-to-leading order; NNLO, next-to-next-to leading order; N3LO, 

next-to-next-to-next-to leading order; NNLO + res, NNLO matched to a resumed 

calculation; EW, electroweak; cont., continuum. Adapted with permission from 

ref. 18, Oxford Univ. Press.
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theory community is that a residual scale dependence is essentially 

unavoidable. In fact, it provides a way to assess the theoretical error 

stemming from missing higher orders in perturbation theory. This is 

because, keeping n terms in the perturbative expansion, the residual 

scale dependence is always formally O(αn+1

s

), a direct consequence of 

the renormalization group (equation (2)). The stability of the calculated 

value can be verified by how it changes when the renormalization scale 

is varied over a reasonable interval.

As a concrete example, Fig. 3 (reproduced from ref. 12) shows the 

result for the QCD corrections to the decay of the Higgs boson (H) into 

bottom quarks and gluons up to O(α4

s

). The improvement with respect 

to μ variation, order by order, is clear and the red line, which includes 

some contributions at O(α5

s

), shows an impressive μ independence, 

demonstrating that there is only a small error from missing higher- 

order terms.

Divergence of the perturbative expansion
In realistic quantum field theories, such as QCD, the perturbative series 

in powers of αs is a divergent expansion, as discovered in the context of 

QED by Dyson in 1952 (ref. 13). However, the practical fact that truncated 

perturbative expansions in QED and QCD provide a very good descrip-

tion of experimental data very strongly suggests that the perturbative 

series are asymptotic series. This is the particular type of divergent 

expansions that provides a good approximation when truncated at 

intermediate orders but that, eventually, diverges.

Mathematically, the series is divergent because the order-n series 

coefficients, cn, grow factorially with n. This means that, no matter how 

small the coupling may be, at high orders factorial growth takes over 

and it makes no sense to keep adding terms to the series. And — this is 

important — this factorial behaviour is not connected with the prolif-

eration of Feynman diagrams. The origin of this divergence is, in fact, 

deeply rooted in the renormalization group and the renormalization 

procedure. The QCD β function and the evolution of αs play a crucial 

role.

In Fig. 2, we see the manifestation of the Landau pole at low ener-

gies but, in dimensional regularization, the loop integrals are per-

formed from zero to ∞ (in energy). Clearly, we cannot perform the loop 

integration in the low-energy region with impunity and the Landau 

pole must leave a trace in the final, finite, result. It leads, precisely, to 

perturbative coefficients that behave as cn ≈ n!. In fact, the coupling 

goes to zero rather slowly (logarithmically), as predicted by asymptotic 

freedom, and this also leaves a trace in the form of contributions to cn 

that grow factorially but in this case with a sign alternation.

This type of factorial growth is better understood by applying 

an inverse Laplace transformation to the series, which in this context 

is called a Borel transformation. The factorials in the original func-

tion correspond to poles in the transformed variable. These poles are 

known as the renormalons of perturbation theory14. Effects due to 

renormalons are especially important at lower energy scales, because 

αs is larger in this regime, such as, for example, in the description of 

hadronic τ decays (filled red square in Fig. 2). In this case, the compli-

cations due to renormalons led to an ambiguity in the renormaliza-

tion scale setting that persisted for about 30 years, and was only very 

recently resolved 15,16.

Wilson’s ideas were fundamental to our deep understanding of 

quantum field theory and, in particular, about the renormalization 

procedure. But, more than a crucial conceptual tool, they have led to 

the development of new systematic methods, such as effective field 

theories, and are used in practical applications to guide the improve-

ment of perturbative computations, leading to high-precision results 

that are key to the testing of the standard model of particle physics.
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The renormalization group for 
non-equilibrium systems

Yuhai Tu

Historically, most renormalization 
group studies have been performed for 
equilibrium systems. Here, I give a personal 
re�ection on the unexpected outcome of 
studying non-equilibrium �ocking using 
renormalization methods.

