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Arguments are given that, for random spin systems, the density of states p(u) of the inverse of the
susceptibility matrix vanishes as p(u) ~exp(— A4/u), for u— 0, throughout the “‘Griffiths phase.” The
amplitude A4 vanishes at the onset of magnetic long-range order, and diverges at the transition between
“Griffiths” and “paramagnetic” phases. For an O(m) spin system, with m— oo, the spin autocorrela-
tion function C(z) is found to have the “stretched-exponential” form, InC(r) ~ — (4¢) 2, in the Griffiths

phase.

PACS numbers: 75.40.—s, 64.60.Fr, 75.10.Hk

A dilute ferromagnet is in the “Griffiths phase”! if its
temperature T is between the critical temperature T, (p)
for the onset of magnetic long-range order and the criti-
cal temperature T,.(1) of the pure (i.e., nondilute) sys-
tem. The concept of the Griffiths phase is, however,
more general. A random magnetic system, specified by a
particular bond probability distribution, is in its Griffiths
phase if it is above its own particular ordering tempera-
ture T,, but below the highest ordering temperature T'g
allowed by the distribution.? (In particular, Tg=oo for
unbounded distributions.)

In this Letter I derive, using heuristic arguments, a
seemingly quite general result for the density of states
(i.e., eigenvalue spectrum) p(u) of the inverse X ! of the
susceptibility matrix X in the Griffiths phase. The matrix
X describes the response of a spin system {S;} to external
fields {h}: x;;=08(S;)/0h;. lts eigenvalues must be non-
negative for thermodynamic stability. For a pure (ie.,
translationally invariant) system, the eigenvectors of X ~!
are plane waves: The vanishing of the smallest eigenval-
ue signals the onset of long-range order at T, while the
corresponding eigenvector specifies (with some excep-
tions?) the nature of the order. By contrast, for a ran-
dom system it has been argued? that, in the thermo-
dynamic limit, p(u) has weight at arbitrarily small u for
all T in the range 7, <T <Tg. However, the corre-
sponding eigenvectors must be localized>* As T— T,
the “mobility edge” separating localized and extended
states finally reaches u =0.%4

The above result for p(u) is a manifestation of the
“Griffiths singularities”> exhibited by the free energy for
T. < T < Tg. Physically, these are a consequence of the
occurrence, with finite probability per site, of arbitrarily
large regions which locally are characteristic of a system
with a higher transition temperature T, > T. (For a di-
lute ferromagnet, these could be regions of fully occupied
sites/bonds.) By estimating, at varying levels of sophisti-
cation, both the probability for such a region to occur,
and its contribution to p(u), and summing over regions
of all sizes, we find the generic form p{(u) —exp(—A/u),
for 4— 0. The amplitude A is a function of the parame-
ters (e.g., p, T) describing the system. In general, I ex-

pect (and obtain explicitly below) that 4— 0 for T
— T, since? p(u) should be an algebraic function of u
for T=T,, while A— oo for T— T'g, since p(u) shouid
have a gap [p(u) =0 for u < u.(T)] for T > Tg.

Griffiths singularities have important consequences for
the dynamics of the system.'® In particular, relaxation
is nonexponential for T, < T < Tg. Heuristic arguments
to this effect, based on the (free) energetics of domain
walls, have been given for dilute Ising ferromagnets® and
spin-glasses.! Below we note that for vector spin sys-
tems, the dynamics (with no conservation laws, i.e.,
“model A” of Hohenberg and Halperin’) can be solved
exactly, in the limit of infinite-dimensional spins, in
terms of the statics. This gives, for the spin autocorrela-
tion function C(r), the result InC(t) ~ — (41) /2 for long
times, i.e., a “stretched-exponential” form.

