7. Low and high T expansionsin |sing model

In addition to the Monte Carlo methods, we can generate results analyt-
ically from lattice models. The most important expansions are the low-
and high-temperature expansions:

e Low temperature expansion:
- Expansion of Z = [[d¢|e F/T around T' = 0
- Perturbations around a S = S,,;, State
- In field theory this corresponds to the weak coupling expansion.
For continuously varying fields, this gives the standard perturbation
theory (in continuum or on the lattice)
e High temperature expansion:
e FT~1-E/T+YE/T)?+...
- Expansion around a “random” state
- Strong coupling expansion



- Hopping parameter expansion
- No direct continuum counterpart

Mean field approximation

Exact results: dualities etc.



Ising model: low + high temperature expansions

Ising model: every lattice point has a spin s; = %1

7 =Y el H:—% > sis;
Si <ij>
< 1j >: nearest neighbour pairs, 5 = 1/T
The model has a symmetry breaking phase transition at a Curie point 3,
(in 2D: B, = log(1 + v/2) ~ 0.8814).
If 8 < 6. (T >1T.), (s) =0, whereas if 3 > 3., (s) # 0.

7.1. Low temperature expansion for 2d Ising

e 2d Ising model at 5 > 1. For simplicity, redefine

H — H =Y_.;;-[1 — d(si, sj)] so that a completely ordered system
(all s; = +1or —1) has H = 0.



e Assume that (s) > 0 (for example, boundaries fixed to s = 1)

e Classify configurations by the number of frustrated bonds n; =
0,4,6...

e Partition function

7 — Ze’ﬂH =31 e P(1=0(si,55)) ZG*ﬁTLf[S]

i <ij> Si

= 1+ Ve 4+2Ve ¥ + (6V +V +V(V —5))e® + 0(e ')




e Likewise, expectation value (s) = (s,) (using translation invariance:

<81> = %; S:L'e_ﬂH
1+ (V —=2)e ¥+ (2V —8)e % + O(e %)
1+ Ve 464 2Ve=65 4 O(e=89)
= 1-2¢" -8 %+ O(e¥)

e 2d Ising: expansion to order ¢~7% [I. G. Enting, A, J. Guttmann, I.
Jensen, J.Phys.A27 (1994)]

3d Ising: expansion to e~2%% [I. G. Enting, A, J. Guttmann, J.Phys.A26
(1993)]

e Note: expansion of ' = —log Z has only connected graphs and is
x V!

e Does not work for continuous d.o.f's



From [l. G. Enting, A, J. Guttmann, I. Jensen, J.Phys. A27 (1994) 6987-7006]
Table I1: New low-temperature series for the spin-% 2-dimensional Ising magnetisation
(M(u) = ¥, muu™), susceptibility (x(u) = X, z,u™), and specific heat (C,(u) = >, c,u™).
All terms with odd n are zero.

n My, Tn Cn,
0 1 0 0
2 0 0 0
4 -2 1 16
6 -8 8 72
8 -34 60 288

10 -152 416 1200

12 -714 2791 5376

14 -3472 18296 25480

16 -17318 118016 125504

18 -88048 752008 634608

20 -454378 4746341 3269680

22 -2373048 29727472 17086168

24 -12515634 185016612 90282240

26 -66551016 1145415208 481347152

28 -356345666 7059265827 2585485504
30  -1919453984 43338407712 13974825960
32 -10392792766 265168691392 75941188736




n My, Tn Cn,
34 -56527200992 1617656173824 414593263952
36 -308691183938 9842665771649 2272626444528
38 -1691769619240 59748291677832 12502223573304
40 -9301374102034 361933688520940 68996534259040
42 -51286672777080 2188328005246304 381858968527680
44 -283527726282794 13208464812265559 2118806030647328
46 -1571151822119216 79600379336505560 11783826597027256
48 -8725364469143718 479025509574159232 65674579024955904
50 -48552769461088336 2878946431929191656 366728645195006000
52 -270670485377401738 17281629934637476365 2051443799934043632
54 -1511484024051198680 103621922312364296112 11494250259278105304
56 -8453722260102884930 620682823263814178484 64499139095733378176
58 -47350642314439048648 3714244852389988540072 362436080938852037648
60 -265579129813183372802 22206617664989885664363 2039249170926323834880
62 -1491465339550559632448 132657236460768679560864 11487673072269872540904
64 -8385872784303807639294 791843294876287279547520 64786142191741932873984
66 -47202746620874986470336 4723112509660327575046688 365754067103461706996304
68 -265975151780412455885826 28152514246598001579534217 2066925549185792626090544
70 -1500179080790296495333960 167696255471026758161692328 11691314122170272566638200
72 -8469330846027919131108866 998303936498277539688401212 66188283453887221177721568
74  -47856040705247407564621400  5939502715888619728011515904  375021938737150106426702208
76 -270636033194089067428986890 35318214476286590871820680287 2126523853550658555941372768




