7. Low and high T expansions in Ising model

In addition to the Monte Carlo methods, we can generate results analytically from lattice models. The most important expansions are the lowand high-temperature expansions:

- Low temperature expansion:
- Expansion of $Z=\int[d \phi] e^{-E / T}$ around $T=0$
- Perturbations around a $S=S_{\text {min }}$ state
- In field theory this corresponds to the weak coupling expansion. For continuously varying fields, this gives the standard perturbation theory (in continuum or on the lattice)
- High temperature expansion:
$e^{-E / T} \sim 1-E / T+\frac{1}{2}(E / T)^{2}+\ldots$
- Expansion around a "random" state
- Strong coupling expansion
- Hopping parameter expansion
- No direct continuum counterpart
- Mean field approximation
- Exact results: dualities etc.

Ising model: low + high temperature expansions
Ising model: every lattice point has a spin $s_{i}= \pm 1$

$$
Z=\sum_{s_{i}} e^{-\beta H}, \quad H=-\frac{1}{2} \sum_{<i j>} s_{i} s_{j}
$$

$<i j>$: nearest neighbour pairs, $\beta=1 / T$
The model has a symmetry breaking phase transition at a Curie point β_{c} (in 2D: $\beta_{c}=\log (1+\sqrt{2}) \approx 0.8814$).
If $\beta \leq \beta_{c}\left(T \geq T_{c}\right),\langle s\rangle=0$, whereas if $\beta>\beta_{c},\langle s\rangle \neq 0$.
7.1. Low temperature expansion for 2d Ising

- 2d Ising model at $\beta \gg 1$. For simplicity, redefine $H \rightarrow H^{\prime}=\sum_{<i j>}\left[1-\delta\left(s_{i}, s_{j}\right)\right]$ so that a completely ordered system (all $s_{i}=+1$ or -1) has $H=0$.
- Assume that $\langle s\rangle>0$ (for example, boundaries fixed to $s=1$)
- Classify configurations by the number of frustrated bonds $n_{f}=$ 0, 4, $6 \ldots$
- Partition function

$$
\begin{aligned}
& Z=\sum_{s_{i}} e^{-\beta H}=\sum_{s_{i}} \prod_{<i j>} e^{-\beta\left(1-\delta\left(s_{i}, s_{j}\right)\right)}=\sum_{s_{i}} e^{-\beta n_{f}[s]} \\
& =1+V e^{-4 \beta}+2 V e^{-6 \beta}+(6 V+V+V(V-5)) e^{-8 \beta}+O\left(e^{-10 \beta}\right)
\end{aligned}
$$

- Likewise, expectation value $\langle s\rangle=\left\langle s_{x}\right\rangle$ (using translation invariance:

$$
\begin{aligned}
\left\langle s_{x}\right\rangle & =\frac{1}{Z} \sum_{s_{i}} s_{x} e^{-\beta H} \\
& =\frac{1+(V-2) e^{-4 \beta}+(2 V-8) e^{-6 \beta}+O\left(e^{-8 \beta}\right)}{1+V e^{-4 \beta}+2 V e^{-6 \beta}+O\left(e^{-8 \beta}\right)} \\
& =1-2 e^{-4 \beta}-8 e^{-6 \beta}+O\left(e^{-8 \beta}\right)
\end{aligned}
$$

- 2d Ising: expansion to order $e^{-76 \beta}$ [I. G. Enting, A, J. Guttmann, I. Jensen, J.Phys.A27 (1994)]
3d Ising: expansion to $e^{-26 \beta}$ [I. G. Enting, A, J. Guttmann, J.Phys.A26 (1993)]
- Note: expansion of $F=-\log Z$ has only connected graphs and is $\propto V$!
- Does not work for continuous d.o.f's

From [I. G. Enting, A, J. Guttmann, I. Jensen, J.Phys. A27 (1994) 6987-7006]
Table II: New low-temperature series for the spin- $\frac{1}{2}$ 2-dimensional Ising magnetisation $\left(M(u)=\sum_{n} m_{n} u^{n}\right)$, susceptibility $\left(\chi(u)=\sum_{n} x_{n} u^{n}\right)$, and specific heat $\left(C_{v}(u)=\sum_{n} c_{n} u^{n}\right)$. All terms with odd n are zero.