I now present the arguments which lead to these re-
sults. For simplicity, I restrict explicit computations to
dilute ferromagnets, although generalizations to other
systems are straightforward in principle. Let p be the
site-occupation probability and 4 the spatial dimension.
The probability Pr(L) that a given site belongs to a
“compact” cluster of occupied sites, with linear dimen-
sion L, is of order expl—c(p)L?], with ¢(p) =In(1/p),
where we have neglected a prefactor which depends alge-
braically on L. [We will systematically neglect such pre-
factors in the following: they lead only to algebraic pre-
factors in p(u).] According to finite-size scaling,® the
susceptibility per site of such a region, for L large and T
close to T'g=T,(1), has the form

¥(L)=LUTg—T)*fLV(Tc—T)),

i.e., (L) ~L%mn? for L> &, where m, & are the magneti-
zation per site and correlation length, respectively, of the
pure system at the given temperature. The physical ori-
gin of the weight near the origin in p(u) is the existence
of eigenvectors localized on (or near) such clusters. A
trial eigenvector of the susceptibility matrix X, having
elements L ~%/2 for sites in the cluster, and zero for other
sites, yields the eigenvalue estimate u ~'=L "%, . %
=x(L)~L%m? for L> & (recall that {u} are the eigen-
values of X ~!). Thus the contribution of a compact clus-
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ter of linear dimension L to p(u) is an eigenvalue again neglecting algebraic prefactors.
Umin~L ~%m "2, Of course, there are other states local- Equation (1) has the general form p(u) ~exp(—A4/
ized on the cluster (an isolated cluster of L¥ sites con- ©), with 4=c(p)/m?. 1In particular, A4 diverges as ex-
tributes L? eigenvalues in total) but it can be shown that pected fas [T,.(1) —T1 728, for T— Tg=T.(1). The
these do not contribute to the leading behavior of p(u) same type of argument can be used to estimate the form
for — 0 (modifying prefactors only), in much the same of p(u) for T=T,(1). For this case, finite-size scaling
way as higher states bound in deep wells do not affect yields X(LY~L?7", giving p(u) ~exp(—c'/u?/@—m)
the leading behavior of the *“Lifshitz tail” in the density for u— 0. For T close to T,.(1), crossover from this
of states for a particle in a random potential.” Note the form to Eq. (1) occurs for uy=yu, «[T,(1) — T1? [where
variational nature of these arguments: Exact localized y=(2—mn)v is the usual susceptibility exponentl, Eq. (1)
states associated with compact clusters presumably have holding for u < u..
eigenvectors which extend somewhat beyond the edge of It should be emphasized again that, given the varia-
the clusters. Also, it may pay (see below) to consider tional nature of the arguments leading to Eq. (1), this
large regions which are characteristic of a system with a result gives only a lower bound on p{(u), although we ex-
higher mean occupation probability p' (and hence a pect the u dependence (Inpx —1/u) to be correct. In
higher, but not maximal, bulk 7,.) rather than regions of particular, while Eq. (1) gives the expected divergence of
completely occupied sites. For both of the above reasons, the amplitude A4 for T— T,(1), it fails to predict that A4
the derived density of states will be a lower bound on the vanishes for T— T.(p). To rectify this shortcoming, we
true density of states. consider now a variational treatment based on large
Putting together the probability per site Pr(L) for a compact regions containing a fraction p’> p of occupied
large compact cluster to occur, with the smallest eigen- sites. In order for such a region to produce an arbitrarily
value pmin(L) which such a cluster produces, yields for small eigenvalue for L — oo it is necessary to choose a p’
the (normalized) density of states corresponding to a point in the ordered phase, i.e., such

that T.(p') > T. In fact we will choose p’ variationally,

p() ~3, PrL)6(u — pmin(L)) to maximize p(u). The probability (per site) Pr(Z,p")

~3 exp(—cL)Né(u—L ~m =) that a site belongs to a compact region of size L contain-

) ing p'L? occupied sites is given by (dropping, as usual,
~exp(—c/m?u), p—0, (1) ] power-law prefactors)

nPr(L,p")=—L%p ' In(p'/p)+ 1 —pIal(1 —p" )/ —p)l} = — L, (p"). )

Equation (2) gives correctly the extensive part of InPr, which is adequate for present purposes. As expected,
InPr(L,p') is maximal for p'=p, when the extensive part vanishes. For p’'=1, one recovers S (D) =In(1/p) =c(p).
To estimate the smallest eigenvalue associated with the cluster, we use the same trial eigenvector as before to obtain
once more fmin~L ~%m T2, where now m =m(p') is the magnetization per site of a bulk system with site-occupation
probability p’. The best variational estimate for p(y) is obtained by maximizing with respect to p':

p(,u)=me'1xZPr(L,p’)5(u —umin(p',L))zma}xZexpl =L, (p")]16(u—L ~m(p")] ~2)
p L P L

