LECTURE NOTES

Statistical Field Theory

Effective Theories
of 2nd-Order Phase Transitions
and Symmetry Breaking

Ch.G. van Weert
Institute for Theoretical Physics

Valckenierstraat 65
1018 XE Amsterdam

1999



Contents

Introduction

1.1 Critical Phenomena . . . . . . . . . . . . . ...
1.2 Effective Field Theory . . . . . . . . . ... ... ... ...
Ising Model

2.1 Ferromagnetism . . . . . . . . . . ...
2.2 Ising Model . . . . . . . . . . .
2.3 Mean-Field Theory . . . . . . . . . . . . .. .
2.4 Gaussian Transformation . . . . . . . . . . .. .. o
2.5 Mean-Field Approximation . . . . . . . . .. .. ...
2.6 Legendre Transform . . . . . . . . . . . .. ..
2.7 Correlation Functions . . . . . . . . . . . .
2.8 Fluctuation-Response relation . . . . . . .. .. ... ... ... ... ..
2.9 MFA Pair Correlation . . . . . . . . . . ..
2.10 Critical Exponents . . . . . . . . . ...
Ginzburg-Landau model

3.1 Continuum Lmit . . . . . . . . ..
3.2 Landau Theory . . . . . . . . . . .
3.3 Correlation Functions . . . . . . . . . ...
3.4 Wick’s Theorem . . . . . . . . . . .
3.5 Perturbation Theory . . . . . .. . . ... ... ...
Feynman Path Integral

4.1 Coherent States . . . . . . . . ...
4.2 Field Theory . . . . . . . .
4.3 Path Integral . . . . . . . . . . ..
BCS-Theory of Superconductivity

5.1 Order Parameter . . . . . . . . . . . ...
5.2 BCSmodel . . . . . . . ..
5.3 Landau approximation . . . . . . . . . .. .. ...
54 Gap Equation . . . . . ...
5.5 Thermodynamics . . . . . . . . ...



Appendix

Propagator in d-dimensions
Appendix

Gaussian Integrals . . . .
Appendix

Functional Differentiation



Chapter 1

Introduction

One of the aims of statistical mechanics is to explain the occurrence of phase transitions.
In daily life we are well aware of the existence these phases and the fact that phase
transitions are taking place: water turns into ice when cooled, metals can be melted
by heating, water and gasoline evaporate etc. Phase transitions are not only central to
life on Earth, but also to the understanding of the time-development of the universe.
For example, to explain a large cosmological constant in the early universe, some phase
transition must have taken place, and also the observed baryon asymmetry, could have
been generated by the electro-weak phase transition. The theory of critical phenomena
tries to understand this behavior of matter.

1.1 Critical Phenomena

On a phenomenological level, one makes a distinction between first-order and second-
order phase transitions. Common phase transitions, like the transition of water to vapor
or ice, or the solidification of molten material, are first-order. This means that the material
releases a non-zero quantity of heat, the so-called latent heat, when it goes through a very
small temperature range around the transition temperature 7,. This is an indication of a
structural change in the material. For example, in the water-ice transition a latent heat of
334 Jg ! is released when the water atoms get ordered into a face-centered cubic lattice,
rather than moving around randomly. This is an abrupt change from the disordered fluid
to an ordered solid.

In a second-order transition, also called continuous phase transition, the properties
of the system do not change abruptly. For example, above the critical temperature
T, = 1043K, called the Curie temperature, iron can only be magnetized by applying
an magnetic field. Below T, iron is ferromagnetic, meaning that the material can stay
magnetized even in the absence of a magnetic field. The magnitude of the magnetization
continuously decreases as the Curie temperature is approached from below, vanishing en-
tirely at T, and all higher temperatures. In contrast to freezing, there is no abrupt change
in the properties of the system, but derivatives may be discontinuous.

Another example of a continuous phase transition is superconductivity discovered in



1911 by Heike Kamerlingh Onnes by cooling mercury to about 4.2 K. Since then many
other materials have been found to become superconductors at temperatures as high as
120 K. At present this is a very active research area of great technological importance.

Continuous phase transitions are characterized by an so-called order parameter. This
parameter is generally defined as a quantity that vanishes at one side of the transition
(usually the high-temperature side) and increases from zero at the other side. For ex-
ample, the magnetization M is a suitable order parameter to describe the ferromagnetic
transition. Since the direction of the magnetization is arbitrary, this order parameter is a
vector in space. In the case of superconductors the order parameter is a complex quantity
A defined such that its absolute value is a measure for the density ns of superconducting
electron: |A|? = n,. There is no general rule for defining order parameters, and it is a
matter of physical intuition and experience to identify the proper order parameter for a
given physical system.

In the theory of critical phenomena the appearance of an order parameter is understood
as a manifestation of a change of symmetry of the system. Without magnetization a
ferromagnetic material is isotropic in all directions. However, when the magnetization
appears this defines a preferred direction. Omne says that the rotational symmetry is
broken. The theoretical relation between continuous phase transitions and a change of
symmetry was first noted by Lev Landau in 1937. Together with Evgenii Ginzburg he
formulated in 1960 a general theory of continuous phase transitions which involve a broken
symmetry. This important theory is referred to as the Ginzburg-Landau model.

Phase transitions, continuous or not, are characterized by the fact that certain quan-
tities show very large fluctuations as the critical point is approached, and some may even
diverge. The heat capacity C, in particular, often diverges in the neighborhood of T,
according to the law

C~|T.-T|™¢

The number « is called a critical exponent. Many more of these critical exponents are
defined. The surprising fact is that the numerical values found experimentally for these
critical exponents for very different systems are often nearly equal to within the experi-
mental error. This very important observation is known as universality. One may assign
each system to a universality class in such a way that apparently diverse systems in the
same universality class have the same critical exponents. The important goal of the theory
of critical phenomena is to explain this remarkable congruence in experimental properties.

1.2 Effective Field Theory

The essential tenet of quantum mechanics is the particle-wave duality, that is, the same
system can manifest itself under different conditions as either a collection of particles or
a collection of waves. This fact is not a paradox, because a system can uniquely behave
in either of these two modes only in two extreme classical limits. The actual behavior of
a quantum system will always be a mix of the two.



In quantum field theory (QFT), the particle-wave picture is reconciled by canonical
field quantization, the particles being the quanta of the fields. This interpretation of
QFT finds its natural setting in the formalism of second quantization, where the fields
are decomposed into sums of creation and annihilation operators of single-particle states.
The rules of canonical quantization have been the traditional approach, since the first
papers of Heisenberg and Pauli on general quantum field theory, to introduce the particle
picture and to describe the creation and annihilation of particles. The existence of fields
is taken for granted relying for justification on the experience with electromagnetism.

However, with Steven Weinberg [Weinberg] we could ask: why should we believe in
the rules of canonical quantization? Why should we adopt simple field equations and
Lagrangians that are found in the literature ? For that matter, why have fields at all?

This question is even more pressing after the astonishing impact of field theory in
the seventies on the understanding of critical phenomena in statistical physics. What
have critical phenomena to do with field theory? The fields in these applications are
certainly not fundamental in the sense that they describe elementary constituents of
matter, but rather they are classical order parameters describing collective phenomena,
such as ferromagnetism and superconductivity. The decomposition into normal modes of
these fields have an interpretation as basic collective excitations.

An answer to these questions lies in the insights of the modern theory of critical
phenomena which began with the scaling hypothesis put forward by Ben Widom (1965)
and the universality hypothesis of Leo Kadanoff (1966). The intuitive idea is that close to
a phase transition the range of correlations between the atoms becomes very long, much
longer than the range of the interaction. It seems reasonable, therefore, to suppose that
the critical exponents should not depend on the fine details of the interaction, but only
on such general features as the dimensionality and symmetry of the interaction.

This basic idea was translated into a recursive mathematical procedure, the so-called
renormalization group approach, by Kenneth Wilson. He realized that at large distances
the correlation functions of a system near a critical point were described by an ”effective”
theory which can be obtained by a process of renormalization of the fundamental under-
lying theory. This effective theory manifest itself as a field theory, with the slowly-varying
relevant space-dependent physical variables as the essential degrees of freedom. For this
fundamental contribution to the theory of critical phenomena Wilson received the Nobel
prize for Physics in 1982.

As strongly advocated by Weinberg, this should be the general point of view regarding
field theories; successful QFT’s, including QED have to be thought of as effective theories,
meaning ”low energy” or ”long distance” approximations to some deeper theory that may
not even be a field theory, but something different like a string theory. The reason that
QFT’s describe physics at accessible energies is that any relativistic quantum theory will
look like a quantum field theory at sufficiently low energy. At the level of the elementary
particles, QFT is the way it is, simply because it is the only way the reconcile the principles
of quantum mechanics with those of special relativity, at least when we insist that the
theory be local.

In the same way, at a different energy scale, the theory of critical phenomena is



what it is, because it is an effective theory for the long-wave-length behavior of the
system. Since we do not expect the fine details of the interaction, such as the shape of
the underlying lattice or the precise form of the short-range interaction, to be crucial for
deriving general properties such as critical exponents, we might try to describe the critical
behavior by a continuum effective theory. The guiding principle here is the preservation
of the general symmetries of the system. This constraint had already been successfully
applied by Landau to construct a purely phenomenological theory of phase transitions.
The application in the context of effective theories, leads to a particular field theoretic
model for the class of second-order phase transition: the Ginzburg-Landau model. This
will be one of the central models in these lectures.



Chapter 2

Ising Model

As a first step to a quantitative theory of continuous phase transitions, it is instructive to
consider the Ising model invented by Lenz in 1920 as a simple model for ferromagnetism.
It was first solved by his student Ising in 1925 for d = 1. The analytic solution for d = 2
was obtained about twenty years later by Onsager in 1944. No analytic solution for d = 3
is known, but with the help of modern computational technology numerical solutions are
easy to obtain. Despite its simplicity, the Ising model embodies some of the most essential
characteristics of the phase transitions:

e It has a broken-symmetry state (space dimension higher than d = 1) separated by

a second-order phase transition from the normal state

e [t possesses an order parameter distinguishing the two states

e close to the phase transition an effective field theory can be constructed for the
description of the system
Moreover, it allows us to illustrate some of the tools of statistical field theory.