Ken Wilson’s work on renormalization group theory developed from 

the study of critical phenomena in equilibrium systems (see ref. 1 for 

Wilson’s review on the subject). Renormalization group methods had 

an immediate and lasting impact. However, in his Nobel lecture deliv-

ered in late 1982, Ken Wilson remarked: “In my view the extensive 

research that has already been carried out using the renormalization 

group and the ϵ expansion is only the beginning of the study of a much 

larger range of applications that will be discovered over the next twenty 

years (or perhaps the next century will be required).” In this Comment, 

I will describe my own experience developing one such application: 

the study of non-equilibrium stochastic dynamical systems.

The initial developments of the renormalization group theory 

by Leo Kadanoff and Ken Wilson were based on equilibrium systems. 

In these cases, it is possible to write a Hamiltonian that governs the 

statistical properties of the system.

The basic idea is to consider many-body systems at a coarse- 

grained level, averaging the microscopic degrees of freedom over a 

larger length scale. Kadanoff proposed2 that a coarse-grained system 

can, after appropriate rescaling, be described by a Hamiltonian of the 

same form as the initial model but with a set of renormalized param-

eters. The transformation of parameters at a finer scale into those at a 

coarser scale constitutes the renormalization group.

Repeatedly applying this coarsening process produces a so-called 

flow of the parameters. This flow features fixed points — special values 

that do not change under renormalization. These parameters corre-

spond to the critical point where the system obeys universal scaling 

laws. Systems with the same scaling laws are said to belong to the same 

universality class.

Another key idea in renormalization group theory is the existence 

of an upper critical dimension dc. Above this dimension, the fixed point 

corresponding to mean field theory is stable, which means it correctly 

captures the critical behaviour. For lower dimensions, an approxima-

tion to the critical behaviour can be found by solving the renormaliza-

tion group equations perturbatively3 in orders of ϵ ≡ d

c

− d  to obtain 

the scaling exponents in leading orders of ϵ.

Subsequent work quickly extended the use of renormalization 

group to study dynamics of critical phenomena4,5 (see ref. 6 for a 

comprehensive review). Although initially developed in equilibrium 

systems, it was clear that dynamic renormalization group can be used 

to study stochastic dynamics in non-equilibrium systems that do not 

have a Hamiltonian or other energy functionals. This is a very excit-

ing perspective for renormalization group as most systems in nature 

are driven out of equilibrium by external forces, and yet they exhibit 

robust scaling behaviours similar to those observed in equilibrium 

critical phenomena.

One such example is the Kardar–Parisi–Zhang (KPZ) equation 

proposed to describe interface growth7. In the case of the KPZ equation, 

the renormalization group has been successfully used to understand 

its scaling behaviours7–9. On a personal level, studying the KPZ equa-

tion and its variance gave me the opportunity to learn and appreciate 

the beautiful intuition and powerful techniques behind renormaliza-

tion10,11. Later, I worked with John Toner to develop a hydrodynamic 

theory of flocking where renormalization group methods played a 

critical role.

The most recognizable examples of flocking occur in bird flocks 

and fish schools (Fig. 1a,b). However, this type of collective motion 

can also arise at smaller length scales, for example in bacteria swarms  

(Fig. 1c), or in mixtures of motor proteins and microtubules.

 Check for updates

a b c

Fig. 1 | Collective flocking in nature. Flocking behaviours span an enormous range of length scales from tens and hundreds of metres in a, fish schools and b, bird 

blocks, to micrometres in c, bacteria swarms. 
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In the ordered phase where all boids move in the same direction, we 

could evaluate the stability of the system by computing the magnitude 

of fluctuations around the ordered state. The broken symmetry means 

that there are long-wavelength, low-energy degrees of freedom known 

as Goldstone modes that can be excited by noise sources.

Owing to the existence of the Goldstone modes, the variance of 

the velocity fluctuations around the ordered state contained a term 

that scales as L2χ  where L is the length scale of the system. We found 

that in the absence of nonlinear convective terms χ = 1 − d/2, where d 

is the dimension of the system. Below three dimensions the fluctuations 

grow with the system size and the ordered state is unstable, in accord-

ance with the Mermin–Wagner theorem.