n	m_{n}	x_{n}	c_{n}
0	1	0	0
2	0	0	0
4	-2	1	16
6	-8	8	72
8	-34	60	288
10	-152	416	1200
12	-714	2791	5376
14	-3472	18296	25480
16	-17318	118016	125504
18	-88048	752008	634608
20	-454378	4746341	3269680
22	-2373048	29727472	17086168
24	-12515634	185016612	90282240
26	-66551016	1145415208	481347152
28	-356345666	7059265827	2585485504
30	-1919453984	43338407712	13974825960
32	-10392792766	265168691392	75941188736

n	m_{n}	x_{n}	c_{n}
34	-56527200992	1617656173824	414593263952
36	-308691183938	9842665771649	2272626444528
38	-1691769619240	59748291677832	12502223573304
40	-9301374102034	361933688520940	68996534259040
42	-51286672777080	2188328005246304	381858968527680
44	-283527726282794	13208464812265559	2118806030647328
46	-1571151822119216	79600379336505560	11783826597027256
48	-8725364469143718	479025509574159232	65674579024955904
50	-48552769461088336	2878946431929191656	366728645195006000
52	-270670485377401738	17281629934637476365	2051443799934043632
54	-1511484024051198680	103621922312364296112	11494250259278105304
56	-8453722260102884930	620682823263814178484	64499139095733378176
58	-47350642314439048648	3714244852389988540072	362436080938852037648
60	-265579129813183372802	22206617664989885664363	2039249170926323834880
62	-1491465339550559632448	132657236460768679560864	11487673072269872540904
64	-8385872784303807639294	791843294876287279547520	64786142191741932873984
66	-47202746620874986470336	4723112509660327575046688	365754067103461706996304
68	-265975151780412455885826	28152514246598001579534217	2066925549185792626090544
70	-1500179080790296495333960	167696255471026758161692328	11691314122170272566638200
72	-8469330846027919131108866	998303936498277539688401212	66188283453887221177721568
74	-47856040705247407564621400	5939502715888619728011515904	375021938737150106426702208
76	-270636033194089067428986890	35318214476286590871820680287	2126523853550658555941372768

7.2. High temperature expansion for 2d Ising

[A.J.Guttmann, in Phase transitions and critical phenomena, Vol. 13, eds. Domb and Lebowitz (Academic Press, 1989)]

- Now most convenient to use $H=-\sum_{<i j>} s_{i} s_{j}$
- Partition function at $\beta \ll 1$: expand in β, only terms which have $s_{i}^{2 n}$ survive!

$$
\begin{aligned}
Z & =\sum_{s_{i}} \prod_{<i j>} e^{\beta s_{i} s_{j}} \\
& =\sum_{s_{i}} \prod_{<i j>}\left(1+\beta s_{i} s_{j}+\frac{1}{2!} \beta^{2}\left(s_{i} s_{j}\right)^{2}+\frac{1}{3!} \beta^{3}\left(s_{i} s_{j}\right)^{3}+\frac{1}{4!} \beta^{4}\left(s_{i} s_{j}\right)^{4}+\ldots\right) \\
& =2^{V}\left[1+\beta^{2} \frac{2 V}{2}+\beta^{4}\left(\frac{2 V}{4!}+\frac{6 V}{2^{2}}+V+\frac{1}{2} \frac{2 V(2 V-7)}{2^{2}}\right)+O\left(\beta^{6}\right)\right]
\end{aligned}
$$

- \mapsto Partition function as a sum of closed graphs:

$$
Z=2^{V} \sum_{G} \beta^{L(G)} \prod_{<i j>} \frac{1}{m_{i j}(G)!}
$$

where $L(G)$ is the number of the links in the graph G (including links with n hops n times), and $m_{i j}(G)$ is the number of hops over link $\langle i j\rangle$.

