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“I might have thought that the new ideas were correct if they had not been so ugly” Dyson quoting Dirac on renormalization.  
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abstract

In present-day physics, the renormalization method, as developed by 
Kenneth G. Wilson,  serves as the primary means for constructing the 
connections  between theories at different length scales.   This 
method is rooted in both particle physics and the theory of phase 
transitions. It was developed to supplement mean field theories like those 
developed by van der Waals and Maxwell, followed by Landau. 

Sharp phase transitions are necessarily connected with singularities in 
statistical mechanics, which in turn require infinite systems for their realization. 
(I call this result the extended singularity theorem.)    A discussion of this point 
apparently marked a 1937 meeting in Amsterdam celebrating van der Waals. 
 
Mean field theories neither demand nor employ spatial infinities in their 
descriptions of phase transitions.  Another theory is required that weds a 
breaking of internal symmetries with a proper description of spatial infinities. 
The renormalization (semi-)group provides such a wedding.  Its nature is 
described.    The major ideas surrounding this point of view are described 
including especially scaling, universality, and the development of connections 
among different theories.  
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Who am I?
A condensed matter theorist, with an interest in 
the history of science, who intends to talk about 
a subject closely related to condensed matter, 
but also to the philosophy of science and 
particle physics.  I am not an expert in either of 
the latter subjects. 

3

condensed matter physics:  formulations clear (stat mech, 
Schrodinger equation, etc.)  goal: explain amazing variety of 
nature.   Nature = an Onion, exposed layer after layer.  We hope to 
see mathematical and conceptual beauty arise from the mundane. 

particle physics: simple results=masses, cross-sections goal: 
seek clear and final (!!) theoretic formulations based upon 
experiment and observations. Hope to see the mundane arise 
from the mathematical beauty of a single truth.   
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Connections in Condensed Matter Physics  
Condensed matter physics relates the observable, often 
macroscopic, properties of liquids, gases, solids and all 
everyday materials to more microscopic theories, often the 
quantum theory of atoms and molecules.  Since the 
macroscopic theories are themselves non-trivial, e.g. 
elasticity, hydrodynamics, the electrodynamics of materials, it 
follows that condensed matter physics is largely an exercise 
in connecting different kinds of theories.  
Typically this connection involves different length scales
Size of molecule = 10-9 meter.  Size of laboratory=  5 meter

4

One of the deepest aspects of this area of 
science is the existence of different 
thermodynamic phases, each with qualitatively 
different properties. E.g., freezing is a sudden 
qualitative change in which the material 
abruptly gains rigidity.  How can this happen?     

All thermodynamic behavior is based on statistical mechanics.
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Connections in Particle Physics  
Particle physics often wishes to relate its present, 
phenomenological, theory to a deeper (?!) theory at a much 
shorter or longer length scale.  e.g. Connect the standard 
model to physics at a LHC, unification, or Planck  scale.  

5

Previously the search for a final theory has been 
impeded by ugliness or singularities arising  at scales 
far from observation.  These singularities show up 
directly as infinities in perturbation theory and indirectly 
as algebraic behavior (1/|x-y|p)  in a correlation function   

I am going to follow condensed matter physics for the next parts of this 
talk, but particle physics and condensed matter physics are essentially 
similar.
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Further Connections 
Field Theory and Statistical Mechanics are closely 
connected. A Wick rotation t  ➝ i /(kT) will take you from one 
to the other.
Quantum Mechanics and Classical Mechanics are closely 
connected. Both employ Hamiltonians as basic generators 
of time development as do Field Theory and Statistical 
Mechanics.
All four have a dual structure in which terms in the 
Hamiltonian both describe measurable quantities and 
equally generate changes in development. 
All four have the same structure: Poisson Bracket and 
Commutator, conjugate variables = p’s and q’s. 
I shall talk mostly about statistical mechanics.