However, the motion of boids in flocking systems makes the prob-

lem completely different from equilibrium models that are subject to 

the Mermin–Wagner theorem. In particular, we found the convective 

terms influence the model’s renormalization group flow and that the 

exponent χ  deviates from its value in the linear theory. In fact, by using 

certain invariant properties of our model that should apply for d = 2, 

we were able to obtain an exact expression for χ =
3−2d

5

.

Our results show that χ = −1/5 < 0 for d = 2 and the fluctuations 

around the long-range-ordered state remains finite in the thermody-

namic limit — collective flocking behaviour is stable in two dimensions. 

Soon afterwards, we applied the hydrodynamic theory for flocking to 

study other important emergent phenomena, such as the sound waves16 

and the giant number fluctuations17 of flocks. Most recently, the dynam-

ics renormalization group approach has been used to study flocking 

behaviours in the presence of quenched disorder18 and in natural 

swarms19. The flocking model has also become influential in areas 

outside of physics ranging from robotics20 to traffic21.

Beyond flocking, the versatility and power of the renormaliza-

tion group-based approach have been demonstrated in different 

non-equilibrium systems such as active matter and living systems. 

For example, it has been used to develop22 a coarse-graining approach 

for studying neural activities in a large network of neurons that reveals 

a quasi-universal scaling behaviour in neuron firing patterns in dif-

ferent parts of the brain23. In our own recent work, my colleagues and 

I constructed a state-space approach to understand the inverse 

power-law scaling of the energy dissipation rate across different scales 

in non-equilibrium reaction networks24,25.

Non-equilibrium biological systems often exhibit unexpected 

behaviours that are drastically different from their equilibrium coun-

terparts. Nevertheless, like equilibrium statistical physics models they 

exhibit collective behaviours across different scales. I believe that 

bringing fundamental ideas of coarse-graining and the renormaliza-

tion group into the study of active and living systems is one of the most 

promising research directions in both physics and biology.
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Although flocking appears in many everyday contexts, it is only 

in the past 29 years or so that many of its universal features have been 

identified and understood. Much of this understanding has come from 

statistical physics ideas, applied in a series of studies performed by 

Tamas Vicsek and his collaborators, John Toner and myself.

John and I started working on flocking theory during a visit by 

Tamas Vicsek in late 1994 to the IBM Watson labs in Yorktown Heights, 

New York. Vicsek gave a seminar on a model for a population of active 

self-driven agents, referred to as boids12. Each boid moves with a con-

stant speed in a direction derived from the average of its neighbours’ 

directions of motion plus some noise. In their two-dimensional simula-

tions of the model, Vicsek and his collaborators studied what happened 

when they lowered the noise level or increased the density of bodies. 

They observed a phase transition from a disordered phase in which the 

agents moved in random directions without long-range order to an 

ordered phase where they moved together coherently to form a flock.

At the end of his talk, Vicsek complained that he could not get his 

results published because the referee(s) insisted that the flocking state 

with long-range order is impossible in two dimensions as it violated 

the Mermin–Wagner theorem13. This theorem states that continuous 

symmetries cannot be broken in finite-temperature systems with 

short-range interactions in models with two or fewer dimensions.

This result seemingly implied that any finite noise will create fluc-

tuations that destroy long-range order in a system with continuous 

symmetry and short-range interactions. The Vicsek model falls into 

this category, with the ordered state’s single flocking direction breaking 

the model’s rotational symmetry. It looked like spontaneous flocking, 

at least in two dimensions, was doomed.

John and I, both in the audience, asked a lot of questions during 

Vicsek’s seminar. Puzzled by Vicsek’s simulation results, we decided to 

work on the problem together immediately — perhaps the urgency 

came from the desire to save the boids from the seemingly unavoidable 

fate of moving apart in two dimensions. When John and I reconvened 

the next day, we already had the basic ingredients for a coarse-grained 

hydrodynamic theory. We kept in touch with Vicsek in the following 

months as we made more progress on the flocking theory, and Vicsek’s 

paper was eventually published in 199514. It is tempting to speculate 

that our work helped. The hydrodynamic theory for flocking that John 

and I developed is based on the dual roles of the boid’s velocity field 

(v). First, the model’s interactions try to align a boid’s velocity with 

those of its neighbours, which can be captured using a model known 

as vector ϕ4 theory developed to describe magnetic materials. Second, 

the velocity vector also characterizes the physical motion of the boids, 

which transports the boid’s body as well as the boid’s velocity. This 

transport and flow can be captured by the Navier–Stokes equations.

