
7. Low and high T expansions in Ising model

In addition to the Monte Carlo methods, we can generate results analyt-
ically from lattice models. The most important expansions are the low-
and high-temperature expansions:

• Low temperature expansion:

- Expansion of Z =
∫

[dφ]e−E/T around T = 0

- Perturbations around a S = Smin state

- In field theory this corresponds to the weak coupling expansion.
For continuously varying fields, this gives the standard perturbation
theory (in continuum or on the lattice)

• High temperature expansion:

e−E/T ∼ 1 − E/T + 1
2
(E/T )2 + . . .

- Expansion around a “random” state

- Strong coupling expansion
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- Hopping parameter expansion

- No direct continuum counterpart

• Mean field approximation

• Exact results: dualities etc.
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Ising model: low + high temperature expansions

Ising model: every lattice point has a spin si = ±1

Z =
∑

si

e−βH , H = −1
2

∑

<ij>

sisj

< ij >: nearest neighbour pairs, β = 1/T

The model has a symmetry breaking phase transition at a Curie point βc

(in 2D: βc = log(1 +
√

2) ≈ 0.8814).
If β ≤ βc (T ≥ Tc), 〈s〉 = 0, whereas if β > βc, 〈s〉 6= 0.

7.1. Low temperature expansion for 2d Ising

• 2d Ising model at β � 1. For simplicity, redefine

H → H ′ =
∑

<ij>[1 − δ(si, sj)] so that a completely ordered system
(all si = +1 or −1) has H = 0.
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• Assume that 〈s〉 > 0 (for example, boundaries fixed to s = 1)

• Classify configurations by the number of frustrated bonds nf =
0, 4, 6 . . .

• Partition function

Z =
∑

si

e−βH =
∑

si

∏

<ij>

e−β(1−δ(si,sj)) =
∑

si

e−βnf [s]

= 1 + V e−4β + 2V e−6β + (6V + V + V (V − 5))e−8β + O(e−10β)
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• Likewise, expectation value 〈s〉 = 〈sx〉 (using translation invariance:

〈sx〉 =
1

Z

∑

si

sxe
−βH

=
1 + (V − 2)e−4β + (2V − 8)e−6β + O(e−8β)

1 + V e−4β + 2V e−6β + O(e−8β)

= 1 − 2e−4β − 8e−6β + O(e−8β)

• 2d Ising: expansion to order e−76β [I. G. Enting, A, J. Guttmann, I.
Jensen, J.Phys.A27 (1994)]

3d Ising: expansion to e−26β [I. G. Enting, A, J. Guttmann, J.Phys.A26
(1993)]

• Note: expansion of F = − log Z has only connected graphs and is
∝ V !

• Does not work for continuous d.o.f’s

5



From [I. G. Enting, A, J. Guttmann, I. Jensen, J.Phys. A27 (1994) 6987-7006]
Table II: New low-temperature series for the spin- 1

2
2-dimensional Ising magnetisation

(M(u) =
∑

n
mnun), susceptibility (χ(u) =

∑

n
xnun), and specific heat (Cv(u) =

∑

n
cnun).

All terms with odd n are zero.

n mn xn cn

0 1 0 0
2 0 0 0
4 -2 1 16
6 -8 8 72
8 -34 60 288

10 -152 416 1200
12 -714 2791 5376
14 -3472 18296 25480
16 -17318 118016 125504
18 -88048 752008 634608
20 -454378 4746341 3269680
22 -2373048 29727472 17086168
24 -12515634 185016612 90282240
26 -66551016 1145415208 481347152
28 -356345666 7059265827 2585485504
30 -1919453984 43338407712 13974825960
32 -10392792766 265168691392 75941188736
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n mn xn cn

34 -56527200992 1617656173824 414593263952
36 -308691183938 9842665771649 2272626444528
38 -1691769619240 59748291677832 12502223573304
40 -9301374102034 361933688520940 68996534259040
42 -51286672777080 2188328005246304 381858968527680
44 -283527726282794 13208464812265559 2118806030647328
46 -1571151822119216 79600379336505560 11783826597027256
48 -8725364469143718 479025509574159232 65674579024955904
50 -48552769461088336 2878946431929191656 366728645195006000
52 -270670485377401738 17281629934637476365 2051443799934043632
54 -1511484024051198680 103621922312364296112 11494250259278105304
56 -8453722260102884930 620682823263814178484 64499139095733378176
58 -47350642314439048648 3714244852389988540072 362436080938852037648
60 -265579129813183372802 22206617664989885664363 2039249170926323834880
62 -1491465339550559632448 132657236460768679560864 11487673072269872540904
64 -8385872784303807639294 791843294876287279547520 64786142191741932873984
66 -47202746620874986470336 4723112509660327575046688 365754067103461706996304
68 -265975151780412455885826 28152514246598001579534217 2066925549185792626090544
70 -1500179080790296495333960 167696255471026758161692328 11691314122170272566638200
72 -8469330846027919131108866 998303936498277539688401212 66188283453887221177721568
74 -47856040705247407564621400 5939502715888619728011515904 375021938737150106426702208
76 -270636033194089067428986890 35318214476286590871820680287 2126523853550658555941372768
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7.2. High temperature expansion for 2d Ising