2.1 Ferromagnetism

A common example of a continuous phase transition is the occurrence of a spontaneous
magnetization below the Curie temperature 7, in ferromagnetic materials like iron or
zinc. Above T, the material is paramagnetic, that is, a magnetization M (magnetic
moment per unit volume) is induced by an external magnetic field B. In the ferromagnetic
state (1" < T.) the material is magnetized M # 0 even when no field is applied. The
magnetization vanishes as one approaches 7, from below

M~ |T —T,° (2.1)

with the critical exponent 8 ~ 0.35 for iron. The phase transition is continuous which
means that the thermodynamic properties of the system do not change abruptly at T,
but that at least one of the response functions diverges, for example the susceptibility



(for B =10):

oM 1
o= (55),~ 22

with v ~ 1.3 for iron. At T, the magnetization becomes proportional to a power of the

magnetic field
M ~ Bl/5

where 6 ~ 4.3 for iron; thus, at 7. the magnetization responds sensitively and highly
non-linearly to small fields B.
The magnetization may be identified with some average of atomic magnetic moments

M = (u) . (2.3)

This is the order parameter of the ferromagnetic phase: its value is non-zero in the ordered
phase and zero in the symmetric one. The occurrence of a spontaneous magnetization
is easily understood. Indeed the ground state energy is minimal if all spins are aligned
in some arbitrary direction. In this state rotational symmetry is broken. However, the
SO(3) symmetry is not broken entirely since rotations around the magnetization axis are
still symmetries of the ground state. Therefore, in a ferromagnet the original symmetry
is broken down to SO(2), which is isomorphic to the circle group U(1). The broken
symmetry corresponds to any rotation changing direction of the magnetization. These
rotations are given by the coset R = SO(3)/U(1) = S?, ie the set of rotations represented
by the two-sphere. (Note that this set is not a group.)

2.2 Ising Model

The Ising-model represents a system of N magnetic atoms located at the sites ¢ € N of a
cubic lattice. At each site of the lattice there is a spin variable s; = +1. A positive spin
is said to be 'up’, and a negative spin ’down’. The Hamiltonian describing the system in
the presence of a external magnetic field B has the following form:

H= —%ZSiJiij - BZSZ (24)
7,7 1
The spins have an exchange interaction J;; = J at neighboring sites. For all other pairs
Jij = 0. If we set J > 0 the neighboring spins try to align parallel to each other and
to the direction of B. If on the other hand, the coupling is negative, anti-parallel spins
are favored, and the spins are said to have an anti-ferromagnetic coupling. Note that in
a more realistic model one should consider Heisenberg spins and a vector inner-product
interaction B - s;.
The partition function Z of the model has the following form:

Z = TrePH
1
= ZeXpﬁ(BZS¢+§ZS¢J¢ij) (25)
{s} 7 i



where >, indicates that the sum should be extended over all possible assignments of
+1 to the lattice sites.

A relevant quantity to calculate is the magnetization m defined as the average value
of the spin at each site as a function of the external interaction magnetic field B:

m(B) = (s

i 110logZ
N—oo N3 0B

(2.6)

Below a certain critical temperature 7, we expect to find a non-vanishing magnetization
for infinitesimally small B

mozéiglom(B)#O, T<T.. (2.7)

However, this is not at all obvious form the above equation (2.6) for m(B). If one
simply inserts B = (, one obtains an average which only contains the bi-linear exchange
interaction term s;J;;s;. This exchange interaction term is symmetric in the spins s;
and s;, and therefore results in my = 0. So there certainly is some subtlety involved in
explaining the fact that mgy # 0.

The occurrence of symmetry breaking in a magnetic field B # 0 can be understood
as follows. For an arbitrarily weak magnetic field the symmetry between up and down
spins along the B-axis is broken by the external field term in the Hamiltonian. The
state with magnetization in the direction of B, as compared to the state with opposite
magnetization, has the relative probability

P e PBN

- _ _—928BN
P_+ = eﬁBN =€ N (28)

where N is the number of spins. In the thermodynamic limit N — oo , we have P_ — 0
for any B. As B — 0, the system is in the state with

) .1
mg = }31311}01\}1_1}100 N < S8 >p . (2.9)

Thus, the zero-field state fundamentally depends on the history of preparation. Also the
crucial role of the thermodynamic limit is clear; if we keep N finite as B — 0, we would
get P, = P_ and both states would be equally populated. We conclude that the order of
the two limits in (2.9) is crucial and cannot be interchanged.

2.3 Mean-Field Theory

In practice it has proven difficult to start from ab initio calculations to describe the physics
of phase transitions. Therefore, various simplifying approximations have been introduced
which hopefully still contain the relevant aspects of the problem. One of the simplest



is the mean-field approximation (MFA), which was introduced by Weiss in 1907 for the
study of the ferromagnetic phase transition. It provides a simple yet useful theory of
phase transitions as we will demonstrate by considering the Ising-model.

Consider the case in which the exchange interaction is uniform throughout the lattice.
The mean-field approximation in the context of the Ising model means the replacement
of the fluctuating values of the exchange field by an average field. Suppose that the
expectation value of the magnetization is

(s:)p = m(B,T) (2.10)

for all i. The thermal average of a given spin s; = + may be written

eB(Js+B) _ o—B(Js+B)
<$2'> = £ eﬁ(JsJ,-B) + e—ﬁ(]s—i—B)

= (tanhﬁ(z Jijs; + B)) . (2.11)

The factor one-half has disappeared; in the partition sum this factor corrects for the fact
that each pair of sites is counted twice.

The average in the last member at the right-hand side of (2.11) has to be taken over
all configurations. We will handle this complicated problem by the ansatz that s; may be
replaced by its mean value. In this mean-field approximation the magnetization satisfies
the self-consistent equation:

<82’> = tanhﬁ(z Jij<5’j> + B) . (212)

The sum over nearest neighbors can be performed. Setting J;; = J with J > 0, we get
for the magnetization
m = tanh f(zJm + B) , (2.13)

where z is the coordination number, i.e. the number of nearest neighbors.

To find m(B, T the self-consistent equation may be solved numerically or graphically.
For each B # 0 there is at least one solution. For B = 0 there is always one solution
mgo = 0, and if z3J > 1 a further non-zero solution mgy # 0 is found. As T — T, = zJ,
the magnetization mg(7T) decreases and we can obtain its asymptotic dependence by a
Taylor expansion

1
mo = BzJmg — g(ﬁzJ)3mg , (2.14)
or )
T T\2
T)=V3|l=](1—-=} . 2.15
mo(7) I(T) ( Tc> (2.15)
The order parameter vanishes asymptotically with critical exponent 3 = 1. This is

called the mean-field value, which is not correct, neither for d = 2 nor d = 3. Also,
MFA underestimates the value of 3. and therefore overestimates T, e.g. for d = 3 the

10



numerical result is 3, = 0.222/J, whereas the MFA value is 5. = 0.133/J. Nevertheless,
MFA is a very useful description of phase transitions. Its validity depends crucially on the
dimension d. For d sufficiently large, greater than an upper critical dimension d., MFA
is very good at all temperatures. It yields the exact critical exponents and is a starting
point for systematic corrections. Below d,., but above a critical dimension d;, MFA works
well except close to the critical point. Below the lower critical dimension, MFA is invalid.
We will see that d = 4 is the upper critical dimension of the Ising model.

2.4 Gaussian Transformation

We will seek a general framework of successive approximations in which the leading term
embodies MFA. Since the order parameter is singled out as the collective variable repre-
senting the essential degrees of freedom, we will cast the partition function in the form of
an integral over the order parameter. This is an extremely useful technique that will lead
us to the path integral representation of the partition function.

We consider the partition function of the Ising-model, generalized to an inhomogeneous
magnetic field that takes different values B; at different sites

1
+ —SZ’JZ'ij) . (216)

7 = Zexpﬁ(Bisi 5

{s}

The essential step is to replace the exponent by a product of Gaussian integrals with the
help of the identity

exp (ls L5+ 8B s) (2.17)
= |det L|Z /H

with L = (8J) L = 871J ! and |det L|? = 8~"/2|det J|~%. By this Gaussian trick the
quadratic term disappears and the sum over the spin states is now trivial to perform:

> exp(¢; + BB;)s; = 2Hcosh i + 0B;) . (2.19)
{s}

eXp —3¢-L-¢+(¢+0B)-s) (2.18)

It is convenient to rescale the auxiliary variable: ¢ — (¢. Furthermore, the determinant
normalization factor gives an additive contribution to the free energy which is irrelevant
and may be deleted. Using these results in the partition function we obtain:

Z = ———c PH®B) 2.20
1:[ 27TT ( )

where the effective Hamiltonian for the Ising model is given by

H= %qSiJiglgbj - %Zlog[Q cosh B(¢; + By)] . (2.21)

11



This demonstrates that the partition function of the Ising-model is identical to the par-
tition function of a model whose configurations can be parameterized by a set of real
continuous statistically independent variables ¢;, which can take the values [—o0, +00].

There is a loop-hole in this reasoning because the Gaussian trick applies when the
matrix J;; is symmetric and positive definite. This is not true for the Ising-model since
the diagonal elements of J;; are zero, implying that the sum over the eigenvalues is zero.
As a consequence we must expect to encounter divergent integrals. We will discuss this
when the problem arises.

The physical interpretation of the variable ¢; becomes clear when we calculate the
order parameter

10log Z
= (s) == 2.22
mi=(5) = 550 222
It is convenient to shift variables and to write the Hamiltonian
Differentiation with respect to B; gives
1 Y do,
e — J; ' (¢i — Bi)e "
SO / H JanT i (9= BiJe
= J;'({¢5) — B)) . (2.24)

The average at the right-hand side is calculated with respect to the ¢-variables. In the
absence of a field, the order parameter is linearly related to the average of ¢;:

(pi) = Jij(s;5) - (2.25)

This linear combination is also an acceptable order parameter. Since changing the variable
of integration by a linear transformation x; = Ji;1¢j would not change the physical result,
we could use just as well the variable y; in which case (x;) = (s;). Hence the variable ¢;
may be considered as a microscopic order parameter in its own right. Its average value has
the physical interpretation of a mean molecular field. That is, (¢;) gives the potential seen
at site ¢ as a result of interaction J;; with the mean value (s;) of each of the surrounding
spins.

2.5 Mean-Field Approximation

We consider the partition function (2.20) of the Ising model with the Hamiltonian (2.23)
as given above. We now apply the saddle-point method, often called stationary phase
approximation. To leading order this amounts to the replacement of the integral by the
value of the integrand for which the exponent is stationary

Z = exp—BH($, B) (2.26)

12



where the variable ¢ is the solution of the extremum condition:

H(p, B
% =0. (2.27)
O lo-s
This yields for ¢; the mean-field equation
Ji;'¢; = tanh B(¢; + B;) . (2.28)

The magnetization in this approximation is given by

10logZ -
B 8BZ - tanhﬁ(¢z + Bz)

= J;'¢;. (2.29)

m; =

This is exactly the same self-consistent relation as we obtained earlier by an elementary
reasoning.