- Expectation values for spin operators: the operators we measure are products (and sums of products) of spins.
$-\left\langle\Pi^{N} s_{i}\right\rangle=0$, if N odd
- for N even, construct graphs which connect the "sources".

For example, a nn-pair $\left\langle s_{a} s_{b}\right\rangle$ has the following graphs up to 3 hops:

This gives (taking into account the combinatorics)

$$
\begin{aligned}
\left\langle s_{a} s_{b}\right\rangle= & \frac{1}{Z} \sum_{s_{i}} s_{a} s_{b} e^{-\beta H} \\
= & \frac{1}{Z} \sum_{s_{i}} s_{a} s_{b}\left(\beta s_{a} s_{b}+\beta^{3}\left[\frac{1}{3!}\left(s_{a} s_{b}\right)^{3}+\sum_{c d \in \sqcup}\left(s_{a} s_{c}\right)\left(s_{c} s_{d}\right)\left(s_{d} s_{b}\right)\right.\right. \\
& \left.\left.+\frac{1}{2} \sum_{\langle i j\rangle \neq\langle a b\rangle}\left(s_{i} s_{j}\right)^{2} s_{a} s_{b}\right]+O\left(\beta^{5}\right)\right) \\
= & \frac{\beta+\beta^{3}\left(\frac{1}{3!}+2+\frac{V-1}{2}\right)+O\left(\beta^{5}\right)}{1+\beta^{2} V+O\left(\beta^{4}\right)}=\beta+\beta^{3} \frac{5}{3}+O\left(\beta^{5}\right)
\end{aligned}
$$

Here the last line could have been written directly by inspecting the graphs. Each link gives a factor of β, and the "multiplicity" gives a factor $1 / m$!.

- Note: again $F=-\log Z$ contains only connected graphs, and is $\propto V$.
7.3. High temperature expansion using "character expansion"
- A more efficient way to perform the high-temperature expansion is to use the "character expansion":

$$
\exp \left[\beta s_{i} s_{j}\right]=a\left(1+b s_{i} s_{j}\right)
$$

where $a=\cosh \beta$ and $b=\tanh \beta ; O(b)=O(\beta)$. Now

$$
\begin{aligned}
Z & =\sum_{s_{i}} \prod_{<i j>} e^{\beta s_{i} s_{j}}=a^{2 V} \sum_{s_{i}} \prod_{<i j>}\left(1+b s_{i} s_{j}\right) \\
& =a^{2 V} 2^{V}\left[1+b^{4} V+b^{6} 2 V+b^{8}\left(6 V+\frac{1}{2} V(V-5)\right)+O\left(b^{10}\right)\right]
\end{aligned}
$$

- Only single-link graphs here! Much easier to enumerate.
- If we want the expansion in β, we have to expand a and b.
- Note: β^{2}-term comes from the "vacuum";

$$
a^{2 V} 2^{V} \times 1=2^{V}\left(1+\beta^{2} / 2+\ldots\right)^{2 V}=2^{V}\left(1+\beta^{2} V+O\left(\beta^{4}\right)\right)
$$

- Partition function as a sum of closed graphs is simply

$$
Z=a^{2 V} 2^{V} \sum_{G} b^{L(G)}
$$

where $L(G)$ is the number of the links in the graph G.

- And nn-pair expectation value comes as before, from the expansion where the source points are connected by links:

$$
\begin{aligned}
\left\langle s_{a} s_{b}\right\rangle & =\frac{1}{Z} \sum_{s_{i}} s_{a} s_{b} e^{-\beta H} \\
& =\frac{1}{Z} a^{2 V} \sum_{s_{i}} s_{a} s_{b}\left(b s_{a} s_{b}+b^{3} \sum_{c d \in \sqcup}\left(s_{a} s_{c}\right)\left(s_{c} s_{d}\right)\left(s_{d} s_{b}\right)+O\left(b^{5}\right)\right) \\
& =b+2 b^{3}+O\left(b^{4}\right)=\beta+\beta^{3} \frac{5}{3}+O\left(\beta^{4}\right) .
\end{aligned}
$$

Much simpler graphs to work with than before!