[A.J.Guttmann, in Phase transitions and critical phenomena, Vol. 13, eds. Domb and

Lebowitz (Academic Press, 1989)]

• Now most convenient to use H = −∑

<ij> sisj

• Partition function at β � 1: expand in β, only terms which have s2n
i

survive!

Z =
∑

si

∏

<ij>

eβsisj

=
∑

si

∏

<ij>

(

1 + βsisj +
1

2!
β2(sisj)

2 +
1

3!
β3(sisj)

3 +
1

4!
β4(sisj)

4 + . . .

)

= 2V



1 + β22V

2
+ β4





2V

4!
+

6V

22
+ V +

1

2

2V (2V − 7)

22



+ O(β6)





8



• 7→ Partition function as a sum of closed graphs:

Z = 2V ∑

G

βL(G) ∏

<ij>

1

mij(G) !

where L(G) is the number of the links in the graph G (including
links with n hops n times), and mij(G) is the number of hops over
link < ij >.

• Expectation values for spin operators: the operators we measure
are products (and sums of products) of spins.

– 〈∏N si〉 = 0, if N odd

– for N even, construct graphs which connect the “sources”.

For example, a nn-pair 〈sasb〉 has the following graphs up to 3 hops:
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This gives (taking into account the combinatorics)

〈sasb〉 =
1

Z

∑

si

sasbe
−βH

=
1

Z

∑

si

sasb



βsasb + β3





1

3!
(sasb)

3 +
∑

cd∈t
(sasc)(scsd)(sdsb)

+
1

2

∑

〈ij〉6=〈ab〉
(sisj)

2sasb





 + O(β5)







=
β + β3( 1

3! + 2 + V −1
2 ) + O(β5)

1 + β2V + O(β4)
= β + β35

3
+ O(β5)

Here the last line could have been written directly by inspecting the
graphs. Each link gives a factor of β, and the “multiplicity” gives a
factor 1/m!.

• Note: again F = − log Z contains only connected graphs, and is
∝ V .
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7.3. High temperature expansion using “character expansion”

• A more efficient way to perform the high-temperature expansion is
to use the “character expansion”:

exp[βsisj] = a(1 + bsisj)

where a = cosh β and b = tanhβ; O(b) = O(β). Now

Z =
∑

si

∏

<ij>

eβsisj = a2V ∑

si

∏

<ij>

(1 + bsisj)

= a2V 2V
[

1 + b4V + b62V + b8
(

6V +
1

2
V (V − 5)

)

+ O(b10)

]

• Only single-link graphs here! Much easier to enumerate.
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• If we want the expansion in β, we have to expand a and b.

• Note: β2 -term comes from the “vacuum”;

a2V 2V × 1 = 2V (1 + β2/2 + . . .)2V = 2V (1 + β2V + O(β4))

• Partition function as a sum of closed graphs is simply

Z = a2V 2V ∑

G

bL(G)

where L(G) is the number of the links in the graph G.

• And nn-pair expectation value comes as before, from the expansion
where the source points are connected by links:

〈sasb〉 =
1

Z

∑

si

sasbe
−βH

=
1

Z
a2V ∑

si

sasb



bsasb + b3 ∑

cd∈t
(sasc)(scsd)(sdsb) + O(b5)





= b + 2b3 + O(b4) = β + β35

3
+ O(β4).
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Much simpler graphs to work with than before!

• Generalizes to continuous spins: hopping parameter expansion

7.4. Duality in 2D Ising model

• Duality relations are (usually) exact relations which map a lattice
system to another. Generically, they map low-temperature (weak
coupling) ↔ high-temperature (strong coupling).

• Dual lattice is a lattice which lives at the center of the original lattice
hypercubes. In 2 dimensions:
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• 2D Ising model is self-dual, i.e. the dual model is 2d ising too, but
with different coupling.