From (2.28) and (2.29) we immediately determine the magnetic field in terms of the
magnetization

1
BZ' = E tanh_l m; — JZmJ . (230)
For small m we may expand
1
tanh_lxzéloglji=x+§m3—|—--- (2.31)
which yields
BB =(1—pz])ym+im*+--- (2.32)

where we assumed an homogeneous magnetic field. It is easily seen graphically that the
equation for zero field B = 0 has non-trivial solutions when GzJ > 0, whereas for 8zJ < 0
the equation has only the trivial solution m = 0. It follows that

T, = 2J (2.33)

is the critical temperature separating the ordered low-temperature state with non-zero
magnetization, from the high-temperature state where the spontaneous magnetization
vanishes.

It is important to note that the magnetic field regarded as a function of the magne-
tization, is a well defined function, both above and below the phase transition. In the
latter case equation (2.30) has three solutions for values of the magnetic field in the range
0 < B < By, where By is the value of the magnetic field where the slope changes sign:
OB/0m = 0. The solutions having m < mg are either metastable or unstable which
means

om 18%logZ
0B 3 0B2

<0. (2.34)

13



Figure 2.1: The solution of (2.29) for a homogeneous magnetic field. The unphysical
region is (A’A)=[m_, m.]. On the segments (AB) and (A’B’) the solution is meta-stable,
and unstable on (BB’).

The physical solution always has the same direction as the field, and a positive derivative
(2.34).

The spontaneous magnetization in zero-field is either m, or m_ corresponding to the
way in which the magnetic field has been taken to zero. This is the phenomenon of
spontaneous symmetry breaking. The range [m_,m| is unphysical, and the relationship
(2.30) between magnetic field and magnetization cannot be inverted uniquely.

2.6 Legendre Transform

In MFA the order parameter is obtained by minimizing the effective Hamiltonian (2.23)
with respect to the auxiliary field ¢;. We can formulate this more generally as a sta-
tionarity condition on the order parameter itself. The standard procedure is to define a
thermodynamic state function which depends on the magnetization rather than the mag-

netic field B. This is the Gibbs free energy, or thermodynamic potential, defined through
the Legendre transformation

1

14



Here B; = B;(m) is a dependent variable obtained by inverting the defining relation
(2.22). It then follows that the function I'(m) so defined satisfies the reciprocity relation

or
=B, . 2.36
o (2.36)
The inverse transformation is
logZ = -0 + B> m;B; , (2.37)

with now m; = m;(B) the dependent variable.

In the broken phase below T, there is a problem with this construction, because the
magnetization in the interval 0 < m < m, is not in one-to-one correspondence with
the magnetic field. As a consequence the Legendre transform is only defined outside
this interval. Physically this is not a serious problem since the magnetization in the
range [m_,my] is not accessible anyway, and for a thermodynamic description of the
broken phase it is not necessary to extend the Gibbs free energy in the unphysical region.
However, we can chose to do so, for example, by defining I' to be flat in this region; this
would be consistent with (2.36). The function I" would than have different left and right
derivatives at m = m., and be analytic elsewhere.

However, it more useful to define I'(m) as an analytic extension in the unphysical
region. That this is possible, follows from the fact that we can always define B(m) as
an analytic function as we have already seen in the preceding section. In fact the mean-
field approximation has given us this relation explicitly in (2.30). Typically, any explicit
calculation of I'(m) does not give the ”true” Gibbs energy, but rather an analytic extension
which turns out have the physical interpretation of the probability of the order parameter
to take a particular value. This analytic extension I'(m) is called the effective action in
field theory. This effective action is the Legendre transform of log Z in the physical region,
and its analytic extension inside the unphysical region. Summarizing;:

e in general, the effective action I'(m) is not the Legendre transform of log Z(B)

e however, the opposite is true, namely log Z(B) may be regarded as the Legendre
transform of I'(m) in the following sense:

1
s

where we wrote >, m; B, = m - B.
The function £(m,B) = T' — m - B is called the Landau function. Its absolute minima
specify the most probable value of m for any given value of B, and T. The Landau
function is the basis of the phenomenological Landau theory of phase transitions.
The general reasoning may be illustrated by considering the MFA solution of the Ising
model, for which I' may be constructed explicitly:

log Z(B) = min [I'(m) — m - B] (2.38)

I'=H(¢,B)+B-m. (2.39)

15



Figure 2.2: The Gibbs free energy (solid line) and the effective action (dashed line).

For small m we may expand and from (2.30) we get to fourth order
pm-B=-m-J -m+m?+im*. (2.40)
Using the relation cosh(tanh ™' z) = (1 — 22) "2 we get for the effective action

1
B

Substituting (2.30) we arrive at the result

T=tm-J-m——=>log 2(1—m2) 2+B-m. (2.41)

I'= —%m-J-m—l—%Z [(1+m;)log (1 +m;)+ (1 —m;)log(1— mi)]—%logQ . (2.42)

It is straightforward to verify that the stationarity condition (2.36) reproduces the mean-
field equation of state (2.30).
We specialize to a uniform field and expand to fourth order in m. We find

1 T
NF(m) = —Tlog2+ (T — zJ) m* + ﬁm4 +0O(m°) . (2.43)
As it should be the effective action is an extensive quantity. The system has a phase
transition when the coefficient of the quadratic term changes sign; this happens when
T =T, = zJ. Below the critical temperature T,, the effective action has the shape of
a ”"sombrero hat” with two minima. The two minima correspond to the positive and

16



Figure 2.3: Effective action for a second-order phase transition.

negative magnetization phase; in the absence of a magnetic field both have the same
free energy. Introduction of a small magnetic field lifts the degeneracy and the Landau
function I' — m - B has a unique absolute minimum. In the high-temperature phase the
minimum is always m = 0.

The effective action (2.43) has precisely the form of the zero-field Landau function
postulated by Landau in his phenomenological description of second-order phase transi-
tions. Hence we conclude that the criterion of validity of the Landau theory is the validity
of the mean-field approximation. The equation of state that corresponds to the Landau
expansion (2.43) is

B= (T —T,)m+ +Tm? (2.44)

When B = 0 the solution is m = 0 for T" > T, and

nw:i¢§(n;75% (2.45)

for T' < T,. Thus, MFA predicts a second-order phase transition
m~ (T, — T)" (2.46)

with critical exponent § = 1. When critical fluctuations are important, 3 generally is
less than its MFA value, typically ~ I in three-dimensional systems. At 1" = T, equation
(2.43) yields

m ~ BY° (2.47)
so that in MFA we find the critical exponent § = 3.

17



2.7 Correlation Functions

Much of the knowledge of condensed matter systems is derived from experiments

which probe the dynamics with X-rays, laser light neutrons or electrons. In these
experiments one directly measures correlation functions such as those of density and
magnetization. Scattering of polarized neutrons by a lattice of spins leads rather di-
rectly to information about the two-point correlation function of the spins, defined as the
expectation value

GP(i,5) =: (sis;) (2.48)
where ¢ and j are the position vectors of sites ¢ and j, respectively, and the brackets
indicate averaging with the appropriate equilibrium ensemble. In many situations, the
system is translationally invariant, either because it forms a crystal lattice or because it
is highly disordered. Then G®(4,7) only depends on the difference vector i — j. If the
system is also isotropic, G (i, j) becomes a function of the distance |i — j|, only.

Let us consider the Ising model in an external inhomogeneous field B;. Because the
field is different at each site, the thermal average of each spin can be extracted from the
partition function (2.16). It is convenient to define the ”external source” j; = 3B;. Then
knowing Z as a function of j;, allows us to calculate

107
i) = SE 2.49
() = 55 (2:49)
and also Y
8 = =——— . 2.50
In general N-point correlation functions are defined by
G(N)(Zl,,ZN> - <Si17”'78i1\1)
1 oNZ
= == (2.51)
Z 03y -+ OJiy
and GV is a function of the locations (i1,---,4x) of the spins being averaged. Since

correlation functions of arbitrary order can be obtained by differentiation of the partition
function with respect to the external field, Z(B) is called the generating functional of the
correlation functions.
If the spins are non-interacting the average of products simply factorizes into products
of the individual averages
(sisj) = (si)(s;) - (2.52)
However, when the spins interact, correlations become interesting. For example in a
ferromagnet we expect that spins which are close together will tend to align in the same
directions on average. The correlation will decrease as we consider spins that are further
apart. So we expect G to be positive for small site separation and to vanish as the
separation becomes large. However, if there is an average magnetization we will find
lim G@(i,5) — (s:)(s;) , (2.53)

ji—jl o0
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and the correlation function as defined above will not go to zero.

To ensure that the correlation function only measures the correlations between the
spins s; and s; due to interactions, we subtract off the contribution from each spin sepa-
rately. This defines the so-called connected two-point function

GP(i,4) = (sisj) — (si)(s;) - (2.54)

Another way of writing is

G (i, 9) = {(si — (53)) (55— (s3))) - (2.55)

This shows that the connected correlation function describes the correlation between the
fluctuationss; — (s;) of the spin from the average value. We expect that the connected
correlation function will vanish for large values of the distance |i — j|. If this is indeed the
case, the state is said to obey the clustering property.

The connected correlation function can be obtained by differentiation of log Z

0?log Z
GP(i,5) = ——=
(.9) 07:07;

(2.56)

as can be easily checked. The general formula for connected correlation functions is

. . ONlog Z
(N, ... - 57

Gc (217 7ZN) 8921 . 8]2]\; . (257)
This set of correlation functions carries the same information as the unconnected ones,
but are physically more useful, just as logZ is more useful than Z itself. Like in the
two-point case, the connected correlation functions can be obtained by subtracting off
redundant information about lower-order correlations. Details can be found in [Bellac].
In the following we shall always use the connected correlation functions without indicating
this explicitly by the subscript c.

2.8 Fluctuation-Response relation

For a homogeneous external field, the lowest-order correlation functions directly provide
two important thermodynamic quantities. The first one is the average magnetization per

site
1 dlogZ 1
m(B) = x5 = 3 L) (2.58)

This is the order parameter. The second one is the (static) magnetic susceptibility defined
as

_om _ 1 FlgZ
X= 9B~ BN oB?

(2.59)
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In terms of the two-point correlation function we may write

X =5 ({sis;) = (si)(s5)) - (2.60)

b

The last result implies that the susceptibility is given by the fluctuations in the system.
This is one example of a fluctuation-response formula, which can also be derived for other
thermodynamic response functions. One can also show from (2.60) that the succeptibility
is always positive.