6
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Dirac’s ideas
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exp[-β F]= ∫ dγ exp[-βH{γ}]

STATISTICAL MECHANICS AND 
SINGULARITIES

7

Statistical mechanics (defined by Ludwig Boltzmann in 1870s) states 
that the probability for finding a equilibrium system in a volume element 
dγ about a position, γ, in phase (position and momentum) space is 
equal to  dγ exp[ -β(H{γ} -F)] .    Here β is the inverse temperature,      
H{γ} the Hamiltonian or energy and F the free energy of the system.  
The latter is given by the normalization condition       

where the integral covers all the configurations of the system.      
Thus the free energy is proportional to a logarithm of a sum (or 
integral) of exponentials.  For a system that is finite in extent,  such 
a sum is always a smooth (real analytic) function of its arguments. 
Consequently phase transitions, which involve discontinuous 
changes as parameters like temperature or pressure are varied, 
can only be found in infinite systems.   
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…A phase transition appears as a sharp 
change in the form of thermodynamic functions, 
as you go from one kind of behavior to another.  
These sharp changes are mathematical 
singularities.  A singularity will not happen in 
any finite system, as in a finite liquid.   The 
singularity can (and does) happen in an infinite 
system.  I call this result the extended 
singularity theorem.  This theorem has been 
extensively used, but not really extensively 
discussed, in the previous literature.     

It follows that any proper description of a phase 
transition requires a theory which makes an 
explicit use of the infinite size of the system.  
Most theories constructed before Wilson’s 
renormalization group (1971) fail this test.  

http://blogs.trb.com/news/local/
longisland/politics/blog/2008/04/

http://azahar.files.wordpress.com/

swim in liquid water
abrupt change
walk on soldi ice
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Phil. Trans.  Roy. Soc.  
159 p. 575 (1869 )

History:
(1869 ) Thomas Andrews, experimentally studied 
the P-V diagram of CO2.  He discovered the critical 
point. His data look roughly like: 

Cartoon is PVT plot for water, 
but CO2 is similar, with a 
more accessible critical point. 

Note qualitative changes.

• as boiling takes one from liquid 
to vapor  

• as one passes from isotherm to 
isotherm through critical point

These qualitative changes are 
mathematical singularities.
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In 1873 van der Waals 
derives an approximate 

equation of state for fluids:
(p+aN2/V2)(V-Nb)=NkT

isotherms

Takes into account 
• strong repulsive interaction via 
excluded volume (bN),   and also
• attractive interactions via potential 
of mean force (aN2/V2), (accurate 
for long-ranged forces.)
This work gives the first  
example of a mean field  theory 
(MFT).

Starts from pV=NkT,  he gets 
cubic equation 

V/Vc

p/pc
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In 1873 van der Waals 
derives an approximate 

equation of state for fluids:
(p+aN2/V2)(V-Nb)=NkT

isotherms

Takes into account 
• strong repulsive interaction via 
excluded volume (bN),   and also
• attractive interactions via potential 
of mean force (aN2/V2), (accurate 
for long-ranged forces.)
This work gives the first  
example of a mean field  theory 
(MFT).

Starts from pV=NkT,  he gets 
cubic equation 

V/Vc

p/pc

Note that there is here no 
reference to infinite size of 
system, no singularities and no 
phase transitions. 
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But van der Waals’ result is 
not entirely stable. 

Red delimits region of absolute (mechanical) instability,
 where theory must be wrong. 
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(1875) Maxwell fixes 
up phase diagram

he puts in density jumps 
required by thermodynamics

Cartoon P-V diagram for water 
but CO2 is quite similar.

J.C. Maxwell  Nature, 10  
407 (1874),11  418 (1875).
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(1875) Maxwell fixes 
up phase diagram

he puts in density jumps 
required by thermodynamics

Cartoon P-V diagram for water 
but CO2 is quite similar.

J.C. Maxwell  Nature, 10  
407 (1874),11  418 (1875).

Then, P. Curie,  Ann. Chem. 
Phys. 5, 289 (1895).              
P. Weiss,  J. Phys.  6, 661 
(1907). use very similar mean 
field theory arguments to 
derive properties of 
paramagnetic to ferromagnetic 
transition.   This is followed by 
a host of mean field 
calculations mostly used to 
describe many different kinds 
of phase transitions, with 
many different kinds of order.
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A critical Point (1937)
fast forward to 1937 at statistical mechanics conference in 

Amsterdam for van der Waals centennial  
P. Debye, G. Uhlenbeck, H. Kramers present ….

13

stat mech theory 
van der Waals

vapor region: 
expansions from 
statistical mechanics

mixed state 
region: 
instabilities

Maxwell & 
experiment

 
Kramers* chairs a session. He 
knows extended singularity 
theorem, i.e. that for finite N  
picture on the right (with 
singularities!) is incompatible 
with statistical mechanics of finite 
system.  Picture on left is 
incompatible with 
thermodynamics.  

liquid 
region: 
little 
theory
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Outcome: 50-50 with Debye!! 
voting “nay”.  
This is wrong answer, liquids 
are described by statistical 
mechanics.