Combining these two ingredients, we wrote down a dynamic field 

equation with both a convective term ((v·∇)v) for transport and stand-

ard ϕ4-type terms for the Heisenberg spin. Later, we extended the equa-

tion to include all possible relevant terms that preserve the rotational 

symmetry of both velocity and space without imposing the Galilean 

invariance, which is broken due to the unique reference frame, that is, 

the medium (air or water) within which boids move. This equation that 

describes the hydrodynamic properties of flocking is now called the 

Toner–Tu equation. It is worth emphasizing that due to the dual roles 

of the velocity field the flocking system is essentially out of equilibrium 

as there is no energy functional that can capture both the directional 

alignment and physical motion of the boids’ dynamics.

Our analysis of the hydrodynamic theory using renormalization 

group techniques, was published15 a few months after Vicsek’s paper14. 
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Rigorous renormalization group

Antti Kupiainen

The renormalization group evolved from ad 

hoc procedures to cope with divergences 

in perturbative calculations. This 

Comment summarizes e�orts to develop 

a mathematically rigorous approach to 

renormalization group calculations.

Ever since quantum electrodynamics was first developed, the math-

ematical rigour of quantum field theory (QFT) has been called into ques-

tion. Attempts to calculate quantities such as the magnetic moment 

of the electron perturbatively in the strength of interaction between 

electrons and photons had produced infinite answers.

The pioneers of quantum electrodynamics solved this  

problem with a systematic but ad hoc procedure called renormaliza-

tion, whereby the infinities were packaged into a relation between the 

observable low-energy quantities — such as mass and charge — and the 

high-energy ‘bare’ quantities. The result was a well defined expansion of 

scattering amplitudes and the like in the former parameters. Unfortu-

nately, the conceptual meaning of these manipulations was murky and, 

worse still, they did not offer a guide to understanding the weak, strong 

and gravitational interactions that seemed to be ‘non-renormalizable’ 

or too strongly interacting for these methods to work.

In mathematical physics, these difficulties were first addressed in 

the 1950s by asking what sort of mathematical object a quantum field 

theory (QFT) is. Quantum fields were viewed as operators Φ(x) acting 

in a Hilbert space H  and depending on a space-time point x. Matrix 

elements ⟨Ω|Φ(x
1

)…Φ(x
n

)|Ω⟩  with Ω the vacuum state in H  define 

so-called Wightman functions of the space-time points x
i

. Axioms were 

postulated describing the singularities and symmetries of the  

Wightman functions. Later, in the 1960s, a research programme known 

as constructive QFT began, with the aim of providing concrete  

examples satisfying the axioms from which to work towards a  

mathematical understanding of physically relevant QFTs.

An important input was provided by an observation going back to 

Julian Schwinger in 1958 that the Wightman functions have an analytic 

continuation to the Euclidean domain of imaginary time x = (it, x) with 

x ∈ R

3 and t  a real number. In that domain, the field operators commute 

and can be viewed as random (generalized) functions ϕ(x) on the 

Euclidean spacetime R4. Furthermore, for physical theories described 

by a classical action functional S(ϕ) the probability distribution on 

field configurations ϕ has, formally, the density e
−

1

ℏ

S(ϕ)

. The Wightman 

functions become correlation functions of the random fields

⟨ϕ(x

1

)…ϕ(x

n

)⟩ = ∫ϕ(x

1

)…ϕ(x

n

)e

−

1

ℏ

S(ϕ)

Dϕ. (1)

Therefore, the central problem of constructive QFT was to give 

a mathematically rigorous non-perturbative definition of the formal 

path integral in Eq. (1).

Divergences and scaling
In the 1970s this programme was carried out for the case of so-called 

superrenormalizable QFTs. The simplest example of these is the ϕ4

d

 

model, a theory of a scalar field ϕ ∶ R

d

→ R with classical action func-

tional

S(ϕ) = ∫

((∇ϕ)

2

+m

2

ϕ

2

+ λϕ

4

)dx, (2)

where m is the field’s mass and λ is the coupling constant for the field’s 

interactions.