=max expi— (/1) £,(p" ) Im(p")13 =exp(—A/u), (3)
p
where f . . . .

to minimize g(p')=(p'—p)*/(p'—p.)?* with respect
A=min{f,(p")/Im(p")13. (4) to p’. The minimum occurs for p'—p.=I[g/(1 —B)]
r X (p. —p), justifying the assumption that p'—p is small
Hence the form p(u)—~exp(—A4/u) is recovered, but for p near p., while the value of g at the minimum is
with an improved estimate for the amplitude 4. gmin® (pe —p) 21 =P 10 14 conclusion, the use of p’ as an
As a special case, consider a point (p,7) that is close additional variational parameter preserves the result
to the boundary with the ferromagnetic phase, i.e., T is p(u) ~exp(—A/u) obtained by using p'=1, but in ad-
close to T.(p). Then we anticipate that the optimal dition shows that A vanishes at the onset of ferromag-
value of p' will correspond to a point (p’,T) which is netic order fas [p.(T)—pl20~=P o, equivalently, as

close to (p,T) (but in the ferromagnetic phase). For [T —T.(p)12 =P, as required on physical grounds.
this case, f,(p') and m(p') can be expanded as Turning now to dynamics, we consider the spin auto-
Fo@)e(p'—p)2, m(p)e(p'—p.)?, where p.=p (T) correlation function C(#) =N ~1¥,(S;,(2)S;,(0)), where
is the occupation probability corresponding to the phase the two subscripts are site (/=1,2,...,N) and spin
boundary at temperature T li.e., p.(T) is the inverse (@a=1,2,...,m) indices, and the angle brackets indicate

function of T.(p)]. Thus, according to Eq. (4), we have a thermal average. Expanding S;,(¢r) in terms of the
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eigenvectors v, of X', S (1) =%, S,0,(0), gives C(1)
=N"13,45,(1)S,(0)). For dynamics with no conser-
vation laws (model A of Hohenberg and Halperin?), it
can be shown that,!! in the limit m — oo, each mode u
relaxes independently at a rate proportional to pu:
(8,(2)5,(0)) & (1/p)exp(— put), where we have absorbed
the kinetic coefficient into the time scale. Thus

CWeN~'Y, (1/p)exp(—put)
—~f " dulp()/ulexp(— ut)
=7 Gulwexp(—Alu—pt)

~exp{—2(41) V3, as t— oo, (3)

where the final result follows on evaluation of the g in-
tegral by steepest descents for large . An algebraic pre-
factor of the form ¢t ™% obtained from carrying the
steepest descent calculation to higher order, has been
omitted from Eq. (5), since the value of x would be
changed by the algebraic prefactors in p(u) which we
have omitted. Equation (5) has the ‘stretched-
exponential” (or “Kohlrausch”) form. For T=Tg
Inp(u) ~ —1/u?’@=" implies InC(z) ~ —¢/@+2=n
For T just below Tg, crossover to Eq. (1) occurs for
1> t,=(Tg—T) "2, with A=+ y=(v/2)(d +2—1n).

The large-m limit may also provide the key to a more
systematic treatment of the statics, since in this limit the
determination of the spectrum of X ~! reduces to a self-
consistent Anderson problem. Specifically we consider a
“Ginzburg-Landau-Wilson” (or “¢*’) theory, in the
continuum limit, with free-energy density

1)

F=ilr+V@IYe2x) +% 3 V9o 012+ 2= T 93 ()03 (x),
a a a,b

where a,b=1,2,...,mand V(x) is a “white-noise” ran-
dom temperature fluctuation due to the disorder:

V)V x)l,=2v85(x—x"). 6)

In the limit m— oo the standard decoupling (or “Har-
tree”) approximation® becomes exact.? The matrix X !
becomes the operator

H=—V24+r+V(x)+U(x), )]

where

U(x) =ulp2(x))r =u z—:; lx| w2, ®)
7

(...)r indicates a thermal average, and {u}, {|u)} are

the eigenvalues and eigenfunctions of H. Equations

(6)-(8) specify a nonlinear Anderson problem for which

we require the density of states p(u) at small “ener-

gy” .