The susceptibility measures how easily the magnetization can be changed by varying
the field. This will be easier the larger, or the more probable, the spontaneous fluctuations
from the average values are. This is a very general result of statistical mechanics, known
as the fluctuation-response theorem.

When the field is uniform, we may assume that the system is translationally invariant.
Then the connected correlation function depends only on the relative distance. Let r; be
the position vector of site ¢; the Fourier transform of the connected correlation function
may then be defined as

Gk) = Ze‘ik'(ri_rj)G(ri —rj). (2.61)

J

In the long-wave-length limit we have

ll{ir_n>0 G(k) = %;G(r2 —r;). (2.62)

Making the connection with the succeptibility (2.60) through the fluctuation-response for-
mula, we conclude that the thermodynamic susceptibility is given by the pair correlation

lim BG(k) = x (2.63)
k—o

in the low-k limit.

2.9 MPFA Pair Correlation

We shall now calculate the pair-correlation function for the Ising-model in MFA. As a
matter of fact, rather we will calculate its inverse for which we introduce the notation:

[8G (i, )] = T® (4, 5) . (2.64)

Let us first show that this so-called vertez function T?) is nothing but the second derivative

of the effective action:
rg )= 2L (2.65)
)= 8m28m] ' '
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For the proof we start from the trivial identity

bij = om; § 8By, Om; (2.66)

We know the relations
Om; 1 logZ

= = =BG (; j
5B, ~ FaBap, ¢ i)
0B o*T
= S - 2.67
Hence, with the above identification we obtain

This is a very useful relationship since it is in general more convenient to calculate I'(?)
than the correlation function itself. The effective action may be regarded as the generating
functional of this inverse function, and all higher-order vertex functions. By the Legendre
transform to the effective action we have in principle constructed the tool for calculating
these vertex functions.

As a case in point we consider the Ising-model. We have already calculated the effective
action I' in MFA. Differentiation of (2.42) gives

@i, 5) = —Jy; + T 6;(1 + m2) + O(m*) . (2.69)

Let us consider a d-dimensional lattice with sites given by r; = la, where a is the lattice
spacing. The vector 1 = (I3, --,l4) has integer components 0 < I, < L — 1. The discrete
Fourier transform of the interaction function J;; = J(r; —r;) is defined as

Ja) =3 e K @=L J(p, ) . (2.70)

Since the interaction function vanishes except for nearest neighbor sites, where it has the
value J, the components of the vector r; — r; can only take the values +a:

d
Jk) = 2J> coskea
a=1

= 2J|d- 1a’k’ + O(a'k")] . (2.71)
For the Fourier transform we obtain in this way
d
TO(k)=T—2J 3 coskaa+Tm?. (2.72)
a=1

This yields the low-k behavior of the correlation function near the critical point as

1
T T+ IR+ Tm?

In the next section we extract from this formula some critical exponents.

lim 3G® (k) (2.73)
k—o
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2.10 Ciritical Exponents

Let us consider the asymptotic form of the pair correlation function (2.73) in k-space.
Suppose T' > T,; since m = 0 we have

~ 1
I @ (k) ~ . 2.74
pm ) ~ e (2.74)
From the fluctuation-response theorem (2.63) then follows the susceptibility
Jim BGO (k) =x; = (T-T.)", (2.75)
—0

where £ distinguishes quantities above and below the phase transition. We conclude that
the critical exponent defined by
X~ T =T (2.76)

has the value v = 1.
Below T, the magnetization is given by (2.15). Hence

ll{im BGA (k) =x_=1(T.—T)"" (2.77)
—0

with critical exponent v = 1 having the same value as above T..
In the appendix it is shown that the asymptotic form (2.73) implies exponential decay
in coordinate space
6_7‘/5

pzld-1)"’

G(r) ~ (2.78)

with correlation length

£ = (T;]T)% , (2.79)

which diverges at the critical point according to a power law

E~ [T =T ™. (2.80)

The MFA value of the critical exponent is v = 1. For T < I, the correlation length is

with the same critical exponent v = L.
At the critical point T = T, the correlation length diverges. Then the decay of the
correlations generally has the power-law behavior

GI(k) = k=2 (2.82)

which defines the critical exponent 7. It is zero in MFA, and usually close to zero in actual
experiments.
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Chapter 3

Ginzburg-Landau model

Although the Ising model on a lattice has a fundamental microscopic length scale, the
lattice spacing a, we have seen that the behavior near the critical point is characterized
by fluctuations and a correlation length which becomes arbitrarily large. Thus, for the
long-wave-length excitations of the system which dominates the physics, the microscopic
length is irrelevant, and the correlation length & ~ |1 — Tc|_% is the physically relevant
length scale. At the critical point, where £ diverges, the system has no characteristic
length scale, and is expected to behave as a scale invariant system.

The dominance of the long-wave-length, or infra-red, behavior near the critical point,
illustrated here for the Ising model, is completely general and applies both to classical and
quantum systems. This leads us to consider the continuum limit, doing away altogether
with the microscopic length scale a. This will lead us to the theory of Ginzburg and
Landau, which is an effective field theory that replaces the original model in the critical
region. The derivation is heuristic, and one may question its validity. However, the model
preserves the essential symmetries and yields the Landau theory of phase transitions in
the mean-field approximation. This makes it plausible that the Ginzburg-Landau model
indeed captures somehow the essence of a phase transition and elucidates how the critical
behavior depends on the parameters, such as the dimensionality, of the system.

3.1 Continuum limit

For the Ising model a good starting point is the Hamiltonian (2.21) derived earlier. With-
out the magnetic field and expanded to fourth-order we have

H =305 0; — 38D &) +16°>_¢" . (3.1)

We now derive the continuum form by a simple limiting process. We define a field ¢(x)
such that
Valg(x;) = ¢; . (3.2)

where the position vector takes x; = (i1, - - -,i4)a. The field has dimension [length]=%2,

and may be considered as a ”course graining” of the variable ¢; over a lattice volume a?.
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Sums are replaced by integrals according to
1
— [dti6i = — [ d" o(x). 3.3
Y= [dio= = [ar o) (3.3)

To rewrite the interaction term we recall the long-wave-length expansion in Fourier space

J(k) =2 2J(d — sa*k?);. (3.4)
Hence

P~ —— (1 il 3.5
J<>_2dJ +1 d+~~- . (3.5)

which translates into coordinate space as

1 a’
iy (b [ il v 2T )

Ji; 2dJ( 2dV+ ) (3.6)

It may be shown that higher derivatives are not needed for a description of critical behavior
close to the critical point.
Making the substitutions we obtain the result

BHar = [ d'a(~3009%6 + 326" + 326" | (3.7)

which is the Ginzburg-Landau form. The coefficients can be calculated explicitly, but in
the Ginzburg-Landau model they are usually treated as phenomenological input.
The partition function now becomes

z- | I—— 905) _ -pric (3.8)

/27T /ad

In the continuum limit this becomes a functional integral or path integral
7 — /ng(x) e BHaLlP(X)] ’ (3.9)

where for the measure we have written

}llné/ﬂ j% ;/D¢(x). (3.10)

This notation means that the integral has to be summed over all admissible values of
the field variable ¢(x). The exponential factor with the Ginzburg-Landau Hamiltonian is
proportional to the probability for finding the configuration [¢(x)].

In practice, the only tractable functional integrals in physics are Gaussian. Unfortu-
nately this usually corresponds to a system without interactions. Interactions can only
dealt with by a perturbation expansion in Gaussian functional integrals or by sticking to
the lattice formulation and doing the integration as a numerical summation.
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3.2 Landau Theory

The GL-Hamiltonian can be generalized to include a external field. The partition function

for this model is ,
7 = /'ng(x) e PH[P(X)I+)-¢ ’ (3.11)

where omitted the subscript GL and used the inner product notation:
jro= [ d jx)6x) . (3.12)

The external source j(x) := B(x) plays a dual role. It allows us to study the influence
of an external field and also enables us to calculate correlation functions by functional
differentiation.

Let us calculate the extremum of the exponent

§H
b¢(x)

and apply the mean field approximation. This approximation yields the partition function
in the form

= B(x) (3.13)
b

%logZ =—H[p|+B- ¢, (3.14)
and the magnetization Slog 7
_ogs <
m(x) = 5 o(x) . (3.15)

In the Landau approximation the average of the random field is the order parameter. By
doing the Legendre transformation we find the effective action functional in the Landau
approximation

T[m] = / d'z (30(Vm)? + Lpm? + £Am?) . (3.16)

We could have derived this also by taking the continuum limit of the relation (2.42).

The simple form (3.16) is the basis of the Landau theory of phase transitions. It
predicts all the same results as the mean field approximation of the Ising model. Consider
for example the correlation function

G (xx) (5m(ixl;([5n7:1](x) (317)
= (i Pt — aVRe(x - x) (318)

If the magnetic field is uniform, the Fourier transform to momentum-space takes the
simple form

- 1
k pum—
&) P2+ 1Am? + ak?
1 &
- -5 1
al+ (K2 (3.19)
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where the correlation length is
& =Va(? + 1am?)7T ~ [T =T, ™. (3.20)

Like for the Ising model in MFA, the critical exponent v = 1. This is called the classical
value of the critical exponent; these are the values given by MFA or by the Landau
approximation which is its generalization.

Let us end by calculating the correlation function in coordinate space in the Landau
approximation for d = 3. It is customary to rescale so that a = 1. We then have

B d®k exp —ik - x

G(x) = /(%)3 e (3.21)
_exp—r/§
— T . (3.22)

As we expected the critical exponent n vanishes.

3.3 Correlation Functions

Let us consider a single classical field ¢(x) with z a point in d-dimensional Euclidian
space. The probability density
Plg] = e He (3.23)

is given by a Hamiltonian of the Ginzburg-Landau type
How = [ d'[s(V6) + tm6* + 426" (3.24)

where m is a mass and A a coupling constant. Since the Hamiltonian as defined here is
dimensionless, [Hgr] = 0, the field, mass and coupling constant have the dimensions:

[¢] =4d -1, (3.25)
m] =2, (3.26)
N=4-d, (3.27)

with scale -1 attributed to the length scale L.

The essential aim of perturbation theory is to provide a systematic algorithm for calcu-
lating arbitrary N-point correlations functions (¢(x1)@(z2) - - - ¢(zx)), where the statistical
average is defined by the probability density (3.23). To obtain compact expressions it is
convenient to introduce a generating functional

Z1j] = [ Do() Plé] e, (3.28)

where j(x) is some arbitrary function, called the external source, linearly coupled to the
field ¢:

jo =: /ddx j(z)p(x) . (3.29)
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From the generating functional one obtains the N-point correlation functions by repeated
functional differentiation with respect to the source:

1 SN Z[j]

or by simply expanding out the exponential:
UL S~ L [ty ool danilen) - dan) . (331)
Z[O] _N:0 N T N T TN ))J\T1 INTN) - .