A natural approach is to give meaning to Eq. (1) by perturbing 

around the non-interacting case λ = 0. In that limit the field ϕ is 

described by a Gaussian distribution with covariance given by the Green 

function of the operator 
(−∆ +m

2

)

:

⟨ϕ(x)ϕ(y)⟩ = (−∆ +m

2

)

−1

(x, y).

Since this Green function diverges as x → y, this field is not a func-

tion but rather a generalized function known as a distribution. This 

singular behaviour makes the definition of Eq. (1) as a perturbation of 

the λ = 0 case problematic because one needs to make sense of ϕ(x)
4

, 

with four fields evaluated at the same point. And indeed, a formal 

perturbation theory for Eq. (1) in powers of λ leads to divergent  

expressions, which is known as the ultraviolet problem. Likewise,  

for m2 = 0 the field is strongly correlated at long distances with the 

Green function:

⟨ϕ(x)ϕ(y)⟩ ≈ |x − y|

2−d

.

In this case, perturbation theory gives rise to expressions that grow 

with the system size, dubbed infrared divergences.

One way to resolve these issues is to regularize the theory by intro-

ducing cutoffs. For example, an ultraviolet cutoff can be realized by 

replacing the continuum Rd by a lattice (�Z)d with spacing �, and an 

infrared cutoff by restricting the interaction to a finite box. This turns 

the problem into a classical statistical mechanics model of a continu-

ous spin on a lattice.

For the ultraviolet problem one can then try to find ‘bare’ param-

eters m
ϵ

 and λ
ϵ

 as functions of the cutoff � so that the correlation 

functions have a limit as ϵ → 0. The superrenormalizable case corre-

sponds to d < 4. Then the perturbative renormalization theory pre-

dicts that only a simple mass renormalization is needed to cancel the 

ultraviolet divergences. One simply replaces the physical mass m2 in 

the action functional by the bare mass m2

+ δm

2

(ϵ) , with 

δm

2

(ϵ) = aλ log ϵ  in d = 2  and δm2

(ϵ) = bλ/ϵ + cλ

2

log ϵ  in d = 3  

with explicit coefficients a, b and c. However, for d = 4 an infinite series 

with divergent coefficients (known as counterterms) is needed for both 

the mass m and the coupling constant λ.

This problem of a divergent relation between the bare and the 

physical parameters is precisely what Ken Wilson addressed with his 

renormalization group method, following work by Leo Kadanoff.  
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exponential in Eq. (3) in powers of g and evaluate each term using 

Gaussian integration. The result will be of the form

(RH)(φ) =

∞

∑

m=0

∑

x

1

,…,x

m

∈Λ

′

K

m

(x

1

,… , x

m

)φ(x

1

)…φ(x

m

) (5)

where Λ′

= L

−1

Λ is the rescaled box and K
m

(x

1

,… , x

m

) are many-body 

interactions, each of which is given by a formal perturbation series in 

powers of g  and coefficients having rapid decay in the separations 

x

i

− x

j

. However, this formal perturbation series diverges with the nth 

Taylor coefficient growing as n!. The reason for this divergence can be 

traced back to the faster-than-quadratic growth of the φ interaction 

as φ →∞. This divergence is one of the main difficulties to overcome.

The rigorous approach1 views Eq. (3) as a problem of classical 

statistical mechanics in the high-temperature regime and applies 

high-temperature cluster expansion methods to it. This results in a 

representation of the Gibbs factor as a gas of polymers

e

−(RH)(φ

′

)

=

∞

∑

k=0

∑

{X

1

,…,X

k

}

k

∏

i=1

ρ

X

i

(φ

′

) (6)

where X
i

⊂ Λ
′ are disjoint sets of lattice points called polymers, and 

ρ

X

i

(φ

′

) depends on the spins φ′

(x) only for x ∈ X

i

. The weight ρ
X

 of a 

polymer decays rapidly with the size of X . In a region of space where 

the field φ is not too large, it turns out that one may exponentiate  

Eq. (6) and recover an expansion of the form of Eq. (5), which turns out 

to be a convergent series! In other regions where φ is large, ρ
X

 is approx-

imately given by exp[−cg∑φ

′

(x)

4

], reflecting the fact that large values 

of the field are improbable. These terms correspond to non-perturbative 

contributions that are known as instantons in the physics literature.