Kramers* chairs a session. He 
knows extended singularity 
theorem, i.e. that for finite N  
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region: 
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* “Kramers introduced the idea of renormalization” T. Veltman
Sunday, April 18, 2010
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Application to Phase Transitions: today’s view

•  thermodynamic phase transitions 
involve singularities, and infinities 
arising (almost always) from 
unbounded numbers of particles 

•  these infinities appear in 
thermodynamic derivatives which is 
caused by  a coherence length 
(correlation length)  that diverges*   

•  in practice coherence length   
describes spatial extent of 
fluctuations that look like regions of 
two phases intermixed,   e.g. drops of 
vapor in liquid  or drops of liquid in 
vapor.

14

statistical mechanics does mostly 
fail, but not in liquid region---
rather in boiling region. 

theories available in 1937 all fail near 
critical point. 

The approximate theories of stat 
mech (e.g. MFT’s )  must be 
improved near critical point. 

* This divergence makes 
extended similarity theorem work
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Application to Phase Transitions: today’s view..., continued

15

statistical mechanics mostly fails 
in boiling region. 

Finite size of real systems produces 
small regions of rounding here rather 
than sharp corners

Finite size of real systems cuts off 
infinities, for example, in the 
derivative of density with respect to 
pressure, at some very large value. 

Sunday, April 18, 2010
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Additional Information about fluctuations

16

Even as far back as 1937, there was evidence of divergent fluctuations 
near the critical point, as evidenced by critical opalescence.  As a clear 
fluid is brought near the critical point, it becomes cloudy.
Smoluchowski (1908) and then Einstein (1910) argued that fluctuations 
in density in the fluid produced scattering and that these fluctuations 
would diverge at the critical point causing a divergence in the 
compressibility of the fluid. 

A little later, Ornstein and Zernike (1914,1916) argued that it was not the 
magnitude of the local fluctuations which would diverge near criticality.  
Instead the typical size of the fluctuation region, the coherence length, 
ξ, would diverge as the critical point was approached. That divergence 
would produce the infinity in the susceptibility.   Specifically the 
divergence would appear in a correlation function  
 <[ρ(x)-<ρ>] [ρ(y)-<ρ>] > = (1/|x-y|) exp( -ξ|x-y|) 

How could these divergences occur?  Mean field theory does roughly 
predicts them, but its detailed predictions are incorrect. 
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Specific descriptors of critical region:
look for dependence on t= T-Tc ,  h= p-pc

17

quantity formula
value
(MFT)

value*
d=2

value
d=3

compressibility   
(opalescence) t-γ γ =1 15/8 1.33

coherence length, ξ a t-ν ν=0.5 1 0.62

jump in density (-t)β β =½ 1/8 0.34

density dependence 

on pressure 
ρ-ρc ~ h1/δ δ=3 15 4.3

* Onsager solution, Ising model

Sunday, April 18, 2010
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Mean Field Theory’s application to 
electrodynamics of continuous media 

In van der Waals MFT, a particle is affected by the average 
field produced by particles around it.    A good and accurate 
example of MFT is the electrodynamics of continuous 
media: described by E,D,B,H fields.  
Fields produced externally to material are  D,H 
Fields E,B  include, in addition, averaged effects of charges 
and currents within material.   
This kind of mean field theory is usually very accurate 
because electrodynamics includes long-ranged forces and 
many charges.   It fails in nanoscopic materials. 

18
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A simple example of a statistical system:  Ising Model

{c}
-β F= ln ( Σ exp[-βH{c}])

Defined by a lattice and “spin” variables σr =± 1 on 
that lattice.  These represent two different densities in 
a fluid.  The usual Hamiltonian is

−βH = K
�

nn

σrσs + h
�

r

σr

19

K=-J/(kT) is attraction 
between regions of 
equal density  

h= (p-pc)/kT
controls average  
density

This model  can have an ordering in which similar 
values of density variables, σr, attract one 
another. High average density is liquid, low 
density is vapor.  The density jumps and the σr ‘s 
flip in sign as h crosses zero, the line of first 
order phase transitions.

spin here
is determined by 
these

Note that phase space integral is 
replaced by sum in this description.

according to Lee and Yang,  this model can 
represent the liquid-gas phase transition
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Mean Field Theory is useless in predicting 
phase transitions and

ordering over long distances

It predicts transitions in one-dimensional systems with finite-
range interactions at non-zero temperatures..  (In fact, these 
transitions never occur.  )

It predicts average order and transitions in two dimensions 
for Ising models, XY models, and Heisenberg models at 
non-zero temperatures.  In these cases. there are 
respectively transitions plus order (<σr> ≠0), transitions but 
no average order (<σr>=0), and no transitions or ordering.  