• Start from the graph expansion from previous section (a =
coshβ, b = tanhβ):

Z = a2V ∑

si

∏

<ij>

(1 + bsisj)

= a2V 2V ∑

G

bL(G) = a2V 2V ∑

G

∏

i

bni(G)/2

where ni(G) is the number of links in closed graph G connecting to
point i. Naturally, it has values ni = 0, 2, 4.
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• ni lives on site i on the original lattice. Now comes the crucial point:
we can map any graph to dual variables σα = ±1, living on the dual
lattice, so that σασα′ = −1, if link which crosses the dual link (α, α′)
belongs to the graph G; +1 otherwise.

• In other words, the original graphs divide the dual lattice in domains;
neighbouring domains have different σ.

• Thus, each graph ↔ 2 σ-configurations (all σα → −σα symmetry).

• If σi, i = 1, 2, 3, 4 surround point i, then we can identify (normalizing)

ni = −(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1)/2 + 2.

Substituting this into partition function, we obtain (note: each dual

link appears twice!)

Z = a2V
2
V
2
∑

σ
b

1
2
∑

<αγ> 1−σασγ

∝ ∑

σ
eβ′∑

<αγ> σασγ
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where β ′ is defined through

b1/2 = tanh1/2 β = e−β′ ⇒ β ′ = −1

2
ln tanhβ.

Thus, 2 Ising models with β and β ′ are exactly dual – equivalent! –
to each other. Note: if

β →






0

∞ ⇒ β ′ →






∞
0

.

Thus, the hot phase is mapped to the cold one and vice versa.

• What if β ′ = β: now β = 1
2 ln(1 +

√
2), i.e. the critical point of the

Ising model!

• Only in 2d the dual of a lattice spin model is a spin model. Very few
models are self-dual (Ising and Potts models).

• In 3D, the dual of a spin model is a gauge theory. For example, the
dual of a 3D Ising model is a 3D Ising gauge theory. Very useful re-
lation! We do not know efficient (cluster) algorithms for Ising gauge
theory, but do for the Ising model.
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• In 4D, the dual of a gauge theory is another gauge theory.
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Hopping parameter expansion

• Scalar theory in d-dimensions:

S =
∫

ddx
1

2
(∂µφ)2 +

1

2
m2φ2 +

1

4!
λ0φ

4

• Conventional (not perhaps the best) lattice discretization: define
(note: in d-dim. [λ0] = GeV4−d)

• ϕ =
√

κad−2/2φ

• λ =
1

4!
λ0a

4−dκ2

• Hopping parameter κ is fixed through (d + 1
2(ma)2)κ + 2λ = 1

Slatt =
∑

x



−κ
∑

µ
ϕxϕx+µ + ϕ2

x + λ(ϕ2
x − 1)2



 =
∑

x



−κ
∑

µ
ϕxϕx+µ + u(ϕx)





All quantities are dimensionless.

18



• g → ∞: Ising model

• Naive continuum limit: κ = 1
d − 2

dλ.

• “High-temperature expansion”: expand around κ = 0:

Z =
∫

[
∏

x
dϕxe

−u(ϕx)]
∏

<xy>
eκϕxϕy

• Exactly as for the Ising model, we can write the last part as a sum
over sets of links, graphs G:

∏

<xy>
eκϕxϕy =

∏

<xy>

∑

i

1

i!
κiϕi

xϕ
i
y

=
∑

G

κL(G) ∏

<xy>∈G

1

mxy(G)!
(ϕxϕy)

mxy(G)

=
∑

G

κL(G)c(G)
∏

x
ϕNG(x)

x
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• mxy(G): the number of times link < ij > is included in G

• c(G) ≡ ∏

<xy>

1

mxy(G)!

• NG(x): # of links going to point x

• Defining

Z1 =
∫

dϕe−u(ϕ) , γk = 〈ϕk〉1 =
1

Z1

∫

dϕ ϕke−u(ϕ)

we get
Z = ZV

1

∑

G

κL(G)c(G)
∏

x∈G

γNG(x)

• Since γk = 0 for odd k, we get exactly the same closed graphs as
for the Ising model.

Z

ZV
1

= 1 + κ2V d
1

2
γ2

2 + κ4



V d
1

4!
γ2

4 + V d(2d − 1)
1

(2!)2
γ4γ

2
2

+ 1
2V d(d − 1)γ4

2 + 1
2V d(V d − 4d + 1)

1

(2!)2
γ2

4



 + O(κ6)
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• “Feynman rules” for Z: 1. Draw graphs of length L
2. Each link: 1/m!
3. Each point: γN

• Again, free energy F = − log Z contains only connected graphs.

• Various quantities calculated up to 14th order [M.Lüscher, P.Weisz,
Nucl.Phys.B 295 (1988)]
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