To iterate this renormalization group map one then needs to con-

sider all the so-called relevant and marginal terms of the expansion (5) 

that do not contract under the linearization of the map H → RH around 

the Gaussian fixed point. For the model in Eq. (4) and d = 4 they turn 

out to be the same local terms already occurring in the Hamiltonian of 

Eq. (4). All the other terms in the expansion (5) form an infinite dimen-

sional space of irrelevant perturbations that contract under the 

linearization.

Furthermore, the marginal interaction parameter g turns out to 

contract owing to contributions at second order in g. Thus, for the 

infrared problem, in order to construct the critical theory with infinite 

correlation length one has to fine-tune the relevant parameter µ of H 

as a function of g so that Rn

H  tends to the Gaussian fixed point of R as 

n →∞. Finally, all this will only work provided one can show that large 

values of the coarse-grained field remain improbable for all n. This 

procedure was carried out in ref. 1 where the Gaussian (mean field) 

behaviour

⟨φ(x)φ(y)⟩ ≈ Z|x − y|

−2

, |x − y| → ∞. (7)

was proved for the critical theory. A similar result was also proved in 

ref. 2 using a different method.

Implications for QFTs and outlook
As for the original goal of rigorously constructing a renormalizable 

QFT, the above analysis shows that this is not possible for the ϕ4  

model in four dimensions if we want to stay in the perturbative,  

small-g regime during the renormalization group process. Reaching 

a lengthscale l  for a theory with ultraviolet cutoff � requires the  

The Kadanoff–Wilson renormalization group approach to QFT and 

critical phenomena is to view the problem using effective actions Sl 

that describe the physics at a particular spatial scale l.

The action Sl is defined by coarse-graining the field ϕ to a field  

ϕ

l

, which has a short distance cutoff l. For instance, in the block spin 

scheme one takes ϕ
l

(x) to be defined on the lattice x ∈ (lZ)

d

 as an aver-

age of ϕ in a cube of side l centred at x. Then e−Sl is defined as the prob-

ability density ϕ
l

 inherited from the probability distribution of ϕ. The 

renormalization group flow is then the map l → S

l

 that describes how 

the physics changes with scale.

In this framework, the ultraviolet problem can be posed as follows. 

Let S(ϵ) be of the same form as Eq. (2) but defined on the lattice (ϵZ)
d

 

and with � dependent bare parameters m
ϵ

 and λ
ϵ

. We coarse grain S(ϵ) 

to obtain S
(ϵ)

l

 and determine the ‘bare’ parameters so that S
(ϵ)

l

 has a limit 

as � for all l > 0. For the infrared problem the � is fixed, say to ϵ = 1, and 

one inquires about the behaviour of Sl as l →∞.

A scaling argument reveals the role of the dimension d  in this 

problem. For the case m2

= λ = 0 in Eq. (2), the model is scale invariant. 

Indeed, the scaled field l
d−2

2

ϕ(lx) has the same statistics as the field ϕ. 

Substituting this form into Eq. (2) leads us to expect that the scaled 

field is distributed with parameters (lm, l4−dλ) . Then, if d < 4, the 

parameter λ is suppressed at small spatial scales l → 0. If d > 4, the 

parameter λ is suppressed at large scales, l →∞. Thus the ultraviolet, 

short-range behaviour should be close to the non-interacting Gaussian 

limit if d < 4, and if d > 4 the infrared behaviour for the massless theory 

should be Gaussian. Although more detailed calculations give correc-

tions to this simple scaling argument, the conclusions about the spatial 

dimension hold nevertheless.

Block spins
In the block spin scheme it is convenient to rescale distances so that 

all the effective actions are defined on a fixed lattice, such as the unit 

lattice Zd. In this approach it is traditional to view the rescaled effective 

actions S
l

 as Hamiltonians H
l

 describing statistical mechanical models 

of continuous spins φ(x) ∈ R  with x ∈ Z

d . The coarse graining is 

obtained by fixing an integer L > 1, defining block spins as averages of 

the spins in lattice cubes of side L and rescaling back to the unit lattice. 