- Generalizes to continuous spins: hopping parameter expansion
7.4. Duality in 2D Ising model
- Duality relations are (usually) exact relations which map a lattice system to another. Generically, they map low-temperature (weak coupling) \leftrightarrow high-temperature (strong coupling).
- Dual lattice is a lattice which lives at the center of the original lattice hypercubes. In 2 dimensions:

- 2D Ising model is self-dual, i.e. the dual model is 2d ising too, but with different coupling.
- Start from the graph expansion from previous section ($a=$ $\cosh \beta, b=\tanh \beta$):

$$
\begin{aligned}
Z & =a^{2 V} \sum_{s_{i}} \prod_{<i j>}\left(1+b s_{i} s_{j}\right) \\
& =a^{2 V} 2^{V} \sum_{G} b^{L(G)}=a^{2 V} 2^{V} \sum_{G} \prod_{i} b^{n_{i}(G) / 2}
\end{aligned}
$$

where $n_{i}(G)$ is the number of links in closed graph G connecting to point i. Naturally, it has values $n_{i}=0,2,4$.

- n_{i} lives on site i on the original lattice. Now comes the crucial point: we can map any graph to dual variables $\sigma_{\alpha}= \pm 1$, living on the dual lattice, so that $\sigma_{\alpha} \sigma_{\alpha^{\prime}}=-1$, if link which crosses the dual link (α, α^{\prime}) belongs to the graph G; +1 otherwise.
- In other words, the original graphs divide the dual lattice in domains; neighbouring domains have different σ.
- Thus, each graph $\leftrightarrow 2 \sigma$-configurations (all $\sigma_{\alpha} \rightarrow-\sigma_{\alpha}$ symmetry).
- If $\sigma_{i}, i=1,2,3,4$ surround point i, then we can identify (normalizing)

$$
n_{i}=-\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{4}+\sigma_{4} \sigma_{1}\right) / 2+2
$$

Substituting this into partition function, we obtain (note: each dual link appears twice!)

$$
\begin{aligned}
Z & =a^{2 V} 2^{V} 2 \sum_{\sigma} b^{\frac{1}{2} \sum_{<\alpha \gamma>} 1-\sigma_{\alpha} \sigma_{\gamma}} \\
& \propto \sum_{\sigma} e^{\beta^{\prime} \sum_{<\alpha \gamma>} \sigma_{\alpha} \sigma_{\gamma}}
\end{aligned}
$$

where β^{\prime} is defined through

$$
b^{1 / 2}=\tanh ^{1 / 2} \beta=e^{-\beta^{\prime}} \quad \Rightarrow \quad \beta^{\prime}=-\frac{1}{2} \ln \tanh \beta
$$

Thus, 2 Ising models with β and β^{\prime} are exactly dual - equivalent! to each other. Note: if

$$
\beta \rightarrow\left\{\begin{array} { c }
{ 0 } \\
{ \infty }
\end{array} \quad \Rightarrow \quad \beta ^ { \prime } \rightarrow \left\{\begin{array}{c}
\infty \\
0
\end{array}\right.\right.
$$

Thus, the hot phase is mapped to the cold one and vice versa.

- What if $\beta^{\prime}=\beta$: now $\beta=\frac{1}{2} \ln (1+\sqrt{2})$, i.e. the critical point of the Ising model!
- Only in 2d the dual of a lattice spin model is a spin model. Very few models are self-dual (Ising and Potts models).
- In 3D, the dual of a spin model is a gauge theory. For example, the dual of a 3D Ising model is a 3D Ising gauge theory. Very useful relation! We do not know efficient (cluster) algorithms for Ising gauge theory, but do for the Ising model.
- In 4D, the dual of a gauge theory is another gauge theory.