20
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Mean Field Theory is Useless near Critical 
Point:  Look at heat capacity, Cv

21

Mean Field Theory=
discontinuous but 
finite jump at Tc

Moldover and Little see singular 
result, probably going to infinity

Sunday, April 18, 2010
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For mean field theory
 the physics is an averages of order parameters and 
statistical quantities.  But near phase transitions mostly,  

The physics is in fluctuations
 

which extend over an indefinite range at critical point. t and
h limit range of fluctuations  to finite value, called the 
correlation length,ξ.   How can we convert this fact into a 
theory? 

At the singularities these fluctuations are droplets of fluid 
which have all different scales from the microscopic to as 
large as you want.  Away from singularity correlation length 
serves to cut off the largest-scale fluctuations.  These 
droplets are regions of density different from that of the 
surrounding fluid.  

22
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20

The Renormalization Revolution:  

Kenneth G. Wilson
synthesizes new 

theory

precursors:
• Onsager solves d=2 Ising model.  His 
results disagree with mean field theory.
•King’s College School (Cyril Domb, 
Martin Sykes, Michael Fisher) do 
expansions in K and exp(-K) and find 
mean field theory critical indices are 
wrong. 
• Patashnskii & Pokrovsky look at 
correlations in fluctuations
• Benjamin Widom gets scaling and 
phenomenology right
• Kadanoff suggests partial direction of 
argument 
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11

Toward the revolution 

Ben Widom noticed the most significant 
scaling properties of critical 
phenomena, but did not detail where 
they might have come from.  

B. Widom,  J. Chem. Phys. 43 3892 and 3896 (1965).  

The phenomenology

Sunday, April 18, 2010
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Widom’s results

25

Widom 1965: scaling result  He focuses attention on scaling near critical 
point.  In this region, averages and fluctuations have a characteristic size, for 
example     density jump ~ (-t)β  when h=0       
density minus critical density  ~ (h)1/δ  when t=0    
Therefore, Widom argues there is a characteristic size for h, which is  
h*  ~  (-t) β δ  =(-t)Δ  with   Δ=β δ
so that density minus critical density =  (-t)β g(h/tΔ)    
therefore, using a little thermodynamics,   scaling for free energy is 
          

in terms of t=T-Tc     h=p-pc 

F(t,h)= V t β+Δ f*(h/tΔ)+ Fnon-singular:    (V is volume of system)

Therefore “magic” relations, e.g. β + Δ = d ν

Further he says singular term in free energy given by excitations of size of 
coherence length with kT per excitation.  They fill all space, giving 

F - Fnon-singular ~ (Volume of system)/ ξd  ~ Vtdν  

Sunday, April 18, 2010
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Block Scaling 1966

26

Kadanoff considers invariance properties of 
critical point and asks how description 
might change if one replaced a block of 
spins by a single spin, thus changing the 
length scale and having fewer degrees of 
freedom.
   Answer: There are new effective values 
of  (T-Tc)=t, (p-pc) =h, and free energy per 
spin K0.  These describe the system just as 
well as the old values. Fewer degrees of 
freedom imply new couplings, but no 
change at all in the physics. This result 
incorporates both scale-invariance and  
universality.  

a
′
= !a

N ′
= N/!d

h
′
= h !

yh

t
′
= t !

yt
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The physics is in fluctuations 
which extend over an indefinite range at critical point. t and 
h limit range (called the correlation length,ξ) to finite value

27

As renormalization is done, the lattice constant  assumes a new value a´=  a �

The new deviation from the critical temperature is t′ = t !
yt

The new pressure variable is  h
′
= h !

yh

but the coherence length is just the same. 

Since the length scale is irrelevant h and t must appear in the 
combination                 while the coherence length appears as  
which is invariant.  The demand that the   cancels out of all 
physical results produces the phenomenology of Widom. 

h/tyh/yt a/t1/yt

�
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13

fewer degrees of 
freedom produces 

“block 
renormalization”

So in 1966 Kadanoff 
produces a heuristic and 

incomplete theory
But it does describe scaling

Now there is a five year pause 
while the field tries to figure out 

what to do next
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Wilson 1971 produces complete theory 
Wilson’s changes:

• He consider all possible couplings.   So you don’t have to 
guess which couplings to use.  The scale change produces 
a closed algebra of couplings.  
• He considers a succession of renormalizations, not just 
one.  So you don’t have to guess where a big scale change 
will take you.  You simply follow result of renormalizations.*
• After many renormalizations you eventually reach a fixed 
point where the couplings stop changing.  Each fixed point 
can be considered to be its own separate physical theory.