Hence, the renormalization group proceeds in discrete steps H
l

→ H

Ll

 

and takes the form

e

−H

Ll

(φ

′

)

= ∫ e

−H

l

(φ)

δ(φ

′

− Cφ)Dφ (3)

where Cφ is the coarse-graining and rescaling operation for block spins. 

The renormalization group flow of H
l

 is thus obtained by the iteration 

of a fixed map R acting on Hamiltonians: H
Ll

= RH

l

.

Let us apply the coarse-graining map Eq. (3) to a local Hamiltonian 

H  of the form

H(φ) = ∑

x∈Λ

[(∇φ(x))

2

+ μφ(x)

2

+ gφ(x)

4

] (4)

where µ and g are coupling constants and Λ ⊂ Z

d is a finite box of lattice 

sites. The crucial observation going back to Wilson is that the path 

integral Eq. (3) is non-critical because it is already defined with a ultra-

violet cutoff 1 and the coarse graining provides an infrared cutoff L.

Furthermore, the local nature of block spin transformation means 

that RH  should also be approximately local, allowing for the iteration 

of the map R. If we start with small g we can attempt to expand the 

http://www.nature.com/naturephysics


nature physics Volume 19 | November 2023 | 1539–1541 | 1541

Comment

renormalization group map to be applied log
L

(l/ϵ) times. Because g 

gets smaller with each renormalization group iteration, the procedure 

must begin with a very large ‘bare’ value if � is small enough. Hence, 

it will be beyond the reach of perturbative analysis. Therefore, under 

this perturbative condition the ϵ → 0 limit is necessarily Gaussian. 

The nonperturbative result where g  is allowed to be arbitrary has 

recently been established3, in which it was proved that the � limit is 

always Gaussian no matter how we choose the bare parameters as a 

function of the cutoff.

However, this raises the question of how to reconcile the existence 

of the renormalized perturbation series in the interaction g with the fact 

that the model must become non-interacting as the ultraviolet cutoff 

vanishes. The same issue arises for quantum electrodynamics and the 

electroweak part of the standard model, both of which are asymptoti-

cally free in the infrared but not in the ultraviolet.

The resolution of this dilemma is to consider Sl for different values 

of l as effective field theories for l ≥ ϵ where the value of � can be taken 

to be very small. Then the renormalized perturbation series is an asymp-

totic series for the correlation functions with this cutoff with great 

accuracy. For the scalar theory in Eq. (2) even more is true: one can 

define the theory by analytic continuation for negative g  and then take 

the cutoff � to zero. The renormalized perturbation series is then 

exactly an asymptotic series. However, the resulting QFT is not unitary 

and is therefore unphysical.

The prime examples of ultraviolet asymptotically free theories in 

four dimensions are non-abelian Yang–Mills theories. Some progress 

in their rigorous construction using renormalization group methods 

in finite volume has been achieved4. For these theories the infrared 

behaviour is non-perturbative: that is, the effective coupling constant 

increases with scale. In two dimensions the Gross–Neveu model of a 

self-interacting Dirac fermion is ultraviolet asymptotically free and 

it has been rigorously constructed in refs. 5,6. In the fermionic setup, 

interesting condensed matter problems have been rigorously studied 

using renormalization group methods7.

The polymer expansion approach to the renormalization group 

method used in Eq. (6) has been widely applied8 and extended to the 

study of first-order phase transitions and to disordered systems9. 

However, it has remained restricted to situations that are close to 

Gaussian; a more nonperturbative formalism is still missing. This situa-

tion has its parallel in numerical approaches to renormalization group 

methods where it has been very hard to go beyond approximative 

renormalization group schemes in which the renormalization group 

map is truncated in order to keep the effective actions local. Adding 

nonlocal corrections to such schemes has not resulted in numerical 

improvements. An alternative approach to renormalization group 

methods using tensor networks to produce effective actions that stay 

strictly local seems more promising from this point of view. The first 

steps to its rigorous analysis have been taken10.
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