Hopping parameter expansion

- Scalar theory in d-dimensions:

$$
S=\int d^{d} x \frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{4!} \lambda_{0} \phi^{4}
$$

- Conventional (not perhaps the best) lattice discretization: define (note: in d-dim. $\left[\lambda_{0}\right]=\mathrm{GeV}^{4-d}$)
- $\varphi=\sqrt{\kappa} a^{d-2} / 2 \phi$
- $\lambda=\frac{1}{4!} \lambda_{0} a^{4-d} \kappa^{2}$
- Hopping parameter κ is fixed through $\left(d+\frac{1}{2}(m a)^{2}\right) \kappa+2 \lambda=1$

$$
S_{\mathrm{latt}}=\sum_{x}\left[-\kappa \sum_{\mu} \varphi_{x} \varphi_{x+\mu}+\varphi_{x}^{2}+\lambda\left(\varphi_{x}^{2}-1\right)^{2}\right]=\sum_{x}\left[-\kappa \sum_{\mu} \varphi_{x} \varphi_{x+\mu}+u\left(\varphi_{x}\right)\right]
$$

All quantities are dimensionless.

- $g \rightarrow \infty$: Ising model
- Naive continuum limit: $\kappa=\frac{1}{d}-\frac{2}{d} \lambda$.
- "High-temperature expansion": expand around $\kappa=0$:

$$
Z=\int\left[\prod_{x} d \varphi_{x} e^{-u\left(\varphi_{x}\right)}\right] \prod_{<x y>} e^{\kappa \varphi_{x} \varphi_{y}}
$$

- Exactly as for the Ising model, we can write the last part as a sum over sets of links, graphs G :

$$
\begin{aligned}
\prod_{<x y>} e^{\kappa \varphi_{x} \varphi_{y}} & =\prod_{<x y>} \sum_{i} \frac{1}{i!} \kappa^{i} \varphi_{x}^{i} \varphi_{y}^{i} \\
& =\sum_{G} \kappa^{L(G)} \prod_{<x y>\in G} \frac{1}{m_{x y}(G)!}\left(\varphi_{x} \varphi_{y}\right)^{m_{x y}(G)} \\
& =\sum_{G} \kappa^{L(G)} c(G) \prod_{x} \varphi_{x}^{N_{G}(x)}
\end{aligned}
$$

- $m_{x y}(G)$: the number of times link $<i j>$ is included in G
- $c(G) \equiv \prod_{<x y>} \frac{1}{m_{x y}(G)!}$
- $N_{G}(x)$: \# of links going to point x
- Defining

$$
Z_{1}=\int d \varphi e^{-u(\varphi)}, \quad \gamma_{k}=\left\langle\varphi^{k}\right\rangle_{1}=\frac{1}{Z_{1}} \int d \varphi \varphi^{k} e^{-u(\varphi)}
$$

we get

$$
Z=Z_{1}^{V} \sum_{G} \kappa^{L(G)} c(G) \prod_{x \in G} \gamma_{N_{G}(x)}
$$

- Since $\gamma_{k}=0$ for odd k, we get exactly the same closed graphs as for the Ising model.

$$
\begin{aligned}
\frac{Z}{Z_{1}^{V}} & =1+\kappa^{2} V d \frac{1}{2} \gamma_{2}^{2}+\kappa^{4}\left[V d \frac{1}{4!} \gamma_{4}^{2}+V d(2 d-1) \frac{1}{(2!)^{2}} \gamma_{4} \gamma_{2}^{2}\right. \\
& \left.+\frac{1}{2} V d(d-1) \gamma_{2}^{4}+\frac{1}{2} V d(V d-4 d+1) \frac{1}{(2!)^{2}} \gamma_{4}^{2}\right]+O\left(\kappa^{6}\right)
\end{aligned}
$$

- "Feynman rules" for Z : 1. Draw graphs of length L

2. Each link: $1 / m$!
3. Each point: γ_{N}

- Again, free energy $F=-\log Z$ contains only connected graphs.
- Various quantities calculated up to 14th order [M.Lüscher, P.Weisz, Nucl.Phys.B 295 (1988)]