29

*  See also earlier work, e.g. Gell-man and Low
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Types of Fixed Points

•  continue changes in length scale until we reach limits of 
system (finite system) or
•  continue changes in length scale until we reach a situation 
in which coupling change no more (infinite system)
• The latter is called a fixed point and describes phases 
There are three kinds fixed points:   
       strong coupling:  K,h go to infinity      describes e.g. 
liquid phase
       weak coupling:  K, h  go to zero         describes e.g. 
vapor phase
       critical:  K set to Kc   h set to zero, critical point
 The different in destinations encode different behavior. 
Different symmetries and spatial dimensions produce 
different fixed points. 

30
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Franz Wegner:  At a particular fixed point 
there is a list of couplings.

We use eigenvalue analysis to pick  out the linear 
combinations of couplings which have a simple change  
under the renormalization analysis:

These couplings appear in the near-critical Hamiltonian in the 
form of a linear variation about the fixed point Hamiltonian.     

31

H
∗ = H

∗ +
∑
µ

∫
dr KµOµ(r)

Here the                    describes the local density of some fluctuating 
quantity, like  σr .  This particular one is conjugate to the coupling Kμ  

Oµ(r)

If the coupling scales with an index yμ , then the local operator, O, scales 
with an index  xμ= d-yμ . 

H
∗

K
′

µ = Kµ !
yµ
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Franz Wegner & LPK:  The couplings may 
be classified by the values of yµ.

• If  Re(yµ) >0  then the coupling grows as we renormalize.  
The operator is called relevant and the coupling must be set 
to zero if we are the have a critical behavior at that fixed 
point. 
If  Re(yµ) <0  then the coupling shrinks to zero as we 
renormalize.  The operator is called irrelevant. As we 
renormalize, it goes away and has no effect on that 
universality class. 
If   yµ =0  then the coupling remains constant as we 
renormalize.  The operator is called marginal and may give 
us a fixed point which has some continuous variation with a 
parameter.   Usually the is no marginal operator and the 
universality class remains isolated. 

32
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Universality
Start from view of microscopic system(s).  We want to 
understand macroscopic behavior near critical point.  
1.  Adjust relevant couplings so system is near critical
2.  Do renormalizations, lots of them, approach macroscopic 
behavior
3.  Notice that irrelevant couplings have renormalized almost 
to zero. System approaches one of a few distinct fixed 
points. 

Very different starting points reduce to a few distinct fixed 
points. Different starting systems fall in a few classes called 
Universality Classes depending upon their eventual fixed 
point.  Each member of universality class has identical 
critical behavior.  

33
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Universality Classes

Ising model universality class:  
    ferromagnet with easy axes
    liquid gas phase transition
XY model universality class:
     magnet with easy plane of magnetization
     normal fluid to superfluid transition
     in (d=2) also solid to liquid transition

34

Sunday, April 18, 2010



 Phase Transitions Dirac V2.4 page

Renormalization Group produces big change

old way:    start with ensemble (like canonical ensemble) 
find averages

new way:    start with ensemble calculate new ensemble.
after many renormalizations, find fixed point
• at weak coupling fixed point: find averages
• at critical fixed point: find scalings
• at strong coupling fixed point: find theory of nontrivial 
behavior, e.g. elasticity, acoustics, ferromagnetism, 
superconductor.  Connect theories on different length 
scales.

35
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Extended Singularity

Each universality class shows a connection between a 
microscopic internal symmetry (e.g. Ising model’s up & 
down) or (rotation in a plane)  and the topological properties 
of a large hunk of space, much larger than the range of the 
forces.  It shows thermodynamic singularities, correlation 
functions which fall off algebraically, internal parameters, 
e.g. coherence length =inverse particle mass that have 
singular behavior.
This connection between macroscopic and microscopic is 
interesting and quite beautiful.   

36
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So I disagree with Dirac, who said that renormalization is ugly.  
If you believe in a world of rich physics, and of many different 
theories, renormalization provides a quite elegant connection 
among theories.   
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