When calculating these N-point correlation functions, one finds that in general they
consist of various connected pieces, that is, sub-units that have the property

lim  (¢(z1) - d(@n))con =0 (3.32)

s~ |00

for any two arguments x;, z,;. These connected pieces may be isolated by defining a new
generating functional W{j] = log Z[j]. This new quantity generates connected correlation
functions, also called the cumulants, according to:

WU = o Z00) + 3 7 [t o don GO, an)jlan) o jlow) (33

By comparison one identifies

GW(z) = (g(x)), (3.34)
G (z1,23) = (B(x1)p(22)) — (B(21))(P(x2)) - (3.35)

Explicit expressions of higher-order connected functions may be found in [Bellac]. The
general rule is that all possible products of connected pieces of lower order are subtracted.
One can then show that the remaining part has the cluster property (3.32).

For the following it is important to mention another general property, namely that
cumulants of a Gaussian distribution vanish for N > 3.

3.4 Wick’s Theorem

The Ginzburg-Landau Hamiltonian may be divided into a quadratic part
Hy = 4 [ dz6(@)AGV)o(x) | (3.36)

with the differential operator A(iV) = —V? 4+ m? and an interaction part

)\ d 4
V-4 /d zd(x)t . (3.37)
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More generally we could consider any polynomial in ¢ or derivative interactions of the
type ¢*(V¢)?, etc, but for the moment we confine ourselves to the simple ¢* interaction.
Perturbation theory is obtained by first considering the free generating functional

Zolj] = / De(x) e~ ot | (3.38)

The integral over the field is Gaussian and can be performed by transcribing formula
(5.83) to the continuum case

Zlj] = Zolojexp s [ d'ad'y j(@)A@ — y)j(y) - (3.39)

The propagator A(xz — y) is defined as the inverse of the differential operator A(iV) as
determined by the quadratic part of the Hamiltonian

AGV)A(z —y) =6(x —y) . (3.40)

Given appropriate boundary conditions, this inhomogeneous differential equation has a
unique solution. We impose standard boundary conditions at infinity and obtain by a
Fourier transform

ddk’ e—z’k:-a:
Alz) = / P ye— (3.41)
= (o(z)¢(0))o - (3.42)

Generalizing Wick’s theorem as derived in the appendix to the continuum case, we con-
clude that the Gaussian average of an even number of fields may be reduced to a sum of
products of propagators

<¢($1) T ¢($l)>0 = Z A(l“kl - $k2) T A(%_l - $kz) . (3-43)

(k1,.5k1)

The sum runs over all possible ways of choosing coordinate pairs. In field theory this
procedure is often referred to as ”contracting” the coordinate pairs. Each contraction is
represented by a propagator at the right hand side of (3.43).

3.5 Perturbation Theory

Wick’s theorem allows the systematic calculation of any correlation function derivable
from the generating functional (3.28) written as:

2lj) = [ Do(a) Rlg) eV (3.44)
By expanding out the exponent one gets
Z[j] = Zo[0{1 + (=V + )0 + +{(=V +jp) )o + -} (3.45)

Any two fields are contracted and replaced by the propagator (3.42). It proves to be
extremely convenient to introduce a graphical notation:
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(i) a contraction is represented by a line joining the two arguments
(B(2)p(m))o=Alx —y) =— - —— (3.46)

(ii) the four-interaction is represented by a four-point vertex
—Ap(2)* = (3.47)

(iii) an external source attached to a field ¢(x) is marked by a cross:

j@)=————x (3.48)

(iv) all vertex- and source coordinates are integrated over: [ d%x
In this manner any term in the Wick expansion of (3.45) can be represented by a unique
Feynman diagram. For example

Vi = 5 [dino) =3 [aelao)

— . (3.49)

Such a diagram without external point is called a vacuum or bubble diagram. Vacuum
graphs are not connected to a source and do not contribute to correlation functions. The
sum of all vacuum diagrams equals the partition function:

=1

Z[0] = Z[0] Y ﬁ<vn>0 - (3.50)

n=0 """
In the preceding section we already introduced the notion of a cumulant expansion. In
the present case cumulants may be formally defined by writing:

2[0] = Zy[0] exp i_o;l ~ (. (3.51)

The cumulants may be identified by expanding out both (3.50) and (3.51) with respect
to the coupling constant, and identifying terms of equal power. By working out a few
examples it becomes clear that the cumulant construction is such that all disconnected
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pieces from any term (V")q are subtracted, leaving only terms that are represented by
a connected diagram. Hence we may write for the logarithm of the partition function
(3.50), which is the quantity of physical interest in statistical mechanics:

log Z[0] = log Zy[0] + (e 7Y — 1), , (3.52)

where the last term stands for the sum of all connected vacuum diagrams.

We carry on with the full generating functional. Since the coupling of the external
source to the field is just another type of vertex, we may follow the same reasoning and
write

log Z[j] = log Zo[0] + (e V¢ — 1), (3.53)

where the second term at the right-hand side is the sum of all connected diagrams. For
example, for the 2-point correlation function we have the expression:

G2 (z,y) = (e Vo(2)o(y))e - (3.54)

Working out the terms with Wick’s theorem, we find each term in the perturbative ex-
pansion as a product of propagators A(z; — z;), represented by a connected Feynman
digram. The only factor that is not completely obvious is the multiplicative numerical
factor, called the symmetry factor that we have to assign to each diagram.

The symmetry factor is obtained in a straightforward, but tedious, manner by counting
the number of ways in which a diagram can be constructed by connecting the vertices with
the same topological result. Let the diagram consist of V' vertices and the corresponding
symmetry factor be Sy. In the perturbation expansion (3.49) it is seen that this symmetry
factor has to be divided by the permutational factor of each vertex: (4!)V, and by the
permutation of the identical vertices: V!. In total we get the weight factor:

Sy
gy = W . (3.55)
It can be remarked that the occurrence of these numerical factors have not always been
clearly noted in the literature.
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Chapter 4

Feynman Path Integral

A path integral is a formal expression for the partition function in terms of an integration
over a certain function space. This provides both a physically intuitive description of the
system and a useful starting point for approximations, such as perturbation theory, and
loop expansions around stationary points. The essential idea is due to Dirac (1933) which
was developed extensively by Feynman (1948).

4.1 Coherent States

For simplicity we shall start with a bosonic Fock space spanned by the base vectors

(a)"

n) = |ny,ng, ) = ——10) . 4.1
obtained by the repeated action of creation operators on the vacuum state |0). For
bosons the values of the occupation numbers n; = 0,1, 2, -, are unrestricted. Adjoint
base vectors (n| are created by the action of annihilation operators a,. These base vectors

span the entire Fock space as expressed by the the completeness relation

> In)(n|=1. (4.2)

{n}

Creation and annihilation operators satisfy the commutation relations
lal,al] = o, (4.3)
[ai,a;] = 0, (4.4)

All properties, like the normalization of the base vectors follow from these simple algebraic
rules.

Let us now define coherent states. Canonical coherent states are proper eigenstates of
a; with continuous complex eigen value z; defined by

12) = N(z) e |0) , (4.6)
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where N(z) is a normalization factor and the scalar product is shorthand for
=Y zal . (4.7)

Expanding out and using the definition (4.1) we have

The eigenvalue is obtained as
ai|2) = N(2) a5, €| |0) = z]2) . (4.9)
The normalization condition
1= () = NP [ EE" (4.10)
:|N@W&Wz (4.11)
determines the normalization factor as
N(2) = 7277 (4.12)

The coherent states are over-complete in the sense that two states |z1) and |z2) are not
linearly independent if z; # z5. On the other hand, |z) has a finite norm and it is a proper
element of the Hilbert space, provided z* - z, 0.

The important feature of coherent states is that they can be used to resolve the identity.
To establish this we need the result

dz*d .
;m,ze’” 2™ = bpmn! . (4.13)
It then follows that drtd
2idz;
1= :/ i N 414
Sl = [T55 (111
An almost identical computation gives the trace formula
dz;dz; i
trA = / R 4.15
A= [T el (415)
The overlap of two coherent states is defined as the inner product
(wlz) = (n|m)
DL 7 F vk
= exp—iw-w— 1 z4+w 2. (4.16)

It is trivial to compute coherent state matrix elements of normal-ordered operators A=
A(al,a). From the formula (4.8) and its adjoint we immediately obtain:

(w| = A(al,a) : |2) = A(w*, 2){w|2) , (4.17)

where A(w*, z) is a c-number function.
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4.2 Field Theory

In field theory the discrete index 7 is replaced by the continuous one x labeling the space
point. The coherent states are specified by a complex function z(x)

|@:4w@@¢/d%¢n@4@my (4.18)

We then have

~

P(x)]z) = 2(x)|2) (4.19)

and the norm generalizes to
N(z) =exp—1 /d3x 2*(x)z(x) , (4.20)
which shows that this definition only makes sense if z(x) is in L2(R?), i.e.
/dgx 2*(x)z(x) < 00 . (4.21)

The relevant modification in the overlap function is replacing ¢+ by x and summation by
integration:

(w|z) = exp —%/d%[w*(w —z)— (w"—2")z] . (4.22)

Formally the discrete integration measure is replaced by a ”continuum product”
[1dzz — [[ dz(x)dz*(x) (4.23)
j X

over all space points x. This product is often written as

[[ dz(x)d="(x) = Dz(x)Dz*(x) (4.24)

In this way the trace formula (4.15) becomes
HAz/Dd@Df@Md@WMA@D. (4.25)
In general the interpretation of the functional integral is not easy. In this case, however,

the integration domain is restricted to functions z(x) in L?(R?), which enables us to give
a specific definition. Namely, there exits a countable basis {¢;(x)}, so that any function

in L?(R3) can be written as
for certain ¢;. Since the ¢;’s are fixed, the freedom in the choice of z(x) resides in the

coefficients ¢;, so that the integration measure Dz(x)Dz*(x) may be replaced by [] dc;dc?,
and we are back at the discrete situation handled before.
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4.3 Path Integral

We begin by writing the partition function as a functional integral over the space of
complex functions z(x) which are elements of L?(R?):

Z = [ D)D) (=00l e [[2(0)]) (427

The matrix elements of the exponent cannot be calculated for finite 5. Thus, the idea is
to partition the interval [0, 5] into M infinitesimal pieces € = 3/M, so that we can write

Z = /DZDZ* (2] (e_d:I)M |2) (4.28)

with an obvious short-hand notation for the states and the integration measure.