7.2. High temperature expansion for 2d Ising

[A.J.Guttmann, in Phase transitions and critical phenomena, Vol. 13, eds. Domb and
Lebowitz (Academic Press, 1989)]

e Now most convenient to use H = — ¥ ;= ;5

e Partition function at 3 < 1: expand in 3, only terms which have s"

survive!
Z =311
Si <ij>
L 9, 1 .3 5, 1 4 4
= > [ (14 Bsis;j + =07°(sis)" + =6°(sisj)” + =07 (sis)" + ...
2V 2V 6V 12V(2V —T)
1% 24V 4 &V OV L 6
= 2" |1+ 0 2+ﬁ(4!+22+\/+2 52 )+O(ﬁ)]

————————————————————————————————————



e — Partition function as a sum of closed graphs:

1
7 2V 6L(G)
%: <1;‘[> mij(G) !
where L(G) is the number of the links in the graph G (including

links with » hops n times), and m,;(G) is the number of hops over
link < ij >.

e Expectation values for spin operators: the operators we measure
are products (and sums of products) of spins.

- <HN 3i> =0, if N odd
— for NV even, construct graphs which connect the “sources”.
For example, a nn-pair (s,s;) has the following graphs up to 3 hops:

———————————————————————————



This gives (taking into account the combinatorics)

1
(Sa8p) = EZsasbe_ﬁH

— % > sush (ﬁsasb +5° [%(Sasb)g + 2 (SaSc)(Scsd) (Sasp)

cdell
+ % > (sisj)2sasb -+ 0(55))
(ij)7#(ab)
B+ 35 +2+ 5 +0(6%)

_ 39 5
1+ 82V + O(BY) —5+53+O(5)

Here the last line could have been written directly by inspecting the
graphs. Each link gives a factor of 3, and the “multiplicity” gives a
factor 1/m/.

e Note: again F' = —log Z contains only connected graphs, and is
x V.
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7.3. High temperature expansion using “character expansion”

e A more efficient way to perform the high-temperature expansion is
to use the “character expansion”:

exp[fsis;] = a(l + bs;s;)
where a = cosh f and b = tanh 3; O(b) = O(3). Now
Zz = Y I P =a® Y II (1+0sis))

Si <ij> Si <ij>

1
a® 2V |1 + bV 4+ 152V 4+ b° <6V +5V(V - 5)) - 0(510)]

,,,,,,,,,

e Only single-link graphs here! Much easier to enumerate.
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¢ If we want the expansion in 3, we have to expand « and b.
e Note: 3? -term comes from the “vacuum?;
a2V x1=2"1+p5%/2+..)2 =2V (1 + 5>V + O(5Y)
e Partition function as a sum of closed graphs is simply
7 — 42VoV T pL(G)
G

where L(G) is the number of the links in the graph G.

e And nn-pair expectation value comes as before, from the expansion
where the source points are connected by links:

1
(SaSp) = Z;sasbe_ﬂH
1

= % > SaSh (bsasb + b > (SaSe)(SeSa)(Sasp) + O(b5))
Z Si cdeld

:lwaﬁ+0wﬂ:5+ﬁg+OWﬁ
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Much simpler graphs to work with than before!

e Generalizes to continuous spins: hopping parameter expansion

7.4. Duality in 2D Ising model

e Duality relations are (usually) exact relations which map a lattice
system to another. Generically, they map low-temperature (weak
coupling) <« high-temperature (strong coupling).