Consider first the case u =0. The density of states at
low energy is given by the *Lifshitz argument”®!2%:
Low-energy states are associated with unusually large
negative fluctuations in the potential ¥(x). The proba-
bility distribution for V is P{F}=exp{— fdx V?(x)/4v}.
A fluctuation of depth =V, extending over a region of
size ==I occurs with probability (per unit volume)
=exp{— V§/%/4v}, giving rise to a bound state with en-
ergy pu=r—Vo+1/I? and a density of states p(u)

=exp{— (r —u+1/1?)21%/4v}. Choosing / variationally l

Inp(u)=—(1/v) r — ) 4= D2f ((u/p) (r — ) @=272)

{—(l/v)(r—u)“_dm, (/) —p) =D,
T =@/ =/, /) —p) @2,

to maximize p yields I/=1/(r—p)"? and Inp(u)
~=(1/v)r—p) @92 for (r —p)— oo, provided that
d < 4. More systematic studies? confirm this form and,

in addition, obtain the power-law prefactors as well as
the correct amplitude in the exponent.

For the nonlinear problem (u >0) there are no nega-
tive eigenvalues. Instead the “Lifshitz tail” is moved to
the vicinity of g =0. A variant of the Lifshitz argument
for this case proceeds as follows. Very small eigenvalues
are again associated with large, rare, negative fluctua-
tions in ¥ [these correspond to regions with a locally
high T, (.e., r.)]. Suppose V(x)==—V¥, over a region
of size =/ centered around the point xo, leading to a
low-lying state localized in this region. To keep the cor-
responding eigenvalue positive, there must be a compen-
sating large, positive contribution from U(x): The term
in (8) associated with the smallest eigenvalue ug with
eigenfunction | uq) localized near xo must provide a large
contribution to the sum for x near xo. We will assume
that in this region the remaining terms sum to (roughly)
a constant which we will absorb into . Since |puo) has
spatial extent ==I, |(x|po}] =192 for |x—xo| <L
Hence po==r—Vo+1/1%+u/uol®, giving a density
of states p(u)=expl—( —pu+1/124+u/ul?)?1%/40].
Again, this has to be extremized with respect to the “lo-
calization length” I. The result has the form (we consid-
er u <r only, otherwise we are not sampling the tail of
the distribution)

(9

10)

for 2 <d < 4.13 Equation (9) is the result of the linear theory discussed above. Equation (10) shows that for u— 0,
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one recovers the generic form p(u) ~exp(— A4/ u), with
Aecur/v. Again, 4 vanishes at the onset (»=0) of long-
range order, as expected. In contrast to the dilute lattice
models discussed above, however, the Griffiths phase ex-
tends to infinite temperature (i.e., to » =¢o) in this mod-
el, because the local temperature fluctuations are un-
bounded.

Note that the localization length /(u) (i.e., the value
of I which dominates the computation of p for given u)
first decreases with decreasing u, /=(r—pu) ~172 when
(9) applies, then increases, I=={u/u(r—u)}"%, when
(10) applies. Thus there is a maximum localization
length for a given temperature. Physically, this length
should be the correlation length,'* and this is indeed
found!! in the present model, where we obtain /mi,
=1/vr in the “classical regime,” u/r® 92«1, and
Imin=(u/r)V @ Dar=v in the “critical regime,”
u/r (4—'d)/2>> 1.

In summary, a number of arguments show that the
density of states of the inverse susceptibility matrix has
the generic form p(u)~exp(—A4/u) in the Griffiths
phase. For O(m) models with m — oo, the autocorrela-
tion functions have a “stretched-exponential” form. In
my view, the # =00 model provides a potentially useful
starting point for a field-theoretic derivation!® of p(u) in
the Griffiths phase, following tae approach used to ob-
tain the Lifshitz tail in the linear theory. '¢
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