For a reason nobody understands, the inverse temperature 3 = (kgT')™" in the canon-
ical ensemble plays the role of an imaginary time, and the interval [0, 5] may be seen as
an analytic extension of the time variable ¢ in the complex plane: t = —i7,0 < 7 < hf,;
we have explicitly inserted Planck’s and Boltzmann’s constant so that one may check that
the dimension comes out correctly. Hence, the subdivision in elements € may be seen as
a discretization of the imaginary time variable 7.

We now insert the completeness relation M —1 times. Relabeling |29) = |2), (zm| = (2]

we get:
M

7 = /Dzl ---Dz, H <zn|e’d:[|zn,1> . (4.29)

n=1
The crucial step is to find an approximate expression for the matrix element of the in-
finitesimal Boltzmann factor. One may show that for small € the operator may be ap-
proximated by its normal ordered form:

e H = e, +0(€%) . (4.30)
With this approximation the typical matrix element becomes:
(zn e<H |2n—1) = (2n|2n_1) exp —€ (2| H |20_1) . (4.31)
The special properties of the coherent states allow us to calculate the matrix element
(2o H(G,0) |20 1) = H(2, 2n_1) (4.32)
where H is now a function of the c-numbers z, and z;. Collecting the above results we
may write for the partition function

M
7 = / [[ Pz.Dz; e, (4.33)
n=1

where the exponent, called the action, given by the expression:

M
S Z [log(zn|zn_1>
€

n=1

— H(z} 2 1) (4.34)
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is a function of the sequence {z} = (21, 22, -, 2ar)-

Let us now define a set of intermediate points 7,, = ne on the imaginary time interval
[0, 7], so that T3y = ( and 79 = 0, and relabel: z, — 2(7,,). Then in the limit M — oo the
sequence of numbers {z} becomes a function: {z} — z(7) and the product of integrations

a functional measure o

> Dz, — Dz(1) . (4.35)

n=1
Because of the trace condition zg = zj7, the functional integral runs over functions z(7)
subject to the periodicity condition: z(0) = z(7). Unfortunately, the formal expressions
are almost meaningless. The reason is that the space of all functions z(7) is far too
large to be tractable. We cannot assign a meaning to Dz(7) like we defined Dz(x),
because the functions z(x) are elements of L?(R?), whereas the functions z(7) need not
be measurable, let alone integrable. The functional integral is only properly defined by
the discretize (lattice) form for finite M.

Although we cannot assume continuity or differentiability of z(7), we can be bold and
restrict the integration domain to a subspace of functions having 'good” mathematical
properties. In particular we can demand that this subspace consists of differentiable
functions, that is, we assume

Zn = Zn_1 + Zn€ + (9(62) (4.36)

for some well defined sequence Z,, which may be called the derivative of the sequence {z,}.
The limit function z(7) will then be differentiable:

%
dr

= lim Sl (4.37)

€

T=Tn

If this holds we can expand the first term of the action (4.34) as follows:

log{zalnot) = =} [#4(2n = 2o1) = (2 — 7o)

= —le[gti, — 2iz,] + O() . (4.38)

The action (4.34) in the Feynman path integral then takes the form of an action integral

A}iinooS = Oﬁﬁ L(r) = S|z, 7], (4.39)
where L(7) is the Lagrangian
L(r) = d%g)z(ﬂ — z*<7>dil—(:) — H (2"(1),2(7)) . (4.40)

Thus, the partition function is the sum over all trajectories z(7), beginning and ending
at the same point, of the exponential of the action calculated over the finite imaginary
time interval [0, A0] :

Z = /DZ(T)DZ*(T) eS| (4.41)
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Recalling now that the functions z(7) were in fact also functions on configuration space,
we get the complete Feynman path integral for the partition function

7= / D(—ir, x)De*(—ir, x) e516"9) (4.42)
where we have renamed z(7,x) — ¢(—it,x). The action
hj
S = / dr / &Px L(—iT, %) (4.43)
0

is given in terms of the classical Lagrangian density of the (3+1)-dimensional theory with
the time t analytically continued to —i7.

0¢(t,x) .O0P*(t,x)
ot TV ot

L(t,x) = ¢"(t,%) o(t,x) — H(¢", ) . (4.44)
We conclude that the partition function (4.42) can be represented as an Euclidean func-
tional integral over fields ¢(¢,x) defined on the time interval t = —iT,0 < 7 < h3. The
path integration is subject to the periodicity condition ¢(ihf3,x) = ¢(0,x).

A similar derivation can be given for fermionic fields. Because fermionic fields anti-
commute, it turns out to be necessary to replace the complex numbers z,z* by new
quantities, called Grassman variables, that satisfy different calculational rules. In par-
ticular they anti-commute among themselves, and commute with all bosonic quantities,
like bosonic operators and ordinary c-numbers. The point of these rules is that the whole
coherent state formalism, including the derivation of the path integral, can be taken over
almost literally. The only essential difference is that the boundary condition on fermionic
fields in the path integral is anti-periodic: 1 (ih3,x) = —1(0,x).

Although the expression for the partition function (4.42) has a great formal beauty,
we should not forget that it was derived by the rather arbitrary prescription that the
sequence {z} approach a differentiable function. Even with this prescription, the path
integral is mathematically ill defined. The point is that the subspace of smooth functions
is so exceedingly small in the total space of functions that it is impossible to find a measure
D¢pDe¢* that picks only contributions from these smooth functions. This is the paradox
of the continuum path integral: either one restricts it to smooth functions but then it is
identically zero or one allows more functions, but then the continuum action is undefined.
One way is to go back to the discrete form; this is the method of lattice field theories.
Another way is to normalize the formal path integral to an analytically solvable reference
problem. In practice this means that the Gaussian path integral for a free system is
prescribed.
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Chapter 5

BCS-Theory of Superconductivity

As understood today, superconductivity is explained by a spontaneous break down of
electromagnetic gauge invariance. All important qualitative features, like the fact that
electrical resistance is so low that currents can circulate for years, can be understood as
exact consequences of this breakdown. However, to give a physical basis to the mechanism
of symmetry breakdown, and as a starting point for approximate quantitative calculations,
one needs a model. In this chapter we will study the microscopic model introduced by
Bardeen, Cooper and Schrieffer (BCS) in 1957. This model has been highly successful
in correlating and explaining the properties of simple superconductors in terms of a few
experimental parameters.

In the BCS-model electrons appear explicitly, but it is assumed in advance that only
electrons near the Fermi surface have an interaction, which is supposedly weak and at-
tractive in nature. This effective electron-electron interaction arises from the exchange of
phonons associated with the crystal lattice. The effects of this interaction on a normal
solid are remarkably small and are described by simply replacing non-interacting particles
by quasi-particles with slightly modified properties.

However, the introduction of an attractive interaction, no matter how weak, also leads
to a bound state consisting of a pair of electrons at the Fermi surface with equal but
opposite, momenta and spins. Once a macroscopic number of such Cooper pairs with a
lower net energy appears, a description of the system in terms of single-particle states does
no longer correspond to the state of lowest energy, and a transition to a new equilibrium
state must take place. This qualitative different state cannot be obtained by a perturbative
scheme which develops continuously from the original single particle states, and one has
to include the possibility of pairing from the beginning.

5.1 Order Parameter

The phenomena of superconductivity and superfluidity have a similar origen which is the
breaking of U(1) symmetry. The specific mechanism by which the breakdown occurs
in superconductors is ”Cooper pairing”. Two electrons in a metal may feel an effective
attractive force due to "over screening” by the ions of the metal. The bare Coulomb
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potential between the electrons is repulsive, of course. The ions of the system respond
to the motion of the electrons and, in certain circumstances, cam produce an effective
interaction between electrons which is attractive. This discovery is due to Frolich (1950).
Later, Cooper (1956) showed that this attractive interaction could produce a two-electron
bound state in the presence of a Fermi sphere of Bloch electrons. These bound pairs have
properties which are similar to bosons and , at sufficiently low temperatures, condense in
the superconducting state.

The basic dynamical variable of the problem is the field operator z/zg(x) describing
an electron with spin state up (o =1) or down (o =]), satisfying the anti-commutation
relations:

$o(x), 00 ()] = boor8 (x = %) (5.1)
(9o (3), 0 ()], = [5(0), L (x)] = 0. (5.2)

In terms of these fields the electron charge density and corresponding current density are
given by

(%) = e DHx)P.(x) (53)
0 = 5= 3 [P (=i (x) + e | (5.4)

where e and m are the electron charge and mass, respectively. Charge and current density
J* =(q,j) satisfy the continuity equation

aﬂju (l‘) =0, (55)

which comprises the conservation of charge

dQ d
d_? == [dzq@) =0 (5.6)

in local form.
The Pauli principle as expressed by

bo(x)0(x) =0, (5.7)

forbids more than one electron from condensing into the same quantum state. There-
fore, Bose-Einstein condensation of electrons is not physically possible. However, if the
electrons were to form pairs, i.e. composite entities having boson properties, there is no
contradiction in assuming that these pairs may accumulate in the same macroscopic state.
It was shown in 1956 by Cooper that the effective attraction between electrons near the
Fermi surface, due to electron-phonon interaction, must lead to bound states of electrons,
regardless of how weak the attraction may be. With this idea as a starting point, it has
been possible to construct a successful theory of superconductivity (Bardeen, Cooper,
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Schrieffer, 1957). In this theory a superconductor is characterized by a non-vanishing
value of the electron-pair amplitude

Fror(x = X) = (b ()0 (X)) # 0 . (5-8)

In the homogeneous problem (i.e. in the absence of an external field), the expectation
value depends only on the coordinate difference. In the normal state the expectation value
(5.8) must vanish because all states and operators are gauge invariant, that is, commute
with the number operator N. Hence, in the superconducting state gauge invariance must
be broken.

Two particles with spin 1/2 can pair in a singlet state with total spin .S = 0, or in a
triplet state with total spin S = 1 and spin projections S, = 0, £1. If we assume spherical
symmetry, the electrons can only form pairs with opposite spins. In this case of so-called
s-wave pairing, we need only consider

F(jx —x|) = ({1 (x)d, (X)) - (5.9)

This function describing the correlation between two electrons has a spatial range &,
called the coherence length, and falls off rapidly beyond. By relating this length to the
smallest size wave packet the electrons can form, one arrives at the estimate
v
& = aTc , (5.10)

where vp = pr/m is the Fermi velocity and where a is a numerical constant for which the
BCS-theory gives the value a = 0.18. For real superconductors the order of magnitude of
& is 107* cm, much larger that the interparticle distance.