e Dual lattice is a lattice which lives at the center of the original lattice
hypercubes. In 2 dimensions:
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e 2D Ising model is self-dual, i.e. the dual model is 2d ising too, but
with different coupling.

e Start from the graph expansion from previous section (¢ =
cosh 3, b = tanh (3):

Z = avy IT (1+bsis;)
Si <15>

_ a2V2V Z bL(G) _ CL2V2V Z H bn,,;(G)/Q
G G 1

where n;(G) is the number of links in closed graph G connecting to
point 7. Naturally, it has values n; = 0, 2, 4.
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e 1, lives on site i on the original lattice. Now comes the crucial point:
we can map any graph to dual variables ¢, = +1, living on the dual
lattice, so that 0,0, = —1, if link which crosses the dual link («, /)
belongs to the graph G; +1 otherwise.

¢ In other words, the original graphs divide the dual lattice in domains;
neighbouring domains have different o.

e Thus, each graph < 2 o-configurations (all ¢, — —o, symmetry).
o If 0;,7 =1,2,3,4 surround point ¢, then we can identify (normalizing)
n;, = —(O’lO'Q + 0903 + 0304 + 0'40'1)/2 + 2.

Substituting this into partition function, we obtain (note: each dual
link appears twice!)

1
Z o a2v2v2 Z b? Z<(y\/> 1_0-0(,0-"/
g

/
O( Z eﬁ Z<aﬁ\/> O-O(,O-"/
o
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where (' is defined through

lal}

‘ 1
b'/? = tanh'/? 3 = ¥ = g = -3 In tanh (3.

Thus, 2 Ising models with 5 and ' are exactly dual — equivalent! —
to each other. Note: if

B—>{O = 5/_>{05

oo
Thus, the hot phase is mapped to the cold one and vice versa.

e What if 3/ = 3: now 3 = {In(1 + +/2), i.e. the critical point of the
Ising model!

e Only in 2d the dual of a lattice spin model is a spin model. Very few
models are self-dual (Ising and Potts models).

¢ In 3D, the dual of a spin model is a gauge theory. For example, the
dual of a 3D Ising model is a 3D Ising gauge theory. Very useful re-
lation! We do not know efficient (cluster) algorithms for Ising gauge
theory, but do for the Ising model.
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e In 4D, the dual of a gauge theory is another gauge theory.
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Hopping parameter expansion

e Scalar theory in d-dimensions:
S = [d' 2 4+ m¢ + )\¢

e Conventional (not perhaps the best) lattice discretization: define
(note: in d-dim. [\¢] = GeV1~9)

o o= Va2
1
) )\ = Z)\Oallid 2

e Hopping parameter « is fixed through (d + (ma)?)x 42X = 1

—K %: 9090903:—1-/1 + u(@x)

X

Slatt = Z —/‘f%: PrPrtu T 903; + A(@?g - 1)2} - %:

All quantities are dimensionless.
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g — oo: Ising model

Naive continuum limit; x = % — %A.

“High-temperature expansion”: expand around x = 0:

Z= [[dg,e )] T] ere=

<zy>

Exactly as for the Ising model, we can write the last part as a sum
over sets of links, graphs G-

[ oo = I X origie
<zy> <xy> 4 1.
1
= Y RMO T ———(pap,) @)
G <azy>€e@ m:vy(G)! !

= X RHO(G) TN
G T
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e c(G)= 11

may,(G): the number of times link < 45 > is included in G

1

<y May(G)!

Defining

N¢(x): # of links going to point x

1
_ —u(p) _ k\ __ k ,—u(e)
= [dpe ), ’Vk:—<90>1—Zl/d9090€

Z = ZY%:KL(G)C(G) II YNe(z)

reG

e Since v, = 0 for odd k, we get exactly the same closed graphs as
for the Ising model.

A

%
1

1 1 1
— 2‘/* T A2 4 174 2 V 2

1
Wd(d— 1)y, + sVd(Vd — 4d + 1) (2')272 + O(k%)
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e “Feynman rules” for Z: 1. Draw graphs of length L
2. Each link: 1/m!
3. Each point: vy

e Again, free energy F' = — log Z contains only connected graphs.

e Various quantities calculated up to 14th order [M.Lischer, P.Weisz,
Nucl.Phys.B 295 (1988)]
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