If we confine ourselves to phenomena that vary only slightly over distances &y, we may
define th order parameter of the superconductor as the expectation value of the local
product of two electron operators with opposite spins

F(jx]) = A (9, (x)¢hr (x)) - (5.11)

This order parameter characterizes the simplest (BCS)-type of superconductors with s-
wave pairing. The normalization shall be given a physical meaning in the BCS-model. As
we will see, the order parameter F' is directly proportional to the order parameter of the
Ginzburg-Landau theory.

5.2 BCS model

The BCS theory starts from the following model Hamiltonian for an electron gas

~

A=Y [ @ [dL(x) o) o (x) = 70 000 ()00 ()00 ()], (512
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with kinetic energy

ep)=—— ——er, (5.13)

which is measured relative to the Fermi energy egp. The electron fields satisfy the standard
anti-commutation relations. As shown by Cooper, the exchange of phonons leads to an
effective attraction between electrons close to the Fermi surface. In the Hamiltonian
(5.12) this interparticle potential has been approximated by an attractive delta-function-
like potential with coupling constant A > 0.

Given the Hamiltonian we can immediately write down the corresponding partition
function. We replace operator fields 1),(x) by Grassman variables ¢, (—ir,x) defined
on the Euclidean time interval ¢ = —i7,0 < 7 < hf and construct the corresponding
Euclidean action

hg
S = / dr / &Pr L(—iT, %) (5.14)
0
with Lagrangian density
L = Lo+ Ly, (5.15)
Lo = 9] [po—e(P)] ¥ + 9] [po —e(p)] ¥y , (5.16)
Lr = My, (5.17)
where we introduced the abbreviation py = —hd/07 as a short hand for the time deriva-

tive. The partition function then takes the form:
Z = /me* eS| (5.18)

The functional integration is over all fields v, (—iT, %), ¥%(—i7,x), which satisfy the anti-
periodicity conditions:

¢;(07X) = ¢;(_ihﬁ7x)7 (519)
¢U(07X) = ¢U(_ihﬁ7x)7 (520

on the imaginary time-interval [0, 73]

Before we go further it is important to emphasize that the BCS-theory serves as a
model rather than as a valid microscopic theory. For example, what is missing is the
repulsive Coulomb interaction between the electrons. The total interaction, which is
the balance of the phonon-electron attraction and the Coulomb repulsion, may be either
attractive or repulsive. In its general form, the problem of taking both interactions into
account for actual models is very complicated, especially since real superconductor are
anisotropic.

The main reason why the BCS -model works so well is that it allows for the possibility
that two electrons of opposite spins form a self-bound Cooper pair, which below some
critical temperature condense. This results in the breaking of U(1) gauge invariance and
a non-zero value of the order parameter (5.11). The field F(x) is an order parameter
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for the SC-state and represents the essential degrees of freedom of the ordered phase.
Therefore, our program will be to express the partition function as a functional integral
over an auxiliary field A(—i7,x) that has a direct relation to the order parameter F.

At this point it is convenient to introduce the Nambu notation and rewrite the La-
grangian in terms of doublet fields:

w=<§ﬁ> ot = (vf,01) - (5.21)

With this compact notation the non-interacting part (5.16) of the Lagrangian density can
be written in the bilinear form

_ po — €(p) 0
Lo =t ( 0 P+ () ) 0 (5.22)

In arriving at this expression we took the anti-commuting character of the fields into
account and performed a partial integration, neglecting terms that are a total derivative.

The next step is to rewrite the quartic interaction as a Gaussian path integral over
auxiliary fields A and A" with the help of the identity

exp A / drd gy, = / DADA! exp / drd®s (Awm +olyia - —NA)

(5.23)
which is the functional analogon of the identity
B — /oo &ef‘zP—I-AZ—I-BZ* (524)
—oco T

for ordinary variables z = z + iy,d’z = dxdy. The identity (5.23) is known as the
Hubbard-Stratonovich (HS) transformation. We employ this transformation to rewrite
the partition function in the form:

7 = / DADATe AT (5.25)

where the effective action is given by the expression

hp
oTIAAT _ / DYDY exp / drdz (szKw _ §|A|2> . (5.26)
0

The kernel in the last expression is the 2 x 2 matrix operator

K (po N . 2 . > (5.27)

in the space of the Nambu doublet fields. By the HS transformation we have achieved that
in the action fermionic fields only appear bi-linearly, at the expense of the introduction of
two new fields. As we will see, these two fields are closely related to the order parameter.
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5.3 Landau approximation

The above derivation is exact, at least in so far as the formal algebraic manipulations are
allowed. However, at this point, we confine ourselves to the mean-field-approximation. In
MFA we set the partition function equal to the maximum term

logZ = —T'|A,Af] (5.28)

where A, A are the solutions of the MFA equations:

or or
6A_0’ (SAT_O' (5.29)
As we have argued before, the corrections to MFA describe fluctuations of the order
parameter. Because of the large number of particles involved, the fluctuations about the
expectation value should be small. In the BCS-theory these fluctuations are ignored. MFA
breaks down only in a small region very close to the critical temperature, the so-called
Ginzburg region.

Non-trivial solutions of MFA determine the order parameter of the BCS-theory. From
the definition of the effective action (5.26), we get

A(x) = Moy (x)y(x)) - (5.30)

This identifies A as the proper order parameter of the SC-state, since a non-zero value
breaks U(1) invariance.

Through the effective action, the partition function is given as a functional of the order
parameter. To calculate the effective action (5.26) we have to evaluate the Gaussian path
integral

1A, Al] = /Dwzp* expyt - K-, (5.31)
where the exponent reads explicitly
K p = /Oﬂ drd®z /Oﬁ dr'd*z'" )} (—iT, x) Ky (7, x|7, %) ¢, (—i7, X) (5.32)
with Nambu indices o, p = 1,2 and kernel
Kop(m,x|7", %) = Kyp6(T7 — 7")6(x — X') (5.33)

determined by the 2 x 2 differential operator (5.27); we have set i = 1.
For fermions the general formula for the Gaussian integral (5.31) is

I[A, AT] = det K = exp[Trlog K] , (5.34)

where K is to be regarded as a matrix in the infinite dimensional space labeled by (7, x, o).
The second member of the last equation is an obvious mathematical identity for any matrix
that can be diagonalized.
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To get further we assume that the order parameter is a constant. It is then conve-
nient to introduce an expansion in terms of plane-wave eigenfunctions of the operator K
satisfying the completeness relation:

o(r = 7)o(x —x') = % ; / (;ZT];?’ exp —iw, (T — 7') expip - (x — X) . (5.35)

The frequencies w,, are determined by the boundary conditions on the fermion fields which
may be expanded in a Fourier series on the finite interval [0, ] as
Unlir.x) = =5 PG (i plexp —inr +1 (5.36)
o(—I1T,X) = = Y —=,(twp, P)exXp —iw,T +ip - X . .
B4 QT PSR P

On account of the anti-periodicity conditions (5.20) on the fermion fields, the so-called
Matsubara frequencies take the odd values w,, = (2n + 1)73~" for fermions.
For the effective action (5.26) we have substituting (5.34)

L P s 2
T[A, Al = —Trlog K + X/ drd®z| A (5.37)
0
The logarithm is defined by its expansion in powers of K. The first term we calculate as:

B
TTK = / drd*z K o S(r—1)o(x — XI)|T=T' X=X’
0 k)

- B 1 d3p ~
_ /O deSxB; oy Koo ®)

= BVTrK(p) . (5.38)

The momentum-space operator in the last line is

K (iwn, p) = ( Wn gf(m o fe(p) > (5.39)

and the trace in the last line of (5.38) must be understood as

1 d3p
53 Gt (540

where tr indicates the trace in Nambu space.
Similarly, we get for the quadratic term

TrK? = BVTrK?(p) . (5.41)

Tr

Hence, as it should be, the effective action is an extensive quantity
-1
(A, Al = —gV (Tr log K — X|A|2) . (5.42)

This is an exact representation of the effective action for the case of a constant order
parameter. In this case we may assume A to be real, without loss of information, since
the arbitrary constant phase can be absorbed into the definition of the field operators.
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5.4 Gap Equation

The partition function of the BCS-model is completely determined by the 2 x 2-matrix
K. The determinant is:

det K = —w? —é(p) — A?
= (—iwn + V@ + A7) (—iwy — V@ + A?) . (5.43)
For real energies F the determinant has zero’s for the pair of energies
E.=+Ve + A2, (5.44)

This implies that the energy spectrum of the Fermi excitations exhibits a gap, that is,
the excitation energy cannot be less than A. The gap value is reached for

2

e(p) = 2p_m — €5 . (5.45)

The gap is qualitatively explained as the finite binding energy of the Cooper pair formed
by two electrons close to the Fermi surface.

The value of the gap may be obtained from the mean field equations (5.29). For
constant A functional differentiation becomes ordinary differentiation which is easily per-
formed with the help of the relation

§Trlog A =TrA™'6A . (5.46)
In this way we obtain from (5.42)
ar 5 0 0 1
s = BV {Tr [S(p) ( o ﬂ - XA} ~0, (5.47)
where the so-called propagator S(p) is the inverse of K (p)
Sy 1 iwn, + €(p) —-A
0= e (8 i) o4

From (5.47) we get the celebrated (finite temperature) BCS gap equation

Z/ 3 w2+ 62 + A2 (5.49)

This equation can have a solution A # 0 for a positive coupling constant, which is the
crucial result of the BCS-theory.

The sum over the Matsubara frequencies may be performed with the help of a contour
integral. The basic formula is

11 ?{ 1 1
= —— ¢dz
32mi edr+1z—x
= n(z)—1. (5.50)
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with n(z) = 1/(e®®+1) the Fermi-Dirac distribution function. The contour integral circles
the poles at z = iw,, on the imaginary axis. This gives

Pp t hl E
1_A/ p_tan ﬁ (5.51)

The last equation is a non-linear integral equation for the gap parameter as a function of
the temperature A = A(T"). One may note immediately that this equation would have
no solution if A < 0, i.e. in the case of repulsion, since then the two sides would have an
opposite sign.

Since the general solution of the gap equation requires numerical methods we shall
confine ourselves to some limiting behavior. For that purpose it is convenient to introduce
the density of states according to the formal definition

=2 | (3;;3 §(z— ¢ (p)) . (5.52)

When integrands are peaked near the Fermi surface ¢(p) = 0, we may use the approxi-

[a¥)

mation v(e) = v(0) =: vp. The symmetry of the integrand of (5.51) then allows us to

write tanh 15
WD anh 1
1 = 2 .
Ay /0 de 22 (5.53)

The integral must be cut off at some value wp to render it convergent. In the present model
the interaction with the crystal lattice leads to an attractive force between the electrons.
Since the Debije energy wp is a measure for the inverse lattice spacing, this leads to
the condition that only electrons with energies of thickness 2wp about the Fermi surface
participate. In all practical cases we have wp << er. Typical values are wp ~ 100K and
er ~ 10.000K.

In the zero-temperature limit equation (5.53) reduces to

wp de
1= )\VF/O — (5.54)

The integral is elementary and gives

2u)D

For many superconductors the dimensionless coupling constant g = i Avp is small: g =
0.2 — 0.3. In the weak-coupling limit we obtain

A(0) = 2wp €73, (5.56)

which depends sensitively on the value of coupling constant. One may note that the point
g = 0 is an essential singularity. This non-analyticity means that the above results can
never be obtained by a perturbation expansion in the small parameter g.
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Figure 5.1: Temperature dependence of the energy gap in the BCS theory

In the opposite limit 7" — T, the gap vanishes by definition and we find

(5.57)

It is possible to solve this implicit equation for T (see e.g. reference [FW]). The result is
T.=113wpe s . (5.58)

We see that T, and the zero-temperature gap both depend in the same way on the coupling
constant g. This dependence cancels in forming the ratio

A(0)

p— ]_‘ .
T 76, (5.59)

which is a universal constant independent of the material. Experimental results give
reasonable agreement with this value.

The temperature dependence of the gap can be computed numerically. For weak
coupling superconductors A(0) << wp, the ratio A(7")/A(0) is a universal function de-

termined by
A(T wp 1
log () = -2 @ ,
(0) o E efF+1
which decreases monotonically to zero at T, as shown in figure 5.1.
Near T' = 0 the temperature variation is exponentially slow

A(T) = A(0) — /2nA (0) Te 2O/ (5.61)

(5.60)
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so that the hyperbolic tangent is nearly unity and insensitive to 7. This means that A
is nearly constant until a significant number of excitations is thermally excited. On the
other hand, near T, A(T") drops to zero approximately as

8T..
¢ (3)

The variation of the order parameter with the square root of T, — T is characteristic of
all mean field theories.

NJ=

A@Mwﬂ ]in—ﬂ . (5.62)

5.5 Thermodynamics

The calculation of the thermodynamic properties of a BCS-superconductor, proceeds from
the thermodynamic potential in the mean-field-approximation (5.28), which in virtue of
(5.42) for a constant gap becomes

1 -1
o= i logZ = —Trlog K + XA2 . (5.63)
We will now show that the first term is nothing but the thermodynamic potential of an
ideal gas of fermionic excitations (quasi-particles) with energies (5.44). First we note that
the trace over Nambu space degrees of freedom gives:

trlog K = logdetoK
log (—wi — € — AQ) : (5.64)

The fact that the argument of the logarithm has the wrong sign is no problem because
it merely adds an irrelevant constant to the thermodynamic potential. This implies that
we have:

1 & 1
b == [ = Llog (w2 + e+ A?) + TA (5.65)

gJ (2m)3 A
The summation over Matsubara frequencies can be performed by contour integration.
However, it is simpler to make use of the formula for the gap equation (5.51) derived
earlier

10 s o a1 2A A,
ﬁaAlog(wn—I—e +A)—ﬁzn:w%+E2—Etanh§ﬁE. (5.66)

By integrating with respect to A, we arrive at
d*p 1
o= /—1 1+ e 95) 4 ZA2 5.67
S:Zi 2n) og( +e )—l—)\ (5.67)
As might be expected, the thermodynamic potential has the form of the partition function
for an ideal gas of two types of particles with energies given by (5.44). The reasoning

applies to a constant gap, but a generalization to a gap function which depends on |p|
can easily be incorporated.
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Appendix
Propagator in d-dimensions

In the neighborhood of T we may assume the correlation function in coordinate space to

have the form:
dd k‘ ez’k-I‘

G(r) = / (2m)® a2k* + p2

To calculate this expression we use the ”proper time” representation

a2k2 T / ds exp —(a’k® + u?) s

to obtain:

r)—/oods/ 4k exp —(a’k® + p*) s +ik - v
~Jo (2m)d P s ‘

The variable shift k — k + ir/2a%s gives

:/OO dse—ﬂ2s—r2/4a2s/ d’k e—a23k2
0 @) '

The Gaussian integral can be performed

G(I‘) _ / ds s —d/2 f,u s—T?/4as )

(471'042 d/2

We may now use the representation for the Bessel functions:

oo 1//2
drz’ le 777 =2 L(24/ 7
/0 Xr T e < )

This yields:

ey S K (2)
ad/2+1(2m)d/2 pd/2=1

The asymptotic behavior of the Bessel functions is exponential

r e Hr/e
Ka/o—1 (M ) ~
(8%

\/2mpr /o .

Hence we find exponential decay

with the correlation length
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This quantity plays a crucial role because it relates the length scale to the temperature.
In the case that g = 0 (massless case) the correlation length diverges and the decay is
no longer exponential. On dimensional grounds we must have

G(r) ~ — . (5.78)

This follows directly from the definition (5.68) by changing to dimensionless integration
variables x = kr.

Appendix
Gaussian Integrals

Gaussian integrals have some important applications. One of those is that they form the
basis of perturbation theory in quantum field theory. In this appendix some algebraic
identities about Gaussian integrals are briefly described for a finite number of integration
variables.

Throughout the appendix the Einstein summation convention is used, that is, sum-
mation is understood to be carried out over repeated index symbols.

A general Gaussian integral has the form:

Z(J1,e 5 dn) = /o:o lf[ldcbi exp (—%@Az’jfba’ + ji¢i> : (5.79)

in which A is a symmetric positive definite matrix, that is, its eigenvalues \; satisfy
To calculate Z one first determines the maximum contribution of the integrand to the
integral from the extremum of the exponent:

d /1

d¢k<2¢ 19 ]¢> ( )

Using the solution of this equation, we shift integration variables according to:
¢ = (A )igds + i - (5.81)

The integral (5.79) now becomes:
. . L., . [P0 Ly Ay
21, dn) = exp 55 A )i / [T dyse v, (5.82)
T04=1

which can be calculated by diagonalizing the matrix A. One finally obtains:

. . n _1 1 . _ .
Z(J1,++yJn) = (2m)2 (detA) "2 exp §]i(A l)z’j]j (5.83)

49



The last expression can be used to calculate any Gaussian average:
<¢]€1¢k2¢]€l> = N/ (H dQSl) ¢k1¢/€2"’¢/€167§¢“4ij¢j (584)
% \i=1

in which the normalization N is chosen in such a way that < 1 >= 1, i.e. N1 = Z(0).
Consider the general Gaussian integral (5.79). Repeated differentiation with respect to
the sources leads to the identity:

Pky--Ory) = (2m) 2 (detA)2 ———...—Z(j1," "+, Jn 5.85
(Ouidn) = ) F@AA o T 689
Insertion of the explicit form (5.83) then gives
0 O 1ia-1y..;
= — .. e 5.86
(O] = G (5:56)
0 g 11, , 4 .\»

8jk1 '"8]kl n! 27

with [ = 2n; the number of variables and indices must be even. In principle the differen-
tiations yield 2n! different terms. However, since the matrix A is symmetric, 2" of these
terms are equal. Furthermore, we are differentiating a monomial of order n, which implies
that there are n! permutations that also yield the same terms. Hence the total number
of different terms is (2n!)/2"n! = (2n — 1)!!. This is simply the number of all possible
pairings of [ = 2n indices. Thus one finds:

(Drdm) = D A b Ay by - (5.88)

pairings of

(k15 k)
The rule is:
e consider all possible pairings of the indices ki, ..., k; (I even),
e associate to each pair k,k, a matrix element of the matrix A™!

Identity (5.88) states that all moments of a Gaussian distribution can be expressed in
terms of the second moment alone. Indeed, consider the second moment

(drdna) = (A7)

It is simply equal to the inverse of the matrix A. Therefore an alternative way of writing
(5.88) is

(5.89)

kiko

(Pr1-Br) = D By, Dhy) (Db, Phy) (5.90)

pairings of

(k1,....k7)

In quantum field theory this result is known as Wick’s theorem and the basis of pertur-
bative calculations.
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Appendix
Functional Differentiation

We first give a general definition: a functional F is a mapping from functions n(z) on R¢
onto the real or complex numbers (or in general on vectors). One writes F[n] with square
brackets to emphasize that the argument is a function rather than a number. A simple
example of a functional is

Fly) = [ do f@)n(a) (5.91)

with f(z) some generalized function on R?.
Next, we introduce the notion of the functional derivative of a functional. It is defined
as a linear functional on a space of suitable test functions ¢(x) according to

6F[n]
on(x)

Applying this definition to the functional (5.91) , we get

[ dr () e = tim = {Fln + ] — Flal} (5.9

6F[n]

o) f(z) (5.93)
In a similar manner we derive n( )
n(x
= &z — .
ey =0 =) (59

The rules for functional differentiation are very much like the ones for ordinary derivatives.
For, instance, under some mild continuity conditions we have

8§ 8F[) & 6F[y  8%F[y) (5.95)

sn(x) én(y) — nly) on(x) — én(z)on(y)

[577(233)’ ﬁ] =0 (5.96)

or

Other rules one may use are

6 n n—1 6F[77]
I L2 U]
e e (5:98)
which imply s
[W)’ n<y>] ~s(x ) (599)

These rules suffice for our purpose.
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Under suitable differentiability conditions there also exists an analogue of the Taylor
expansion for a functional. Indeed, by Taylor’s formula we have

Fln+zp] = Fln] + 2~ (5.100)

z=0

regarding F' as an ordinary function of z. Using the definition (5.92) of the functional
derivative, we may write

6" Fn

Fin+zp| = Fin| + —/dx”gox (T, 5.101
26 = i+ 3 2 [ deolan) gl s (5.101)
Taking n = 0,z = 1, and changing ¢ to 1, we obtain the so-called Volterra series:
>0 1 " F[n]
Fin| = F|0] + —/dx”nx (g, 5.102
[n] = F[0] ;n! (1) - m( )677(3:)__,577@) iy (5.102)

If this series converges, the functional F'[n] is completely specified by giving the infinite
set of symmetric functions

o"F[n]

(5.103)

n=0

for which F'[n] is said to be the generating functional. This formalism is very useful as a
starting point for perturbation theory.
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